

Edinburgh Research Explorer

Security Notifications in Static Analysis Tools: Developers'
Attitudes, Comprehension, and Ability to Act on Them
Citation for published version:
Tahaei, M, Vaniea, KE, Beznosov, K & Wolters, MK 2021, Security Notifications in Static Analysis Tools:
Developers' Attitudes, Comprehension, and Ability to Act on Them. in Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems., 691, Association for Computing Machinery (ACM),
pp. 1-17, The ACM CHI Conference on Human Factors in Computing Systems 2021, Virtual Conference,
Japan, 8/05/21. https://doi.org/10.1145/3411764.3445616

Digital Object Identifier (DOI):
10.1145/3411764.3445616

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 17. Aug. 2021

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/429844926?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/3411764.3445616
https://doi.org/10.1145/3411764.3445616
https://www.research.ed.ac.uk/en/publications/e1bc04ef-ae83-4e82-8ade-ca572bc503d2

Security Notifications in Static Analysis Tools: Developers’
Attitudes, Comprehension, and Ability to Act on Them

Mohammad Tahaei
mohammad.tahaei@ed.ac.uk

School of Informatics
University of Edinburgh

Kami Vaniea
kami.vaniea@ed.ac.uk
School of Informatics

University of Edinburgh

Konstantin Beznosov
beznosov@ece.ubc.ca

Electrical and Computer Engineering
University of British Columbia

Maria K. Wolters
maria.wolters@ed.ac.uk

School of Informatics
University of Edinburgh

ABSTRACT
Static analysis tools (SATs) have the potential to assist developers
in finding and fixing vulnerabilities in the early stages of software
development, requiring them to be able to understand and act on
tools’ notifications. To understand how helpful such SAT guid-
ance is to developers, we ran an online experiment (N=132) where
participants were shown four vulnerable code samples (SQL injec-
tion, hard-coded credentials, encryption, and logging sensitive data)
along with SAT guidance, and asked to indicate the appropriate fix.
Participants had a positive attitude towards both SAT notifications
and particularly liked the example solutions and vulnerable code.
Seeing SAT notifications also led to more detailed open-ended an-
swers and slightly improved code correction answers. Still, most
SAT (SpotBugs 67%, SonarQube 86%) and Control (96%) participants
answered at least one code-correction question incorrectly. Prior
software development experience, perceived vulnerability severity,
and answer confidence all positively impacted answer accuracy.

CCS CONCEPTS
• Human-centered computing → Empirical studies in HCI;
• Security and privacy → Usability in security and privacy;
Software and application security.

KEYWORDS
usable security, software developers, security notifications, static
analysis tools

ACM Reference Format:
Mohammad Tahaei, Kami Vaniea, Konstantin Beznosov, and Maria K. Wolters.
2021. Security Notifications in Static Analysis Tools: Developers’ Attitudes,
Comprehension, and Ability to Act on Them. In CHI Conference on Human
Factors in Computing Systems (CHI ’21), May 8–13, 2021, Yokohama, Japan.
ACM, New York, NY, USA, 17 pages. https://doi.org/10.1145/3411764.3445616

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CHI ’21, May 8–13, 2021, Yokohama, Japan
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8096-6/21/05. . . $15.00
https://doi.org/10.1145/3411764.3445616

1 INTRODUCTION
Developers write the code that goes into all types of applications
world wide, but despite the existence of security support tools, like
static analysis checkers, live code continues to have serious well
known security vulnerabilities in it. There are several possible rea-
sons that detectable security issues persist in deployed applications,
such as not prioritising security, lack of awareness of available tools,
usability issues, or the challenges around understanding and fixing
identified problems. In this work, we look at Static Analysis Tools
(SATs) which can scan code for known vulnerabilities and provide
developers with potentially useful information about the nature of
the issue and how to correct it. We specifically look at the guidance
SATs provide to developers and how comprehensible and useful it
is to them when correcting identified issues.

Security issues continue to impact deployed programs used by
millions of users. A study of apps on the Android store found
vulnerabilities in security-important programs like bank and credit
card processing software [36]. Almost more concerning is how
consistent vulnerabilities are over time. A glance at the OWASP
top ten security risks over several years shows that the same issues
that were problematic ten or more years ago remain some of the
most common today [77]. So the problem is not that developers
are creating new and unique issues that are challenging to detect
and fix. It is that they make mistakes that are well known and have
known solutions. The observation suggests that the problem is a
lack of developer awareness and/or support.

SATs are designed to support developers by detecting code de-
fects, in particular, in the early stages of software development.
SATs can work without needing to run the code itself so they can
be integrated into IDEs or even work off of websites which makes
it easier for developers to find and fix defects earlier in the develop-
ment process rather than waiting till the test and production stages.
SATs are recommended as the first line of defence against vulnera-
bilities [102], and developers have previously acknowledged their
usefulness in finding security vulnerabilities [97]. Various academic
researchers recommend developers use SATs [45, 58, 86, 101, 102],
and they are also used by large technology companies such as Mi-
crosoft [22, 91], Facebook [31], and Google [5, 7, 82, 83], as well as in
open-source projects such as Linux, Firefox, and Qt [14, 48, 99, 105].
SATs are used for a wide range of code issues such as performance
and code clarity, but developers especially value them in finding

https://doi.org/10.1145/3411764.3445616
https://doi.org/10.1145/3411764.3445616

CHI ’21, May 8–13, 2021, Yokohama, Japan Mohammad Tahaei, Kami Vaniea, Konstantin Beznosov, and Maria K. Wolters

security issues. Microsoft developers, for example, ranked finding
security issues as their top reason for using a SAT [22]. Facebook
also recently developed a SAT specifically to help their develop-
ers find security issues [15, 31]. SATs are also commonly used by
companies that consider security to be a high priority [44].

Fixing issues is about more than just finding them. It is also about
implementing a fix, which requires understanding the nature of the
problem and how to correctly implement the solution. Developers
come from a wide range of backgrounds, skill sets, and training [38,
65, 76]. While many of them may be aware of common issues like
SQL injection, it is unreasonable to assume that all developers have
a deep knowledge of all possible issues or how to fix them without
support. Hence, most SATs not only locate the issue, they also
provide developers with information about the identified issues
and guidance on how to go about further understanding and fixing
the issue. This guidance is presented in a wide variety of ways
depending on the SAT, but often is presented as a set of notifications
linked to problematic lines of code.

As support tools, SATs have the potential to provide developers
with helpful guidance linked to their coding issues. But existing
SATs suffer from usability issues such as interrupting work flow [22,
54, 88, 93], and poor integration with IDEs [54]. SAT notification
content can also be hard to understand [72, 82]. Developers use web
search engines to figure out what SAT notifications say [53]. At
Microsoft, developers ranked “bad error messages” as their second
most important issue with SATs [22], it was also the case that 75%
of Google developer SAT bug reports were because of notifications
misunderstandings [83]. These issues reduce the effectiveness of
the tools leading to developers potentially making less use of SATs.

In this work, we conducted an online experiment to see if the
notification guidance provided by two SATs (SonarQube, SpotBugs)
assisted developers in identifying correct fixes to vulnerable code
(SQL injection, hard-coded credentials, encryption, and sensitive
data exposure) as compared to only providing the problematic line
number (Control). We also asked participants follow-up compre-
hension and attitude questions about the provided notifications.

We found that the SpotBugs condition showed a statistically
significant increase in identifying the correct fix compared to the
Control. Most of the SpotBugs impact comes from the sensitive
data exposure code sample, which was the only code sample of
the four we tested that showed a clear difference between the
three conditions and was the most challenging for developers to
answer correctly. The result shows that notification content can
have a positive impact on developer accuracy, but it also means
that the observed improvements are not happening uniformly, even
within the same tool, it also means that our choice of sample code
vulnerabilities likely impacted which tool showed positive results.

We also found that prior software development experience, the
perceived vulnerability severity, and confidence in answer had sig-
nificant impacts on ability to find the correct fix. Developers showed
a positive attitude towards notification information, particularly
examples of vulnerable code and example solutions. Developers in
SAT conditions also provided more detailed answers to free-text
questions compared to the Control, suggesting that the notification
content is impacting developer comprehension of the problem.

2 RELATEDWORK
SATs work by analysing code and identifying potential known vul-
nerabilities in the code, often with feedback about the vulnerability
and how to go about fixing it. While this process is specific to SATs,
it has some obvious overlaps with areas like compiler errors and
work on communicating security information to users.

2.1 Prevalence of known vulnerabilities
Well known security vulnerabilities are distressingly common in
deployed code. For example, one study looked at incorrect usage
of a confusing cURL PHP API call that checks if SSL certificates
are valid and found that developers at large financial companies
such as PayPal, Amazon, Chase mobile banking, and several other
organisations had unintentionally disabled SSL verification [36].
Similarly, another study of 1,009 iOS apps shows that 14% incor-
rectly used SSL validations when communicating with servers [32].
Both of these vulnerabilities are fairly simplistic and easy to detect,
but they also effectively disabled encryption in transit for a large
number of apps and services. So while the vulnerabilities are simple
and well known, the impact is large and problematic.

Vulnerabilities like those above are unfortunately easy to add
into code unintentionally, particularly if the vulnerability is caused
by several events stacking together. SQL injection is a good example
of this issue. Data is frequently entered into SQL databases by
constructing a query string. A common issue is to use unverified
input in that string, essentially allowing the attacker to insert their
own query. The issue is not necessarily obvious if the developer
is not thinking about where their string data is coming from, but
in modern APIs it can be easily fixed by using prepared statements
which will do the input verification for the developer. A similar,
more subtle, example is writing sensitive data into log files that are
poorly secured. Logging events and errors is a common developer
behaviour, especially when debugging, but thinking about where
those logs will go long term and how they will be secured requires
more awareness of issues. These types of issues can lead to serious
consequences. For example in 2019, DoorDash, a food delivery app
with over 10m installs, stored users’ credentials in plain text on
users’ phones, allowing any other app access to the data [29, 30].

2.2 Static analysis tools (SATs)
SATs can assist developers in identifying security issues by scanning
code without needing to run it [60]. These tools look for known
patterns both in the code text as well as in the call graphs, doing
so lets them find issues that may be caused by code in several
different files. For example, running a static analyser on 293 open-
source projects found 21,201 code “security smells” such as hard-
coded credentials, weak encryption algorithms, and incorrect usage
of HTTPS [80]. SATs have also been used very successfully to
detect apps that potentially leak personal information through ad
networks [52] and finding inconsistencies between privacy policies
and implementations [106] showing their range of ability at finding
problematic patterns in software.

Unfortunately, despite being effective at finding vulnerabili-
ties, SATs have several usability problems including checking for
the wrong types of problems by default, having poor notifica-
tions [6, 22, 90], interrupting work flows [22, 54, 93], having too

Security Notifications in Static Analysis Tools: Developers’ Attitudes, Comprehension, and Ability to Act on Them CHI ’21, May 8–13, 2021, Yokohama, Japan

many false positives [22, 54], not providing enough support for
teamwork, and poorly integration with IDEs [54]. Looking closer
at SAT notification content, a recent heuristic walkthrough and
user study of four security SATs showed that “missing or buried
information” in notifications was a major usability issue. Partici-
pants used terms such as generic, complicated, unclear, or short, to
describe notifications [88].

While beyond the scope of this paper, dynamic analysis is also
an approach developers can use to detect vulnerabilities during
code execution. Its obvious down side is that it requires that code
be executed and the inputs used during execution can impact what
it finds. Its advantage over SATs is primarily that it can operate on
code where the full source is not available, such as with apps with
third-party libraries that download and run code during execution.
Both static and dynamic analysis provide useful insights for testing,
but neither are comprehensive [102]. While we focus on SATs in
this paper, our findings would likely apply to dynamic analysis
notification content as well.

2.3 Communicating with developers
One of the most common ways developers have historically got-
ten feedback about their code is through compiler error messages,
which provide feedback when code does not adhere to the language
requirements. Given their ubiquity, developer interactions with
these error messages has been studied for some years [8, 13, 85, 94].
Focusing on usability issues, we know that a developers’ ability
to read a compiler error message is correlated with their ability
to complete a programming task correctly [9]. Error messages,
however, are not necessarily easy to read and have a complexity
similar to source code [9]. Prior work also suggests adding detailed
explanations to compiler errors, such as concrete suggestions for
common error cases, can help novice developers learn to produce
fewer errors over time [12].

Several works have looked at the properties a good developer-
centred notification should have. Cranor proposed a general frame-
work for reasoning about security communication which is gener-
ally intended for end users [25], but is also applicable for developers,
her framework emphasises the need for communications that can
be readily understood, processed further, and remembered. Bauer et
al. proposed several general principles for designing usable warning
messaging including: describe the risk comprehensively, be concise
and accurate, offer meaningful options, present relevant contextual
information, and follow a consistent layout [11]. Gorski et al. ap-
plied Bauer’s guidelines to a cryptography API design that included
multiple elements such as risk description, secure and insecure
actions with examples, and background information. They found
that having the API provide a warning with security advice im-
proves code security without changing the perceived usability of the
API [40]. In a follow-up participatory design study with developers,
researchers highlighted five key elements (message classification,
title message, code location, link to detailed external resources, and
colour) that participants considered helpful in cryptography API
warnings [39]. On a positive note, simple changes to API messaging
have been show to be helpful. In OpenSSL, for example, “hostname
mismatch (X509_V_ERR_HOSTNAME_MISMATCH)” can be reworded to
“The server hostname does not match the certificate subject

name. (X509_ERR_HOSTNAME_MISMATCH, see http://x509errors.cz)”,
to provide more information to developers [96].

Looking at SAT notification information specifically, notification
content can be confusing and require a search engine to understand
the words used [53]. Empirically, developers also require an unex-
pectedly large amount of time to fix low-complexity SAT-identified
issues [46] suggesting that comprehending and applying the no-
tification content was not straight-forward. Google had its own
developers use a SAT and found that 75% of the bugs they reported
were related to misunderstandings of the notification content [83].
When Microsoft developers were asked about SAT pain points, the
top two answers were: “wrong checks are on by default” and “bad
error messages” [22].

