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Abstract

Aquaculture currently accounts for approximately half of all seafood produced

and is the fastest growing farmed food sector globally. Marine bivalve aquacul-

ture, the farming of oysters, mussels and clams, represents a highly sustainable

component of this industry and has major potential for global expansion via

increased efficiency, and numbers of, production systems. Artificial spat propaga-

tion (i.e. settled juveniles) in hatcheries and selective breeding have the potential

to offer rapid and widespread gains for molluscan aquaculture industry. However,

bivalves have unique life-histories, genetic and genomic characteristics, which

present significant challenges to achieving such genetic improvement. Selection

pressures experienced by bivalve larvae and spat in the wild contribute to drive

population structure and animal fitness. Similarly, domestication selection is

likely to act on hatchery-produced spat, the full implications of which have not

been fully explored. In this review, we outline the key features of these taxa and

production practices applied in bivalve aquaculture, which have the potential to

affect the genetic and phenotypic variability of hatchery-propagated stock. Along-

side, we compare artificial and natural processes experienced by bivalves to inves-

tigate the possible consequences of hatchery propagation on stock production. In

addition, we identify key areas of investigation that need to be prioritized to con-

tinue to the advancement of bivalve genetic improvement via selective breeding.

The growing accessibility of next-generation sequencing technology and high-

powered computational capabilities facilitate the implementation of novel geno-

mic tools in breeding programmes of aquatic species. These emerging techniques

represent an exciting opportunity for sustainably expanding the bivalve aquacul-

ture sector.

Key words: gene-environment interactions, genomic selection, marine bivalve aquaculture,

selective breeding, sustainable development.

The future of bivalve aquaculture relies on artificial
propagation

With the global human population projected to exceed 9

billion by 2050, food production must increase by at least

59% to meet projected demand (Valin et al. 2014). Feeding

this growing population, whilst maintaining biodiversity

and good environmental stewardship, is one of the major

global challenges of the 21st century. This issue is exacer-

bated further by the need to ensure that the future

intensification of food production is sustainable, especially

in the face of climate change (UN 2015; IPCC 2018).

Aquaculture is the fastest growing food production sector

globally, expanding on average 6.4% per annum since 2001

(Subasinghe 2017). Nearly half of the current global finfish

and shellfish production derives from aquaculture (FAO

2019a), with this sector expected to underpin most future

growth in seafood production (Kobayashi et al. 2015). Cur-

rently, mollusc farming accounts for approximately 21 % of

world aquaculture production (Subasinghe 2017).
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Important scientific advances in bivalve husbandry prac-

tices (i.e. optimization of diet, fertilization protocols and

larval rearing) occurring within the last century (e.g. Gal-

stoff 1938; Carriker 1956; Loosanoff & Davis 1963) led to the

establishment of the first commercial bivalve mollusc hatch-

eries (Mann 1983) resulting in the global expansion of shell-

fish aquaculture. The ability to control environmental

conditions in indoor facilities enables broodstock condition-

ing and spat production almost year-round. Most impor-

tantly, the development of a constant and reliable source of

spat benefits the expansion of the bivalve aquaculture sector,

facilitating the predictability of production and enabling the

possibility of selective breeding.

Hatcheries are expected to play a key role in the contin-

ued expansion of bivalve aquaculture. The potential of

hatchery production is highlighted in China, which

accounts for 80% of global production of Pacific oysters

(Crassostrea gigas) (Yang et al. 2014), and the sector now

relies almost entirely on hatchery sourced spat (Li et al.

2011). Nonetheless, demand for hatchery-produced spat is

often low in areas where natural (wild capture) spat is

available and abundant. A similar situation occurs in

France, which is responsible for 82% of Pacific oyster pro-

duction in Europe (92 000 tonnes in 2018 (Eurostat 2020))

where over 60% of spat is captured from wild sources

(Richez 2012). This contributes to a slow shift from a natu-

ral to hatchery production model (Adamson et al. 2017).

This same production template is also true for mussels;

currently, industries for two of the main farmed species,

the blue mussel (genus Mytilus) in Europe (Kamermans

et al. 2013) and the green-lipped mussel (Perna canaliculus)

in New Zealand (Symonds et al. 2019) still rely primarily

on natural spat. This process is an inexpensive but unreli-

able practice, which is vulnerable to habitat disturbances

and restricts the development of cultivation technologies

such as selective breeding.

The Food and Agriculture Organization (FAO) has

recently proposed a number of key developments, which

will assist the aquaculture industry in addressing several

long-term sustainability challenges (FAO 2016). One prior-

ity area highlighted by the FAO is the use of stock manage-

ment and selective breeding to produce lines with greater

reliability and productivity in a wide range of environments

(FAO 2019b). To date, encouraging responses to selection

have been observed in aquatic species: the average gain in

body weight per generation is 8.7% in shrimps, 10.3% in

oysters and between 9% and 17.9% among finfish species

(Gjedrem & Rye 2018). Although recent estimates show

that in the 10 main farmed aquatic species 75% of produc-

tion benefits from some form of selection (Houston et al.

2020), only a small percentage of global aquaculture pro-

duction (<10% in 2012) utilizes genetically improved stock

(Gjedrem et al. 2012).

