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Abstract

Machine learning is increasingly being used
to generate prediction models for use in a
number of real-world settings, from credit
risk assessment to clinical decision support.
Recent discussions have highlighted poten-
tial problems in the updating of a predictive
score for a binary outcome when an existing
predictive score forms part of the standard
workflow, driving interventions. In this set-
ting, the existing score induces an additional
causative pathway which leads to miscalibra-
tion when the original score is replaced. We
propose a general causal framework to de-
scribe and address this problem, and demon-
strate an equivalent formulation as a partially
observed Markov decision process. We use
this model to demonstrate the impact of such
‘naive updating’ when performed repeatedly.
Namely, we show that successive predictive
scores may converge to a point where they
predict their own e↵ect, or may eventually os-
cillate between two values, and we argue that
neither outcome is desirable. Furthermore,
we demonstrate that even if model-fitting
procedures improve, actual performance may
worsen. We complement these findings with a
discussion of several potential routes to over-
come these problems.

1 Introduction

A common machine learning task concerns the predic-
tion of an outcome Y given a known set of predictors
X [Friedman et al., 2001]. Usually, the intent is to an-
ticipate the value of Y in situations in which only X
is known. Often, the ultimate goal is to avoid or en-
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courage certain values of Y , with interventions guided
by the predictions provided by the algorithm.

We focus on the standard setting, often seen in health-
care, where X is first observed and used to make pre-
dictions about Y , then interventions occur before out-
comes are observed. This setting can lead to predic-
tion scores being ‘victims of their own success’ [Lenert
et al., 2019, Sperrin et al., 2019]. Interventions driven
by the score can change the distribution of the data
and outcomes, leading to a decay in observed per-
formance, particularly if the intervention is success-
ful. Analysis of this e↵ect requires consideration of
the causal processes governing X, Y , and the poten-
tial interventions driven by the score [Sperrin et al.,
2019]. Predictive scores are often implemented by di-
rect dissemination to agents that are capable of mod-
ifying these causal processes [Rahimian et al., 2018,
Hyland et al., 2020], which leads to vulnerability to
this problem. This problem also exist if predictions
influence discrete actions, initial progress for this has
been made using bandits [Shi et al., 2020].

This problem is particularly critical in settings where
existing predictive scores are to be replaced by an up-
dated version. In many real-world contexts, the under-
lying phenomena represented by the predictive model
will change over time [Wallace et al., 2014]; statistical
procedures for prediction may also improve (particu-
larly for complex tasks); and researchers may wish to
include further predictors or increase the scope of pre-
dictive scores. In general, we may expect that most
predictive algorithms will need to be updated or re-
placed over time. Up-to-date models should generally
be trained on the most recent available data which,
as described above, will be contaminated by interven-
tions based on existing scores. Should a new predic-
tive model be fitted to new observations of X and Y ,
it will consequently also model the impact of the exist-
ing score. Removal of the existing score will introduce
bias into predictions made by the new score, as will
insertion of the new score in place of the old. We term
such an operation a ‘naive model replacement’.

Our main aim is to introduce a general causal frame-
work under which this phenomenon can be quantita-
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tively studied. We use this framework to draw atten-
tion to the hazards of naive model replacement, espe-
cially when it occurs repeatedly. We introduce these
hazards in the context of a generalised ultimate aim of
the model, formulated as a constrained optimisation
problem in which the occurrence of undesirable values
of Y is to be minimised with limited intervention.

A simple parable of this phenomenon concerns
yearly influenza vaccinations. In a vaccination-naive
population, risk assessments for influenza motivate
widespread vaccination. However, in a later ‘epoch’,
the risk may appear much lower, and could naively
suggest vaccination is no longer required introducing
risks to public health1. More generally, updated risk
scores for clinical outcomes may be biased due to the
interventions motivated by the scores themselves. As
a second example, consider risk scores used to predict
future emergency hospital admissions Y , on the basis
of covariates X [Rahimian et al., 2018]. Suppose that
prescription of some drug D 2 X confers increased
risk, and this is established by the risk score. Should
such risk scores be distributed at time t = 0 to agents
able to modify these factors (e.g., doctors), they may
intervene by taking patients o↵ D thereby reducing
emergency admission risk E[Y ] at a time t = 1. If a
new score is naively fitted to X at t = 0 and Y at
t = 1, it would underestimate the danger of D.

Section 2 describes the problem in terms of causal ef-
fects. We develop this into a full model specification
in Section 2.2, along with a description of the con-
strained optimisation problem the model/intervention
pair aims to solve in 2.3. In Section 3, we analyse the
short and long-term e↵ects of repeated naive replace-
ment and show that they are generally undesirable. In
Section 4, we discuss three classes of solutions: more
complex modelling, routine maintenance of a ‘hold-
out’ set, and controlled interventions. In Section 5 we
describe a reformulation of the model as control theory
problem. Finally, in Section 6, we discuss limitations
and implications of our approach. Our supplementary
material contains relevant examples and proofs, an ex-
position of the problem in a real-world example, and
a list of open problems in this setting.

2 Model

2.1 Overview

Assume that we are attempting to predict an outcome
Y given a known set of covariates X. For simplicity,
we assume Y is a binary (e.g. admission versus non
admission to an Intensive Care Unit) and model it as

1
See for example https://www.who.int/news-room/

spotlight/ten-threats-to-global-health-in-2019

a Bernoulli random variable. If Y = 1 is considered
to be a negative outcome, often the eventual aim is to
reduce P(Y = 1|X) = E[Y |X]; we will discuss this in
Section 2.2 once we have defined terms formally. For
the moment, we assume the causal structure shown
in Figure 1. We denote by ⇢0(X) an initial predictive
model for E[Y |X], fitted to observations of (X,Y ) gen-
erated under the causal structure in Figure 1A. During
deployment, we compute ⇢0(X) for all members of a
population and disseminate it to agents who can inter-
vene on X (e.g. doctors) based on those predictions,
aiming to prevent Y = 1. Replacing or updating ⇢0,
will typically involve fitting a new predictive model
⇢1(X) to new observations of (X,Y ). It is clear that
while ⇢0(X) is an estimator of E[Y |X], the new pre-
dictive function ⇢1(X) is instead an estimator of

E [Y |X, do [⇢0(X)]] (1)

where do [⇢0(X)] indicates the action ‘compute and
disseminate ⇢0(X)’. Although ⇢0(X) is determined by
X, the computation do [⇢0(X)] makes ⇢0 actionable.
This opens a second causal pathway from X to Y ,
a↵ecting the setting in which ⇢1 is fitted (Figure 1B). If
the initial score ⇢0(X) is universally disseminated, the
distribution of Y givenX (without the do [⇢0(X)]) now
becomes a counterfactual which we cannot observe.