These results suggest that there is room for improvement in
our understanding of how developers interpret SAT notification
content and how that interpretation translates into their ability
to correct identified issues. We extend the body of research on
developers comprehension of and attitudes towards SAT security
notification [53, 54, 89, 90] by conducting a quantitative study with
a larger sample and also looking at the effectiveness of SAT security
notification content at assisting developers in fixing vulnerabilities.

3 METHOD
Prior research calls for designing effective security communication
aimed at developers [26, 39–41, 61, 92]. We contribute to this work
by looking at the effectiveness of SAT security notification content.
Our research questions (RQs) are:
RQ1: how effective is SAT security notification content at assisting

developers in fixing vulnerabilities?
RQ2: what are developers’ attitudes toward SAT security notifica-

tion content?
RQ3: how do developers’ attitudes toward SAT security notifica-

tion content correlate with their ability to fix vulnerabilities?
RQ4: how do developers comprehend SAT security notification

content?
We conducted an online between-subjects experiment with three

conditions including two SATs and one Control condition to answer
our RQs. Each condition had four code samples each with one
vulnerability. We showed participants (N=132) all four samples
presented in a random order from one of the conditions.

3.1 Apparatus and materials
We used an online survey, deployed on Qualtrics, as it allowed us to
gather data from a larger sample of developers. We tested our survey
content in two rounds. First with nine colleagues who helped us
improve the grammar, spelling, and clarity of the questions. Second,
with a pilot of 13 Prolific participants. We used the data from both
rounds to improve questions and estimate timing.

3.1.1 Tool Selection. To select which SATs to use in the study,
we made a list of SATs that appeared in: (1) SAT benchmark pa-
pers [43, 79], (2) developer studies [6, 88], and (3) Stack Overflow
discussions about SATs [47]. Then, we filtered for SATs that ap-
peared in more than one source and had pre-written security rules
capable of detecting a range of vulnerabilities. Our resulting list in-
cluded Fortify, Veracode, Kiuwan, SonarQube, and SpotBugs. A free

CHI ’21, May 8–13, 2021, Yokohama, Japan Mohammad Tahaei, Kami Vaniea, Konstantin Beznosov, and Maria K. Wolters

version was available for SonarQube and SpotBugs. We reached out
to Fortify, Veracode, and Kiuwan to give us access to their products
and collaborate with us, but they either declined or did not respond
to our requests (a similar scenario happened in the study by Smith
et al. [88]). Hence, our final tools were SonarQube and SpotBugs.

SonarQube (v8.1.0.31237) was initially added because it appeared
both in interviews with developers [99] and in Stack Overflow dis-
cussions [47]. It had an open-source community version and a paid
version. We used the community version. We installed the service
on a local machine (MacOS) as a web server. The tool displayed its
reports through an interactive web page generated after running a
command in the terminal.

SpotBugs (v3.1.13) is a successor of FindBugs. It has been used in
recent studies [43, 79], and its predecessor appeared in several re-
search papers for usability experiments [54, 88, 89], lessons learned
from deployments [7, 82], and in Stack Overflow discussions [47].
We installed SpotBugs as a plugin in Eclipse (MacOS) through
Eclipse Marketplace. We further added the Find Security Bugs (FSB)
(v1.10.1) a plugin which allowed us to run security analysis. Reports
were generated similar to other analysis that Eclipse provides.

3.1.2 Code Samples. We made a list of code samples with vul-
nerabilities from three resources: (1) OWASP’s 2017 top ten web
application security risks [77], (2) common weakness enumeration
(CWE) 2019 top 25 most dangerous software errors [24], and (3)
prior research in usable security studies with developers [1, 4, 28, 40,
57, 66, 71, 79]. All code samples were in Java which was selected be-
cause it was a popular programming language in several platforms
such as GitHub [37], Stack Overflow [76], and other programming
languages indexing services [20, 23, 51]. We adapted code samples
from National Security Agency test cases [73] and Find Security
Bugs code samples [18]. Our two SATs also detected different se-
curity issues; so we tested samples to make sure that both tools
would produce a notification on the same code. For example, we
tried several code samples with cross-site scripting vulnerabilities,
but none of the samples would trigger a notification in both tools.
The final cases were selected to use a range of vulnerability types:

Sensitive data exposure (DE): excessive and unnecessary logging
could expose sensitive data (OWASP A3, CWE-200, and [28]). We
used logging of data from a server request. If a runtime error oc-
curs the exception would be logged using e.printStackTrace()
possibly making the data available to an attacker with access to
potentially less secured logs.

Encryption (EN): where the code encrypts plain text [1, 40, 57, 66,
71] using a key and a cipher with RC2 method. RC2 is an obsolete
algorithm that can be broken [55].

Hard-coded credentials (HC): use of hard-coded credentials in the
code (CWE-798 and [4, 79]) can reveal sensitive information about
the software such as usernames, passwords, and API secret keys.
The sample creates a database connection with hard-coded admin
as username and password.

SQL injection (SI): data provided by users should be sanitised
before use in SQL database queries (OWASP A1, CWE-89, and [28]).
Our case contained an update to the database using a string con-
catenation including input data using the createStatement() and
execute() methods.

Table 1: Notification elements that appeared in each of the
SAT notifications shown to participants. N shows the num-
ber of participants in each condition (132 in total).

Control (N=46) SonarQube (N=43) SpotBugs (N=43)

DE EN HC SI DE EN HC SI DE EN HC SI

Example solution code ✓ ✓ ✓ ✓ ✓ ✓

Example vulnerable code ✓ ✓ ✓ ✓ ✓ ✓ ✓

Explanations ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Links to other resources ✓ ✓ ✓ ✓ ✓ ✓ ✓

Meta data (e.g. rank, severity, category) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

For each code sample, SAT combination we recorded the notifica-
tion text that was produced. Often this text was broken into several
elements such as example solution code, links to other resources,
and explanations per code sample. Table 1 shows which elements
were present by SAT and code sample.

3.2 Survey instrument
Participants were first instructed to read the participant information
sheet and then asked for consent. Those who consented, were
tested on their proficiency in Java. They were asked to answer
two multiple-choice Java questions [87]: (1) find the correct way
of declaring the main method to allow a class to be started as a
standalone Java program. The correct answer was public static
void main(String args[]). (2) Identifying the keyword that is
not a Java keyword from throw, void, instanceof, and except;
except was the correct answer. If they did not get the right answer
for both Java questions, they were sent to a thank you page and the
survey ended. Those who answered the Java questions correctly
were shown a brief introduction to the upcoming pages that directed
them to use the provided notification to answer questions and not
use any search engines.

For each code sample, participants were shown the vulnera-
ble code with a highlighted line, the notification(s), and several
questions. The vulnerable code was comprised of a small class
with one method that included a code snippet with a vulnerabil-
ity. The notification contained the exact wording and structure
from the tools but was minimally re-formatted so that they used
consistent fonts, colours, text width, and heading styles. Figure 1
shows the notification for HC case in the SonarQube condition. For
some condition/case combinations the tool produced more than
one notification, or had a short and long version. In these cases,
all the notifications from the tool were shown to the participant,
Figure 1 also depicts such a situation. For the Control condition,
the participants were only shown the short notification: “There is
a vulnerability in line [n].”

Questions for each code sample included a multiple choice ques-
tion with potential fixes, three open-ended comprehension ques-
tions, and eighteen Likert items. Potential fix options were modifica-
tions of the highlighted vulnerable line with one or two neighbour-
ing lines also shown for context, they were shown in a randomised
order. The options included: unmodified copy-paste of the vulnera-
ble sample code, correct fix to the vulnerability, and two options
that performed the same insecure action using different code. The
last two code options included modifications such as: (1) adding
code lines with no functional impact such as adding a new variable,

Security Notifications in Static Analysis Tools: Developers’ Attitudes, Comprehension, and Ability to Act on Them CHI ’21, May 8–13, 2021, Yokohama, Japan

The following Java code establishes a database connection. Please answer the following questions based on the
code and the provided output from the static analysis checker.

Imagine that you finish writing the method above, and then run a static analysis tool on your code. After running, the
tool generates the following notification on line 8:
Remove this hard-coded password.

You ask the tool for more details and see the information below:

Credentials should not be hard-coded
Vulnerability
Blocker
Main sources
cert, cwe, owasp-a2, sans-top25-porous
Available SinceJan 27, 2020
SonarAnalyzer (Java)
Constant/issue: 30min

Because it is easy to extract strings from a compiled application, credentials should never be hard-coded. Do so, and they're almost guaranteed to end up in the
hands of an attacker. This is particularly true for applications that are distributed.
Credentials should be stored outside of the code in a strongly-protected encrypted configuration file or database.
It's recommended to customize the configuration of this rule with additional credential words such as "oauthToken", "secret", ...

Noncompliant Code Example
Connection conn = null;
try {
 conn = DriverManager.getConnection("jdbc:mysql://localhost/test?" +

 "user=steve&password=blue"); // Noncompliant
 String uname = "steve";
 String password = "blue";
 conn = DriverManager.getConnection("jdbc:mysql://localhost/test?" +

 "user=" + uname + "&password=" + password); // Noncompliant

import .Connection;
import .DriverManager;
import .SQLException;
import .Properties;

public final Connection action() throws SQLException {

return DriverManager.getConnection("jdbc:mysql://localhost/dbName", "admin", "admin");
}

java.sql
java.sql
java.sql
java.util

1
2
3
4
5
6
7
8
9

 java.net.PasswordAuthentication pa = new java.net.PasswordAuthentication("userName", "1234".toCharArray()); // Noncompliant

Compliant Solution
Connection conn = null;
try {
 String uname = getEncryptedUser();
 String password = getEncryptedPass();
 conn = DriverManager.getConnection("jdbc:mysql://localhost/test?" +

 "user=" + uname + "&password=" + password);

See
OWASP Top 10 2017 Category A2 - Broken Authentication
MITRE, CWE-798 - Use of Hard-coded Credentials
MITRE, CWE-259 - Use of Hard-coded Password
CERT, MSC03-J. - Never hard code sensitive information
SANS Top 25 - Porous Defenses
Derived from FindSecBugs rule Hard Coded Password

Figure 1: Code sample and notification for hard-coded credentials case in SonarQube condition.

(2) performing the same action using multiple lines, such as assign-
ing to a variable then passing the variable instead of the value, (3)
passing a value directly instead of through a variable, (4) passing
more or less parameters to methods calls, (5) calling a different
method, and (6) changing the method signature to accept more or
less parameters.

Three open-ended questions collected developers’ comprehen-
sion of notification content: (1) In a couple of sentences, explain the
issue(s) highlighted by the notification(s) as if you were explaining
them to a colleague. (2) What action(s) would you take in response
to the notification? and (3) What could happen if you ignore the
notification? The above questions are loosely based on Wogalter’s
framework around information comprehension [104]. These ques-
tions were initially intended to judge comprehension accuracy, but
as we discuss in results, the answers were too brief and free of

context to reliably judge. Instead we use the answers to identify
themes of notification content that is most salient to developers.

Each code sample also included a set of Likert attitudinal ques-
tions about the notification (see Table 9 in Appendix B for full list
of Likert items). Some of the Likert items (item 2–3, 8–13, 15–18)
were inspired by a previous exploratory study on SATs [53].

After working through the four code samples, participants were
asked what features they found useful in the notifications. If the
participant was a user of SATs, we also asked them which tools
they used, for what purposes, and what they thought about SATs
(Section 4.1). SAT attitudinal questions were taken from Vassallo et
al.’s work [98]. Sample code questions and answer options of these
questions, and Likert items, and also the answer options for SAT
attitudinal questions were all randomised. The survey ended with
demographics and employment status questions. All questions were

CHI ’21, May 8–13, 2021, Yokohama, Japan Mohammad Tahaei, Kami Vaniea, Konstantin Beznosov, and Maria K. Wolters

Table 2: Summary of participant recruitment per channel.

Prolific GitHub Snowball

Invited
Chose to participate 231 - -
Received an email - 22,500 -

Started the survey 189 161 8
Passed Java test 100 137 2
Passed Java but didn’t finish the survey 39 67 1
Valid responses 61 70 1

mandatory and required an answer. The full survey instrument is
included in the ACM supplementary materials.

3.3 Participants
We recruited participants through emails we collected from top
1,000 GitHub Java repositories sorted by the number of stars, Pro-
lific [78] with screening for having knowledge of software develop-
ment techniques and not being a student (resulted in 11,575 eligible
participants out of 140,797 participants in total), and snowball sam-
pling. Both Prolific and GitHub have been used to recruit in previous
developer-centred security studies [3, 100]. For complete responses,
participants received £9 through Prolific or an international gift
card with the same amount for other methods (minimum wage in
the UK was £8.72 per hour in June 2020). The study was conducted
in accordance with the Ethics procedures of our institution.

Recruitment was done during June 2020. For Prolific, 231 par-
ticipants chose to participate in the study, of which 189 started
the survey. After removing participants who did not pass the Java
tests and did not finish the survey, we had 61 valid responses from
Prolific, 70 from GitHub, and 1 from snowball sampling (Table 2).
The final number of valid participants per condition were Control:
46, SonarQube: 43, and SpotBugs: 43.

It took participants a median of 44 minutes to finish the survey
(mode = 32 minutes, SD = 229 minutes, and average = 107 minutes).
The large standard deviation is likely caused by some participants
leaving the survey and coming back later; therefore, median and
mode better represent study duration.

Participants were predominantly male (88.6%), 17.4% were stu-
dents in computer science (CS)-related topics, 59.1% were employed
in software development, and 18.9% were employed in management,
testing, security, and design related roles. The average team size
for those employed in software-related jobs was 9.4 members (SD
= 12 members). Table 3 shows a summary of participants’ demo-
graphics, and Figure 2 shows their years of experience in software
development, Java programming, and computer security.

3.4 Data analysis
For RQ1, we fitted two generalised linear models with binary score
(correct, incorrect) as dependent variable. The first model was a
generalised linear mixed model and consisted of the thee conditions
(Control, SonarQube, and SpotBugs) and years of experience as fixed
effects, and participant ID as a random effect, given that we had four
scores per participant in each condition [42]. The second model
was a simple logistic regression and consisted of Sample Code (DE,

0-1 yrs 2-5 yrs 6-10 yrs 11-15 yrs Above 16 yrs
Years of experience

0

20

40

60

Co
un

to
fp

ar
tic

ip
an

ts So�ware development
Java programming
Computer security

Figure 2: Participants’ years of experience in software devel-
opment, Java programming, and computer security (132 par-
ticipants).