Despite an increasing availability of genomic resources

for bivalves, the mechanisms underlying domestication (i.e.

adaptation to a farmed environment), and genotype-

environment interactions (GxE) ongoing in cultured

bivalve species remain poorly studied. The degree to which

these processes influence the response to selection in these

taxa, and consequently the potential to genetically improve

organisms, represent two key knowledge gaps with respect

to bivalve selective breeding (Figs 1 and 2). Accordingly,

the potential for losses in genetic diversity during produc-

tion is exacerbated and likely hinders the efficiency of exist-

ing hatchery management and selective breeding

programmes, jeopardizing sustainable growth of this sector.

There is a fundamental need to clarify the impacts of

hatchery-management practices on the genetic and pheno-

typic constitution of cohorts, and the resulting long-term

implications for bivalve production.

In this review, we explore the mechanisms by which pro-

duction practices and life-history characteristics can influ-

ence the genetic variability and quality of spat during

hatchery-propagation (Fig. 1). We describe the current sta-

tus of selection in bivalve aquaculture globally and the dif-

ferent methods employed for production. Further, we

discuss how management practices potentially benefit or

hinder the optimization of selective breeding approaches,

and how a greater control of hatchery-propagation pro-

cesses can contribute to the sustainable intensification of

bivalve aquaculture. There are considerably fewer studies

investigating the consequences of domestication selection

in bivalves in comparison with other aquatic species.

Therefore, in order to infer the possible consequences of

artificial propagation in these organisms, we compare the

selection pressures acting in hatcheries with those acting in

the wild, when applicable. By identifying the main gaps in

knowledge and bringing awareness to this topic, we expect

to contribute to increasing efficiency and accuracy of selec-

tion in these taxa and inspire future research which may

contribute to increasing efficiency and accuracy of selection

in marine bivalves.

Selective breeding in bivalve aquaculture: current
status and opportunities

Successful breeding programmes have been established for

bivalves worldwide and include those applying mass and

family selection approaches (Table 1) (Hollenbeck & John-

ston 2018). In mass selection, individuals are typically

selected according to their performance in comparison to

the population’s mean for a specific trait (e.g. growth)

without fully accounting for family structure. This strategy

can be effective but runs the risk of inbreeding depression

and is only suitable for a focus on one or two traits. Alter-

natively, family selection is based on pedigree information,
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and individuals from the top performing families are cho-

sen to form the breeding populations, allowing for effective

maintenance of genetic diversity. Family-based selection

has been applied in a commercial M. galloprovinciallis

breeding programme. Here, the use of 77 full-sib families

resulted in a heritably of 0.35 (SE = 0.09) for total weight

and 0.23 (SE = 0.08) for meat yield as a ratio between meat

weight and total weight, after 2 generations; both of which

are commercially relevant traits (Nguyen et al. 2014).

Selection has also successfully improved traits such as

growth rate (Hershberger et al. 1984; de Melo et al. 2016),

disease resistance (Naciri-Graven et al. 1998; Dove et al.

Harvest

Broodstock

Figure 1 Concept diagram highlighting the selection pressures acting upon natural and artificially propagated bivalve stocks, across different life-

cycle stages and corresponding production steps. Selection pressures (coloured boxes) acting upon wild populations (indicated with yellow back-

ground), hatchery populations (indicated with blue background) or both (indicated with flanking arrows), as generated by the artificial or natural envi-

ronment. Selection pressures correspond to each production step discussed within the review (steps 1 - 5; maturation, spawning, fertilization,

development, settlement and grow-out; outer circle), as well as the corresponding life-cycle stage (inner circle). Figure created with BioRender.com.
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2013a; D�egremont et al. 2015b) and resilience towards

environmental perturbation (Parker et al. 2015). Despite

these success stories, bivalve aquaculture production still

relies greatly on wild type strains (Hollenbeck & Johnston

2018), that may not be adapted to the farming environment

(Y�a~nez et al. 2015). Therefore, significant potential for

genomic improvement exists, providing the opportunity to

maximize productivity for bivalve aquaculture species

worldwide.

The recent development and increasing affordability of

high-throughput sequencing technologies have facilitated

the incorporation of genomic tools in breeding pro-

grammes of aquatic species (Zenger et al. 2019). This has

enabled a step forward from family selection, particularly

for traits which are difficult or impossible to measure

directly on selection candidates, such as disease resistance.

For such traits, family selection would only allow for family

level breeding values, thereby missing out on within-family

genetic variation. Genomic tools allow breeders to access

and utilize the within-family component of genetic varia-

tion. This can be achieved in two main ways. Firstly, map-

ping of quantitative trait loci (QTL) allows the

identification of genetic markers significantly associated

with a specific trait within the species of interest. Selection

for traits with large effect QTLs can be improved by apply-

ing marker-assisted selection (Zenger et al. 2019). Secondly,

Figure 2 Critical knowledge gaps currently preventing the widespread implementation of genomic breeding approaches in bivalve aquaculture.

Main knowledge gaps as identified in this review and considered as key priorities for future research (coloured boxes). Knowledge gaps are linked to

each production step discussed in this review (steps 1 - 5; maturation, spawning, fertilization, development, settlement and grow-out; outer circle) as

well as the corresponding life-cycle stage (inner circle). Figure created with BioRender.com.
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genomic selection can be applied for selection of polygenic

traits (Meuwissen et al. 2016). Such approach can cover a

large number of loci across the genome and provides

enough information to capture all causative variants for a

given trait, as loci are expected to be in linkage disequilib-

rium with one or more common markers (Meuwissen et al.