X Y

ρ1	(fit)

ρ0(X)

A B

X Y

ρ0	(fit)

Figure 1: Causal structure under which ⇢0 (panel A)
and ⇢1 (panel B) are fitted. Dashed lines indicate a
model-fitting process.

2.2 General notation and assumptions

Here, we use a causal model to illustrate poten-
tial emergent behaviour resulting from repeated naive
model updating. We do not aim to cover the complex-
ities of all real-world applications, yet our simplified
setup is su�cient to demonstrate the dangers arising
in this context.

As ⇢0 is deployed and drives interventions, covariate
values X may change, as may the dependence of Y on
X. Here, we partition X into three sets:

Xs: Fixed or ‘set’ covariates; dim(Xs) = ps,

Xa: Actionable covariates; dim(Xa) = pa,

X`: Latent covariates; dim(X`) = p`. (2)
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Although X` may influence the causal mechanism be-
tween X and Y and may be intervened on, we assume
it is unobserved. Hence, only Xs and Xa are known
when evaluating a risk score, and Xs cannot be inter-
vened on (e.g. ‘Age’). We also define two sets of time
indicators t, e (time, epoch):

t 2 {0, 1} :

8
><

>:

t = 0: predictive score is computed

t = 1: Y observed, after possible

intervention

e 2 N :

(
e = 0: no predictive score is used

e > 0: model from epoch e� 1 is used.

We assume that values of X depend on t and e using
the notationXe(t) = (Xs

e (t), X
a
e (t), X

`
e(t)) 2 ⌦s⇥⌦a⇥

⌦` = ⌦. As Y is only observed at t = 1, Y at epoch
e is denoted as Ye. At each epoch, we assume that
values of Xe(t) across individuals in the population
are iid with probability measure µe. We introduce the
following functions

fe(x
s, xa, x`) = E

⇥
Ye|Xe(1) = (xs, xa, x`)

⇤

= Causal mechanism determining

probability of Ye = 1 given Xe(1)

gae (⇢, x
a) 2 {g : [0, 1]⇥ ⌦a ! ⌦a}

= Intervention process on Xa in

response to a predictive score ⇢

updating Xa
e (0) ! Xa

e (1)

g`e(⇢, x
`) 2 {g : [0, 1]⇥ ⌦` ! ⌦`}

= Intervention process on X` in

response to a predictive score ⇢

updating X`
e(0) ! X`

e(1)

⇢e(x
s, xa) 2 {⇢e : ⌦s ⇥ ⌦a ! [0, 1]}

= Predictive score trained at epoch

e, evaluated at observed covariates.

Our main model is based on the following assumptions

1. 8e Xs
e (0) = Xs

e (1): ‘set’ covariates do not change
from t = 0 to t = 1

2. Xa
0 (0) = Xa

0 (1), X
`
0(0) = X`

0(1): ‘actionable’ and
‘latent’ covariates do not change at epoch 0

3. X`
e(t) is unobserved, but may be modified from

t = 0 to t = 1 in response to ⇢e�1

4. Values of Xe(0) are independent across epochs,
i.e. we do not track the same subjects over time.

5. At epoch e, the predictive score uses only Xa
e (0),

Xs
e (0) and Ye as training data; previous epochs

are ignored and Xa
e (1), X

s
e (1) are not observed.

6. 8e E[Ye|Xe] = E[Ye|Xe(1)]: Ye depends only on
Xe(1); that is, after any potential interventions.

Besides these core assumptions, for the applications in
this work, we variably assume some of the following

7. fe, gae , g`e and µe remain fixed across epochs2,
so values {Xs

· } are iid, as are {Xa
· } and {X`

· }
(within an epoch they may be correlated). Where
we make this assumption, we will omit the epoch
subscript for clarity. We also use the shorthand
X` ⌘ X`

e(0)|(Xs
e (0), X

a
e (0)) = (xs, xa)

8. We allow ⇢e to be an arbitrary function, but gen-
erally presume it is an estimator of

⇢e(x
s, xa) ⇡ E [Ye|Xs

e (0) = xs, Xa
e (0) = xa]

= EX`

⇥
fe

�
xs, gae (⇢e�1, x

a), g`e(⇢e�1, X
`)
�⇤

, f̃e(x
s, xa) (3)

noting that f̃e depends on e even if fe does not.

9. The function fe is C1 in all arguments, and co-
variates are coded such that increases in covariate
values increase risk

10. g`e, g
a
e are C1 in all arguments, and a higher value

of ⇢ means a larger intervention is made (we as-
sume g`e and gae to be deterministic, but random
valued functions may more accurately capture the
uncertainty linked to real-world interventions).

This extended causal model is shown in Figure 2. To
aid interpretation, a real-world example is described
using this notation in Supplementary Section 1.

2.3 Aim of predictive score

The aim of the predictive score is generally to estimate
E[Ye|Xe(0)] accurately, presuming that we take Xe(0)
to be identically distributed over the population con-
cerned. However, if action is to be taken on the score,
we may presume the ultimate goal is to minimise E[Ye],
i.e. minimising

E [Ye] = EXe(0) [Ye|Xe(1)]

= EXe(0)

⇥
fe(X

s, gae (⇢, X
a
e (0)), g

`
e(⇢, X

`
e(0)))

⇤
(4)

However, we presume that we cannot a↵ord to maxi-
mally intervene in all cases. Suppose the cost of low-
ering Xa and X` by x is ca(Xa, x) and c`(X`, x), re-
spectively. The total intervention must then satisfy

2
In practice, we may assume fe changes slightly between

epochs, but that this change is negligible.
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EXe(0)

h
ca
⇣
Xa

e (0), X
a
e (0)� gae (⇢, X

a
e (0))

⌘
+

c`
⇣
X`

e(0), X
`
e(0)� g`e(⇢, X

`
e(0))

⌘i
 C (5)

for a known constant C, representing maximum cost.
Thus we want to minimise (4) subject to (5). We have
allowed fe, µe, gae , g

`
e and ⇢e to vary across epochs. Of

these, we can consider fe and µe to vary as a conse-
quence of underlying processes, and gae , g

`
e and ⇢e to

be (somewhat) under our control. Depending on the
problem, we may either consider gae and g`e as fixed,
and choose an optimal function ⇢e; or consider ⇢e as
fixed, and choose optimal functions gae , g`e. If both
are optimised, this corresponds to a general problem
of resource allocation; see Supplementary Section 3.1

3 Naive model updating

We consider a ‘naive’ process in which a new score ⇢e
is fitted in each epoch, and then used as a drop-in re-
placement of an existing score ⇢e�1. We show that this
procedure does not generally solve the constrained op-
timisation problem in Section 2.3, can lead to ‘worse’
performance of ‘better’ models, and may lead to wide
oscillation of predictions for fixed inputs across epochs.

