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Multivariate neuroimaging studies indicate that the brain represents word and object concepts in a format that 

readily generalises across stimuli. Here we investigated whether this was true for neural representations of simple 

events described using sentences. Participants viewed sentences describing four events in different ways. Mul- 

tivariate classifiers were trained to discriminate the four events using a subset of sentences, allowing us to test 

generalisation to novel sentences. We found that neural patterns in a left-lateralised network of frontal, temporal 

and parietal regions discriminated events in a way that generalised successfully over changes in the syntactic 

and lexical properties of the sentences used to describe them. In contrast, decoding in visual areas was sentence- 

specific and failed to generalise to novel sentences. In the reverse analysis, we tested for decoding of syntactic 

and lexical structure, independent of the event being described. Regions displaying this coding were limited 

and largely fell outside the canonical semantic network. Our results indicate that a distributed neural network 

represents the meaning of event sentences in a way that is robust to changes in their structure and form. They 

suggest that the semantic system disregards the surface properties of stimuli in order to represent their underlying 

conceptual significance. 
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. Introduction 

Most neuroscientific theories of semantic representation hold that

eanings are coded, at least in part, independently of the stimuli

sed to elicit them ( Binder and Desai, 2011 ; Meteyard et al., 2012 ;

atterson et al., 2007 ; Rogers et al., 2004 ; Simmons and Barsalou, 2003 ).

hese theories propose, for example, that the same semantic representa-

ion for the concept DOG is engaged whether one reads the word “dog ”,

ees a canine in the park or hears the sound of barking. This position is

ost strongly associated with hub-and-spoke theories ( Hoffman et al.,

018 ; Lambon Ralph et al., 2017 ; Rogers et al., 2004 ). These em-

hasise the role of supramodal semantic representations that abstract

way from perceptual inputs in order to code deeper conceptual struc-

ure. Embodied approaches to semantics place greater emphasis on the

ole of sensory-motor simulations in comprehension ( Barsalou, 1999 ;

ulvermüller, 2013 ; Zwaan, 2004 ), which are linked more directly with

pecific modalities (e.g., engagement of the motor system when people

omprehend action words; Hauk et al., 2004 ). This view is also compat-

ble with stimulus-independent representation, since the same simula-

ions might be activated by a range of different stimuli. 

The emergence of multivariate neuroimaging techniques has af-

orded new opportunities to assess how and where stimulus-independent
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emantic representations are coded in the brain. In one of the first

uch fMRI studies, Fairhall and Carramazza (2013) presented partici-

ants with pictures of objects belonging to different taxonomic cate-

ories and with their written names. They tested for cross-modal seman-

ic representation by training a multivariate classifier to discriminate

he categories using neural responses to the pictures and then testing

ts ability to classify the category of the word stimuli (and vice-versa).

ther studies have also searched for commonalities in the neural pat-

erns for objects elicited by word and pictures ( Devereux et al., 2013 ;

hinkareva et al., 2011 ), for neural similarities between auditory and

ritten words ( Liuzzi et al., 2017 ) and for convergence in the neural

esponses to the same concepts presented in two different languages

 Correia et al., 2014 ). In general, these studies converge in identifying

 range of semantic processing regions distributed throughout frontal,

emporal and parietal cortices, all of which code the underlying con-

eptual significance of a stimulus, independent of the particular form

he stimulus takes. This is in keeping with theoretical approaches hold-

ng that conceptual knowledge is coded in one or more semantic hubs,

ituated downstream from sensory and motor cortices ( Binder and De-

ai, 2011 ; Lambon Ralph et al., 2017 ; Margulies et al., 2016 ). 

Although there is evidence for stimulus-independent representation

f individual words and objects, fewer studies have investigated whether

ore complex representations, expressed at the sentence level, are also
ril 2021 
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Table 1 

Sentences describing one of the four events. 

Lexical items 1 Lexical items 2 

Active form The student considered the problem. The pupil pondered the issue. 

Passive form The problem was considered by the student. The issue was pondered by the pupil. 
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oded in a stimulus-independent fashion. This is a critical question be-

ause the flexible nature of language allows for events with the same

onceptual content to be described in very different ways (see Table 1

or examples). Studies have demonstrated that fMRI activation pat-

erns elicited by sentences do contain information about their seman-

ic content. A number of researchers have developed predictive models

f sentence-level activation by decomposing sentences into the seman-

ic properties of their constituents and identifying their neural corre-

ates ( Anderson et al., 2017 ; Frankland and Greene, 2020 ; Just et al.,

017 ; Pereira et al., 2018 ; Wang et al., 2017 ). Such models can success-

ully predict activation patterns to new sentences that describe different

vents. Activation in left temporal and parietal cortices appears to be

ritical in supporting such predictions. 