2001). Besides, genomic selection captures the within-

family variance as markers shared between individuals can

be identified, increasing the accuracy of the estimated

breeding values and response to selection (see Zenger et al.

2019 and references therein). Additionally, it enables retro-

spective parental assignment, which allows multiple fami-

lies to be grown in mixed tanks and reduces the generation

of confounding genetic and environmental effects. Geno-

mic selection can also be designed to fit different levels of

ploidy (Ashraf et al. 2016; Endelman et al. 2018) and can be

a valuable asset to guarantee a high precision in breeding

programmes utilizing broodstock with increased value

through ploidy manipulation.

Having a set of tools which link high-resolution genetics

with phenotypes is a main requirement for genomic selec-

tion. To date, genomes have been assembled for several of

the main cultured species (Hollenbeck & Johnston 2018).

In addition, the development of DNA markers including

microsatellites (Li et al. 2003; Wang et al. 2016) and single

nucleotide polymorphisms (SNPs) (Sauvage et al. 2007;

Fleury et al. 2009; Nguyen et al. 2014; Wang et al. 2015; Vu

et al. 2021) as well as the identification of genomic regions

associated to traits of economic importance through QTL

mapping (Sauvage et al. 2010; Guo et al. 2012; Jiao et al.

2014) and genome-wide association studies (GWAS)

(Gutierrez et al. 2018; Meng et al. 2019), create a genomic

toolbox which provides a backbone for future research.

Ultimately, this information promotes the development of

genomic based selection techniques and the fine-tuning of

breeding programmes.

Marine bivalves share complex genomic and life-history

features, including high levels of nuclear genetic diversity,

high heterozygosity, and elevated numbers of deleterious

mutations and null alleles (Bierne et al. 1998; Plough &

Hedgecock 2011; Hollenbeck & Johnston 2018; Gerdol et al.,

2019). In addition, reproductive attributes (broadcast spawn-

ing, high fecundity, high early mortality rates), and a high

variance in reproductive success (Vk) among individuals

(Hedgecock & Pudovkin 2011), are commonly described in

these taxa. Variance in reproductive success can result in low

effective population sizes (Ne) and low numbers of effective

breeders (Nb) relative to census size, termed ‘sweepstake

reproduction’, which has been observed in both wild and

hatchery-propagated stock (Hedgecock & Sly 1990; Hedge-

cock 1994; Boudry et al. 2002; Plough & Hedgecock 2011).

Heterozygous deficiencies relative to Hardy-Weinberg equi-

librium, and segregation distortion of markers described in

paired crosses, are also commonly reported in bivalves (Lau-

ney & Hedgecock 2001; Pe~naloza et al. 2014).

These properties of the bivalve genome, together with

specific life-history characteristics of these organisms may

influence the efficiency and applicability of genomic

resources in breeding programmes. Therefore, efforts to

elucidate the role these features play in the selection process

are vital to enhance production in this sector. Selection

must focus on traits that enhance larval performance and

productivity, whilst simultaneously selecting for traits

which are relevant in later development. Thus, another key

priority is to understand the genetic basis of these traits, as

well as their genetic and developmental correlations.

Table 1 Large-scale breeding programmes for cultured marine bivalve species (adapted from Hollenbeck & Johnston, 2018)

Common name Species Group Location Type of

selection

Programme

type

Founded References

Mediterranean

mussel

Mytilus

galloprovincialis

Mussel Australia Family Industrial 2008 Nguyen and Ingram (2012)

Greenlip mussel Perna canaliculus Mussel New

Zealand

Family Industrial 1999 Camara and Symonds (2014)

Pacific oyster Crassostrea gigas Oyster USA Family Industrial 1996 de Melo et al. (2016), Langdon et al.

(2003)

Pacific oyster Crassostrea gigas Oyster Australia Family; mass Industrial 1997 Kube et al. (2011), Ward et al. (2005)

Pacific oyster Crassostrea gigas Oyster New

Zealand

Family Industrial 1999 Camara and Symonds (2014)

Pacific oyster Crassostrea gigas Oyster France Mass Experimental 2009 D�egremont et al. (2015b)

Pacific oyster Crassostrea gigas Oyster China Mass Experimental 2007 Li et al. (2011), Zhong et al. (2016)

Sydney rock

oyster

Saccostrea

glomerata

Oyster Australia Family; mass Industrial 1990 Dove et al. (2013b), Nell et al. (1996), Nell

et al. (1999)

Bay Scallop Argopecten

irradians

Scallop China Mass Unknown 2001 Zheng et al. (2004), Zheng et al. (2006)
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Genomic resources have the potential to revolutionize

aquaculture production, contributing to the rapid expan-

sion and optimization of marine bivalve production.

Nonetheless, socioeconomic factors also play a key role in

the implementation of new technologies in existing pro-

duction systems, and may slow down the pace of genomic

breeding in aquaculture, especially in developing countries

(Kumar et al. 2018). To date, industrial applications of

genomic selection in aquatic species are limited, and largely

restricted to finfish species (Zenger et al. 2019).