3.1 Worse performance of better models

Here, we show that naive updating can lead to a loss
in observed performance — even when the procedure
to infer ⇢e is more accurate. We adopt assumptions 1–
10, taking the approximation in equation (3) to be im-
perfect. Although most model elements are conserved
across epochs (assumption 7), we presume that the
procedure used to infer ⇢e changes, leading to better
estimators of the function f̃e.

At epoch e, the training data is denoted by (X?
e , Y

?
e )

and consists of n samples of (Xe(0), Ye), with the la-
tent covariate information removed. In the absence of
interventions, we assert that model performance will
improve over epochs. Since performance under non-
intervention is equivalent to performance at epoch 0,
this can be stated as:

E(X?
0 ,Y

?
0 )

h
mf̃0

(⇢e|X?
0 , Y

?
0 )

i
>

E(X?
0 ,Y

?
0 )

h
mf̃0

(⇢e+1|X?
0 , Y

?
0 )

i
, (6)

!"#(0)

!"'(0)

!"ℓ(0)

!"#(1)

!"'(1)

!"ℓ(1)

*"

Epoch	0

Samples

Analysts +"

!,#(0)

!,'(0)

!,ℓ(0)

!,#(1)

!,'(1)

!,ℓ(1)

Epoch	1
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Analysts +,+"

-,.

-,/

0"

*,0,

Time	0 Time	1
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Notation

Epoch
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Time
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Figure 2: This figure shows a causal diagram. An
‘epoch’ is a new model fitting cycle. Covariates for
a sample at the start of an epoch are modelled by
X ·

e(0). We presume {Xs
e (0), e � 0} are independent

(as are Xa
· (0) and X`

· (0)). We start with a sample at
t = 0, e = 0. The values Xs

0(0), X
a
0 (0) are observed

and sent to analysts (arrow 1). No predictive score is
present and no interventions are made based on it, so
values remain the same to t = 1 (arrows 2). E[Y0] de-
pends only on covariates at t = 1, through f0 (arrows
3). Y0 is observed and sent to analysts (arrow 4) who
decide a function ⇢0, which is retained into epoch 1 (ar-
row 5). We start epoch 1 with a new independent sam-
ple. At t = 0, we observe Xs

0(0), X
a
0 (0) and send them

to analysts (arrow 6) who compute ⇢0 (Xs
0(0), X

a
0 (0))

which is used to inform interventions ga1 , g
`
1 (arrow 7)

to change values Xa
e (0), X

`
e(0) to Xa

e (1), X
`
e(1) respec-

tively (arrows 8). Xs
e (0) is not interventionable and

becomes Xs
e (1) (arrow 9). E[Y1] is determined by co-

variates at t = 1 (arrows 10). Analysts use the values
of Xs

1(0), X
a
1 (0) (arrows 11), and Y1 (arrow 12) to de-

cide a ⇢1, which is retained (arrow 13) for epoch 2.
Subsequent epochs proceed similarly to epoch 1.

where mf̃ (⇢|X,Y ) denotes a metric for closeness of ⇢

to f̃ , given observed data (X,Y )3. However, if inter-
ventions are in place, the improvement in equation (6),
does not imply that the actual performance improves
across epochs, that is:

3
In practice, mf̃e

is unknown but (assuming latent co-

variates have a small influence on f) estimates of mf̃0
can

be calculated through a holdout test data set.
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E(X?
e ,Y

?
e )

h
mf̃e

(⇢e|X?
e , Y

?
e )

i
>

E(X?
e+1,Y

?
e+1)

h
mf̃e+1

(⇢e+1|X?
e+1, Y

?
e+1)

i
. (7)

This is proven this by counterexample, see Supplemen-
tary Section 3.2. A critical consequence of this artefact
is that stakeholders may decide not to update an exist-
ing score, even if an apparently better one is available.4

3.2 Dynamics of repeated naive updating

Here, we analyse the dynamics of repeated naive model
updating. For this purpose, we make assumptions 1-10
and assume that ⇢e is an oracle: the ‘⇡’ in equation (3)
is replaced by an ‘=’.

At epoch 0, there are no interventions, hence the risk
of observing Y = 1 is E[Y0|X0(0) = (xs, xa, x`)] =
f(xs, xa, x`). The score ⇢0 is therefore defined as

⇢0(x
s, xa) = EX` [f(xs, xa, X`)], (8)

whereX` is denoted as in assumption 7. In subsequent
epochs, ⇢e is used to modify xa and x` via ga and g`,
leading to the following recursive relation:

⇢0(x
s, xa) = EX` [f(xs, xa, X`)]

⇢e(x
s, xa) = EX` [f(xs, ga(⇢e�1(x

s, xa), xa),

g`(⇢e�1(x
s, xa), X`))]

, h(⇢e�1(x
s, xa)) (9)

We briefly explore the dynamics of this recursion. Let
z 2 [0, 1] be arbitrary and denote by S the substitu-
tion (xs, xa, xl) =

�
xs, ga(z, xa), g`(z,X`)

�
. Recalling

definitions of ps, pa from (2), we set (for i across the
dimensions of (xa, x`))

�g
a

i =
@[ga(z, xa)]i

@z
�g

`

i =
@[g`(z, x`)]i

@z

�f
a

i = (rf |S)ps+i �f
`

i = (rf |S)ps+pa+i

recalling assumptions 9,10 to assert that these partial
derivatives exist. Assumptions 9 and 10 further imply
�fLi > 0, �fAi > 0 and �gAi < 0, �gLi < 0 respectively, so

h0(z) = EX`

2

4
paX

i

�gAi �fAi +
p`X

i

�gLi �fLi

3

5 (10)

< 0

and thus the recursion ⇢e+1 = h(⇢e) has exactly one
fixed point. Call this z0, so z0 = h(z0). We now note

4
We note that practically (if a holdout test data set

was used) the conclusions on performance made by stake-

holders would be based on a risk score’s closeness to f̃0
instead of f̃e, but the results are the same, which we show

in Supplementary Section 3.2.