Cross-language studies have begun to use similar techniques to in-

estigate whether neural representations of sentence meaning gener-

lise across changes in linguistic form. Hu et al. (2019) trained a mul-

ivariate classifier to discriminate between coherent and incoherent

entence pairs presented to bilinguals in Chinese or Japanese script.

atterns in left parietal cortex and inferior prefrontal cortex showed

uccessful cross-language classification, suggesting that a similar neu-

al representation was engaged by both languages. However, in this

tudy the classifier was not required to discriminate the content of the

entences, only whether they described a coherent event. In contrast,

ang et al. (2017) developed a feature-based semantic model to code

he content of 60 distinct English sentences. This model was trained

ith fMRI data from English speakers to form a predictive model of

entence activation patterns across the whole brain. Once trained, the

odel could successfully predict neural responses to Portuguese trans-

ations of the sentences in a new group of Portuguese speakers. This

tudy demonstrated that the areas of the brain activated by particular

vents are broadly similar even across different individuals who speak

ifferent languages. However, it was not designed to identify which spe-

ific brain regions demonstrate this stimulus-independent coding. In the

resent study we aimed to do this in a multivariate fMRI study that held

onstant the language used to describe events, but systematically varied

he linguistic forms of the descriptions. 

We investigated neural representations of four simple events, sys-

ematically varying the syntactic structures and lexical items used to

escribe each event. We aimed to identify brain regions whose activ-

ty patterns discriminated between different events and then to assess

hether this discrimination was robust to changes in the syntactic and

exical properties of the sentences. We predicted that the regions of

he left-lateralised canonical semantic network, previously linked with

upramodal representation of words and objects, would show stimulus-

ndependent coding of event meanings. We then reversed our analysis,

esting for brain regions that could successfully discriminate between

yntactic structures, while generalising over the semantics of the events.

inally, we tested for regions that discriminated between different lexi-

al items used to describe the same events. Together, these analysis al-

owed to distinguish between brain regions that process the conceptual

ontent of sentences and those involved in processing their form. 

. Method 

Participants: 26 native English speakers took part in the study (20

emale; mean age 22.48, range 18-35 years). All were classified as right-

anded using the Edinburgh Handedness Inventory ( Oldfield, 1971 ) and

one reported dyslexia or any history of neurological illness. All pro-
2 
ided written informed consent and the study was approved by Univer-

ity of Edinburgh School of Philosophy, Psychology & Language Sciences

esearch Ethics Committee. 

Stimuli: We probed neural representations of four coherent events

esigned to cover a broad range of conceptual knowledge, including

iving and non-living agents (cow, student; computer, lorry), motion

nd static verbs (driving, jumping; processing, considering) and con-

rete and abstract patients (fence, bridge; files, problems). Each event

as presented to participants in four different sentence forms that var-

ed in their syntactic structure and lexical items (see Table 1 for exam-

les). Syntactic structure was varied by describing the event with either

n active or passive sentence. Lexical items were varied by substituting

emantically-similar words to describe each agent, patient and action.

hus, in total there were 16 event sentences used in our multivariate

nalyses. We also created 16 anomalous sentences that used the same

exical items and syntactic structures as the event sentences but did not

escribe a coherent event. These were created by reshuffling the con-

tituents of the event sentences (e.g., “the document was considered by

he lorry ”). To validate this manipulation, 18 participants, who did not

ake part in the main study, were asked to rate the meaningfulness of

ach sentence on a five-point scale. Event sentences received signifi-

antly higher ratings than anomalous sentences (Meaningful M = 4.56,

D = 0.32; Anomalous M = 1.53, SD = 0.57; t (30) = 18.6, p < 0.001). A

ull list of the sentences used is provided in Supplementary Table 1. 

Procedure: Participants completed six runs of scanning. In each run,

hey were presented with each of the 32 sentences once and were asked

o decide whether the sentence was meaningful or not. Manual responses

ere made using the left and right hands, with the mapping of these to

esponse options counterbalanced over participants. Each trial began

ith a fixation cross presented for 500 ms. This was followed by the

ritten sentence, presented in the centre of the screen for 4 s. Trials

ere separated by a jittered inter-stimulus interval of between 4 s and

 s (mean 6 s). The order of the sentences was fully randomised for each

un and for each participant. 

Image acquisition and preprocessing: Images were acquired on a 3T

iemens Prisma scanner using a 32-channel head coil. We employed

 whole-brain multi-echo acquisition protocol, in which data was si-

ultaneously acquired at three echo times (13 ms, 31 ms and 48 ms).

ata from the three echo series were weighted and combined and the

esulting time-series denoised using independent components analysis

ICA). This protocol reduces the influence of motion and other artefacts

nd, importantly, improves signal quality in regions that typically suf-

er from susceptibility artefacts, such as the ventral anterior temporal

obes ( Kundu et al., 2017 ). The TR was 1.7 s and images consisted of 46

lices with an 80 × 80 matrix and isotropic voxel size of 3mm. Multi-

and acceleration with a factor of 2 was used and the flip angle was

3°. Six runs of 195 volumes (331.5 s) were acquired. A high-resolution

1-weighted structural image was also acquired for each participant us-

ng an MP-RAGE sequence with 0.8 mm isotropic voxels, TR = 2.62 s,

E = 4.5 ms. 