Broodstock conditioning and its implications on
genetic variability

Contrary to natural ecosystems, hatcheries offer a largely

uniform environment to cultivate broodstock, reducing

sources of stress caused by sub-optimal or fluctuating, con-

ditions. In these artificial systems environmental conditions

can be manipulated to trigger gametogenesis in broodstock

throughout the year, extending the period through which

mature breeders are available (Helm 2004). Overall, the

process of induced gametogenesis, known as conditioning,

aims to maximize the fecundity of progenitors whilst main-

taining the high quality of gametes and larval viability

(Lannan et al. 1980; Utting & Millican 1997). For aquacul-

ture purposes, broodstock are either collected in their natu-

ral environment or taken from previous generations of

hatchery stock and are held in flow-through systems (Helm

2004). During the conditioning process, quality and avail-

ability of food resources have a direct effect on adult fecun-

dity levels and reproductive output (Utting & Millican

1997), with lipid and proteins obtained from food accumu-

lated during oogenesis (Li et al. 2000). A significant correla-

tion between biochemical content of oocytes and early

developmental success (Massapina et al. 1999; Corporeau

et al. 2012; Boulais et al. 2015), highlights the vital role that

conditioning can play in production, and consequently, in

the genetic makeup of cohorts (Fig. 1).

To date, standard conditioning protocols have been

established for the main cultured bivalve species (Helm

2004). However, a large (up to twofold) variation in length

of conditioning period is reported among strategies

adopted by different hatcheries, and a quality check of

broodstock gonad development is not consistently under-

taken among hatcheries (de Reynaga-Franco et al. 2020).

Without equal opportunity for success in breeding, Nb/N

ratio is lowered. In addition, an unsynchronized response

of broodstock to conditioning may reduce the potential

number of breeding pairs, promote discrepancies of both

Vk among individuals and performance among families

(Boudry et al. 2002), with inbreeding levels within a breed-

ing programme consequently increasing. Such issues

rapidly nullify predictive ability of selective breeding

methods and impose a challenge for the implementation of

genomic selection in these taxa.

Genomic and phenotypic consequences of
hatchery propagation

In hatcheries, spawning of broodstock can be triggered

either by non-lethal techniques (thermal cycling, intermit-

tent exposure to air and/or introduction of potassium chlo-

ride, hydrogen peroxide, steroids or neurotransmitters in

the mantle cavity or adductor muscle) or by stripping

(scarifying) the gonads of individuals (Helm 2004). The

adoption of gonad-stripping or chemically induced spawn-

ing protocols can help to standardize the time of gamete

release, reducing the deterioration of gametes. However,

such approaches do not discriminate between mature and

immature gametes present in the gonad. The lack of control

of gamete quality during artificial spawning may lead to a

high variability in developmental rate within a batch (Tan-

yaros & Tarangkoon 2016). In fact, for some species such

as M. edulis, gonad stripping is a non-viable approach

which impairs production (Kamermans et al. 2013). More-

over, the required sacrifice of pedigreed broodstock indi-

viduals (where identified) may render this approach

unfavourable for selective breeding.

Owing to its practicality, mass spawning (combining

gametes from multiple females with an aliquot of pooled

male gametes) is a common procedure for artificial fertil-

ization (Helm 2004; Tetrault 2012). This approach does

not control parental contribution and can result in reduced

numbers of effective parents in the programme. Moreover,

as best performing individuals may be excluded from

crosses, mass selection can limit the accuracy of the breed-

ing programme. However, fecundity levels observed in

bivalves are high and fertilization is commonly successful,

and a sufficient number of offspring is often achieved.

Inbreeding load, as well as impaired development, can be

concealed by management practices (e.g. culling) where the

low performing individuals are eliminated from a batch by

size selection (Taris et al. 2006). As genomic and marker

assisted selection endeavour to capture favourable genetic

variation, it is vital to identify and control for the possible

impacts of spawning and fertilization protocols on the

genetic variability and performance of cohorts (Fig. 2).

To overcome issues with parental contribution, pairs can

be individually crossed. Paired crossing is less commonly

adopted in hatcheries as it is a more laborious approach,

requiring the control of fertilization rates of individual

crosses and investment in personnel and equipment. This

method demands additional physical space to separate mat-

ing pairs and subsequent offspring during larval develop-

ment. Furthermore, the rearing of juveniles in family-

specific tanks presents an issue with confounding of genetic
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and common environmental effects, which would require

multiple replicate tanks per family to resolve. Subsequently

mixing families, and growing them together in a common

environment, can mitigate against this issue. However, the

gamete density used in artificial crosses is substantially

higher than in nature. Empirical evidence demonstrates

that mass spawning increases Vk among males and pair

crossing individuals increases the variance in reproductive

success among females (Hornick & Plough 2019). Handling

practices may additionally contribute to increase variation

in family sizes, which often goes undetected. Long term,

such practices can bottleneck genetic variability in artifi-

cially propagated stock and dramatically reduces the ability

to predict success for selective breeding. Therefore, altered

genetic diversity of hatchery-propagated stock is, an inevi-

table consequence of the chosen fertilization approach

(Fig. 1) (Hornick & Plough 2019).

Phenomena occurring at the gamete level may also play a

role in determining parental contribution in crosses and act

as an early selective pressure. For example, the distance

which sperm must travel to reach oocytes, gamete pheno-

type (biochemical composition, sperm motility and beha-

viour, oocyte size and age) and gamete interactions

influence the success of fertilization (Levitan 2006; Suquet

et al. 2010; Boulais et al. 2015; Boulais et al. 2017). Genetic

compatibility can influence fertilization success, favouring

crosses between less related individuals (Lymbery et al.