Theorem 1. If h0(z0)  �1 then the recursion does
not converge unless ⇢0 = z0, and will converge to os-
cillating between two values. If for some (possibly un-
bounded) interval R we have ⇢e 2 R for some n and
for all z 2 R, h(z) 2 R and

paX

i

⇣
�g

a

i

⌘2
 k1,

p`X

i

EX`

⇣
�g

`

i

⌘2
�
 k2 (11)

paX

i

EX`

h
|�f

a

i |
i2

 k3,
p`X

i

EX`

⇣
�f

`

i

⌘2
�
 k4 (12)

where
p
k1k3 +

p
k2k4 < 1, then

|⇢e(xs, xa)� ⇢e+1(x
s, xa)|! 0

as n ! 1.

This is proved in Supplementary Appendix 3.3

Condition (11) states that, on average, interventions
make only small change to xa and x` in response
to small changes in ⇢. Condition (12) states that,
on average, the actual risk changes little with small
changes in covariates. These conditions are not su�-
cient. Since h0(z) < 0, successive estimates of ⇢e will
oscillate around their limit. In general, a requirement
for general convergence of ⇢e restricts the type of in-
terventions which can be in place. A simple scenario
in which ⇢e cannot converge is provided in Supplemen-
tary Section 3.5, and we illustrate an example showing
convergence and divergence of ⇢e in Figure 3. Code to
generate a web app that illustrates the problem in gen-
eral is included in the Supplementary Code.

We may hope that naive updating, when it converges,
may solve the optimisation problem in Section 2.3. It
does not, and we give a specific counterexample in Sup-
plementary Section 3.4. Finally, we note that the dy-
namics above also model a related setting, where sam-
ples are tracked across epochs and interventions are
permanent (Supplementary Section 2). In summary,
naive updating can readily lead to wide oscillation of
successive risk estimates, and even ⇢e does converge it
is not generally to any useful limit.

4 Strategies to avoid this problem

Naive updating is an appropriate method for updating
risk scores if no interventions are being made (that is,
ga(⇢, xa) = xa and g`(⇢, x`) = x`), as may be the case
if a risk score is used for prognosis only, rather than
to guide actions5. It may also be appropriate if we

5
EUROscore2 [Nashef et al., 2012] (a risk predictor for

cardiac surgery) can be used in this way, by giving patients

prognostic estimates but without being used to recommend

for or against surgery



Manuscript under review by AISTATS 2021

do aim to solve the constrained optimisation problem
in Section 2.3, and are only concerned with accuracy
of the model: in that case, under at least the condi-
tions of Theorem 1, naive updating will lead to esti-
mates ⇢e(xs, xa) converging as e ! 1 to a setting in
which ⇢e accurately estimates its own e↵ect: concep-
tually, ⇢e(xs, xa) estimates the probability of Y after
interventions have been made on the basis of ⇢e(xs, xa)
itself. Naive updating is otherwise generally not advis-
able, although a range of alternative modelling strate-
gies do not lead to the same problems.

4.1 More complex modelling and more data

An obvious way to avoid the problem is to model the
setting completely, including the e↵ect of any inter-
ventions. Methods of this type would include explicit
causal modelling, as used in related problems [Sper-
rin et al., 2018], or counterfactual inference, which
has been suggested as a direct approach to the prob-
lem [Sperrin et al., 2019]. These approaches would
require knowledge or accurate inference of g` and ga,
or observation of covariates at several points in each
epoch [Sperrin et al., 2018].

A second approach is to consider data from previ-
ous epochs alongside the current data when fitting
⇢e. Such data can be used as a prior on the fit-
ted model [Alaa and van der Schaar, 2018] and could
be used to infer model elements: µe, g`, ga, and
f . If accurate data were available, oscillatory e↵ects
could even be detected and avoided. A di�culty with
this approach in a realistic setting is in distinguishing
whether inaccuracies in older models are due to drift in
the underlying system [Quionero-Candela et al., 2009]
(in our case, f and µe) or due to the e↵ects of inter-
vention. Indeed, the problems with naive updating can
be seen as treating model inaccuracies as though they
are due to the first e↵ect, when they are in fact due
to the second. Definitive assertion of the cause of in-
accuracies will, again, generally require more frequent
observation of covariates.

4.2 Hold out set

A straightforward and potentially practical means to
avoid the problems associated with naive updating is
to retain a set of samples in each epoch for which ⇢e is
not calculated, and hence cannot guide intervention.
For such samples, Xe(0) = Xe(1), so a regression of Y
on Xe(0) restricted to these ‘held out’ samples can be
used as an unbiased estimate for fe. If the hold out set
is randomly selected, this would emulate a clinical trial
which enables us to assess the e↵ect of predictive scores
(and their associated interventions) across epochs.

A problem with this approach is that any benefit of the

risk score-guided intervention is lost for individuals in
the hold-out set. Careful consideration of the ethical
consequences of this strategy is therefore required.

Figure 3: Example showing convergence and diver-
gence of ⇢e across epochs. We disregard x`, g` in
this example. We choose f(xs, xa) = logit(xs, xa)
(top left). We choose ga with the rationale that
we intervene by lowering Xa(0) when ⇢e > 1/2,
but allow Xa(0) to increase when ⇢e < 1/2 (that
is, resources for intervention are redistributed rather
than introduced), and assume that we can inter-
vene more e↵ectively when Xa(0) is high ( strictly,

ga(⇢, xa) = 1
2

⇣
(3� 2⇢)xa + (1� 2⇢)

p
1 + (xa)2

⌘
, top

right panel). Bottom panel shows whether ⇢e(xs, xa)
converges or diverges, and how long it takes (num.
epochs until �e , |⇢e � ⇢e�1|< 0.01 or (|�e|> 0.05 [
|�e � �e�1|< 0.01); |e| 10). Insets show cobweb
plots for relevant recursions, and plots of ⇢e.

4.3 Control interventions

A radically di↵erent option is the direct specification of
the interventions g`e and gae in each epoch, considering
⇢e, µe constant, and fe to change only slightly with
e. This enables directly addressing the constrained
optimisation problem in Section 2.3.

If X` can be disregarded, and we may regard fe�1 as
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an unbiased estimate of fe6, then we may take a simple
inductive approach:

1. At the end of epoch 0, infer f0 and µ0. Given
some fixed functions ⇢, ca, find a function ga1
which solves the constrained optimisation prob-
lem in section 2.3 assuming f1 = f0, ⇢1 = ⇢0.
Implement this intervention.