EN, HC, SI) and years of experience. In order to determine the most
appropriate metric of years of experience, we compared the fit of
three models, one for years of Java experience, one for years of
software development experience, and one for years of security
experience resulting in years of software development experience
being the best fit. Years of software experience was coded as an
ordinal variable; Sample Code was a categorical variable with SI as
the baseline and SAT explanation was also a categorical variable
with Control as the baseline. Data was from 132 participants, each
participant contributed four data points; therefore, all models were
built with 528 data points (Section 4.2).

For RQ2, we conducted a factor analysis of the 18 Likert items to
discover underlying factors that represent participants’ ratings [16,
19] (Section 4.3). For RQ3, we used logistic regression to deter-
mine the effect of these four factors on participants’ scores, while
controlling for years of experience and SAT condition (Section 4.4).

All regression analyses were conducted in R using the lme4 [10]
and arm [35] packages. Goodness of fit for all regression models
is assessed using the Akaike Information Criterion (AIC) [34] and
Nagelkerke’s pseudo 𝑅2 [67]. Regression models are reported us-
ing standard tables which list the estimate for the coefficient of
each variable, together with the standard error of the estimate and
the probability that it is non-zero. For easier interpretation in the
text, we convert the coefficients to Odds Ratios (OR) [34]. In the
context of the models, positive ORs mean that the odds of the fix
being correct increase compared to the baseline by 𝑂𝑅 − 1% if the
variable is 1 (e.g., if a person has 2–5 years’ experience in software
development) or if the unit of the variable increases by one (i.e., if
the value of the attitude to notifications factor increases by one).
Negative ORs mean that the odds of the fix being correct decreases
correspondingly. For more on the interpretation of ORs, see [27].

In addition, RQ4 was investigated with three open-ended com-
prehension questions (Section 4.5). We used thematic analysis with
affinity diagrams [17, 59] to identify answer themes. We chose to
not classify answers into right and wrong because such judgement
depends on context which was not provided (some of our partici-
pants also pointed out that answers should be context-dependent).
Instead we looked at what participants were mentioning in their
answers which reflects the concepts they were associating with the
vulnerability and were most salient to them. Answers were at most
a few sentences long which allowed us to write each down on a

Security Notifications in Static Analysis Tools: Developers’ Attitudes, Comprehension, and Ability to Act on Them CHI ’21, May 8–13, 2021, Yokohama, Japan

Table 3: Summary of participants demographics (N=132). Team members and number of employees are only for participants
employed in computer science (CS)-related roles (N=96).

Gender Age Current continent
Student in

CS-related topics?
Employment status English level

Team members
(N = 96)

Number of employees
(N = 96)

Male 117 (88.6%) Mean 30.4 Europe 90 (68.2%) Not student 109 (82.6%) Development 78 (59.1%) Native 57 (43.2%) Mean 9.4 Freelancer 6 (6.2%)
Female 10 (7.6%) SD 8 North America 23 (17.4%) Student 23 (17.4%) Management 9 (6.8%) Fluent 45 (34.1%) SD 12 2-9 employees 8 (8.3%)
Others 5 (3.8%) Asia 12 (9.1%) Testing 6 (4.5%) Proficient 22 (16.7%) 10-99 employees 23 (23.9%)

South America 4 (3%) Security 2 (1.5%) Conversant 5 (3.8%) 100-999 employees 24 (25%)
Oceania 3 (2.3%) Design 5 (3.8%) Basic knowledge 3 (2.3%) 1,000-9,999 employees 17 (17.7%)

Other 3 (2.3%) 10,000 or more employees 18 (18.7%)
Employed not related to CS 16 (12.1%)
Not employed 13 (9.8%)

sticky note. We set up a board for each comprehension question
(three boards in total). Then we put all sticky notes with answers
on the boards. During virtual workshops with 5 researchers with a
minimum of masters degree in CS-related topics, we asked them to
read each item and then group them until all boards were stable,
i.e., everyone was satisfied with the state of the board and did not
want to further move the notes. We then asked them to discuss the
relations between grouped notes.

3.5 Limitations
We used four code samples with two SATs, which is not representa-
tive of what developers might face in their daily routines and might
not be generalisable to all developers or all possible vulnerabilities.
However, the two SATs that we used in our study are amongst the
most frequently used SATs for our participants (Section 4.1).

Our Control condition provided participants with the line num-
ber of the vulnerability which is more information than an unas-
sisted developer might normally get. We chose to do so because our
focus is on the content and general usefulness of the notifications
in helping developers correct issues, rather than developers’ ability
to locate problematic lines on their own. However, this decision
does mean that participants in Control condition likely performed
better than they would do without any assistance.

Our population is skewed towards males with fewer years of
experience (Figure 2 and Table 3), which is similar to Stack Over-
flow’s 2020 developers survey [76]. However, the results are likely
not generalisable to all developers. We distributed the survey to a
sample population of developers recruited from multiple but still
limited channels, which is common in developer-centred security
studies. Furthermore, we did not observe participants during the
survey; therefore, we cannot be sure how they completed the tasks,
how long they spent on each task, or whether they consulted with
any other materials and resources. It is further notable that we pro-
vided the code in the answer options (similar to what developers do
when looking at sample codes in documentation or online websites
such as Stack Overflow), and we did not ask participants to write
the code from scratch which may lead to different findings.

The two main recruitment channels GitHub and Prolific had dif-
ferent variances for the rate of accuracy in code sample questions.
73.2% of GitHub participants and 54.1% of Prolific participants an-
swered at least one code sample questions correctly. However, they
were evenly distributed across SAT conditions. So while GitHub
participants were more accurate, the same percentage of, say, Spot-
Bugs participants were from GitHub as the other conditions. The

developers who write code for millions of peoples’ devices come
from a wide range of backgrounds and are not all professionals. So
we believe that including both groups better represents the wider
range of developers.

4 RESULTS
We present our results in four subsections. First, we present de-
scriptive statistics of SAT usage questions to give context about our
participants. Then, we move on to quantitative results (RQ1, RQ2,
RQ3), followed by qualitative analysis of comprehension-related
questions (RQ4).

4.1 Usage of static analysis tools
Of the 112 (85%) participants who said that they had used SATs
previously, 71 (63%) use them regularly (daily, weekly, or monthly).
Only one participant had never heard of SATs before.

ESLint (a JavaScript specific SAT) is used by our participants the
most, which makes sense since it is commonly used in open-source
projects [98]. SpotBugs + FindBugs are a close second, Checkstyle
(primarily for checking coding standards) ranks third, and Sonar-
Qube ranks fourth. Other tools that we considered for our study
such as Veracode, Kiuwan, and Fortify are used less frequently.
Participants mostly use SATs while they code (%63) (similar to the
preference of Microsoft developers who prefer to see the results in
their editor [22]), and during continuous integration builds (%54).
Checking for style, best practices and security issues are among the
top uses of SATs, which is in line with prior research [22, 98]. Par-
ticipants mostly disagreed with “I do not need static analysis tools”
and agreed with items that are in favour of SATs, such as they ease
manual activities and SAT notifications are relevant for improving
software security. Further details are included in Appendix A.

4.2 How effective is SAT security notification
content at assisting developers in fixing
vulnerabilities?

We used AIC to determine which of the three experience variables
yielded the best fit to the data, with lower AIC indicating a better
fit. The AIC of the model based on general software experience
was 672.0, followed by the model based on Java experience (686.6)
and the model based on security experience (689.0). We report the
coefficients for the fixed effects of the resulting generalised linear
mixed model in Table 4. There was only one random effect, an
additional intercept that varied by participant. Typically, random
effects are reported using the variance of the relevant estimates [34].

CHI ’21, May 8–13, 2021, Yokohama, Japan Mohammad Tahaei, Kami Vaniea, Konstantin Beznosov, and Maria K. Wolters

Table 4: Generalised linearmixedmodel for SAT conditions–
fixed effects. Baseline is Control condition and 0–1 years
experience in software development. 𝛽: Coefficient esti-
mate. SE: standard error of coefficient estimate. Nagelk-
erke’s pseudo 𝑅2 = .07.

Independent variables 𝛽𝛽𝛽 SE 𝑝𝑝𝑝–value

Condition
Control Baseline
SonarQube 0.254 0.227 𝑝 > .26
SpotBugs 0.612 0.236 𝑝 < .01

Years of experience in software development
0–1 years Baseline
2–5 years 0.873 0.323 𝑝 < .01
6–10 years 1.378 0.348 𝑝 < .0001
11–15 years 1.396 0.384 𝑝 < .0005
16 years and above 1.437 0.382 𝑝 < .0005

Intercept -0.723 0.3001 𝑝 < .05

The variance of the random effect in this model was 0.01418. We see
that SpotBugs improves participants’ ability to find the correct fix
compared to the Control condition (𝛽 = 0.612, 𝑂𝑅 = 1.84, 𝑝 < .01),
but the findings for SonarQube are inconclusive.

However, the strongest effect is years of experience in developing
software as can be seen from the size of the coefficients in Table 4.
Participants with 2–5 years’ experience perform better than those
with 0–1 years of experience (𝛽 = 0.873, 𝑂𝑅 = 2.39, 𝑝 < .01). Those
with six or more years’ experience perform better still. For each
of the relevant categories (6–10 years’ experience, 11–15 years’
experience, 16+ years’ experience), the estimate of the coefficient
𝛽 is between 1.38 and 1.44, which corresponds to ORs of around 4.
Thus, experienced software developers are around four times more
likely to identify the correct fix than inexperienced ones.

Only seven participants did not identify any of the correct fixes,
22 participants identified all the correct fixes, and the majority of
participants (N=110) failed to identify at least one of the correct
fixes. Figure 3 shows the count of correct answers for the code
sample question for all participants.

Even though both tools provide vulnerable code examples, par-
ticipants did somewhat better in the SpotBugs condition. Figure 4
suggests that this is mostly due to DE, where SpotBugs provided a
clear advantage over the other two conditions. We hypothesise that
the example solution code in SonarQube which included a logger
and stack trace confused some participants; because the example’s
stack trace suggestion (including LOGGER.log("context", e) in
the catch) did not appear in the catch part of the try/catch block in
any of the answer options.

Overall, participants struggled most with the sensitive data ex-
posure (DE) code sample (Figure 4). Table 5 shows the coefficients
of the logistic regression model for the effect of Sample Code on the

0 1 2 3 4
Count of correct answers

0

20

40

60

Co
un

to
fp

ar
tic

ip
an

ts

Control Sonar�be SpotBugs Total

Figure 3: Number of answers per-participant that identified
the correct fix to the code vulnerabilities (132 participants).

DE EN HC SI
Code samples

0

20

40

60

80

%
th

at
an

sw
er

ed
co

rr
ec

tly

Control Sonar�be SpotBugs

Figure 4: Percentage of participants who identified the cor-
rect code fix per code sample (132 participants).

ability to find the correct fix taking the SI as the baseline. Again, we
used software experience as the relevant experience metric (AIC
of model: 621.08), as it provided a better fit than Java experience
(AIC: 641.49) or computer security (AIC: 642.51). The only difficult
code sample is DE (𝛽 = −1.730, 𝑂𝑅 = 0.18, 𝑝 < .0001), while HC
is very similar to the baseline SI, and EN is not significantly more
difficult than the baseline. This means that for every five people
who manage to identify the correct fix for the baseline, SI, only one
person will be able to identify the correct fix for DE. This is in line
with the pattern shown in Figure 4.

4.3 What are developers’ attitudes toward SAT
security notification content?

When we asked participants to rate which elements in the presented
notifications they found useful, example snippets (both of solution
and vulnerable code) were rated most useful, followed by explana-
tions. Opinions about links to other resources and metadata were
mixed. Figure 5 shows combined Likert items about the usefulness
of notifications elements in both SonarQube and SpotBugs.

Participants answered a set of eighteen Likert questions per code
sample. To make the data easier to interpret, we used factor analysis
to group items into relevant factors. Bartlett’s Test of Sphericity
(𝑝 < .001) and Kaiser-Meyer-Olkin (.87, above .50 is considered
as suitable) both showed that our data is suitable for exploratory

Security Notifications in Static Analysis Tools: Developers’ Attitudes, Comprehension, and Ability to Act on Them CHI ’21, May 8–13, 2021, Yokohama, Japan

Table 5: Logistic regressionmodel for sample codes. Baseline
is SI condition and 0–1 years experience in software devel-
opment. 𝛽: Coefficient estimate. SE: standard error of coeffi-
cient estimate. Nagelkerke’s pseudo 𝑅2 = .20.

Independent variables 𝛽𝛽𝛽 SE 𝑝𝑝𝑝–value

Sample code
SQL injection (SI) Baseline
Sensitive data exposure (DE) -1.730 0.281 𝑝 < .0001
Encryption (EN) -0.401 0.285 𝑝 = 1.00
Hard-coded credentials (HC) 0.000 0.296 𝑝 > .15

Years of experience in software development
0–1 years Baseline
2–5 years 1.077 0.331 𝑝 < .001
6–10 years 1.625 0.359 𝑝 < .0001
11–15 years 1.579 0.397 𝑝 < .0001
16 years and above 1.660 0.395 𝑝 < .0001

Intercept -0.060 0.335 𝑝 > .85

0 20 40 60 80 100

% of participants

Meta data
(e.g. rank, severity, category)

Links to other resources

Explanations

Example vulnerable code

Example solution code

Not at all useful Slightly useful Moderately useful Very useful Extremely useful

Figure 5: Answers to “to what extent did you find the fol-
lowing elements in the notifications useful?” From 86 SAT
participants, excluding Control.

factor analysis (Cronbach’s alpha = .85) [103]. We chose the number
of factors by using a Scree plot and selecting eigenvalues above
one [56]. Since four values were above one, we chose four factors.
We tried both orthogonal and oblique rotations. We picked vari-
max (orthogonal rotation) because its results were slightly more
interpretable. We only included items with a factor loading greater
than .40 [84], which resulted in two items (17 and 18) not fitting
in any factors. Table 6 shows the results of factor analysis with
mean and standard deviation of each factor. It is notable that by
taking the mean across the four sample codes, we effectively ignore
the impact of different sample code since we are interested in the
effect of conditions (tools) on the outcome variable (participants
ability in finding the correct fix). Full list of Likert items with their

Table 6: Results of factor analysis for the Likert items. Three
columns with conditions represent mean (𝜇) and standard
deviation (𝜎) per factor taken across the Likert items in the
respective factor (see Table 9 in the appendix for full list of
Likert items).