2017). In sea urchins, low sperm densities favoured crosses

between common genotypes which match at the gamete

binding locus (oocyte-sperm compatibility locus) (Levitan

& Ferrell 2006). Sperm-saturation, in turn, promoted

reproductive success of individuals with less frequent geno-

types. These findings highlight the putative role of gamete

density in sperm choice behaviour. Factors such as affinity

between crosses (Kek€al€ainen & Evans 2017) and sperm

longevity (Crean et al. 2012) have been linked to increased

postzygotic fitness. However, the extent to which interac-

tions at the gamete-level, as well as gamete phenotype,

influences fertilization success in external fertilization is not

yet fully understood (Breed & Moore 2015).

The precise determination of oocyte-sperm ratios and

controlled-crossing approaches may benefit fertilization

success and enhance the contribution of individual brood-

stock (Song et al. 2009). Gamete density used in artificial

crosses is substantially higher than in nature, increasing

competition among individuals, and acts on Nb. Oocyte

mechanisms acting against polyspermy are not 100% effec-

tive, thus, increased competition can lower the rates of fer-

tilization success among crosses. Commonly, substantial

variation in gamete phenotype and fertilization rates are

commonly observed among and within individuals (Breed

& Moore 2015). During hatchery propagation, gamete

quality is assessed via crude visual observations of sperm

motility and concentration, as well as shape (roundness),

size and colouration of oocytes. Individuals classified with

high quality gametes are selected for fertilization, whilst

those not meeting the quality criteria are excluded from

crosses. Correlations between gamete phenotypes (e.g.

oocyte biochemical composition) and larval viability in

artificially bred bivalves and other invertebrates have been

previously described (Massapina et al. 1999; Crean et al.

2012; Boulais et al. 2015). Nonetheless, the extent to which

gamete traits and gamete-level interactions influence Vk

and genetic variability of offspring is not fully understood.

If such implications can be carried over throughout the

individuals’ life, the expression of key genotypes may be

modulated by pre-fertilization selection. However, further

investigation is required to clarify how physiological and

molecular mechanisms underlie gamete phenotype, and

affinity of crosses during external fertilization (Fig. 2). Such

knowledge can benefit the development of mating systems

that maximize fertilization and homogenize Vk among

breeders.

Hatchery-propagated larvae are reared in a controlled

environment, avoiding the risks imposed by oceanic drift

and predation. In this environment, water quality parame-

ters are maintained at, or close to, conditions considered

optimal for the survival of the species being cultured. This

optimized environment enables the levels of production to

be improved, maximizing larval growth and settlement

rates of the produced species. In the long term, domestica-

tion contributes to enhance performance under these artifi-

cial rearing conditions. However, domestication selection

can lower environmental resilience when exposed to natu-

ral conditions. A lower fitness of individuals in the wild has

been observed in fish species which are currently in transi-

tion to a domesticated status (Araki et al. 2008). Moreover,

genomic footprints of domestication can vary greatly

between populations from independent origins selected for

the same trait (L�opez et al. 2019), as a result of the specific

characteristics of a rearing environment (Vandeputte et al.

2009). Recent findings indicate that selectively bred C. vir-

ginica larvae were less able to tolerate starvation compared

with wild cohorts, experiencing significantly higher mortal-

ity rates (McFarland et al. 2020). However, the genomic

mechanisms underlying domestication selection of marine

bivalve species remains poorly investigated in comparison to

finfish species. Optimization of selective breeding will require

these factors to be better understood and controlled for.

Culling, or size selection, is commonly practised in

hatcheries throughout larval development. Selection for

similar growth rates under culture conditions generally

improves overall spat production and reduces variation in

development within a cohort (Taris et al. 2006), but may

potentially mask the signs of inbreeding depression (Taris

et al. 2007). Therefore, such a practice may benefit early
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production stages. However, the effect of size selection on a

stocks’ genetic variation are not clear (Fig. 2). Culling may

result in accidental removal of individuals that may reach

market size quickest in later development, individuals with

alternative traits of interest (e.g. disease resistance) or traits

that are relevant during later stages of production (e.g.

robustness), directly impacting a breeding scheme. A prac-

tical example is seen inMercenaria mercenaria larvae, where

initially small individuals present in culture tanks are cap-

able of surpassing the size of individuals that were initially

larger, at later stages of development (Gionet et al. 2010).

In addition, this process can reduce genetic variability of

offspring (Taris et al. 2006) acting as a genetic bottleneck in

hatcheries. Losses of entire cohorts can result from sudden

shifts in conditions when GxE interactions mean that the

animals selected as optimal under a hatchery production

environment perform poorly in a subsequent grow-out

environment.

Developmental plasticity (input during early develop-

ment persisting in adult phenotype) can modify the perfor-

mance of individuals in their later life. For example,

exposure of quagga mussel larvae (Dreissena bugensis) to a

range of temperatures has been correlated with the devel-

opment of different shell morphotypes in adults (Peyer

et al. 2010). If early exposure to stressors can imprint per-

formance of organisms in later life, alternative culling

strategies (e.g. application of a salinity or temperature

shock during early development) would enable selection

for robustness to future environmental conditions. Accord-

ingly, the hatchery environment and management practices

may themselves help or hinder spat development, poten-

tially affecting the performance of individuals at grow-out

sites (Reynaga-Franco et al. 2019).