2. At the end of epoch e > 0, regress Ye on

Xe(1) =
⇣
Xs

e (0), g
a
e

⇣
⇢(Xs

e (0), X
a
e (0)), X

a
e (0)

⌘⌘

to attain an unbiased estimate of fe. Now solve
the constrained optimisation problem to optimise
gae+1, assuming fe+1 = fe and ⇢e+1 = ⇢e

Thus in each epoch an unbiased update of fe can be
made, and the constrained optimisation problem can
be directly solved. If X` is present, the problem is
more complex. We suggest this general case as an
open problem (see Supplementary Section 4).

A problem with this approach in a medical setting
is that specification of gae may cause the procedure
to be subject to medical device regulation [MHRA,
2019]. Implications of these regulatory processes map
to our potential solutions; for example, countries in
the EU [EU Council, 2014] have only developed regu-
latory processes to the point of accommodating static
risk scores, and by extension currently treat updated
scores as new tools. In these cases a separate evalu-
ation exercise, such as testing on a hold-out, is nec-
essary to demonstrate e�cacy prior to dissemination,
which would also remedy the problems of naive up-
dating (although costs of repeated formal evaluations
of e↵ectiveness, and the ethics of a hold-out, may be
a concern). However, the US FDA have proposed an
alternative ‘total-life-cycle’ approach [USFDA et al.,
2019] which allows for model updating (contingent
on defining a performance monitoring mechanism),
which, given the problems of naive updating, is po-
tentially seriously flawed.

5 Formulation as control-theoretic/
reinforcement learning problem

Control theory [Bertsekas, 1995] and its modern in-
carnation, reinforcement learning [Sutton and Barto,
2018], study temporal problems where multiple actions
are available at each time step. The aim of the field is
to come up with an optimal policy either from the start
or, in the partially observable case, a mechanism that

6
This assumption underlies the fundamental point of a

risk score

quickly converges to the optimal policy. In the latter
the regret is considered to be how much utility is lost
compared to using the optimal policy from the start.
The methods underlying this, like dynamic program-
ming, are used in a variety of fields such as; playing
go [Silver et al., 2018], in dynamic treatment strat-
egy [Alaa and van der Schaar, 2018] and mechanical
and electrical engineering. Here we use the formulation
of a Partially Observable Markov Decision Processes
(POMDP) [Yuksel, 2017], and adopt the notation from
[Wang et al.] whereby we consider the POMDP as a
7-Tuple (S,A, T ,R,⌦,Z, �):

• S,A and ⌦ are spaces of states, actions and ob-
servations.

• T is the transition kernel that describes the evo-
lution given state and action, e.g. se+1 ⇠ T (· |
se, ae) (i.e. a set of conditional transition proba-
bilities between states and actions).

• Z is a kernel for the observation given the state,
e.g. oe+1 ⇠ Z(· | se, ae)7.

• re represents our reward for being in state s and
taking action a at time (or equivalently epoch) e,
and is sampled from R - i.e. re ⇠ R(se, ae)

• � is a discount factor that down-weighs future re-
wards if 0 < � < 1.

A solution candidate is a policy

ae ⇠ ⇡
⇣
{os, rs, as}e�1

s=1

⌘

which aims to maximise

E
MX

e=1

�e�1r(se, ae)

where M represents the maximum number of
time/epoch steps. Other reward/utility parametrisa-
tions are possible e.g. to include a final pay o↵ or
infinite time horizon pay o↵. The beauty of this frame-
work is the flexibility: aspects such as optimisation un-
der uncertainty can be included by including param-
eters of reward, transition and observation processes
into the (unobserved) state variable.

We cast the above in this framework:

se = (Xe(0), Xe(1), Ye)

ae = ⇢e

oe = ((Xs
e (0), X

a
e (0)), Ye)

re = P
�
Ȳe+1 | se, ae

�

7
Note that here future observations depend on current

states and actions and not on future states and actions
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The transition kernel from se to se+1 consists of; sam-
pling Xe+1(0) (note that this sampling is indepen-
dent of se), intervening using this sample with ⇢e to
form Xe+1(1), and then using these values to sam-
ple Ye+1 from the resulting conditional distribution.
Finally we note that given Assumption 5 our policy
ae ⇠ ⇡(oe, re, ae) as previous epochs are ignored. In-
deed, this assumption also implies that se+1, oe+1 and
re only depend on the previous state through ae = ⇢e.
In the control view point it is also easy to formulate
the longitudinal problem (this corresponds to setting
Xe+1(0) = Xe(1)).

The description above allows to use methods of the
field such as Q-learning, (approximate dynamic pro-
gramming), PDE-based approaches such as the Hamil-
ton Jacobi Bellman equation and many more. These
methods create a policy which maps the historical ob-
servations to an action (for the problem at hand a risk
score function). Most of the rigorous methods require
a low dimensional state space [Powell, 2007].

6 Discussion

In this work, we elaborate on the issue raised by
Lenert and Sperrin [Lenert et al., 2019, Sperrin et al.,
2019] and propose a framework for quantitatively mod-
elling its e↵ects, with a particular focus on a model
which is updated repeatedly. We demonstrate some
consequences of ignoring this problem, and note that
they occur even in highly idealised circumstances. Al-
though the problem can generally be avoided by more
complex and complete modelling, we consider that this
is often impractical: a full consideration of the set-
ting in which a model will eventually be used is not
generally considered until the model is to be imple-
mented [Lipton and Steinhardt, 2018].

The formulation of the constrained optimisation prob-
lem in section 2.3 makes it clear that for fixed g`, ga,
the best possible ⇢e is not necessarily the oracle esti-
mator in equation 3. However, many machine learning
models tend to focus on accurate prediction of out-
comes [Nashef et al., 2012], rather than directly solv-
ing problems of the type in section 2.3; hence, the
naive updating setting considers a ⇢e which does ex-
actly this. In the naive updating setting, we are as-
suming an analyst who ignores this e↵ect.

The model presented here is not a full description
of modern predictive scoring systems; however, it is
extensible in various ways (some detailed in Supple-
mentary Section 4). In particular, g` and ga could
be random-valued rather than deterministic. We also
note that we assume a covariate value after interven-
tion confers the same contribution to risk of Y as it
does when it takes the same value ‘naturally’, which

may not be realistic.

We assume we are ‘starting over’ with new samples at
the beginning of each epoch, and for naive updating,
we assume that covariate values are identically dis-
tributed. The basis for this assumption is that we gen-
erally expect interventions to be zero-sum: that is, the
risk score guides a redistribution of intervention rather
than introduction of interventions, so the total e↵ect
on the sample population remains roughly the same in
each epoch. In this assumption, we di↵er from that
in the analysis by Lenert [2019].We can alternatively
interpret this assumption as taking all interventions as
being short-term and having ‘worn o↵’ by the start of
the next epoch. The problem raised here also exists
for the more general setting when interventions have
long term e↵ects and we consider longitudinal e↵ects.