Factor
Cronbach’s

alpha
Control SonarQube SpotBugs

𝜇𝜇𝜇 𝜎𝜎𝜎 𝜇𝜇𝜇 𝜎𝜎𝜎 𝜇𝜇𝜇 𝜎𝜎𝜎

1 Attitudes towards the notifications .87 2.85 0.35 3.87 0.22 3.73 0.27
2 Prior knowledge and experience .78 3.68 0.22 3.41 0.28 3.44 0.25
3 Importance and severity of the vulnerability .69 4.02 0.24 4.22 0.27 4.22 0.21
4 Confidence in the solution .79 3.54 0.17 3.80 0.13 3.92 0.10

loading factors, means, and standard deviations are included in the
Appendix B.

Looking at the first factor in Table 6, attitudes towards the noti-
fications, the means of the two SATs are not much different, how-
ever, the differences between the SATs and the Control condition
is stronger suggesting that participants have a positive attitude
towards the notification compared to a minimum notification con-
dition (Control). This is inline with Figure 5 in which the majority
of participants find example code and explanations generally useful.

4.4 How do developers’ attitudes toward SAT
security notification content correlate with
their ability to fix vulnerabilities?

Table 7 shows the effect of developer attitudes, years of software
experience, and SAT condition on participants’ scores. While the
effect of years of experience remains unchanged , the effect of SAT
condition is no longer significant. Instead, we find that participants’
attitudes are much better predictors of their score. If they deem the
vulnerability sufficiently important (𝛽 = 0.741, 𝑂𝑅 = 2.1, 𝑝 < .0001),
and are confident in their solution (𝛽 = 0.508, 𝑂𝑅 = 1.67, 𝑝 < .0005),
they are more likely to be correct, regardless of the SAT condition.
In order to assess whether the SAT condition mediated the effect
of developer attitudes on their scores, we fitted a second model
that contained an interaction between Condition and importance of
vulnerability and an interaction between Condition and confidence
in solution. The AIC of the more complex model was 613.29; the
AIC of the original model was 605.48, which means that the original
model is the best fit.

4.5 How do developers comprehend SAT
security notification content?

Here, we discuss the three open-ended comprehension questions
which asked about explaining the issue(s) to a colleague, what ac-
tions to take in response, and what would happen if the notification
was ignored. We combined the answers from participants that saw
either of the two SAT notifications because we were more interested
in how having notification text impacted answers. Since answers
were rather short (on average 16 words, SD = 12 words) and ad-
dressed the question directly themes naturally formed around the
questions. Table 8 shows the results of the thematic analysis for
these questions. 29 SAT and 6 Control answers were excluded in
the analysis because they were too short or had too little context
to make sense of. Participants’ quotes are labelled as Control (CN),

CHI ’21, May 8–13, 2021, Yokohama, Japan Mohammad Tahaei, Kami Vaniea, Konstantin Beznosov, and Maria K. Wolters

Table 7: Logistic regressionmodel for participants’ attitudes.
Baseline is Control condition and 0–1 years experience in
software development. 𝛽: Coefficient estimate. SE: standard
error of coefficient estimate. Nagelkerke’s pseudo 𝑅2 = .24.

Independent variables 𝛽𝛽𝛽 SE 𝑝𝑝𝑝–value

Factor
Attitudes to notifications 0.214 0.168 𝑝 > .25
Prior knowledge and experience -0.267 0.131 𝑝 < .05
Importance and severity of vulnerability 0.741 0.148 𝑝 < .0001
Confidence in solution 0.508 0.136 𝑝 < .0005

Condition
Control Baseline
SonarQube -0.251 0.286 𝑝 > .4
SpotBugs 0.140 0.23 𝑝 > .6

Years of experience in software development
0–1 years Baseline
2–5 years 0.800 0.344 𝑝 < .05
6–10 years 1.60 0.382 𝑝 < .0001
11–15 years 1.39 0.417 𝑝 < .001
16 years and above 1.80 0.445 𝑝 < .0001

Intercept -5.183 0.755 𝑝 < .0001

SonarQube (SQ), and SpotBugs (SB) along with the participant’s
identification number.

While we were keen to understand participants’ comprehension,
the short answers made it difficult to effectively categorise answers
based on comprehension level. For example, SB111’s answer: “That
type of Cipher is not secure enough” where they clearly understood
that the cipher was the issue but it is unclear if they understood
that they needed to use AES/GCM/NoPadding. Consequently, we
chose to focus the themes brought up by participants through
thematic analysis rather than a judgement of if they did or did not
fully comprehend the notification content. Doing so allowed us to
understand what the key aspects of the content participants found
most salient and were most able to express.

4.5.1 Sensitive data exposure (DE). Participants explained DE as
generic sensitive data exposure, credentials exposure, program
structure and internals exposure, and file and path exposure. Inter-
estingly, several SAT participants (N=28) did not mention a security
issue in their explanations. “Catching the exception is good but log-
ging the exact exception gives a benefit in tracking down the code
block that raised an exception” (SQ13). In the Control condition,
many participants used generic language like “it’s not secure” in-
stead of terms such as logger (only one CN participant mentioned
a logger) and sensitive data exposure or leak, which were common
in SAT conditions.

Use of a logger was the dominant response for SATs conditions,
which is expected as in the SonarQube notification explicitly men-
tioned a logger. “Use a logging library; add a logger to the class”
(SQ118). Another major group of participants (N=20) were uncer-
tain about what actions to take, nine of which were not able to
find the correct fix. Again, we observed that some SAT participants

(N=10) did not mention any security-related terms. Similar to the
explanations, “logger” was used rarely by Control participants.

When it comes to the consequences of ignoring this notification,
several SAT participants (N=27) brought up non-security related
consequences such as debugging problems: “Ignoring this notifica-
tion would make the search for errors less practical” (SQ23).

4.5.2 Encryption (EN). Most participants explained the issue as
an encryption problem (outdated or weak encryption and cipher),
some used data integrity which could be a result of SpotBugs’s title
message including data integrity: “Data integrity is at risk, and hash-
ing should be used to avoid such attacks” (SB86). Four participants
indicated that they did not understand the issue: “I’m unable to ex-
plain correctly this issue” (SB97), however, they all found the correct
fix. It is interesting to see that eleven Control participants did not
have a concrete explanation (out of which six were able to find the
correct fix and five were not), which shows that notifications may
have assisted participants in building a structured explanation, and
perhaps in finding the correct fix.

Twenty participants in the SAT conditions were uncertain about
what action to take or did not provide a clear action; out of this
group seven were not able to find the correct fix. For example,
SB37 explained: “I would have said to use private and public keys
(I only know the theory, not how to code this).” However, several
participants provided examples, or wrote that they would change
the encryption to a stronger one such as AES. HMAC which appears
in SpotBugs example code was not present in the responses of
Control participants at all, however, AES was mentioned (N=5)
suggesting awareness of it.

In regards to consequences, data tampering and not being secure
were most common. A few participants brought up the idea of
trade-offs. Specifically, SQ74 suggested: “This depends on the use
case. Some use case does not require strong cipher.” While only one
SAT participant saw a non-security issue with this code sample,
five participants in the Control condition brought up non-security
consequences of ignoring the notification: “While running the code
on different platform it could give different results or not run at all”
(CN25). Out of the two SAT participants who said nothing would
happen, one was not able to find the correct fix.

4.5.3 Hard-coded credentials (HC). Many SAT participants (N=55)
explained HC as credentials being visible. Some SAT participants
(N=14) provided more detailed explanations such as the use of
external files, encryption, or environment variables: “The username
and password should be called from the db encrypted in order to avoid
middleman attacks” (SQ30). Encryption-related terms were only
used by SAT participants, which might be because of SonarQube’s
notification, where it recommends using an encrypted configuration
file for credentials. It is further notable that vague explanations like
“some security issue” only happened in the Control. SAT participants
all provided detailed explanations, e.g. “The code associated with
entering the database (and its security) is probably too simple and
easy to crack” (CN19).

Suggested actions for this code sample included moving creden-
tials from the code to configuration files or databases, and retrieving
them just-in-time with function calls: e.g., “Move account and pass-
word data to the configuration file” (SQ132). Interestingly, six SAT

Security Notifications in Static Analysis Tools: Developers’ Attitudes, Comprehension, and Ability to Act on Them CHI ’21, May 8–13, 2021, Yokohama, Japan

Table 8: Resulting groups from thematic analysis of three open-ended comprehension questions. SATs columns show the
combined number of sticky notes in both SAT conditions, and CN shows the number of sticky notes in the Control condition
per group.

Sensitive data exposure (DE) Encryption (EN) Hard-coded credentials (HC) SQL injection (SI)

SATs CN SATs CN SATs CN SATs CN

In a couple of sentences, explain the issue(s) highlighted by the notification(s) as if you were explaining them to a colleague.
Information leak through prints & logs Encryption - outdated methods 17 4 Password is visible 55 27 Formatting & parameters 26 1

Generic sensitive data exposure 36 7 Manipulation of data (preventing manipulation) 17 Advice, problem-scoping, teaching String concatenation not safe 20 1
Credentials 5 Encryption - used is weak 15 12 Use external files, config files 7 1 Use prepared statements 14 1
Program structure & internals 5 4 Inappropriate use of cipher (insecure cipher) 12 14 Use encryption 5 SQL injection with no concrete explanation 7 19
Files & paths 4 Weak encryption - alternative suggested 10 4 Use environment variables 2 Sanitise input 5

Use a logger Data integrity 8 Visible in decompiles 8 3 Escape input 4 3
Security not mentioned 12 1 Don’t know 4 1 Security not mentioned 7 4 Includes an example SQL attack 4
Exposure mentioned 4 Laws and regulations 1 Some security issues could happen 9 Non-security issues 2 14

No security issues mentioned 16 16 Uncertain, no concrete explanation 11 Some security issue 6
Not sure 3
It’s not secure 14

What action(s) would you take in response to the notification?
Use a logger 27 6 Uncertain, no concrete action 20 21 Remove from code, store in a separate location 21 9 Use prepared statements 31 17
Uncertain, no concrete action 20 16 Change & use stronger example 14 7 Secure, encrypt 17 4 Uncertain, no concrete action 18 17
Use a custom error msg 11 5 Change encryption 10 7 Use a config file 13 12 Use parameters 10 4
Other non-security related 10 10 Use HMAC for encryption 10 Don’t use plain password with no clear solution 9 2 Use escaping or sanitisation 9 4
Log somewhere else 7 4 Change to AES (with a concrete example) 9 5 Use function calls 7 1 Use string concatenation 6 1
Hide output 4 4 Change cipher 8 4 Uncertain, no concrete action 6 9 Other solutions 6 2
Avoid stack trace printing 3 Change & use to a recommended one 4 Use a database 4 1 Fix SQL, no clear solution given 3 1

Other solutions 4 2 Use environment variables 4 6
Change to AES (with a concrete example) as recommended 3 Other solutions 4 2

What could happen if you ignore the notification(s)?
Sensitive info exposure & leak 27 13 Data tampering, compromise 30 3 Attacker gets access 34 18 Database exploit 30 9
Attacks could happen (access) 26 15 Not secure 19 25 Credentials exposed 22 12 Database damage (SQL injection) 27 17
No security consequences 23 10 Could be decrypted and attacked 17 6 Not secure 6 7 Unsafe database 16 5
Some security issues could happen 8 5 Could be decrypted 13 6 Other consequences 5 3 Some security issues 10 3
Debugging problems (non-security related) 5 1 It depends 3 Non-security issues 4 6 Non-security issues 6 10
Unsure 2 Nothing, uncertain 2 1 Nothing, uncertain, or a trade off 3 Don’t know 1

Consequences to other parties 2
Non-security issues 1 5

participants did not provide a concrete action, five of this group
were not able to find the correct fix either.

Common consequences were the exposure of credentials and
attackers gaining access: “Database could be compromised by an
attacker who has visibility of the source code” (SQ83). While three
participants provided little information about the consequences, or
said it is a trade-off, all the three were able to find the correct fixes.

4.5.4 SQL injection (SI). A majority of SAT participants (N=60)
used terms presented by both tools such as concatenation, format-
ting, and prepared statements in their explanations, e.g., “The string
concatenation is not safe to use” (SQ15). Control participants used
a vague language such as “SQL injection” and “some security is-
sues could happen.” Fourteen Control participants did not bring
up a security issue in their explanation, which is a large number
compared to the two SAT participants (N=2). For example, CN42
explained that “Java will not insert data into the database table.”

While several SAT participants (N=31) said that they would use
PreparedStatement to fix the code, eighteen participants were not
clear about what action they would take (nine out of these were not
able to find the correct fix), e.g., “Modify the code to make it safer”
(SQ51). Common consequences of SI were an “unsafe database”
or “leads to exploiting” or “damaging the database.” To illustrate,
SQ23 explained: “Ignoring the notification puts the database at risk
if queries are coming from untrusted sources.”

With our qualitative analysis, we are not able to state whether
the answers to the comprehension questions directly impacted
participant’s ability to identify the correct fix. We observe that
a portion of participants in cases with uncertain answers were

not able to find the correct fix, however, further investigation po-
tentially with an interview study in a lab environment where the
researchers can observe participants and ask questions is needed
to understand the relation between comprehension and ability to
act on the notifications.

5 DISCUSSION AND FUTUREWORK
Prior work shows that if developers are prompted, nudged, or asked
explicitly about security, they are more likely to choose secure solu-
tions over insecure solutions [50, 68–70, 74]. SATs have the potential
to promote more secure coding by proactively identifying issues at
early stages of development along with identifying the problematic
line(s) and providing specific guidance on how to correct them. The
vulnerabilities we tested were fairly common in that they are well
known and yet still appear in live code, even for simple errors like
leaving in hard-coded credentials [21, 49, 75, 79, 80]. Yet, for all code
samples, at least 20% of participants indicated an incorrect solution.
Out of 132 participants, only 22 found the correct fix for all code
samples, and 110 participants failed to find the correct fix for at
least one of the code samples (Section 4.2). These results suggest
that, at least for our code samples, the existing notification content
is not sufficiently helping developers.