Images were preprocessed using the TE-Dependent Analysis Tool-

ox 0.0.7 (Tedana) ( DuPre et al., 2019 ) and SPM12. Motion parameters

ere estimated using the first echo series, prior to slice-timing correc-

ion (as recommended by Power et al., 2017 ). Slice-timing correction

as then applied, images were interpolated to the space of the first vol-

me using the previously obtained motion estimates, and Tedana was

sed to optimally combine the three echo series into a single time-series.

edana’s denoising algorithms were also applied to the data, indepen-
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Fig. 1. Analysis 1 (A) Training and test stimuli for one iteration of the analysis. (B) Decoding accuracy map, relative to chance level. Decoding accuracy is thresholded 

at cluster-corrected p < 0.05 and maps were smoothed at 5mm FWHM for display purposes. (C) Terms most correlated with accuracy map in Neurosynth. 
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ently for each scanning run. These use ICA to partition the data and

hen to classify each component as either BOLD-related or noise-related,

ased on its pattern of signal decay over increasing TEs ( Kundu et al.,

017 ). Components classified as noise were discarded. Following de-

oising, SPM was used to unwarp images with a B0 fieldmap, coregister

hem to the anatomical scans and normalise them to MNI space with

ARTEL ( Ashburner, 2007 ). 

For initial univariate analyses, images were smoothed with a kernel

f 8mm FWHM. Data were treated with a high-pass filter with a cut-off of

28s and the six runs were analysed using a single general linear model.

or each run, one regressor modelled presentation of event sentences

nd another presentation of anomalous sentences. Covariates consisted

f six motion parameters and their first-order derivatives. 

Multi-voxel pattern analysis: For multivariate analysis, smoothing of

mm FWHM was applied to the normalised images. Although multi-

ariate analyses are often performed on unsmoothed images, there is

vidence that a small amount of smoothing can slightly improve classi-

er performance ( Gardumi et al., 2016 ; Hendriks et al., 2017 ). Each run

as analysed with a separate general linear model which included a sep-

rate regressor for each of the 32 sentences. T-maps were generated for

ach event sentence, which were then submitted to decoding analyses

sing CoSMoMVPA ( Oosterhof et al., 2016 ). Our main analyses tested

or effects across the whole of the cortex using a spherical searchlight

ith a radius of four voxels. We also tested for decoding effects in five

natomical regions of interest described later. 

We performed five different analyses that investigated the neural

epresentation of different aspects of sentence information. In Analysis

, we simply tested for regions whose activation patterns could discrim-

nate between sentences describing different events. This gave us some

nitial information about which brain regions were sensitive to differ-

nces between sentences. However, no generalisation to novel sentences

as required in this analysis so these effects could be stimulus-specific.

ur main tests of the experimental hypothesis came in Analyses 2 and

. Here, we trained the classifier to decode events using one half of the

entences and tested it using the other half. The two sets of sentences
3 
iffered either lexically (Analysis 2) or syntactically (Analysis 3). These

nalyses identified brain regions that coded the conceptual content of

he events in a stimulus-independent fashion. Finally, Analyses 4 and

 tested which brain regions could decode surface features of the sen-

ences (lexical and syntactic) that were orthogonal to event-level seman-

ic information. These analyses allowed us to determine the degree to

hich areas coding the conceptual content of the events were sensitive

o other features of the stimuli. 

Analysis 1: Sentence-specific decoding : The first analysis tested the

bility of brain regions to discriminate between sentences that describe

ifferent events, without requiring the classifier to generalise over dif-

erent descriptions. We selected a set of four sentences that described

he four events (with the constraint that they all had the same syntactic

tructure). We trained the model to discriminate between the four sen-

ences and tested it on new instances of the same sentences (see Fig. 1 A).

his process was repeated for all possible combinations of four sentences

epresenting the four events (32 iterations) and the results averaged to

ive an overall accuracy map for each participant. Data were partitioned

nto train and test sets with leave-one-run-out cross-validation: the clas-

ifier was trained on data from five runs and tested on the remaining

un and this process was repeated until each run had served as the test

et. 

Analyses 2 and 3: Generalisation of event identity across sentence 

orms: The second and third analyses were our primary tests of the

xperimental hypothesis. Here, we sought brain regions that could

ecode event information in a way that generalises to new descriptions

f the events. Analysis 2 tested generalisation to new lexical items and

nalysis 3 generalisation to new syntactic forms. In Analysis 2, the

lassifier was trained to discriminate the four events, using data from

ight sentences. In this set of eight sentences, a single set of lexical

tems was used to describe each event. The classifier was then tested on

he remaining eight sentences, which described the same four events

sing different lexical items (see Fig. 2 A). Thus, above-chance decoding

ould only be achieved where brain regions coded information about

he events in a way that generalised to novel sentences. The process was
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Fig. 2. Analyses 2 and 3 (A) Training and test stimuli for one iteration of Analysis 2. (B) Decoding accuracy map for Analysis 2, relative to chance level. (C) 

Training and test stimuli for one iteration of Analysis 3. (D) Decoding accuracy map for Analysis 3, relative to chance level. (E) Conjunction map showing regions 

that significantly exceeded chance level in both analyses. (F) Terms most correlated with mean accuracy map in Neurosynth. Decoding accuracy is thresholded at 

cluster-corrected p < 0.05 and maps were smoothed at 5mm FWHM for display purposes. 
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epeated until all possible combinations of lexical items had served as

he training set (2 4 = 16 iterations). Analysis 3 proceeded in a similar

ashion, except that train and test sets differed in the syntactic forms

sed to describe each event (see Fig. 2 C). Thus, in Analysis 3 the same

ords were present in train and test sets but they were embedded in

ifferent grammatical structures. 