In the setting where models change at each epoch, if
mf̃e

is known at the current epoch e, we note a fair
comparison of models is one which compares models
built using the training data available at the current
epoch8. Ifmf̃e

is not known, then a holdout set for test
data must be used so a fair comparison can be made
using an estimate of mf̃0

(assuming f̃0 ⇡ f). This is
because at epoch e we only have access to (Xe(0), Ye)
and not Xe(1), and so we are not able to properly
gain insight to the behaviour of f̃e needed to provide
an estimate of mf̃e

. An attempt to estimate mf̃e
using

(Xe(0), Ye) implicitly assumes that Ye directly depends
on Xe(0), and as a result ⇢e would appear much closer
to f̃e than is the case. Put simply, by implement-
ing naive model updating not only may performance
severely worsen (even if better models were used), but
in not providing a holdout test set stakeholders may
not even be able to recognise that performance is wors-
ening as the number of epochs increase.

In essence, we provide a causal framework within
which to understand a crucial issue in regulation of
machine learning and AI-based tools in health and
further afield, demonstrating that approaches which
incorporate naive updating are unlikely to be fit for
purpose. Moreover, even where solutions are avail-
able to address the bias introduced by updating on
‘real-world’ data in which outcomes represent (at least
in part) the e↵ects of an algorithm, these restrict the
potential of ‘online’ and frequently updated solutions.
We hope that our work will foster discussion of this
interesting problem, which is becoming increasingly
pertinent as machine-learning based predictive scores
become widely used to guide decision making, and pol-
icymakers act to address how to regulate these tools
to ensure safety and e↵ectiveness.

8
This is not to say that the performance of models will

not deteriorate over epochs, just that the issue may not lie

with the model structure.
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Model updating after interventions paradoxically introduces bias

Supplementary Materials

1 Example of functions and variables in a realistic setting

We consider the model proposed by Rahimian et al Rahimian et al. (2018) for prediction of emergency admission
to a hospital in a given time period on the basis of electronic health records (EHRs). Such a model is not
in common use in the location considered (England), so the data in the original paper is not a↵ected by the
problems we describe in the main manuscript.

For clarity1, we presume a prediction window of ten months (February-November), and that predictions are
made and distributed to primary health practitioners in January, with a new model being trained on the basis of
each year’s data in December, to be implemented the following January. In this setting, distribution of the score
may open a second causal pathway between covariates and outcome as shown in figure 1, and is thus susceptible
to the problems of naive updating.

In this setting, variables and functions may be interpreted as follows:

1. Y the event ‘an emergency admission in the following year’

2. Xe(0) the values of all variables which a↵ect E(Y ) at the time when the predictive score is computed (the
start of each year)

3. An ‘epoch’: the time in which a given model is in use; eg, each year.

4. ‘Time’: t = 0 when the predictive score is computed (the start of January); t = 1 represents the time after
which any interventions are made (the start of Feburary).

5. XS
e covariates a↵ecting E(Y ) which are included in the predictive score but which cannot be directly modified

in the time frame: age, time since most recent emergency admission

6. XA
e covariates a↵ecting E(Y ) included in the predictive score which can be modified in the time frame:

current medications.

7. XL
e covariates a↵ecting E(Y ) which are not included in the predictive score, and possibly can be modified

in the time frame: blood pressures, cardiac function

8. fe the underlying causal process for Y given patient status; that is, the probability of admission in the
subsequent year, given

9. gAe Hypothetical prescribed interventions made on XA in response to a predictive score; for instance, reduce
drug dosages. We roughtly assume that this intervention is symmetric; for a patient at low emergency risk,
a higher drug dose is acceptable.

10. gLe Hypothetical prescribed interventions made on XL in response to a predictive score; for instance, treat
low or high blood pressure.

It is clear that if such a risk score were used universally, and data was collected from the period in which a model
was in place was then, then the data would be a↵ected by the e↵ect of the predictive score itself.

The model does not fully describe this setting. The trichotomisation into XL, XA, and XS is not perfect;
intervention on XL could also a↵ect some variables in XA and vice versa. Interventions are likely to be random-
valued to some extent.

1Analogous times and variables can be described for other prediction periods and updating patterns
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2 Alternative system described by naive updating

We note that the definition of h (equation 9), and hence the following comments on recursion dynamics, can be
used to describe a related setting in which we track the same samples over epochs, and the e↵ect of interventions
ga, g` remain in place. Formally, we retain definitions of Xs, Xa, X`, e, t, fe, gae , g

`
e, ⇢e and all assumptions

except 4,7. In place, we assume that fe, gae , g
`
e are fixed across epochs, but instead of resampling Xe(0) from µe,

we have
Xe+1(0) = Xe(1) (1)

thus, while values X0(0) are sampled from the distribution µ0, values Xe(0) are then determined for e > 0. We
illustrate this in figure 1
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Figure 1: Diagram showing alternative setup for naive updating. Values xs, xa, x` are sampled at (e, t) = (0, 0),
and used to determine ⇢0. Values are conserved until t = 1, and remain the same at the start of epoch 1
((e, t) = (1, 0)). Values are intervened on by ga, g` according to ⇢0 (xs

1(0), x
a
1(0))), and resultant values at

(e, t) = (1, 1) are conserved until the start of the next epoch at (e, t) = (2, 0). Lowercase leters indicates that,
while quantities random-valued, they inherit all randomness from their values at (e, t) = (0, 0). Colour and line
conventions are as for figure 2

Now formulas 8, 9 will hold, and the recursion will proceed as detailed in theorem 1.

3 Proofs and counterexamples

3.1 Optimising both ⇢ and ga, g` is equivalent to a general resource allocation problem

Considering the constrained optimisation problem in section 2.3. We show that if we allow ⇢ and ga, g` to vary
independently, then the constrained optimisation is equivalent to the solution of a problem in which the use of
a predictive score is redundant.

Theorem 1. Suppose that the triple (⇢opt, gaopt, g
`
opt) minimises quantity 4 subject to constraint 5 in section 2.3,

where all are arbitrary functions of two variables in the appropriate range. Let ha
opt and h`

opt be solutions to a

second constrained optimisation problem: find ha(xs, xa) and h`(xs, xa, x`) which minimise

EXe(0){f(X
s,

ha(Xs
e (0), X

a
e (0)),

h`(Xs
e (0), X

a
e (0), X

`
e(0)))} (2)

subject to

EXe(0){c
a(Xa

e (0),

Xa
e (0)� ha(Xs

e (0), X
a
e (0)))+

c`(X`
e(0),

X`
e(0)� h`(Xs

e (0), X
a
e (0), X

`
e(0)))}  C (3)

with ca, c`, f as for section 2.3.