False positives are a major pain point for developers [22, 54]
resulting in work to improve detection accuracy [81, 95]. But even
if the accuracy goes up, when developers receive notification there
is a real chance that they may not able to fix the vulnerability due
to not understanding the issue, opening a future research directions
for improving the notifications effectiveness.

CHI ’21, May 8–13, 2021, Yokohama, Japan Mohammad Tahaei, Kami Vaniea, Konstantin Beznosov, and Maria K. Wolters

One possible explanation of the lack of impact from notifications
is that notification elements like presentation, phrasing, organi-
sation, and structure are not well aligned with developer needs.
Prior work on the usability of developer-aimed security commu-
nications has similarly observed that participants do not find all
the information presented in notifications equally useful [39, 88].
The results are similar to our observations that participants did not
find links to external resources and meta data such as rank and cat-
egory as useful as sample code (Section 4.3). Participants’ positive
attitude towards sample solutions and vulnerable code suggests
that enhancing these elements might improve usability.

Another possible explanation lies in the impact of experience
and developer attitudes on their performance. It appears that more
seasoned developers may benefit less from SATs, in particular if they
deem the vulnerability to be important, and if they are confident in
their own judgement.

Research has already suggested that notifications can be im-
proved by including examples [62–64]. Improving examples in
cryptography APIs is associated with strong improvement in partic-
ipants’ ability to write secure code [64]. Interestingly, most of the
notifications we tested did contain example code (Table 1) but we
observed effectively no impact from its inclusion or exclusion. DE
and HC had no example code in SpotBugs but did in SonarQube. Yet,
SpotBugs participants answered correctly more often for both code
samples (Section 4.2). This outcome suggests that how examples
are chosen and how well they align with the problem the developer
is facing may strongly impact their usefulness. One limitation of
our work is that we provided developers with a list of potential
solutions, which in some cases differed from the example solutions
because the solution did not match the sample code case. While
a limitation, the situation also highlights a realistic event where
provided solutions do not directly match the problem.

SATs are also valuable to developers because the code they are
using may not always be code they themselves have written. Devel-
opers tend to use code from online resources such as Stack Overflow
that may not be secure [2, 33]. They also sometimes inherit code or
join projects mid-way through. Using SATs could help developers
in deciding what code snippets are safe to use or and providing
guidance on how to make them more secure.

Our developer population was drawn from GitHub and Prolific
which are different sample sources and indeed they had different
profiles. GitHub users, for example, were selected because they
were part of existing Java projects. Yet participants from both pools
still struggled to correctly indicate the code sample fix from among
provided options (Section 3.5). We argue that developers from mul-
tiple skill levels likely need the guidance that SATs are intended to
provide. It is fairly easy to fall into a trap of assuming that senior
software engineers know everything, it is equally easy to assume
that novice ones, or those just learning to code have serious knowl-
edge gaps. But our work suggests that improving SAT notifications
may possibly help people at all levels. Particularly if tools, like SATs,
can adjust to the context and needs of developers [26]. There is
room for future research to explore the different information and
guidance needs developers have and how to best support them.

Comprehension questions showed that several participants were
able to explain the issues mentioned in the notifications in a struc-
tured way, consider the right action, and determine the potential

consequences of ignoring the notification. SAT participants used
more concrete language with specific terms, as opposed to Control
participants (Section 4.5). Another observation is that many partici-
pants brought up clear security consequences for code samples with
obvious security elements such as EN, HC, and SI. These results
suggest that notification content has some impact on developers’
comprehension of the problem. Though not all the time, as in the
DE code sample where few participants mentioned a security con-
sequence. Future research could expand on the potential severity,
common knowledge, and developer beliefs about different vulner-
abilities. Finding out how pre-existing knowledge plays a role in
developers decision making while fixing vulnerabilities could help
designers make improvements to security notifications and how
SATs represent information to developers.

6 CONCLUSION
We studied security notifications from two popular SATs (Sonar-
Qube and SpotBugs) and found that seeing SAT notifications led
to more detailed open-ended answers and slightly improved code
correction answers. Prior software development experience, per-
ceived vulnerability severity, and answer confidence all positively
impacted answer accuracy. Future research is needed to find ways
to improve security notifications for software developers by explor-
ing the different information and guidance needs developers have
and how to best support them.

ACKNOWLEDGMENTS
We thank the anonymous reviewers and Zinaida Benenson whose
comments helped improve the paper greatly. We thank everyone
associated with the TULiPS Lab at the University of Edinburgh for
helpful discussions and feedback, and Philippe Arteau for checking
the code samples. This work was sponsored in part by Microsoft
Research through its PhD Scholarship Program, a Google Research
Award, and SICSA Cybersecurity Nexus travel grant which partially
supported MT’s visit to UBC.

REFERENCES
[1] Yasemin Acar, Michael Backes, Sascha Fahl, Simson Garfinkel, Doowon Kim,

Michelle L Mazurek, and Christian Stransky. 2017. Comparing the Usability of
Cryptographic APIs. In 2017 IEEE Symposium on Security and Privacy (SP). IEEE,
154–171. https://doi.org/10.1109/SP.2017.52

[2] Yasemin Acar, Michael Backes, Sascha Fahl, Doowon Kim, Michelle L Mazurek,
and Christian Stransky. 2016. You Get Where You’re Looking for: The Impact
of Information Sources on Code Security. In 2016 IEEE Symposium on Security
and Privacy (SP). IEEE, 289–305. https://doi.org/10.1109/SP.2016.25

[3] Yasemin Acar, Christian Stransky, Dominik Wermke, Michelle L. Mazurek, and
Sascha Fahl. 2017. Security Developer Studies with GitHub Users: Exploring a
Convenience Sample. In Thirteenth Symposium on Usable Privacy and Security
(SOUPS 2017). USENIX Association, Santa Clara, CA, 81–95. https://www.
usenix.org/conference/soups2017/technical-sessions/presentation/acar

[4] Sharmin Afrose, Sazzadur Rahaman, and Danfeng Yao. 2019. CryptoAPI-Bench:
A Comprehensive Benchmark on Java Cryptographic API Misuses. In 2019
IEEE Cybersecurity Development (SecDev). IEEE, 49–61. https://doi.org/10.1109/
SecDev.2019.00017

[5] Nathaniel Ayewah, David Hovemeyer, J. David Morgenthaler, John Penix, and
William Pugh. 2008. Using Static Analysis to Find Bugs. IEEE Software 25, 5
(Sept. 2008), 22–29. https://doi.org/10.1109/MS.2008.130

[6] Nathaniel Ayewah and William Pugh. 2008. A Report on a Survey and Study
of Static Analysis Users. In Proceedings of the 2008 Workshop on Defects in
Large Software Systems (Seattle, Washington) (DEFECTS ’08). Association for
Computing Machinery, New York, NY, USA, 1–5. https://doi.org/10.1145/
1390817.1390819

https://doi.org/10.1109/SP.2017.52
https://doi.org/10.1109/SP.2016.25
https://www.usenix.org/conference/soups2017/technical-sessions/presentation/acar
https://www.usenix.org/conference/soups2017/technical-sessions/presentation/acar
https://doi.org/10.1109/SecDev.2019.00017
https://doi.org/10.1109/SecDev.2019.00017
https://doi.org/10.1109/MS.2008.130
https://doi.org/10.1145/1390817.1390819
https://doi.org/10.1145/1390817.1390819

Security Notifications in Static Analysis Tools: Developers’ Attitudes, Comprehension, and Ability to Act on Them CHI ’21, May 8–13, 2021, Yokohama, Japan

[7] Nathaniel Ayewah and William Pugh. 2010. The Google FindBugs Fixit. In
Proceedings of the 19th International Symposium on Software Testing and Analysis
(Trento, Italy) (ISSTA ’10). Association for Computing Machinery, New York,
NY, USA, 241–252. https://doi.org/10.1145/1831708.1831738

[8] Titus Barik, Denae Ford, Emerson Murphy-Hill, and Chris Parnin. 2018. How
Should Compilers Explain Problems to Developers?. In Proceedings of the 2018
26th ACM Joint Meeting on European Software Engineering Conference and Sym-
posium on the Foundations of Software Engineering (Lake Buena Vista, FL, USA)
(ESEC/FSE 2018). Association for Computing Machinery, New York, NY, USA,
633–643. https://doi.org/10.1145/3236024.3236040

[9] Titus Barik, Justin Smith, Kevin Lubick, Elisabeth Holmes, Jing Feng, Emer-
son Murphy-Hill, and Chris Parnin. 2017. Do Developers Read Compiler
Error Messages?. In Proceedings of the 39th International Conference on Soft-
ware Engineering (Buenos Aires, Argentina) (ICSE ’17). IEEE Press, 575–585.
https://doi.org/10.1109/ICSE.2017.59

[10] Douglas Bates, Martin Mächler, Ben Bolker, and Steve Walker. 2015. Fitting
Linear Mixed-Effects Models Using lme4. Journal of Statistical Software, Articles
67, 1 (2015), 1–48. https://doi.org/10.18637/jss.v067.i01

[11] Lujo Bauer, Cristian Bravo-Lillo, Lorrie Cranor, and Elli Fragkaki. 2013. Warning
Design Guidelines. Technical Report. Carnegie Mellon University. https://www.
cylab.cmu.edu/_files/pdfs/tech_reports/CMUCyLab13002.pdf

[12] Brett A. Becker. 2016. An Effective Approach to Enhancing Compiler Error
Messages. In Proceedings of the 47th ACM Technical Symposium on Computing
Science Education (Memphis, Tennessee, USA) (SIGCSE ’16). Association for
Computing Machinery, New York, NY, USA, 126–131. https://doi.org/10.1145/
2839509.2844584

[13] Brett A. Becker, Paul Denny, Raymond Pettit, Durell Bouchard, Dennis J. Bouvier,
Brian Harrington, Amir Kamil, Amey Karkare, Chris McDonald, Peter-Michael
Osera, and et al. 2019. Compiler Error Messages Considered Unhelpful: The Land-
scape of Text-Based Programming Error Message Research. In Proceedings of the
Working Group Reports on Innovation and Technology in Computer Science Educa-
tion (Aberdeen, Scotland UK) (ITiCSE-WGR ’19). Association for Computing Ma-
chinery, New York, NY, USA, 177–210. https://doi.org/10.1145/3344429.3372508

[14] Moritz Beller, Radjino Bholanath, Shane McIntosh, and Andy Zaidman. 2016.
Analyzing the State of Static Analysis: A Large-Scale Evaluation in Open
Source Software. In 2016 IEEE 23rd International Conference on Software Anal-
ysis, Evolution, and Reengineering (SANER), Vol. 1. IEEE, 470–481. https:
//doi.org/10.1109/SANER.2016.105

[15] Graham Bleaney and Sinan Cepel. 2020. Pysa: An open source static analysis
tool to detect and prevent security issues in Python code. Retrieved August
2020 from https://engineering.fb.com/security/pysa/

[16] Harry N Boone and Deborah A Boone. 2012. Analyzing Likert Data. Journal of
Extension 50, 2 (2012), 1–5. https://www.joe.org/joe/2012april/pdf/JOE_v50_
2tt2.pdf

[17] Virginia Braun and Victoria Clarke. 2006. Using thematic analysis in psychology.
Qualitative Research in Psychology 3, 2 (2006), 77–101. https://doi.org/10.1191/
1478088706qp063oa

[18] Find Security Bugs. 2020. Find Security Bugs. Retrieved June 2020
from https://github.com/find-sec-bugs/find-sec-bugs/tree/master/findsecbugs-
samples-java

[19] James Carifio and Rocco Perla. 2008. Resolving the 50-year debate around using
and misusing Likert scales. Medical Education 42, 12 (Dec. 2008), 1150–1152.
https://doi.org/10.1111/j.1365-2923.2008.03172.x

[20] Stephen Cass. 2020. Top Programming Languages 2020. Retrieved July
2020 from https://spectrum.ieee.org/at-work/tech-careers/top-programming-
language-2020

[21] Sen Chen, Lingling Fan, Guozhu Meng, Ting Su, Minhui Xue, Yinxing Xue,
Yang Liu, and Lihua Xu. 2020. An Empirical Assessment of Security Risks of
Global Android Banking Apps. In Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering (Seoul, South Korea) (ICSE ’20). Association
for Computing Machinery, New York, NY, USA, 1310–1322. https://doi.org/10.
1145/3377811.3380417

[22] Maria Christakis and Christian Bird. 2016. What Developers Want and Need
from Program Analysis: An Empirical Study. In Proceedings of the 31st IEEE/ACM
International Conference on Automated Software Engineering (Singapore, Singa-
pore) (ASE 2016). Association for Computing Machinery, New York, NY, USA,
332–343. https://doi.org/10.1145/2970276.2970347

[23] TIOBE The Software Quality Company. 2020. TIOBE Index. Retrieved June
2020 from https://www.tiobe.com/tiobe-index/

[24] The MITRE Corporation. 2020. Common Weakness Enumeration (CWE) Top
25 Most Dangerous Software Errors. Retrieved August 2020 from https:
//cwe.mitre.org/top25/archive/2019/2019_cwe_top25.html

[25] Lorrie Faith Cranor. 2008. A Framework for Reasoning about the Human in the
Loop. In Proceedings of the 1st Conference on Usability, Psychology, and Security
(San Francisco, California) (UPSEC’08). USENIX Association, USA, Article 1,
15 pages. https://www.usenix.org/legacy/events/upsec08/tech/full_papers/
cranor/cranor.pdf

[26] Anastasia Danilova, Alena Naiakshina, and Matthew Smith. 2020. One Size
Does Not Fit All: A Grounded Theory and Online Survey Study of Developer
Preferences for Security Warning Types. In Proceedings of the 42nd Interna-
tional Conference on Software Engineering (ICSE ’20). Association for Computing
Machinery, 13 pages. https://doi.org/10.1145/3377811.3380387

[27] H T Davies, I K Crombie, and M Tavakoli. 1998. When can odds ratios mislead?
BMJ (Clinical research ed.) 316, 7136 (March 1998), 989–991. https://doi.org/10.
1136/bmj.316.7136.989 Publisher: British Medical Journal.