Currently, research into the implications of hatchery

practices on the genetic characteristics of bivalves is

restricted to a few studies (Boudry et al. 2002; Taris et al.

2006; Taris et al. 2007; Lallias et al. 2010; Hornick & Plough

2019; McFarland et al. 2020). Unravelling the genomic basis

of environmental resilience will allow the potential of selec-

tion towards robustness, or generalist phenotypes, and its

association with other commercially relevant QTL to be

determined (Vu et al. 2021). Additionally, the development

of physiological indices of larval performance, and their

association with the individual genotype, can contribute to

improve selection in these taxa (Pan et al. 2016). Further

studies clarifying the correlation between larval perfor-

mance of hatchery selected stock and juvenile and adult

performance during grow-out will contribute to the devel-

opment of breeding strategies and optimization of produc-

tion throughout the entire life cycle of these taxa.

Hatchery bred spat, which have reached the settlement

stage, are often induced to settle. This practice not only

facilitates efficient husbandry but avoids any adverse

consequences (e.g. depleted energy reserves) of spending

too long in the pediveliger stage. Uniformity in settlement

time can be achieved by manipulating environmental stim-

uli such as temperature shocks, or via the addition of fine

shell particles or other material to induce settlement in

tanks (Helm 2004). Alternatively, settlement of larvae can

be chemically induced by exposure to neurotransmitters

(S�anchez-Lazo & Mart�ınez-Pita 2012; Grant et al. 2013;

Joyce & Vogeler 2018). Further investigation is needed to

elucidate the role such approaches play as a selective pres-

sure in the hatchery environment and whether these can be

used to select or induce favourable characteristics (Fig. 2).

Settlement and metamorphosis are critical moments in

the life cycle of bivalves. Substantial mortalities occur dur-

ing these stages in both natural populations and artificially

propagated stock (Hunt & Scheibling 1997; Plough &

Hedgecock 2011; Plough 2016), with survival at the post-

settlement stage reaching only 2.8% of the original popula-

tion in some cases (Plough 2016). Genotype-dependent

mortality linked to deleterious recessive mutations can

occur immediately before or during metamorphosis

(Plough & Hedgecock 2011; Plough 2016). Insights on

genotype-dependent mortality during settlement have

opened the opportunity to investigating the applicability of

QTLs to select for uniformity of settlement timing (Plough

2016). In contrast, mortality in the period immediately

post-settlement is lower, with no indication of being

genotype-dependent (D�egremont et al. 2007; Plough 2016).

Genotype by environment responses to the grow-
out environment

All spat, both wild and hatchery propagated, are exposed to

environmental variability experienced within the coastal

and estuarine zones in which grow-out occurs, and are thus

susceptible to this daily and seasonal variability (Fig. 1). To

thrive in such demanding environments, individuals must

either be genetically adapted to extreme conditions, or pos-

sess highly plastic physiological responses which allow them

to regulate internal mechanisms.

Accordingly, Pacific oysters have demonstrated the abil-

ity to regulate genes involved in stress response pathways

when facing abiotic stress conditions, including elevated

temperature and air exposure (Zhang et al. 2012). These

findings suggest that a high level of plasticity is a strategy

which has allowed these sessile organisms to successfully

colonize stressful environments. The expansion of gene

families that function as part of the organism’s response

against biotic and abiotic stress, as well as immune

response, suggest that this group has adapted to a sessile life

in fluctuating environments (i.e. intertidal coastal and estu-

arine waters). A better understanding of plasticity mecha-

nisms in bivalves can contribute to the development of
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culturing conditions which improve performance in desir-

able traits. The selection processes experienced during early

development in hatcheries could contribute to direct effects

on the performance of cohorts, as well as increasing the

likelihood of stochastic GxE interactions.

GxE is an important factor dictating performance of

aquaculture species (see review by Sae-Lim et al. 2016 and

references therein). Where animals from a breeding pro-

gramme are reared in different environments, it can result

in a re-ranking of families or genotypes. This can negatively

impact genetic gain and the effectiveness of a breeding pro-

gramme. These effects have been observed in previous stud-

ies investigating the variation in C. gigas performance

among families across grow-out sites (Langdon et al. 2003;

Evans & Langdon 2006). In other cases, selected genotypes

outperform in certain conditions, but become poor per-

formers when exposed to a different set of conditions – that
is re-ranking of genotypes (Langdon et al. 2003; D�egremont

et al. 2005; Evans & Langdon 2006; Wang et al. 2013). In

marine bivalves, between-family variance described for

traits such as growth, survival and environmental resilience

(D�egremont et al. 2005; D�egremont et al. 2015a; Scanes

et al. 2020) indicates the genetic basis of traits associated

with performance (Vu et al. 2021). The re-ranking of geno-

types, in turn, highlights the intrinsic effect of GxE on over-

all performance of a family or cohort. There is also genetic

variation in how well animals perform across diverse envi-

ronmental conditions, and this robustness of genotypes to

diverse conditions can be analysed using reaction norms,

and potentially incorporated into breeding goals to help

tackle the impact of GxE (Hill & Mulder 2010).

Epigenetic mechanisms (e.g. DNA methylation, histone

modifications, non-coding RNAs) are a relevant compo-

nent of GxE interactions, through exposure mediated GxE.