Then the minima of quantity 4 in the main text and of quantity 2 achieved by (⇢opt, gaopt, g
l
opt) and (ha

opt, h
`
opt)

are the same.

Proof. Given a triple (⇢opt, gaopt, g
l
opt), we explicitly construct an (ha

opt, h
`
opt) which attains the same minimum,

and vice versa.

Given (⇢opt, gaopt, g
l
opt), the corresponding forms of ha

opt, h
`
opt are simply

ha
opt(x

s, xa) = gaopt (⇢(x
s, xa), xa)

h`
opt(x

s, xa, x`) = g`opt
�
⇢(xs, xa), x`

�

(4)

Given ha
opt, h

`
opt, the correspondence is slightly more complex. Set ⇢opt as a bijective function from Rns+na to

R; for instance, set it to ‘splice’ the decimal digits of arguments together. Now set gaopt, g
`
opt to firstly ‘decrypt’

the value of ⇢opt back into constituent parts (xs and xa), and then compute ha
opt(x

s, xa) and h`
opt(x

s, xa, x`) as
outputs.

This shows that the two constrained optimisation problems are equivalent.

We note that this implies that optimising (⇢, ga, g`) jointly is equivalent to a more general treatment-allocation
problem which does not involve a predictive score.

3.2 Counterexample showing naive updating can cause better models to appear worse

For this counterexample we shall use the following set up:

f(xs, xa, x`) =f(xs, xa) = (1 + e�xs�xa

)�1 (5)

⇢0(x
s, xa | X?

0 , Y
?
0 ) =

8
<

:

Pn
i=1(Y

?
0 )i1{

P2
j=1(X

?
0 )ij>0}

Pn
i=1 1{

P2
j=1(X

?
0 )ij>0} xs + xa > 0

Pn
i=1(Y

?
0 )i1{

P2
j=1(X

?
0 )ij0}

Pn
i=1 1{

P2
j=1(X

?
0 )ij0} xs + xa  0

(6)

⇢1(x
s, xa | X?

1 , Y
?
1 ) =(1 + e��̂0�xs�̂1�xa�̂2)�1 where �̂ = argmax{L(�|X?

1 , Y
?
1 )} (7)

mf̃e
(⇢e|X?

e , Y
?
e ) =Eµ [|f(Xs, ga(⇢e�1, X

a))� ⇢e(X
s, Xa | X?

e , Y
?
e )|] (8)

ga(⇢, xa) =(1� ⇢)(xa + 3) + ⇢(xa � 3) (9)

For simplicity, we shall view the latent variables as having no e↵ect on the true risk score f , which corresponds
to the scenario where (if no interventions are made), it is possible with the data we observe to fully specify f .
For the purpose of the counterexample it is reasonable to do this as model performance only requires mf̃e

, which
has no dependence on latent covariates.

We also state, that due to the omission of latent covariates, Xe(0) = (Xs
e (0), X

a
e (0)) ⇠ N2(0, I2), which is then

used to generate (through the statistical program R) an initial training data set at epoch 0, of size n = 100,
which is summarised below:

index (X?
0)·1 (X?

0)·2 Y
?
0

1 1.185 1.272 1
2 0.881 -0.995 0
3 0.122 -0.956 0

...
98 -0.826 1.779 1
99 0.853 0.151 1
100 0.177 0.805 1

This training data can then inputted into ⇢0 to give the following function:

⇢0(x
s, xa | X?

0 , Y
?
0 ) =

(
0.733 xs + xa > 0

0.200 xs + xa  0
(10)
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When intervening on any covariates at epoch 1 the function given in equation 10 will be used to produce X1(1)
and subsequently Y1.

We now consider E(X?
0 ,Y

?
0 )

h
mf̃0

(⇢0|X?
0 , Y

?
0 )
i
, which we approximate using a Monte Carlo estimate with 1000

samples. However, mf̃0
(⇢0|X?

0 , Y
?
0 ) also requires approximation, and so a Monte Carlo estimate with the same

number of samples is also used for this function. The procedure is as follows:

1. For i from 1 to 1000:

(a) Obtain a training data set , (X?
0 , Y

?
0 )i, by taking n samples of (X0(0), Y0).

(b) Use this training data set to obtain a (⇢0)i of the form given in equation 10.

(c) For j from 1 to 1000:

i. Sample (xs, xa)j ⇠ X0(0).

(d) mf̃0
(⇢0|(X?

0 , Y
?
0 )i) ⇡ 1

1000

P1000
j=1 |f((xs, xa)j)� ⇢0((xs, xa)j | (X?

0 , Y
?
0 )i)|

2. E(X?
0 ,Y

?
0 )

h
mf̃0

(⇢0|X?
0 , Y

?
0 )
i
⇡ 1

1000

P1000
j=1 mf̃0

(⇢0|(X?
0 , Y

?
0 )i)

With this in mind, we give the following approximation: E(X?
0 ,Y

?
0 )

h
mf̃0

(⇢0|X?
0 , Y

?
0 )
i
⇡ 0.124.

If we assert that interventions never take place, then we can use the same procedure described above to ob-

tain E(X?
0 ,Y

?
0 )

h
mf̃0

(⇢1|X?
0 , Y

?
0 )
i
⇡ 0.056. So here we can clearly see that in the setting where interventions are

never made, E(X?
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i
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i
, and so the model closer to the truth is

the logistic regression model at epoch 1. If agents were allowed to make interventions (based on (10)) how-

ever, we would consider E(X?
1 ,Y

?
1 )

h
mf̃1
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1 , Y

?
1 )
i
⇡ 0.197 instead. Now, since E(X?
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<
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i
, we would come to the incorrect conclusion that the model closer to the truth is the

model used at epoch 1. Consequently we can state that, given the setup provided in section 3.1,
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Additionally, we show that for this example:
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as E(X?
1 ,Y

?
1 )

h
mf̃0

(⇢1|X?
1 , Y

?
1 )
i
⇡ 0.215 > 0.124 ⇡ E(X?
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. This statement is given here

because for f̃0, and therefore mf̃0
, it is possible to gain estimates through a holdout test data set. Whilst

the comparison is not between a risk score (⇢e) and the function it is trying to estimate (f̃e), the e↵ect of
deteriorating performance as epochs increase is still captured. Going further, it is assumed that if stakeholders
were implementing naive model updating, they would assume that ⇢e is estimating f̃0 for all epochs as the belief
is that interventions do not e↵ect the model. Therefore, comparison with f̃0 will heighten the impression to
stakeholders that using an updated model structure is causing performance to deteriorate, especially for epoch
0 to epoch 1, where for this comparison ⇢0 is actually estimating f̃0.