Analysis 4: Decoding syntactic structure: Here we reversed the logic

f the previous analyses and asked whether any brain regions coded the

yntactic structure of the sentences, independent of the events being

escribed. We performed this analysis to explore whether any brain re-

ions coded syntax in a content-independent manner, and whether these

egions overlapped with those coding the content of events. The model

as trained to discriminate between active and passive sentences. Tri-

ls were divided such that eight sentences describing two events were

sed as the training set and eight sentences describing the remaining

wo events were used as the test set (see Fig. 3 A). Thus, above-chance

lassification could only be achieved if patterns of brain activity discrim-

nated between active and passive sentences in a way that generalised

cross different events. Decoding was repeated until all possible pairs of

vents had served as the training set ( C (4,2) = 6 iterations). 

Analysis 5: Decoding lexical items: Finally, we wanted to test

hether any regions coded for the lexical items used in the sentences,

ndependently of the events being described. Here it was not possible to

est for generalisation across events as each event was associated with a
4 
ifferent set of lexical items. Instead, we treated each event separately

nd trained the classifier to discriminate between the two sets of lexi-

al items associated with it (see Fig. 3 C). The classifier was then tested

n new instances of the same sentences, with leave-one-run-out cross-

alidation used to ensure independence of training and testing data.

his process was repeated for each of the four events and the results

veraged. This analysis tested whether any brain regions discriminated

etween sentences that differ lexically but convey the same (or very

imilar) semantic information. 

In all analyses, classification was performed using a support vector

achine (LIBSVM) with the regularisation parameter C set to 1. To de-

ermine whether classification was better than expected by chance, per-

utation tests were performed using the two-stage method introduced

y Stelzer et al. (2013) . For each participant, we trained and tested the

lassifier repeatedly on data in which the class labels had been randomly

ermuted within each run. This process was repeated 100 times (divided

qually between all iterations of the training stimuli) to provide an accu-

acy distribution for each participant under the null hypothesis. Follow-

ng this, a Monte Carlo approach was taken to generate a null accuracy

istribution at the group level. Specifically, from each participant’s null

istribution, we randomly selected one accuracy map for each training

teration and averaged these to give a group mean. This process was

epeated 10,000 times to generate a distribution of the expected group

ccuracy under the null hypothesis. In ROI analyses, the position of the
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Fig. 3. Analyses 4 and 5 (A) Training and test stimuli for one iteration of Analysis 4. (B) Decoding accuracy map for Analysis 4, relative to chance level. (C) Training 

and test stimuli for one iteration of Analysis 5. (D) Decoding accuracy map for Analysis 5, relative to chance level. (E) Terms most correlated with Analysis 4 accuracy 

map in Neurosynth. (F) Terms most correlated with Analysis 5 accuracy map in Neurosynth. Decoding accuracy is thresholded at cluster-corrected p < 0.05 and 

maps were smoothed at 5mm FWHM for display purposes. 
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bserved group accuracy in this null distribution was used to determine

 p -value (e.g., if the observed accuracy was greater than 99% of val-

es in the null distribution, this would represent a p -value of 0.01). For

earchlight analyses, observed and null accuracy maps were entered into

oSMoMVPA’s Monte Carlo cluster statistics function, which returned

 statistical map corrected for multiple comparisons using threshold-

ree cluster enhancement ( Smith and Nichols, 2009 ). These maps were

hresholded at corrected p < 0.05. 

To aid interpretation of results, unthresholded decoding accuracy

aps were submitted to Neurosynth and correlated with its meta-

nalytic maps ( Rubin et al., 2017 ). Neurosynth is an automated meta-

nalysis tool that identifies terms commonly used in the neuroimag-

ng literature and relates these to reported activation co-ordinates. A

eurosynth map for a given term indicates the likelihood that activa-

ion in each voxel is preferentially associated with studies that use that

erm (e.g., in the map for “semantic ”, each voxel’s value indicates the

ikelihood that activation is reported there in studies that discuss se-

antics, relative to studies that don’t). By correlating these maps with

ur unthresholded decoding maps, we were able to determine which

erms are most consistently associated with the set of regions in which

e observed strong decoding. To visualise the results, terms relating to

natomical structures were removed and the 20 most correlated terms

ere extracted and plotted as a word cloud (for similar uses of this tech-

ique, see Vatansever et al., 2017 ; Wang et al., 2020 ). 

Regions of interest: ROI analysis focused on left-hemisphere anatom-

cal regions, selected based on their involvement in semantic process-

ng. These are shown in Fig. 4 A. Four of the five ROIs were defined
5 
sing probability distribution maps from the Harvard-Oxford brain at-

as ( Makris et al., 2006 ), including all voxels with a > 30% probability

f falling within the following regions: 

1 Inferior frontal gyrus (IFG): the pars orbitalis and pars triangularis

regions of inferior frontal gyrus, with voxels more medial than x = -30

removed to exclude medial orbitofrontal cortex 

2 Anterior superior temporal gyrus (aSTG): the anterior division of the

superior temporal gyrus 

3 Ventral anterior temporal lobe (vATL): the anterior division of the

inferior temporal and fusiform gyri 

4 Posterior middle temporal gyrus (pMTG): the temporo-occipital part

of the middle temporal gyrus 

The final ROI covered the angular gyrus (AG) and included voxels

ith a > 30% probability of falling within this region in the LPBA40 atlas

 Shattuck et al., 2008 ). A different atlas was used in this case because

he AG region defined in the Harvard-Oxford atlas is small and does

ot include parts of the inferior parietal cortex typically implicated in

emantic processing. The 30% inclusion threshold we used to define

OIs is consistent with our previous work ( Hoffman, 2019 ; Hoffman and

amm, 2020 ). 