[28] Pieter De Cremer, Nathan Desmet, Matias Madou, and Bjorn De Sutter. 2020.
Sensei: Enforcing secure coding guidelines in the integrated development en-
vironment. Software: Practice and Experience 50, 9 (2020), 1682–1718. https:
//doi.org/10.1002/spe.2844

[29] CVE Details. 2019. CVE-2019-17397 : In the DoorDash application through
11.5.2 for Android, the username and password are stored in the log during
authentication, and may be available to attackers via logcat. Retrieved June
2020 from https://www.cvedetails.com/cve/CVE-2019-17397/

[30] CVE Details. 2020. CVE security vulnerabilities related to CWE (Common
Weakness Enumeration) 532. Retrieved June 2020 from https://www.cvedetails.
com/vulnerability-list/cweid-532/vulnerabilities.html

[31] Dino Distefano, Manuel Fähndrich, Francesco Logozzo, and Peter W. O’Hearn.
2019. Scaling Static Analyses at Facebook. Commun. ACM 62, 8 (July 2019),
62–70. https://doi.org/10.1145/3338112

[32] Sascha Fahl, Marian Harbach, Henning Perl, Markus Koetter, and Matthew
Smith. 2013. Rethinking SSL Development in an Appified World. In Proceedings
of the 2013 ACM SIGSAC Conference on Computer & Communications Security
(Berlin, Germany) (CCS ’13). Association for Computing Machinery, New York,
NY, USA, 49–60. https://doi.org/10.1145/2508859.2516655

[33] Felix Fischer, Konstantin Böttinger, Huang Xiao, Christian Stransky, Yasemin
Acar, Michael Backes, and Sascha Fahl. 2017. Stack Overflow Considered
Harmful? The Impact of Copy Paste on Android Application Security. In
2017 IEEE Symposium on Security and Privacy (SP). IEEE, 121–136. https:
//doi.org/10.1109/SP.2017.31

[34] Andrew Gelman and Jennifer Hill. 2007. Data Analysis Using Regression and
Multilevel/Hierarchical Models. Cambridge University Press, Cambridge, UK.

[35] Andrew Gelman, Masanao Yajima Yu-Sung Su, Jennifer Hill, Maria Grazia Pittau,
Jouni Kerman, Tian Zheng, and Vincent Dorie. 2020. arm: Data Analysis Using
Regression and Multilevel/Hierarchical Models. Retrieved December 2020 from
https://cran.r-project.org/package=arm

[36] Martin Georgiev, Subodh Iyengar, Suman Jana, Rishita Anubhai, Dan Boneh,
and Vitaly Shmatikov. 2012. The Most Dangerous Code in the World: Validating
SSL Certificates in Non-Browser Software. In Proceedings of the 2012 ACM
Conference on Computer and Communications Security (Raleigh, North Carolina,
USA) (CCS ’12). Association for Computing Machinery, New York, NY, USA,
38–49. https://doi.org/10.1145/2382196.2382204

[37] GitHub. 2019. The State of the Octoverse. Retrieved August 2020 from
https://octoverse.github.com/

[38] Google. 2020. Google Diversity Annual Report. Retrieved August 2020 from
https://diversity.google/annual-report/

[39] Peter Leo Gorski, Yasemin Acar, Luigi Lo Iacono, and Sascha Fahl. 2020. Listen
to Developers! A Participatory Design Study on Security Warnings for Cryp-
tographic APIs. In Proceedings of the 2020 CHI Conference on Human Factors in
Computing Systems (Honolulu, HI, USA) (CHI ’20). Association for Computing
Machinery, New York, NY, USA, 1–13. https://doi.org/10.1145/3313831.3376142

[40] Peter Leo Gorski, Luigi Lo Iacono, Dominik Wermke, Christian Stransky, Se-
bastian Möller, Yasemin Acar, and Sascha Fahl. 2018. Developers Deserve
Security Warnings, Too: On the Effect of Integrated Security Advice on Cryp-
tographic API Misuse. In Fourteenth Symposium on Usable Privacy and Se-
curity (SOUPS 2018). USENIX Association, Baltimore, MD, 265–281. https:
//www.usenix.org/conference/soups2018/presentation/gorski

[41] Matthew Green and Matthew Smith. 2016. Developers are Not the Enemy!:
The Need for Usable Security APIs. IEEE Security & Privacy 14, 05 (Sept. 2016),
40–46. https://doi.org/10.1109/MSP.2016.111

[42] UCLA: Statistical Consulting Group. 2020. Mixed Effects Logistic Regression. Re-
trieved December 2020 from https://stats.idre.ucla.edu/stata/dae/mixed-effects-
logistic-regression/

[43] Andrew Habib and Michael Pradel. 2018. How Many of All Bugs Do We Find? A
Study of Static Bug Detectors. In Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering (Montpellier, France) (ASE 2018).
Association for Computing Machinery, New York, NY, USA, 317–328. https:
//doi.org/10.1145/3238147.3238213

[44] Julie M. Haney, Mary Theofanos, Yasemin Acar, and Sandra Spickard Prettyman.
2018. “We make it a big deal in the company”: Security Mindsets in Organiza-
tions that Develop Cryptographic Products. In Fourteenth Symposium on Usable
Privacy and Security (SOUPS 2018). USENIX Association, Baltimore, MD, 357–373.
https://www.usenix.org/conference/soups2018/presentation/haney-mindsets

[45] Michael Huth and Flemming Nielson. 2019. Static Analysis for Proactive Security.
In Computing and Software Science: State of the Art and Perspectives. Springer
International Publishing, Cham, 374–392. https://doi.org/10.1007/978-3-319-

https://doi.org/10.1145/1831708.1831738
https://doi.org/10.1145/3236024.3236040
https://doi.org/10.1109/ICSE.2017.59
https://doi.org/10.18637/jss.v067.i01
https://www.cylab.cmu.edu/_files/pdfs/tech_reports/CMUCyLab13002.pdf
https://www.cylab.cmu.edu/_files/pdfs/tech_reports/CMUCyLab13002.pdf
https://doi.org/10.1145/2839509.2844584
https://doi.org/10.1145/2839509.2844584
https://doi.org/10.1145/3344429.3372508
https://doi.org/10.1109/SANER.2016.105
https://doi.org/10.1109/SANER.2016.105
https://engineering.fb.com/security/pysa/
https://www.joe.org/joe/2012april/pdf/JOE_v50_2tt2.pdf
https://www.joe.org/joe/2012april/pdf/JOE_v50_2tt2.pdf
https://doi.org/10.1191/1478088706qp063oa
https://doi.org/10.1191/1478088706qp063oa
https://github.com/find-sec-bugs/find-sec-bugs/tree/master/findsecbugs-samples-java
https://github.com/find-sec-bugs/find-sec-bugs/tree/master/findsecbugs-samples-java
https://doi.org/10.1111/j.1365-2923.2008.03172.x
https://spectrum.ieee.org/at-work/tech-careers/top-programming-language-2020
https://spectrum.ieee.org/at-work/tech-careers/top-programming-language-2020
https://doi.org/10.1145/3377811.3380417
https://doi.org/10.1145/3377811.3380417
https://doi.org/10.1145/2970276.2970347
https://www.tiobe.com/tiobe-index/
https://cwe.mitre.org/top25/archive/2019/2019_cwe_top25.html
https://cwe.mitre.org/top25/archive/2019/2019_cwe_top25.html
https://www.usenix.org/legacy/events/upsec08/tech/full_papers/cranor/cranor.pdf
https://www.usenix.org/legacy/events/upsec08/tech/full_papers/cranor/cranor.pdf
https://doi.org/10.1145/3377811.3380387
https://doi.org/10.1136/bmj.316.7136.989
https://doi.org/10.1136/bmj.316.7136.989
https://doi.org/10.1002/spe.2844
https://doi.org/10.1002/spe.2844
https://www.cvedetails.com/cve/CVE-2019-17397/
https://www.cvedetails.com/vulnerability-list/cweid-532/vulnerabilities.html
https://www.cvedetails.com/vulnerability-list/cweid-532/vulnerabilities.html
https://doi.org/10.1145/3338112
https://doi.org/10.1145/2508859.2516655
https://doi.org/10.1109/SP.2017.31
https://doi.org/10.1109/SP.2017.31
https://cran.r-project.org/package=arm
https://doi.org/10.1145/2382196.2382204
https://octoverse.github.com/
https://diversity.google/annual-report/
https://doi.org/10.1145/3313831.3376142
https://www.usenix.org/conference/soups2018/presentation/gorski
https://www.usenix.org/conference/soups2018/presentation/gorski
https://doi.org/10.1109/MSP.2016.111
https://stats.idre.ucla.edu/stata/dae/mixed-effects-logistic-regression/
https://stats.idre.ucla.edu/stata/dae/mixed-effects-logistic-regression/
https://doi.org/10.1145/3238147.3238213
https://doi.org/10.1145/3238147.3238213
https://www.usenix.org/conference/soups2018/presentation/haney-mindsets
https://doi.org/10.1007/978-3-319-91908-9_19
https://doi.org/10.1007/978-3-319-91908-9_19

CHI ’21, May 8–13, 2021, Yokohama, Japan Mohammad Tahaei, Kami Vaniea, Konstantin Beznosov, and Maria K. Wolters

91908-9_19
[46] Nasif Imtiaz, Brendan Murphy, and Laurie Williams. 2019. How Do Developers

Act on Static Analysis Alerts? An Empirical Study of Coverity Usage. In 2019
IEEE 30th International Symposium on Software Reliability Engineering (ISSRE).
IEEE, 323–333. https://doi.org/10.1109/ISSRE.2019.00040

[47] Nasif Imtiaz, Akond Rahman, Effat Farhana, and Laurie Williams. 2019. Chal-
lenges with Responding to Static Analysis Tool Alerts. In Proceedings of the
16th International Conference on Mining Software Repositories (Montreal, Quebec,
Canada) (MSR ’19). IEEE Press, 245–249. https://doi.org/10.1109/MSR.2019.00049

[48] Nasif Imtiaz and Laurie Williams. 2019. A Synopsis of Static Analysis Alerts on
Open Source Software. In Proceedings of the 6th Annual Symposium on Hot Topics
in the Science of Security (Nashville, Tennessee, USA) (HotSoS ’19). Association
for Computing Machinery, New York, NY, USA, Article 12, 3 pages. https:
//doi.org/10.1145/3314058.3317295

[49] Mazharul Islam, Sazzadur Rahaman, Na Meng, Behnaz Hassanshahi, Padmanab-
han Krishnan, and Danfeng (Daphne) Yao. 2020. Coding Practices and Recom-
mendations of Spring Security for Enterprise Applications. In 2020 IEEE Secure
Development (SecDev). IEEE, 49–57. https://doi.org/10.1109/SecDev45635.2020.
00024

[50] Shubham Jain, Janne Lindqvist, et al. 2014. Should I protect you? Understanding
developers’ behavior to privacy-preserving APIs. In Workshop on Usable Security
(USEC’14). Internet Society, 10 pages. https://doi.org/10.14722/usec.2014.23045

[51] JetBrains. 2020. The State of Developer Ecosystem. Retrieved August 2020
from https://www.jetbrains.com/lp/devecosystem-2020/

[52] Ling Jin, Boyuan He, Guangyao Weng, Haitao Xu, Yan Chen, and Guanyu
Guo. 2019. MAdLens: Investigating into Android In-App Ad Practice at API
Granularity. IEEE Transactions on Mobile Computing PP (2019), 18 pages. https:
//doi.org/10.1109/TMC.2019.2953609

[53] Brittany Johnson, Rahul Pandita, Justin Smith, Denae Ford, Sarah Elder, Emerson
Murphy-Hill, Sarah Heckman, and Caitlin Sadowski. 2016. A Cross-Tool Com-
munication Study on Program Analysis Tool Notifications. In Proceedings of the
2016 24th ACM SIGSOFT International Symposium on Foundations of Software En-
gineering (Seattle, WA, USA) (FSE 2016). Association for Computing Machinery,
New York, NY, USA, 73–84. https://doi.org/10.1145/2950290.2950304

[54] Brittany Johnson, Yoonki Song, Emerson Murphy-Hill, and Robert Bowdidge.
2013. Why Don’t Software Developers Use Static Analysis Tools to Find Bugs?.
In Proceedings of the 2013 International Conference on Software Engineering (San
Francisco, CA, USA) (ICSE ’13). IEEE Press, 672–681. https://doi.org/10.1109/
ICSE.2013.6606613

[55] John Kelsey, Bruce Schneier, and David Wagner. 1997. Related-key cryptanalysis
of 3-WAY, Biham-DES,CAST, DES-X, NewDES, RC2, and TEA. In Information
and Communications Security, Yongfei Han, Tatsuaki Okamoto, and Sihan Qing
(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 233–246. https://doi.org/
10.1007/BFb0028479

[56] Jae-on Kim and Charles Mueller. 2020. Factor Analysis. SAGE Publications, Inc,
Thousand Oaks, California. https://doi.org/10.4135/9781412984256

[57] Stefan Krüger, Sarah Nadi, Michael Reif, Karim Ali, Mira Mezini, Eric Bodden,
Florian Göpfert, Felix Günther, Christian Weinert, Daniel Demmler, and Ram
Kamath. 2017. CogniCrypt: Supporting Developers in Using Cryptography.
In Proceedings of the 32nd IEEE/ACM International Conference on Automated
Software Engineering (Urbana-Champaign, IL, USA) (ASE 2017). IEEE Press,
931–936. https://doi.org/10.1109/ASE.2017.8115707

[58] James A. Kupsch, Elisa Heymann, Barton Miller, and Vamshi Basupalli. 2017.
Bad and good news about using software assurance tools. Software: Practice
and Experience 47, 1 (2017), 143–156. https://doi.org/10.1002/spe.2401