We expect from a stakeholders view that comparison (using estimates) between the two models at successive
epochs usually leads to the inequality mf̃0

(⇢e�1 | X?
e�1, Y

?
e�1) < mf̃0

(⇢e | X?
e , Y

?
e ), and therefore the conclusion

is that the new model leads to worse performance. We advise that a conclusion is only reached after further
comparison is done between mf̃0

(⇢e�1 | X?
e , Y

?
e ) and mf̃0

(⇢e | X?
e , Y

?
e ), as this gives an indication whether the

drop in performance is due to the model structure or the intervention e↵ect.

Finally, we advise caution when considering the e↵ect of latent variables when estimating mf̃0
(⇢e|X?

e , Y
?
e ). This

is due to that fact that when holdout test data is used to obtain an estimate, it is an estimate of f rather than



an estimate of f̃0. If the latent variables have a small influence on f than f ⇡ f̃0 and we can make inferences
as shown above, but if latent variables have a large influence on f then our comparison is not based on mf̃0

but
instead on mf . This creates a problem as now how well we perceive our model’s performance can be determined
largely by how well a model arbitrarily captures the latent covariate information using just the set and actionable
covariates. It therefore becomes substantially more di�cult to determine whether the cause of a models poor
performance is due to the model, the intervention e↵ect or insu�cient data. As a general rule however, large
values of mf̃0

(⇢0|X?
0 , Y

?
0 ) should indicate that either the initial model is very poor or that there is insu�cient

data, but in either case careful consideration of what could possibly influence the underlying mechanism should
be made before a risk score is built and given to agents, to ensure that latent variables a↵ect the model as little
as possible.

3.3 Proof of theorem 1

If h0(z0)  �1 then the single fixed point of h is unstable and ⇢n cannot converge to it unless it was always equal
to z0. There can be no other z with h(z) = z0 since h0(z) < 0 by assumption.

Since ⇢e 2 [0, 1] and h0(z) < 0, ⇢e must converge to either an oscillation between two values, or to a single value.

If the bounds on partial derivatives hold, then from the triangle and Cauchy-Schwarz inequalities, for z 2 R
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p
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p
k2k4 < 1 (13)

so the map h : ⇢n ! ⇢n+1 is a contraction, and the convergence of the recurrence ⇢n ! ⇢n+1 follows from the
Banach fixed-point theorem, as long as ⇢n 2 R for some value of n.

3.4 Counterexample showing failure of naive updating to generally solve constrained

optimisation problem

For this counterexample, we do not need to consider latent covariates, and will assume they do not exist.

Under the setting in section 2.2, if ⇢n converges to ⇢1(xs, xa) for some xs, xa under naive updating, then we
have

⇢1(xs, xa) = h(⇢1(xs, xa) = f(g(⇢1(xs, xa), xa), xs) (14)

Suppose xs and xa each have dimension 1, and consider the example:

f(xa, xs) = logit(xa + xs) =
1

1 + exp (�(xa + xs))

g(⇢, xa) = xa � log(1 + ⇢)

cA(x) = x

For a given function ⇢, the objective and cost are, respectively

obj{⇢} = E
�
(1 + (1 + ⇢) exp(�(Xs +Xa)))�1

 

cost{⇢} = E {log(1 + ⇢)} (15)
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Using an oracle predictor of Y |X, as in the previous section, ⇢n converges to the fixed point of the recursion
z ! f(g(z, xa), xs), which is

⇢1(xs, xa) =
1

2

✓q
(ex+y + 1)2 + 4ex+y �

�
ex+y + 1

�◆
(16)

To see why this is not optimal, suppose Xa, Xs have a discrete distribution taking either of the values (0,�1),
(0, 1) with probability 1/2. Then

cost{⇢1} =
log(2)

2
⇡ 0.346

obj{⇢1} =
1 + e

1 + e+
p
1 + 6e+ e2

⇡ 0.428

However, consider some ⇢0 with ⇢0(0,�1) = 0, ⇢0(0, 1) = 1. Now

cost{⇢0} =
log(2)

2
= cost{⇢1}

obj{⇢0} =
1

2

✓
1

1 + e
+

e

2 + e

◆
⇡ 0.423 < obj{⇢1} (17)

3.5 Simple example of updating leading to oscillation

Define g(⇢, xa) as above, and instead define

f(xa, xs) = logit (�k(xa + xs)) (18)

As usual, we presume that to estimate ⇢, we regress Y on XS
0 , X

A
0 , and we do it accurately enough to presume

⇢ is an oracle. Now

h(x) =
1

1 + (1 + x)k exp (�k(xs + xa))

h0(x) = �k
ek(x

s+xa)(1 + x)k�1

�
ek(xs+xa) + (1 + x)k

�2 (19)

Consider a setting when xs = xa = 0 and k = 8. Now h(0) = 1/2 > 0 and h(1/5) ⇡ 0.189 < 1/5. For x 2 (0, 1)
we have h0(x) < 0, so the equation h(x) = x has a single solution in (0, 1/5). But on (0, 1/5), we have h0(x) < �1.
So if x0 is the unique root of h(x)� x on x 2 (0, 1) then h0(x0) < 0

Now as long as ⇢0(xs, xa) is not exactly the value of x for which h(x) = x, if we update ⇢n using h, it can never
converge as the fixed point of the map h is unstable.

Conceptually, although no intervention changes xa very much, the function f is very sensitive to small changes
in xa when k = 8, so a small change in xa will necessarily cause a larger change in f(xa, xs) when ⇢ is near the
fixed point of h.

4 Open problems

We propose the following short list of open problems in this area.

1. Determine a framework to modulate both gL and gA with the aim of solving the constrained optimisation
problem in section 2.3.

2. Determine the dynamics and consequences of other model-updating strategies. What happens if training
data is aggregated at each step, rather than only the most recent data being used?

3. Derive results of successive adjuvancy in more general circumstances.

4. How do the dynamics of the model change when assumptions di↵er? Can f , gL and gA be extended to be
random-valued, and possibly agglomerated into a single intervention function?

5. How can assumptions be changed to approximate more general machine learning settings?
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