Data and code availability statement: The decoding accuracy maps

or each searchlight analysis are available at https://osf.io/2ueh3/ .

owever, the conditions of our ethical approval do not permit public

rchiving of data at the level of individual participants because partici-

ants did not provide sufficient consent for this. 

https://osf.io/2ueh3/
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Fig. 4. Region of interest analyses (A) Location of anatomical regions of interest. (B) Decoding accuracy for each ROI in each analysis. ∗ indicates accuracy signifi- 

cantly greater than chance (one-tailed p < 0.05, corrected for multiple comparisons using the false discovery rate approach). (C) Results of pairwise comparison of 

analyses in each ROI. Circles indicate cases where the difference between analyses exceeded that expected by chance (two-tailed p < 0.05, corrected for multiple 

comparisons using the false discovery rate approach). A1 = Analysis 1 etc. 
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. Results 

Behavioural performance: We first checked the accuracy of the

eaningfulness judgements in each imaging run to ensure that partic-

pants were responding attentively. We identified five runs from three

articipants that contained correct responses on fewer than 60% of tri-

ls. Participants failed to respond on a large number of trials in these

uns, so we excluded these runs from analysis. One additional run was

xcluded because it was terminated early due to a scanner fault. Mean

ccuracy was > 78% on all other runs and all participants had at least

hree valid runs for analysis. 

Participants were highly accurate in responding to event sentences

 M = 95.5%; SD = 4.1%) and to anomalous sentences ( M = 91.3%;

D = 6.1%), though more accurate for the event sentences ( t (25) = 3.02,

 = 0.006). They were slower to respond to anomalous sentences

 M = 1940 ms; SD = 390 ms) than to event sentences ( M = 1811 ms;

D = 388 ms; t (25) = 5.19, p < 0.001). We also compared perfor-

ance for event sentences that used an active vs. passive syntactic

tructure. Participants were faster to respond to active sentences (ac-

ive M = 1689ms, SD = 380ms; passive M = 1936ms, SD = 402ms;

 (25) = 12.0, p < 0.001). There was no significant effect of syntactic

tructure on accuracy (active M = 96.1%, SD = 4.4%; passive M = 95.0%,

D = 4.4%; t (25) = 1.94, p = 0.064). 

Univariate activation: Results of univariate analyses are shown in

upplementary Fig. 1. Relative to rest, event sentences and anomalous

entences activated similar networks, including posterior temporal and

ccipitotemporal cortices and frontoparietal cognitive control networks.

hen event sentences were contrasted with the more difficult anoma-

ous sentences, the anomalous sentences produced more activation in

 left-lateralised network of regions associated with semantic process-

ng. This included parts of IFG, pMTG, ATL and AG. This suggests that

emantic judgements about anomalous sentences required greater en-
6 
agement of the semantic system, consistent with longer reaction times

n these trials. Greater activation for event sentences relative to anoma-

ous sentences was found in ventromedial prefrontal and posterior cin-

ulate cortices, consistent with previous data implicating these regions

pecifically in the processing of coherent events ( Lerner et al., 2011 ).

lternatively, this effect might be a consequence of greater disengage-

ent of these default mode regions on the more difficult anomalous

rials ( Mckiernan et al., 2003 ). 

Searchlight analyses: Analysis 1 tested whether activity patterns

ould discriminate between specific sentences describing the four

vents, without requiring generalisation to new descriptions of the

vents. Fig. 1 B shows decoding accuracies in areas where decoding sig-

ificantly exceeded chance performance. Above-chance decoding was

bserved across the cortex and bilaterally, with the highest accuracies

ound in primary and early visual cortices. Other areas showing high

ecoding accuracy included left pMTG, regions along the length of the

uperior temporal gyrus, the lateral prefrontal cortex, particularly IFG,

nd the dorsomedial frontal lobe, close to the pre-supplementary mo-

or area. In the right hemisphere, decoding performance was generally

oorer but exceeded chance levels in many areas. The Neurosynth word

loud ( Fig. 1 C) indicates that regions displaying high decoding accura-

ies were associated with terms relating to visual processing and also

o language and semantic processes. Supplementary Fig. 2 splits the

esults of this analysis into classifiers trained with active vs. passive

entences. Significant decoding was found in similar regions for both

entence types, though decoding was generally more successful when

he analysis was restricted to passive sentences. This might be indica-

ive of stronger neural signals elicited on these trials, which participants

ook around 250ms longer to process. In summary, many regions of the

rain showed distinct patterns of activation for specific sentences that

escribed different events. However, this analysis does not allow us to

etermine whether these effects are driven by differences in the con-
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eptual content of the sentences or by differences in their surface ortho-

raphic, phonological, lexical and syntactic properties. 