[59] Jonathan Lazar, Jinjuan Heidi Feng, and Harry Hochheiser. 2017. Chapter 8 -
Interviews and focus groups. In ResearchMethods in HumanComputer Interaction
(second edition ed.), Jonathan Lazar, Jinjuan Heidi Feng, and Harry Hochheiser
(Eds.). Morgan Kaufmann, Boston, 187–228. https://doi.org/10.1016/B978-0-12-
805390-4.00008-X

[60] Li Li, Tegawendé F. Bissyandé, Mike Papadakis, Siegfried Rasthofer, Alexandre
Bartel, Damien Octeau, Jacques Klein, and Le Traon. 2017. Static analysis
of android apps: A systematic literature review. Information and Software
Technology 88 (2017), 67–95. https://doi.org/10.1016/j.infsof.2017.04.001

[61] Na Meng, Stefan Nagy, Danfeng (Daphne) Yao, Wenjie Zhuang, and Gus-
tavo Arango Argoty. 2018. Secure Coding Practices in Java: Challenges and
Vulnerabilities. In Proceedings of the 40th International Conference on Software
Engineering (Gothenburg, Sweden) (ICSE ’18). Association for Computing Ma-
chinery, New York, NY, USA, 372–383. https://doi.org/10.1145/3180155.3180201

[62] Kai Mindermann, Philipp Keck, and Stefan Wagner. 2018. How Usable Are Rust
Cryptography APIs?. In 2018 IEEE International Conference on Software Quality,
Reliability and Security (QRS). IEEE, 143–154. https://doi.org/10.1109/qrs.2018.
00028

[63] Kai Mindermann and Stefan Wagner. 2018. Usability and Security Effects of
Code Examples on Crypto APIs. In 2018 16th Annual Conference on Privacy,
Security and Trust (PST). IEEE, 1–2. https://doi.org/10.1109/PST.2018.8514203

[64] Kai Mindermann and Stefan Wagner. 2020. Fluid Intelligence Doesn’t Matter!
Effects of Code Examples on the Usability of Crypto APIs. In Proceedings of the

ACM/IEEE 42nd International Conference on Software Engineering: Companion
Proceedings (Seoul, South Korea) (ICSE ’20). Association for Computing Machin-
ery, New York, NY, USA, 306–307. https://doi.org/10.1145/3377812.3390892

[65] Xenia Mountrouidou, David Vosen, Chadi Kari, Mohammad Q. Azhar, Sajal
Bhatia, Greg Gagne, Joseph Maguire, Liviana Tudor, and Timothy T. Yuen.
2019. Securing the Human: A Review of Literature on Broadening Diversity
in Cybersecurity Education. In Proceedings of the Working Group Reports on
Innovation and Technology in Computer Science Education (Aberdeen, Scotland
UK) (ITiCSE-WGR ’19). Association for Computing Machinery, New York, NY,
USA, 157–176. https://doi.org/10.1145/3344429.3372507

[66] Sarah Nadi, Stefan Krüger, Mira Mezini, and Eric Bodden. 2016. Jumping through
Hoops: Why Do Java Developers Struggle with Cryptography APIs?. In Proceed-
ings of the 38th International Conference on Software Engineering (Austin, Texas)
(ICSE ’16). Association for Computing Machinery, New York, NY, USA, 935–946.
https://doi.org/10.1145/2884781.2884790

[67] Nico JD Nagelkerke et al. 1991. A note on a general definition of the coefficient
of determination. Biometrika 78, 3 (09 1991), 691–692. https://doi.org/10.1093/
biomet/78.3.691

[68] Alena Naiakshina, Anastasia Danilova, Eva Gerlitz, and Matthew Smith. 2020.
On Conducting Security Developer Studies with CS Students: Examining a
Password-Storage Study with CS Students, Freelancers, and Company Develop-
ers. In Proceedings of the 2020 CHI Conference on Human Factors in Computing
Systems (Honolulu, HI, USA) (CHI ’20). Association for Computing Machinery,
New York, NY, USA, 1–13. https://doi.org/10.1145/3313831.3376791

[69] Alena Naiakshina, Anastasia Danilova, Eva Gerlitz, Emanuel von Zezschwitz,
and Matthew Smith. 2019. “If You Want, I Can Store the Encrypted Password”:
A Password-Storage Field Study with Freelance Developers. In Proceedings of
the 2019 CHI Conference on Human Factors in Computing Systems (Glasgow,
Scotland UK) (CHI ’19). Association for Computing Machinery, New York, NY,
USA, 1–12. https://doi.org/10.1145/3290605.3300370

[70] Alena Naiakshina, Anastasia Danilova, Christian Tiefenau, Marco Herzog, Sergej
Dechand, and Matthew Smith. 2017. Why Do Developers Get Password Storage
Wrong? A Qualitative Usability Study. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security (Dallas, Texas, USA)
(CCS ’17). Association for Computing Machinery, New York, NY, USA, 311–328.
https://doi.org/10.1145/3133956.3134082

[71] Duc Cuong Nguyen, Dominik Wermke, Yasemin Acar, Michael Backes, Charles
Weir, and Sascha Fahl. 2017. A Stitch in Time: Supporting Android Developers
in Writing Secure Code. In Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security (Dallas, Texas, USA) (CCS ’17). ACM,
New York, NY, USA, 1065–1077. https://doi.org/10.1145/3133956.3133977

[72] Lisa Nguyen Quang Do, James Wright, and Karim Ali. 2020. Why Do Software
Developers Use Static Analysis Tools? A User-Centered Study of Developer
Needs and Motivations. IEEE Transactions on Software Engineering PP (2020),
13 pages. https://doi.org/10.1109/TSE.2020.3004525

[73] National Institute of Standards and Technology (NIST). 2017. Software Assur-
ance Reference Dataset. Retrieved June 2020 from https://samate.nist.gov/
SARD/testsuite.php

[74] Daniela Oliveira, Marissa Rosenthal, Nicole Morin, Kuo-Chuan Yeh, Justin
Cappos, and Yanyan Zhuang. 2014. It’s the Psychology Stupid: How Heuris-
tics Explain Software Vulnerabilities and How Priming Can Illuminate De-
veloper’s Blind Spots. In Proceedings of the 30th Annual Computer Security
Applications Conference (New Orleans, Louisiana, USA) (ACSAC ’14). Asso-
ciation for Computing Machinery, New York, NY, USA, 296–305. https:
//doi.org/10.1145/2664243.2664254

[75] Marten Oltrogge, Erik Derr, Christian Stransky, Yasemin Acar, Sascha Fahl,
Christian Rossow, Giancarlo Pellegrino, Sven Bugiel, and Michael Backes. 2018.
The Rise of the Citizen Developer: Assessing the Security Impact of Online App
Generators. In 2018 IEEE Symposium on Security and Privacy (SP). IEEE, 634–647.
https://doi.org/10.1109/SP.2018.00005

[76] Stack Overflow. 2020. Developer Survey Results. Retrieved August 2020 from
https://insights.stackoverflow.com/survey/2020

[77] OWASP. 2017. The Ten Most Critical Web Application Security Risks. Retrieved
August 2020 from https://owasp.org/www-project-top-ten

[78] Eyal Peer, Laura Brandimarte, Sonam Samat, and Alessandro Acquisti. 2017.
Beyond the Turk: Alternative platforms for crowdsourcing behavioral research.
Journal of Experimental Social Psychology 70 (2017), 153–163. https://doi.org/
10.1016/j.jesp.2017.01.006

[79] Sazzadur Rahaman, Ya Xiao, Sharmin Afrose, Fahad Shaon, Ke Tian, Miles
Frantz, Murat Kantarcioglu, and Danfeng (Daphne) Yao. 2019. CryptoGuard:
High Precision Detection of Cryptographic Vulnerabilities in Massive-sized
Java Projects. In Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security (London, United Kingdom) (CCS ’19). ACM, New
York, NY, USA, 2455–2472. https://doi.org/10.1145/3319535.3345659

[80] Akond Rahman, Chris Parnin, and Laurie Williams. 2019. The Seven Sins:
Security Smells in Infrastructure as Code Scripts. In Proceedings of the 41st
International Conference on Software Engineering (Montreal, Quebec, Canada)
(ICSE ’19). IEEE Press, 164–175. https://doi.org/10.1109/ICSE.2019.00033

https://doi.org/10.1007/978-3-319-91908-9_19
https://doi.org/10.1109/ISSRE.2019.00040
https://doi.org/10.1109/MSR.2019.00049
https://doi.org/10.1145/3314058.3317295
https://doi.org/10.1145/3314058.3317295
https://doi.org/10.1109/SecDev45635.2020.00024
https://doi.org/10.1109/SecDev45635.2020.00024
https://doi.org/10.14722/usec.2014.23045
https://www.jetbrains.com/lp/devecosystem-2020/
https://doi.org/10.1109/TMC.2019.2953609
https://doi.org/10.1109/TMC.2019.2953609
https://doi.org/10.1145/2950290.2950304
https://doi.org/10.1109/ICSE.2013.6606613
https://doi.org/10.1109/ICSE.2013.6606613
https://doi.org/10.1007/BFb0028479
https://doi.org/10.1007/BFb0028479
https://doi.org/10.4135/9781412984256
https://doi.org/10.1109/ASE.2017.8115707
https://doi.org/10.1002/spe.2401
https://doi.org/10.1016/B978-0-12-805390-4.00008-X
https://doi.org/10.1016/B978-0-12-805390-4.00008-X
https://doi.org/10.1016/j.infsof.2017.04.001
https://doi.org/10.1145/3180155.3180201
https://doi.org/10.1109/qrs.2018.00028
https://doi.org/10.1109/qrs.2018.00028
https://doi.org/10.1109/PST.2018.8514203
https://doi.org/10.1145/3377812.3390892
https://doi.org/10.1145/3344429.3372507
https://doi.org/10.1145/2884781.2884790
https://doi.org/10.1093/biomet/78.3.691
https://doi.org/10.1093/biomet/78.3.691
https://doi.org/10.1145/3313831.3376791
https://doi.org/10.1145/3290605.3300370
https://doi.org/10.1145/3133956.3134082
https://doi.org/10.1145/3133956.3133977
https://doi.org/10.1109/TSE.2020.3004525
https://samate.nist.gov/SARD/testsuite.php
https://samate.nist.gov/SARD/testsuite.php
https://doi.org/10.1145/2664243.2664254
https://doi.org/10.1145/2664243.2664254
https://doi.org/10.1109/SP.2018.00005
https://insights.stackoverflow.com/survey/2020
https://owasp.org/www-project-top-ten
https://doi.org/10.1016/j.jesp.2017.01.006
https://doi.org/10.1016/j.jesp.2017.01.006
https://doi.org/10.1145/3319535.3345659
https://doi.org/10.1109/ICSE.2019.00033

Security Notifications in Static Analysis Tools: Developers’ Attitudes, Comprehension, and Ability to Act on Them CHI ’21, May 8–13, 2021, Yokohama, Japan

[81] Zachary Reynolds, Abhinandan Jayanth, Ugur Koc, Adam Porter, Rajeev Raje,
and James Hill. 2017. Identifying and Documenting False Positive Patterns
Generated by Static Code Analysis Tools. In 2017 IEEE/ACM 4th International
Workshop on Software Engineering Research and Industrial Practice (SER IP). IEEE,
55–61. https://doi.org/10.1109/SER-IP.2017..20

[82] Caitlin Sadowski, Edward Aftandilian, Alex Eagle, Liam Miller-Cushon, and
Ciera Jaspan. 2018. Lessons from Building Static Analysis Tools at Google.
Commun. ACM 61, 4 (March 2018), 58–66. https://doi.org/10.1145/3188720

[83] Caitlin Sadowski, Jeffrey van Gogh, Ciera Jaspan, Emma Soderberg, and Collin
Winter. 2015. Tricorder: Building a Program Analysis Ecosystem. In 2015
IEEE/ACM 37th IEEE International Conference on Software Engineering. IEEE,
Florence, Italy, 598–608. https://doi.org/10.1109/ICSE.2015.76

[84] Neil Salkind. 2020. Encyclopedia of Research Design. SAGE Publications, Inc.
https://doi.org/10.4135/9781412961288

[85] Ben Shneiderman. 1982. Designing computer system messages. Commun. ACM
25, 9 (1982), 610–611. https://doi.org/10.1145/358628.358639

[86] Miltiadis Siavvas, Erol Gelenbe, Dionysios Kehagias, and Dimitrios Tzovaras.
2018. Static Analysis-Based Approaches for Secure Software Development. In
Security in Computer and Information Sciences, Erol Gelenbe, Paolo Campegiani,
Tadeusz Czachórski, Sokratis K. Katsikas, Ioannis Komnios, Luigi Romano, and
Dimitrios Tzovaras (Eds.). Springer International Publishing, Cham, 142–157.
https://doi.org/10.1007/978-3-319-95189-8_13

[87] Programming skills. 2020. Free Core Java Online Practice Test and Preparation
for Exam. Retrieved June 2020 from https://www.pskills.org/corejava.jsp

[88] Justin Smith, Lisa Nguyen Quang Do, and Emerson Rex Murphy-Hill. 2020. Why
Can’t Johnny Fix Vulnerabilities: A Usability Evaluation of Static Analysis Tools
for Security. In Sixteenth Symposium on Usable Privacy and Security (SOUPS 2020).
USENIX Association, 221–238. https://www.usenix.org/conference/soups2020/
presentation/smith

[89] Justin Smith, Brittany Johnson, Emerson Murphy-Hill, Bill Chu, and
Heather Richter Lipford. 2015. Questions Developers Ask While Diagnosing
Potential Security Vulnerabilities with Static Analysis. In Proceedings of the
2015 10th Joint Meeting on Foundations of Software Engineering (Bergamo, Italy)
(ESEC/FSE 2015). Association for Computing Machinery, New York, NY, USA,
248–259. https://doi.org/10.1145/2786805.2786812

[90] Justin Smith, Brittany Johnson, Emerson Murphy-Hill, Bei-Tseng Chu, and
Heather Richter. 2019. How Developers Diagnose Potential Security Vulnerabil-
ities with a Static Analysis Tool. IEEE Transactions on Software Engineering 45,
9 (Sept. 2019), 877–897. https://doi.org/10.1109/TSE.2018.2810116