These mechanisms can modify a phenotype without chang-

ing the DNA sequence and can have long-lasting effects

(Jablonka & Lamb 2002). In the last decades, new technolo-

gies have facilitated the study of epigenetics, providing

insights into the contribution of the epigenome to the

expressed phenotypes in response to the environment.

Among the wide scale of techniques available to study epi-

genetic regulation, DNA methylation has received the most

attention in marine bivalves. In C. gigas, DNA methylation

patterns have been associated with gene function (Gavery &

Roberts 2010) and have been linked to gene regulation

(Riviere et al. 2013; Olson & Roberts 2014). Environmental

heterogeneity has been associated with divergent DNA

methylation patterns among C. virginica populations

(Johnson & Kelly 2020). In Mytilus galloprovincialis and the

New Zealand pygmy mussel Xenostrobus secures, methyla-

tion patterns of invasive populations differ from popula-

tions in their native range (Ardura et al. 2018). Whilst

epigenetics can contribute to rapid and transient plasticity

in response to stress and environment in marine bivalves,

future studies combining genomic and epigenomic infor-

mation are needed to elucidate the processes underlying

GxE interactions and phenotype expression in these taxa.

Recent evidence also underlines the adaptive nature of

phenotypic plasticity in traits involved in environmental

resilience (Li et al. 2018). Domestication, or the reduction

in environmental variation in early life stages, is unlikely to

select for plasticity and may lead to epigenetic profiles that

are less suited to the farm environment. However, the

impact of artificial-breeding and early life hatchery condi-

tion on the epigenome of marine bivalve species remains

unresolved. Selective pressures acting during hatchery-

propagation most likely favour domestication rather than

adaptation towards variable natural environments. There-

fore, the potential of hatchery-propagated stock to cope

with environmental stress may be reduced during breeding

and hatchery processes. Indeed, the epigenome of artifi-

cially bred Atlantic salmon differs greatly from wild popu-

lations, and the reduced fitness of hatchery-propagated

stock in comparison to wild populations is likely a conse-

quence of such variation (Le Luyer et al. 2017). Accord-

ingly, signs of lower tolerance to environmental stress in

C. virignica have been linked to domestication selection

(McFarland et al. 2020). Here, we emphasize that domesti-

cation selection in early life stages could result in high

discrepancies in performance and lower the mean perfor-

mance of cohorts through GxE interactions.

For a single species, the commercial market may expand

across multiple production environments, which may have

to be reflected in the data collection for a breeding pro-

gramme. In a simple breeding programme design, the breed-

ing candidates and the test animals are the same and held in

one environment. In a more advanced design, the selection

decisions are also based on the performance records of pedi-

greed full- and half-sibs of the candidates held at test stations

(sib-testing design). The breeding candidates are normally

reared at a single breeding nucleus farm, where strict biose-

curity and sanitary restrictions are imposed to prevent seri-

ous pathogens from entering the breeding nucleus.

However, the breeding candidates may as well be reared at a

few locations from which the families are produced and at a

later and safer stage are transported to the central breeding

nucleus. In both cases, this structure may induce GxE effects

which may have to be accounted for.

To understand the role of GxE interactions in the expres-

sion of phenotypes, the performance of different lines needs

to be tested in a range of environments. Strong GxE inter-

actions could be countered by the creation of specific

breeding programmes targeting specific grow-out environ-

ments (D�egremont et al. 2007). However, it would first be

wise to understand if any of the potential hatchery stressors

or selection events described herein are contributors to GxE
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events, and if they can be mitigated through alteration in

early life selection. As a crude hypothesis, growth in C. gi-

gas, a trait which has been under selection pressure in the

hatchery, seems to be highly dependent on the environ-

ment, whereas other traits such as survival in the presence

of disease seem dependent on the family (D�egremont et al.

2005; Evans & Langdon 2006). Expression of phenotypes

can be maintained within families across a range of envi-

ronments by epigenetic mechanisms (Gavery & Roberts

2017; Uren Webster et al. 2018).

Other omic techniques, such as proteomics and metabo-

lomics, provide a direct measurement of expressed pheno-

types, and are therefore valuable tools to explore the

genotype-phenotype link and evaluate performance (Laudi-

cella et al. 2020). Further studies investigating the relation

between specific environmental conditions utilizing a holis-

tic omic approach may allow to understand and control for

GxE in bivalve breeding programmes and are critical to

improve aquaculture (Fig. 2).

Implications on selective breeding under a
changing climate

Shifts in sea surface salinity, temperature and ocean chem-

istry (e.g. ocean acidification), alterations in precipitation

patterns as well as stronger and more frequent heat waves,

are some of the main consequences of climate change to

the marine environment predicted for the coming decades

(IPCC 2018).

As ectothermic calcifying organisms, marine bivalves are

particularly vulnerable to climate change. Shell dissolution

and decreased shell growth caused by ocean acidification

have been described in marine bivalves (Melzner et al.

2011). Higher sea surface temperatures, especially in sum-

mer months, may challenge species with lower thermal tol-

erance (Steeves et al. 2018). Fluctuating sea surface

salinities may have deleterious implications for shell growth

(Riisg�ard et al. 2012) whilst the interactions of this factor

with increased temperature or hypercapnia (elevated CO2)

can increase mortality (Rybovich et al. 2016) and reduce

hardness and resistance of shells (Dickinson et al. 2012).