In Analyses 2 and 3, we trained classifiers on one set of sentences

nd tested their ability to classify a new set of sentences with differ-

nt lexical or syntactic forms. Areas of above-chance decoding for each

nalysis are shown in Fig. 2 B and D; the conjunction map in Fig. 2 E

hows regions that were significantly above-chance in both analyses (for

eak activation co-ordinates, see Supplementary Materials). Both anal-

ses identified a similar set of brain regions. Strongest decoding was

bserved in left AG and pMTG in both cases, with additional clusters

resent in the left ATL and IFG. Decoding was also successful in the

ight-hemisphere homologues of most of these regions. The posterior

ingulate and ventromedial prefrontal cortices also showed evidence of

vent classification that generalised across stimuli. Compared with Anal-

sis 1, decoding in early visual regions appeared to be much weaker. To

onfirm this, we performed a post-hoc exploratory analysis of decoding

n early visual cortex (see Supplementary Fig. 3). Decoding of events in

arly visual cortex was significantly poorer in Analyses 2 and 3 com-

ared with Analysis 1, though it exceeded chance level in Analysis 2. As

e will discuss later, we believe that effects in this region are a conse-

uence of differences in the perceptual properties of different sentence

timuli. 

Fig. 2 F indicates that the Neurosynth terms most associated with

ccuracy in Analyses 2 and 3 refer to semantic processing, theory of

ind and the default mode network but not to perception. Thus, when

equired to generalise event information to novel sentences with differ-

nt structure and form, decoding in early perceptual regions was much

educed while it remained robust in higher-level semantic and default

ode regions. 

The final two analyses, shown in Fig. 3 , tested for regions whose

ctivity discriminated between different syntactic structures and lexi-

al items, rather than between different events. In Analysis 4, we in-

estigated which regions were able to discriminate between active and

assive sentence structures. High levels of decoding were observed in

arly visual regions, with similar levels of accuracy to that observed in

nalysis 1 (see Supplementary Fig. 3). Decoding also exceeded chance

evels in the intraparietal sulcus bilaterally, left posterior IFG (BA44)

nd the left precentral gyrus. These regions show little overlap with

he event-coding regions found in Analyses 2 and 3. Finally, Analysis 5

ested whether any regions could discriminate between sentences that

sed different lexical items to describe the same event. Above-chance

ecoding in this analysis was only found in occipital cortices, extending

nto left occipitotemporal cortex. 

Regions of interest: Decoding performance in anatomical ROIs is

hown in Fig. 4 B. When the classifiers were trained to discriminate be-

ween events (Analyses 1 to 3), all ROIs showed better performance than

xpected by chance (with the exception of vATL, which was not above

hance in Analysis 1). In contrast, no regions performed better than

hance when decoding syntactic structure of the sentences, indepen-

ent of their content (Analysis 4). In Analysis 5, which tested ability to

ecode the different lexical items used to describe an event, only pMTG

howed classification significantly better than chance (though power to

etect decoding effects was lower in this analysis because fewer trials

ere used in each iteration of training). Thus the general pattern is that

egions within the semantic network encode the conceptual content of

entences but not their surface characteristics. 

For each ROI, we directly compared decoding accuracy between

nalyses on a pairwise basis. For each pairwise comparison, we used

he Stelzer et al. (2013) permutation method to generate a distribution

f differences under the null hypothesis, and the position of the ob-

erved difference in this distribution was used to determine its p-value.

he results of these pairwise comparisons were FDR-corrected for mul-

iple comparisons and significant differences are shown in Fig. 4 C. All

egions except IFG showed some significant differences between analy-

es. In three regions – pMTG, aSTG and AG – the syntax classifier (A4)

erformed more poorly than one or more event-based classifiers (A1-
7 
3). This is consistent with the findings of the searchlight analyses,

hich showed that patterns in the canonical semantic network were

ble to decode event identity but not syntactic structure. There were also

ifferences between the event-based classifiers. Classification in pMTG

as more successful in Analysis 1, where trained and tested sentences

ere the same, compared with Analyses 2 and 3, where generalisation

o novel sentences was required. Interestingly, the reverse was true for

ATL and AG: these regions showed better classification when required

o generalise to new sentence forms. 

. Discussion 

Previous studies have found that a network of left-lateralised seman-

ic processing regions represent word and object concepts in a way that

eneralises across diverse stimulus forms. Here we investigated whether

uch stimulus independence is also a feature of the neural coding of

vent semantics. We trained a classifier to discriminate between sen-

ences describing four distinct events and tested its ability to decode the

ame events from new sentences with different syntactic structure or

exical constituents. Neural patterns in a network of semantic process-

ng regions, predominately in the left hemisphere, showed event coding

hat generalised over both syntactic and lexical changes to the stimuli.

n contrast, early visual regions were able to decode specific event sen-

ences but could not generalise to new sentences. Decoding of syntactic

tructure and lexical items, independent of event content, was limited

nd occurred primarily outside the canonical semantic network. Our re-

ults indicate that a distributed network of left-dominant regions code

nformation about the conceptual significance of event sentences in a

ay that is robust to changes in their surface forms. 