[91] Justin Smith, Chris Theisen, and Titus Barik. 2020. A Case Study of Software
Security Red Teams at Microsoft. In 2020 IEEE Symposium on Visual Languages
and Human-Centric Computing (VL/HCC). IEEE Computer Society, Los Alamitos,
CA, USA, 1–10. https://doi.org/10.1109/VL/HCC50065.2020.9127203

[92] Mohammad Tahaei and Kami Vaniea. 2019. A Survey on Developer-Centred
Security. In 2019 IEEE European Symposium on Security and Privacy Workshops
(EuroS&PW). IEEE, 129–138. https://doi.org/10.1109/EuroSPW.2019.00021

[93] Tyler W. Thomas, Heather Lipford, Bill Chu, Justin Smith, and Emerson Murphy-
Hill. 2016. What Questions Remain? An Examination of How Developers
Understand an Interactive Static Analysis Tool. In Twelfth Symposium on Us-
able Privacy and Security (SOUPS 2016). USENIX Association, Denver, CO,
7 pages. https://www.usenix.org/system/files/conference/soups2015/wsiw16_
paper_thomas.pdf

[94] V. Javier Traver. 2010. On Compiler Error Messages: What They Say and What
They Mean. Adv. in Hum.-Comp. Int. 2010, Article 3 (Jan. 2010), 26 pages.
https://doi.org/10.1155/2010/602570

[95] Omer Tripp, Salvatore Guarnieri, Marco Pistoia, and Aleksandr Aravkin. 2014.
ALETHEIA: Improving the Usability of Static Security Analysis. In Proceedings
of the 2014 ACM SIGSAC Conference on Computer and Communications Security
(Scottsdale, Arizona, USA) (CCS ’14). Association for Computing Machinery,
New York, NY, USA, 762–774. https://doi.org/10.1145/2660267.2660339

[96] Martin Ukrop, Lydia Kraus, Vashek Matyas, and Heider Ahmad Mutleq Wahsheh.
2019. Will You Trust This TLS Certificate? Perceptions of People Working in
IT. In Proceedings of the 35th Annual Computer Security Applications Conference
(San Juan, Puerto Rico) (ACSAC ’19). Association for Computing Machinery,
New York, NY, USA, 718–731. https://doi.org/10.1145/3359789.3359800

[97] Dirk van der Linden, Pauline Anthonysamy, Bashar Nuseibeh, Thein Than Tun,
Marian Petre, Mark Levine, John Towse, and Awais Rashid. 2020. SchröDinger’s
Security: Opening the Box on App Developers’ Security Rationale. In Proceedings
of the ACM/IEEE 42nd International Conference on Software Engineering (Seoul,
South Korea) (ICSE ’20). Association for Computing Machinery, New York, NY,
USA, 149–160. https://doi.org/10.1145/3377811.3380394

[98] Carmine Vassallo, Sebastiano Panichella, Fabio Palomba, Sebastian Proksch,
Harald C. Gall, and Andy Zaidman. 2020. How developers engage with static
analysis tools in different contexts. Empirical Software Engineering 25, 2 (March
2020), 1419–1457. https://doi.org/10.1007/s10664-019-09750-5

[99] Carmine Vassallo, Sebastiano Panichella, Fabio Palomba, Sebastian Proksch,
Andy Zaidman, and Harald C. Gall. 2018. Context is king: The developer per-
spective on the usage of static analysis tools. In 2018 IEEE 25th International

Conference on Software Analysis, Evolution and Reengineering (SANER) (Cam-
pobasso). IEEE, 38–49. https://doi.org/10.1109/SANER.2018.8330195

[100] Daniel Votipka, Desiree Abrokwa, and Michelle L. Mazurek. 2020. Building and
Validating a Scale for Secure Software Development Self-Efficacy. In Proceedings
of the 2020 CHI Conference on Human Factors in Computing Systems (Honolulu,
HI, USA) (CHI ’20). Association for Computing Machinery, New York, NY, USA,
1–20. https://doi.org/10.1145/3313831.3376754

[101] Charles Weir, Ingolf Becker, James Noble, Lynne Blair, M. Angela Sasse, and
Awais Rashid. 2020. Interventions for long-term software security: Creating a
lightweight program of assurance techniques for developers. Software: Practice
and Experience 50, 3 (2020), 275–298. https://doi.org/10.1002/spe.2774

[102] William R. Nichols and Thomas Scanlon. 2018. DoD Developer’s Guidebook
for Software Assurance. Technical Report. Software Engineering Institute -
Carnegie Mellon University. 111 pages. https://resources.sei.cmu.edu/asset_
files/SpecialReport/2018_003_001_538761.pdf

[103] Brett Williams, Andrys Onsman, and Ted Brown. 2010. Exploratory factor
analysis: A five-step guide for novices. Australasian Journal of Paramedicine 8,
3 (2010), 1–13. https://doi.org/10.33151/ajp.8.3.93

[104] Michael S Wogalter. 2019. Communication-Human Information Processing
(C-HIP) Model in Forensic Warning Analysis. In Proceedings of the 20th Con-
gress of the International Ergonomics Association (IEA 2018), Sebastiano Bagnara,
Riccardo Tartaglia, Sara Albolino, Thomas Alexander, and Yushi Fujita (Eds.).
Springer International Publishing, Cham, 761–769. https://doi.org/10.1007/978-
3-319-96080-7_92

[105] Fiorella Zampetti, Simone Scalabrino, Rocco Oliveto, Gerardo Canfora, and Mas-
similiano Di Penta. 2017. How Open Source Projects Use Static Code Analysis
Tools in Continuous Integration Pipelines. In Proceedings of the 14th Interna-
tional Conference on Mining Software Repositories (Buenos Aires, Argentina)
(MSR ’17). IEEE Press, 334–344. https://doi.org/10.1109/MSR.2017.2

[106] Sebastian Zimmeck, Ziqi Wang, Lieyong Zou, Roger Iyengar, Bin Liu, Florian
Schaub, Shomir Wilson, Norman M Sadeh, Steven M Bellovin, and Joel R Rei-
denberg. 2017. Automated Analysis of Privacy Requirements for Mobile Apps.
In NDSS. Internet Society, 15 pages. https://doi.org/10.14722/ndss.2017.23034

A SAT USAGE PLOTS
Plot contexts are described within the main document, in particular
in Section 4.1. We include them here for more details and as a point
of reference for future studies.

0 10 20 30 40

Count of participants

Daily

I have used them only a few times

Weekly

I have never used them but I have heard of them

Monthly

I have installed them but almost never used them

I only heard about them in this survey

Figure 6: Answers to “how often do you use static analysis
tools for any software development purpose, not just secu-
rity?”

https://doi.org/10.1109/SER-IP.2017..20
https://doi.org/10.1145/3188720
https://doi.org/10.1109/ICSE.2015.76
https://doi.org/10.4135/9781412961288
https://doi.org/10.1145/358628.358639
https://doi.org/10.1007/978-3-319-95189-8_13
https://www.pskills.org/corejava.jsp
https://www.usenix.org/conference/soups2020/presentation/smith
https://www.usenix.org/conference/soups2020/presentation/smith
https://doi.org/10.1145/2786805.2786812
https://doi.org/10.1109/TSE.2018.2810116
https://doi.org/10.1109/VL/HCC50065.2020.9127203
https://doi.org/10.1109/EuroSPW.2019.00021
https://www.usenix.org/system/files/conference/soups2015/wsiw16_paper_thomas.pdf
https://www.usenix.org/system/files/conference/soups2015/wsiw16_paper_thomas.pdf
https://doi.org/10.1155/2010/602570
https://doi.org/10.1145/2660267.2660339
https://doi.org/10.1145/3359789.3359800
https://doi.org/10.1145/3377811.3380394
https://doi.org/10.1007/s10664-019-09750-5
https://doi.org/10.1109/SANER.2018.8330195
https://doi.org/10.1145/3313831.3376754
https://doi.org/10.1002/spe.2774
https://resources.sei.cmu.edu/asset_files/SpecialReport/2018_003_001_538761.pdf
https://resources.sei.cmu.edu/asset_files/SpecialReport/2018_003_001_538761.pdf
https://doi.org/10.33151/ajp.8.3.93
https://doi.org/10.1007/978-3-319-96080-7_92
https://doi.org/10.1007/978-3-319-96080-7_92
https://doi.org/10.1109/MSR.2017.2
https://doi.org/10.14722/ndss.2017.23034

CHI ’21, May 8–13, 2021, Yokohama, Japan Mohammad Tahaei, Kami Vaniea, Konstantin Beznosov, and Maria K. Wolters

0 10 20 30 40

Count of participants

ESLint
SpotBugs+FindBugs

Checkstyle
Pylint

Sonarqube
JSHint

PMD
Flake8
Fortify

Coverity
Other

Veracode
RuboCop

Kiuwan
Checkmarx

Figure 7: Answers to “which static analysis tools do you cur-
rently use?” SpotBugs and FindBugs aremerged into one bar
as SpotBugs is a successor of FindBugs. ESLint and JSHint
are JavaScript specific, Checkstyle is primary designed for
coding standards and style, Pylint and Flake8 are Python
specific, and RuboCop is for Ruby programs. PMD, Fortify,
Coverity, Veracode, Checkmarx have security rules for Java.

0 10 20 30 40 50 60 70

Count of participants

While writing code

Continuous integrations build

Code reviewing

Pre-commit/pre-push

�ality check

Refactoring

Code maintenance

Debugging

Other

Figure 8: Answers to “inwhat stage of software development
do you use static analysis tools?”

0 20 40 60 80 100

% of participants

Style

Security

Reliability

Performance

Memory checks

Maintainability

Dependencies

Concurrency

Best practices

Never Rarely Occasionally A moderate amount A great deal

Figure 9: Answers to “How often do you use static analysis
tools to find the following types of issues?”

0 20 40 60 80 100

% of participants

Static analysis tools violations should break the build

Static analysis tools ease manual activities

Static analysis tools are di�cult to con�gure

Static analysis tools are buggy

Noti�cations reported by static analysis tools are
relevant for improving the security of so�ware

I use static analysis tools because my colleagues use them

I do not need static analysis tools

Strongly disagree Disagree Neither agree nor disagree Agree Strongly agree

Figure 10: Answers to “please rate how much you agree or
disagree with the following statements.” Items are are taken
from Vassallo et al [98].

Security Notifications in Static Analysis Tools: Developers’ Attitudes, Comprehension, and Ability to Act on Them CHI ’21, May 8–13, 2021, Yokohama, Japan

B LIKERT ITEMS
Table 9 shows all Likert items that the participants saw after
each sample code with the factor loading, mean, and standard
deviation per condition.

Table 9: Analysis of Likert items. FL stands for factor loading from the factor analysis. Three columns with conditions repre-
sent mean (𝜇) and standard deviation (𝜎) per item across the four tasks.

FL
Control SonarQube SpotBugs

𝜇𝜇𝜇 𝜎𝜎𝜎 𝜇𝜇𝜇 𝜎𝜎𝜎 𝜇𝜇𝜇 𝜎𝜎𝜎

Attitudes towards the notifications (Cronbach’s alpha = .87)
1 I find the notification difficult to understand (reversed). .58 3.03 1.06 3.87 0.96 3.53 1.18
2 The notification provided enough information to understand the issues. .80 2.48 1.10 4.01 0.90 3.98 0.93
3 I need additional information to understand the issues (reversed). .50 2.58 1.18 3.54 1.21 3.42 1.28
4 The notification helped me understand the issues. .75 2.92 1.08 4.06 0.73 3.88 0.95
5 The notification’s descriptions are just like how I would describe the issues. .80 2.42 1.20 3.67 0.92 3.58 1.02
6 The notification’ language sounds natural to me. .58 3.49 1.04 3.97 0.71 3.81 0.99
7 The notification tell me why the issues could be important. .71 2.89 1.25 4.13 0.83 4.19 .0.92
8 The notification is consistent with other notifications I receive in my prior software development tasks. .55 2.97 0.96 3.67 0.91 3.48 1.00
Prior knowledge and experience (Cronbach’s alpha = .78)
9 I have experience in writing {client server requests, SQL queries, code for databases, encryption code}. .58 3.45 1.20 3.60 1.34 3.59 1.30
10 I used my prior knowledge about the issues to choose the code snippet solution. .73 3.88 0.94 3.52 1.11 3.58 1.24
11 My prior knowledge about the issues was more useful than the notification content when selecting a code snippet solution. .74 3.71 1.03 3.09 1.23 3.16 1.23
Importance and severity of the vulnerability (Cronbach’s alpha = .69)
12 The issues are of low severity (reversed). .81 3.89 0.89 4.07 1.12 3.99 1.07
13 It is likely that an attacker can exploit the issues. .63 3.88 0.90 4.06 1.10 4.26 0.93
14 I would try to fix the issues if this was a real-world project. .46 4.30 0.83 4.52 0.69 4.41 0.90
Confidence in the solution (Cronbach’s alpha = .78)
15 I am confident that the code snippet solution I chose would solve the issues. .67 3.42 1.18 3.71 1.08 3.85 1.10
16 I understand how the code snippet solution fixes the issues. .63 3.66 1.05 3.90 0.93 3.99 1.07
Items that didn’t belong to any factors
17 The issues are rare in software projects (reversed). <.40 3.66 0.96 3.94 0.83 3.72 0.92
18 I have encountered the notification before. <.40 2.29 0.95 2.97 1.25 3.58 1.32

	Abstract
	1 Introduction
	2 Related Work
	2.1 Prevalence of known vulnerabilities
	2.2 Static analysis tools (SATs)
	2.3 Communicating with developers

	3 Method
	3.1 Apparatus and materials
	3.2 Survey instrument
	3.3 Participants
	3.4 Data analysis
	3.5 Limitations

	4 Results
	4.1 Usage of static analysis tools
	4.2 How effective is SAT security notification content at assisting developers in fixing vulnerabilities?
	4.3 What are developers' attitudes toward SAT security notification content?
	4.4 How do developers' attitudes toward SAT security notification content correlate with their ability to fix vulnerabilities?
	4.5 How do developers comprehend SAT security notification content?

	5 Discussion and future work
	6 Conclusion
	Acknowledgments
	References
	A SAT Usage Plots
	B Likert items