Phytoplankton communities are likely to be impacted by

climate change (K€ase & Geuer 2018), and temporal shifts in

species abundance and composition may impact the nutri-

ent uptake in marine bivalves, limiting physiological and

biological processes. Climate change may also contribute to

lowering the immune response of bivalves (Mackenzie et al.

2014), and modify host–pathogen interactions, increasing

sensitivity towards diseases (Asplund et al. 2014).

The grow-out phase of bivalve aquaculture takes place in

the natural environment. Therefore, the implications of cli-

mate change are not restricted to wild populations. Strong

changes in local environmental conditions may limit

production and force the relocation of grow-out sites to suit-

able areas. Environmental changes and increased disease out-

breaks might lead to severe mortality and considerable

economic losses in this industry and restrictions in spat com-

mercialization may be needed to avoid the further spread of

diseases. Thinner and weaker shells will facilitate their rupture

during transportation. Hatchery propagation may also be

impaired by climate change to a certain degree, as those rely

on natural sea water supply. Therefore, there is an imminent

need for research to develop to develop bivalve strains robust

to climate change and resilient towards diseases.

Epigenetic processes can contribute to rapid adaptation

towards environmental stressors generated by climate

change. In S. glomerata, short-term exposure to elevated

CO2 concentration not only increases resilience of exposed

individuals, but can also be passed through generations

(Parker et al. 2015). Such resilience has been associated

with a change in regulation of genes associated with stress

related functions (Goncalves et al. 2016). Accordingly.

empirical evidence demonstrates that low pH stress (pH

7.4) can modify the methylation patterns of Crassostrea

hongkongenssis pediveliger larvae (Lim et al. 2021). Geno-

mic processes, in turn, are involved in long term adaptation

to environmental changes.

Identifying the mechanisms acting behind GxE interac-

tions which increase performance of a species under cli-

mate change-associated stressors is an important step to

characterize the genomic and epigenomic profile of robust

genotypes. Accordingly, GxE can be exploited in breeding

programmes to increase environmental resilience and the

application of genomic selection can fast-track the develop-

ment of such lines (Mulder 2016). The growing body of

high quality assembled genomes facilitate the precise iden-

tification of genomic regions linked to traits responsible for

environmental resilience. The application of genomic selec-

tion, or gene editing approaches, can then facilitate the

development of robust lines, or lines able to withstand sub-

optimal environmental conditions relevant to a certain

grow-out region (e.g. elevated temperature, low pH). As

hatcheries allow for the control of genetic stocks, indoor

propagation is undoubtedly an essential asset to guarantee

the development of lines able to thrive under future pre-

dicted environmental scenarios.

Summary and future perspectives

A gap in knowledge remains on how domestication selec-

tion and husbandry practices can constrain genetic variabil-

ity of hatchery-propagated stock during early life stages in

marine bivalves (Fig. 2). Despite the negative implications

of inbreeding load on performance, the control of repro-

ductive output, differential performance of genotypes and

genetic variability of stock remains relatively low in bivalve
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production. Such lack of control may hinder spat perfor-

mance and consequently aquaculture production. Future

advances in bivalve production and selective breeding

require an understanding and optimization of hatchery

production processes in order to maximize genetic gain.

Selection pressures acting in hatcheries differ from those

acting on the populations in their natural environment. In

contrast to wild populations that face fluctuating environ-

mental conditions, farmed stocks are produced under rela-

tively stable, benign, conditions but exposed to other

stresses such as elevated densities and handling practices.

Organisms reared in hatcheries, na€ıve to the wild, might

lack resilience to environmental variation due to domesti-

cation selection and/or epigenetic mechanisms. In addition,

negative GxE interactions can be detrimental for produc-

tion and can be compounded by artificial bottlenecking or

epigenetic alterations caused by the hatchery environment.

However, it is still not fully understood whether selection

for phenotypes that enhance hatchery production con-

tribute to adult performance during the grow-out phase.

Therefore, whilst performance of larval stages must remain

as an important component of breeding programmes and

hatchery production, it is key to consider traits related to

the challenges these larvae will face during the grow-out

and production phases.

Genomic resources will contribute with the understand-

ing of evolutionary and adaptive processes, as well as those

which are linked to domestication (Y�a~nez et al. 2015). Elu-

cidating the (epi)genomic mechanisms which underpin the

expressed phenotypes will allow the divergence of selection

from classic commercial traits towards broad environmen-

tal resilience (either outperforming or generalist geno-

types). Integrating robustness as a founding criterion for

selection can potentially contribute to increase grow-out

productivity, especially in light of climate change.

Genomic selection can favour the development of geneti-

cally improved lines for multiple traits, facilitate the man-

agement of genetic variability (D’Ambrosio et al. 2019) and

potentially reduce environmental sensitivity accounting for

GxE (Mulder 2016). Most importantly, the implementation

of such selection approaches is key to the sustainable opti-

mization of bivalve aquaculture production, particularly in

the light of climate change. It is crucial to focus resources

on developing environmentally robust lines. However, pro-

gress of marker assisted and genomic selection in bivalve

aquaculture will require a greater control of hatchery prac-

tices to allow sources of unaccounted genetic variation to

be minimized and genetic gain to be maximized.
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