Searchlight analyses revealed strongest evidence for stimulus-

ndependent event representations in left pMTG and AG. In addition

o being considered core parts of the semantic network, both of these

egions have been specifically implicated in processing of event knowl-

dge. pMTG shows increased engagement for processing verbs relative

o nouns and is also involved in the neural representation of tools and

ctions ( Bedny et al., 2008 ; Caspers et al., 2010 ; Ishibashi et al., 2016 ;

eelen et al., 2012 ). AG, in addition, has been implicated in the process-

ng of meaningful stimuli that are extended in time, such as sentences,

arratives and action sequences ( Branzi et al., 2020 ; Humphreys and

ambon Ralph, 2017 ; Humphries er al., 2006 ; Lerner et al., 2011 ).

his has led to claims that this region is essential for combinato-

ial semantic processes, in which individual word meanings are inte-

rated into a coherent global representation ( Bemis & Pylkkänen, 2012 ;

umphries et al., 2006 ; Price et al., 2015 ). Beyond these two core event

rocessing regions, however, a more extended network of areas were

ble to decode events in a cross-sentence fashion, including portions of

he ATLs, left IFG and parts of the posterior cingulate and ventromedial

refrontal cortex. All of these areas have been identified as belonging to

he brain’s core semantic network ( Binder and Desai, 2011 ; Binder et al.,

009 ; Lambon Ralph et al., 2017 ). In addition to overlapping consid-

rably with the default mode network, these areas tend to be the most

hysically distant and functionally distinct from regions serving primary

ensory and motor processing ( Margulies et al., 2016 ). This suggests that

hey are particularly well-suited to serving supramodal and internally-

irected cognitive processes that abstract away from perceptual input.

ur results support this general view and indicate that activation pat-

erns throughout this network can distinguish between different concep-

ual states in a stimulus-independent manner. 

According to an embodied semantics perspective, regions that dis-

riminate between events may also be coding sensory-motor simula-

ions elicited during processing. For example, visual imagery elicited

y the sentence “The cow jumped over the fence ” will be very differ-

nt to “The student considered the problem ”. One candidate region for

uch effects is early visual cortex (V1 and V2), which showed strong de-

oding in some of our analyses. Borghensani et al. (2016) investigated

erceptual effects in this area when participants processed object words.
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hey found that neural patterns were predicted by the perceptual prop-

rties of the stimulus word (number of letters) as well as by the visual

haracteristics of its referent (the real-world size of the object). This

esult suggests that visual cortex is involved in representing the visual

roperties of activated concepts, as well as direct perception of exter-

al stimuli (see also Pearson et al., 2015 ). In our study, however, we

elieve effects in early visual cortex are driven primarily by the proper-

ies of the stimuli themselves. The strongest decoding in this region was

bserved in Analyses 1, 4 and 5. In all of these cases, there were sys-

ematic differences in the number of letters in the sentences that could

id classification (either because the classes were composed of different

exical items or because they used active vs. passive constructions). In

ontrast, in the key analyses of stimulus-independent event decoding (2

nd 3), sentence length was not informative about class and decoding

n early visual cortex was much poorer. Nevertheless, we did observe

bove-chance decoding of event identity that generalised over lexical

tems (Analysis 2) and which cannot be ascribed to stimulus properties.

his might indicate that visual cortex was also involved in represent-

ng that visual qualities of the events being described. This is important

uestion for future research to address. 

More generally, the network of regions observed in the present

tudy converges with other studies applying multivariate decoding tech-

iques to sentences ( Anderson et al., 2017 ; Frankland and Greene, 2015 ;

ereira et al., 2018 ) and to language at the discourse level ( Huth et al.,

016 ; Wehbe et al., 2014 ). These also report successful decoding of sen-

ence meaning in left inferior parietal, lateral temporal and inferior pre-

rontal voxels. Like previous studies, we also found that the network cod-

ng meanings was left-lateralised, though there was evidence for above-

hance decoding in right-hemisphere homologues as well. However, the

resent study diverges from some previous work in identifying in left

entral ATL (inferior temporal and fusiform gyri) as an additional area

nvolved in the coding of sentence meaning. This area often suffers from

usceptibility artefacts and associated signal dropout, which our use of

ulti-echo fMRI may have alleviated ( Kundu et al., 2017 ; Visser et al.,

010 ). 

The ventral ATL is a key site for semantic representation and,

long with the adjacent perirhinal cortex, is thought to be involved

n representing conceptual relationships amongst objects and words

 Bruffaerts et al., 2019 ; Clarke and Tyler, 2015 ; Lambon Ralph et al.,

017 ; Rogers et al., 2004 ). Accounts have emphasised the role of this

egion in understanding single words and objects but have not proposed

 specific role in the representation of events. Indeed, some researchers

ropose a division of labour within the semantic system whereby the

TL codes taxonomic semantic structure while the temporoparietal cor-

ex is represents thematic associations between concepts ( Mirman et al.,

017 ; Schwartz et al., 2011 ). On this view, ATL should primarily be in-

olved in coding the properties of individual objects or words while the

emporoparietal cortex plays a greater role in coding the semantics of

vents, due to its sensitivity to thematic information. Our data are agnos-

ic on this issue. We found that patterns in ventral ATL do discriminate

etween different event descriptions. However, the events we used con-

ained different agents and patients and it is possible that ventral ATL

oxels coded the properties of these constituents (e.g., discriminating

etween cows and lorries), rather an integrated event-level representa-

ion. Future studies could disentangle these possibilities by using sen-

ences that recombine the same constituents into different event struc-

ures (e.g., Frankland and Greene, 2015 ; Frankland and Greene, 2020 ).

A functional division within the semantic system has also been pro-

osed between representational regions that code meaning and control

egions that regulate and shape semantic activation based on current

oals ( Badre and Wagner, 2007 ; Hoffman et al., 2018 ; Jefferies, 2013 ).

ollowing this distinction, the Controlled Semantic Cognition theory

roposes that IFG and pMTG are involved in semantic control pro-

esses rather than representation (Lambon Ralph et al., 2017 ). In the

resent study, we observed robust decoding of events in both of these

reas, as have other semantic decoding studies at the word and sen-
8 
ence levels ( Anderson et al., 2017 ; Devereux et al., 2013 ; Fairhall and

aramazza, 2013 ; Pereira et al., 2018 ). If these regions are impor-

ant for regulating semantic activation rather than storing conceptual

epresentations, why can their neural patterns reliably distinguish be-

ween different event concepts? There are a number of possible answers

o this. Different events may vary, for example, in the demands they

lace on control processes and this systematic variation in engagement

ight be sufficient to allow classification. Alternatively, different events

ight require different control processes with distinct neural signatures.

etter understanding of this issue will require more precise formula-

ion of the mechanisms and computations involved in semantic con-

rol. Many computational models of semantic representation exist and

hese make specific predictions about the representational structures in-

olved (e.g., O’Connor et al., 2009 ; Rogers et al., 2004 ; Schapiro et al.,

013 ; Taylor et al., 2012 ). Conversely, there has been little formal mod-

lling of semantic control processes (though for recent exceptions, see

offman et al., 2018 ; Jackson et al., 2021 ). The lack of established the-

retical models makes it difficult to make precise predictions about how

eural patterns in control regions should vary and how these areas might

e distinguished from those that represent knowledge. This remains a

ey challenge for future work to address. 

While we found that brain regions throughout the canonical seman-

ic network were able to decode event semantics independent of syntac-

ic structure, coding of syntactic information was much more limited.

one of our semantic ROIs were able to discriminate between active

nd passive sentences in an event-independent fashion; instead, this

orm of decoding was mostly limited to occipital cortex and superior

rontal and parietal regions. Some of these effects may reflect differ-

nces in non-semantic processing demands to the two sentence types.

assive sentences are necessarily longer than their active equivalents.

his means they require greater visual analysis, additional eye move-

ents and greater working memory recruitment. The decoding we ob-

erved may reflect variation in these pre-conceptual demands. In addi-

ion, English speakers typically expect the initial noun phrase in a sen-

ence to represent the agent (agent-first bias; see Kamide et al., 2003 ).

hen reading passive sentences, this initial thematic role assignment is

ncorrect and has to be revised. This reanalysis process has been pro-

osed as an explanation for greater left IFG activation for passive sen-

ences ( Feng et al., 2015 ; Mack et al., 2013 ). In our study, we observed

ecoding in a posterior portion of left IFG (pars opericularis; BA44),

hich may reflect these processes of reanalysis. The region was some-

hat posterior to the peak decoding in the event-discrimination analy-

es. This is consistent with the idea of graded specialisation in left IFG,

ith semantic processing engaging more anterior regions and syntactic

rocessing more posterior areas ( Friederici, 2012 ; Rodd et al., 2015 ). In

eneral, however, our results support the view that few regions in the

anguage network are primarily influenced by syntactic information, in-

ependently of the semantic content of language ( Blank et al., 2016 ;

edorenko et al., 2012 ; Mollica et al., 2020 ). 

Finally, we tested for areas that discriminated between different

exical items used to describe the same events. The searchlight anal-

sis found that this decoding was restricted to early visual and left

ccipitotemporal regions, which is likely to be a consequence of or-

hographic rather than semantic processing (e.g., differences in word

ength). In the ROI analyses, however, pMTG showed above-chance

iscrimination. This effect could indicate differences in lexical ac-

ess processes supported by posterior temporal regions ( Davis, 2016 ;

au et al., 2008 ; Lewis and Poeppel, 2014 ). Alternatively, the dis-

inct neural patterns observed here may be a consequence of subtle

emantic distinctions between the different lexical items. Although we

esigned the materials such that lexical substitutes were as concep-

ually similar as possible, there were inevitably some differences be-

ween them (cows and bulls are not identical, nor are fences and gates,

nd so on). With a larger sample, we may have been able to decode

hese subtle semantic distinctions more widely within the semantic

etwork. 
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One limitation of the study is that our decoding is based on a small

umber of simple events, all with a similar agent-verb-patient struc-

ure. The human semantic system is capable of representing a far more

omplex and varied selection of events than those used here. Further

esearch will be needed to understand how and where specialisation oc-

urs for particular event classes. For example, events could be selected

ased on the degree to which they engage different types of sensory-

otor simulations, allowing for targeted investigation of the predictions

f embodied semantics theories ( Barsalou, 1999 ; Pulvermüller, 2013 ;

waan, 2004 ). On the whole, however, the present study suggests that a

istributed network of language and semantic regions code event-level

emantic information in a manner that generalises across lexical and

yntactic variation in the sentences used to describe them. This suggests

hat the core function of this network is to abstract away from percep-

ual input and represent the underlying conceptual significance of our

xperiences. 
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