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Abstract 

Purpose 

The purpose of this paper is to propose a simplified representation of the fire load in CFD to 

represent the effect of large-scale travelling fire, and to highlight the relevance of such an 

approach while coupling the CFD results with FEM to evaluate related steel temperatures, 

comparing the numerical outcomes with experimental measurements.  

Design/methodology/approach 

This paper presents the setup of the CFD simulations (FDS software) and its corresponding 

assumptions, and the calibration of two natural fire tests while focusing on gas temperatures 

and on steel temperatures measured on a central column. For the latter, two methods are 

presented: one based on EN1993-1-2 and other linking CFD and FEM (SAFIR® software). 

Findings 

This paper suggests that such an approach can allow for both an acceptable representation of 

the travelling fire in terms of fire spread and steel temperatures. On the other hand, there are 

therefore inevitable limitations inherent to the simplifications made, these are also discussed. 

Regarding steel temperatures, the two methods lead to quite similar results, but with the ones 

obtained via CFD-FEM coupling closer to the ones measured. 

Originality 

This work has revealed that the proposed simplified representation of the fire load appears to 

be appropriate to evaluate the temperature of steel structural elements within reasonable limits 

on computational time, making it potentially desirable for practical applications. This paper 

also presents the first comparisons of FDS-SAFIR® coupling with experimental results, 

highlighting promising outcomes.  
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1. Introduction 

The development of knowledge concerning the appropriate representation of the fire load for 

large compartments in CFD is required to be able to further analyze the influence of 

compartment geometry on the development of a travelling fire, and to perform numerical 

analyses of the temperature development. The coupling with FEM allows for assessing the 

mechanical behavior of structures that considers comprehensively the travelling nature of the 

fire. Within the context of the European RFCS TRAFIR project, a series of three natural fire 

tests were performed, involving a steel-framed structure and a continuous fuel bed made of 

several layers of wood sticks provided in three different directions (alternation of 60°-120°-

180°) (Nadjai et al., 2020). The aim of this experimental campaign was to perform uncontrolled 

tests based on a well-established fire load, to characterize the thermal impact generated by 

travelling fires, to evaluate the influence of the ventilation conditions on the development of 

the fire and to assess the fire impact on the steel structural elements. A parametrical study using 

the FDS software was conducted to calibrate the model using a simplified representation of the 

fire load. Simplifications were targeted, to afterwards enable reproduction of a broader range 

of scenarios encompassing different fires and end-use situations, so as to generate an extended 

virtual experimental dataset, as well as to facilitate analyses of real building dimensions.  

The CFD simulations consider a simplified representation of the continuous fire load consisting 

of discrete volumes (cubes) based on a regular arrangement. The overall heat release rate per 

unit area curve is used as an input and the spread mechanism is determined using planar devices 

on each face of the cribs to measure the temperatures on the solid surfaces. If the surface 

temperature reaches the ignition temperature on at least one face of the volume, then all 

surfaces are set to start burning following the prescribed heat release rate per unit area curve.  

A similar chessboard pattern was used by Horová (2015), to calibrate the Veselí fire test carried 

out in the Czech Republic in 2011 (F. Wald et al., 2011) launched in the frame of the European 

project COMPFIRE, having as the main objective to provide an integrated approach for the 

practical application of performance-based fire engineering design of composite structures. In 

the experimental campaign, the fire load was composed of wood sticks of dimensions 5 x 5 x 

100 cm placed into 24 cribs. The total fire load consisted of 24 wood piles placed closely one 

to another, corresponding to a value of 198.4 MJ/m2. Horová highlights that while adoption of 

wood cribs arranged into piles as fire load in the experiment seems to be very advantageous it 

causes significant drawback in mathematical modelling. Indeed, the small size of the sticks (by 

comparison with the compartment size) implies the definition of small cell size in the vicinity 
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of the fire load which results in very time consuming calculations. Horová therefore states that 

substituting highly resolved wood piles with a fictitious material of a simple geometry may 

lead to shorter computational times, and proposes a mass layers pattern consisting of blocks of 

wood with the layout of a chessboard, keeping properties and total dimension of the original 

wood crib as close as possible. This model was calibrated against the growing phase of the heat 

release rate curve and gas temperatures from the Veselí fire test (comparison is focused on 

distribution of gas temperature at the ceiling level). The calibration is focused on gas 

temperatures along the beams. Calculated gas temperatures reach slightly higher values in 

comparison with the measured values but the numerical model shows good agreement in the 

growing phase. A significant difference is observed for the descending phase. 

Degler et al. (2015) used a similar pattern to perform a priori numerical analysis of the Tisova 

fire test (Czech Republic), which was performed to investigate the impact of a travelling fire 

on concrete and composite structures (Rush et al., 2016). A continuous fuel bed of 170 m2 

comprised of wood sticks and corresponding to a fire load of 680 MJ/m2 was laid in a 

compartment of 230 m2, part of a 4-storey concrete frame building. The aim of the numerical 

investigation was to perform a priori analyses of gas temperatures to be expected and to 

provide guidelines concerning the amount of fuel to be used in the test. 

Charlier et al. (2018) used a similar approach to perform numerical works in the frame of the 

TRAFIR project to analyze the influence of compartment geometry and the interaction with 

representative fuel loads to explore the conditions leading to the development of a travelling 

fire. No comparison with an experimental campaign was performed, but the CFD results were 

used to perform numerical analyses of the temperature development and resulting mechanical 

behaviour of a theoretical steel structure using SAFIR® software. 

The above mentioned findings highlight that adaptation is needed to represent the fire load, 

when structural analysis follows. Indeed, fire dynamics deals with a much smaller scale than 

the structural mechanics and yet these two sciences needs to be combined, requiring a 

simplified approach to model the fire load. This paper suggests that such an approach can allow 

for both an acceptable representation of the travelling fire in terms of fire spread & steel 

temperatures and an acceptable computational time. On the other hand, there are therefore 

inevitable limitations inherent to the simplifications made, and these are also discussed.  

This paper presents the setup of the CFD simulations and its corresponding assumptions, and 

the calibration of two of the three TRAFIR natural fire tests. Gas temperatures measured at 
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mid-width, along the length of the compartment (at several levels) and the rate of heat release 

(evaluated through the mass loss recording on a central platform) are compared with the ones 

resulting from the CFD simulations. Furthermore, steel temperatures measured on a central 

steel column made of hot rolled profile are compared with the CFD results following two 

methods: one based on the incremental formula from EN1993-1-2 and other one linking CFD 

(FDS software) and FE (SAFIR software) following the weak coupling approach described by 

Tondini et al. (2016). In the fire engineering field, few applications of coupling CFD with FE 

are available. Wickström et al. (2007) presented a way of transferring to the thermal/structural 

model the description of the gas phase via the adiabatic surface temperature. The European 

RFCS project FIRESTRUC (Welch et al., 2008) dealt with studying different coupling 

approaches and using different software. Tondini et al. (2012) launched a priori simulations to 

model a steel rack system to be placed next to a pool fire and later, Tondini et al. (2016) 

described a comparison between the fire performance of a theoretical steel-concrete composite 

open car park (analysed while by applying the Hasemi model and the FDS–SAFIR integrated 

methodology). Charlier et al. (2018) applied the FDS–SAFIR integrated methodology to 

evaluate temperature development and resulting mechanical behaviour of a theoretical steel 

structure subjected to travelling fire. The present paper is the first to compare results from this 

FDS–SAFIR integrated methodology with experimental results. 

2. Travelling fire tests in experimental steel building 

The experimental campaign of the TRAFIR project aimed at performing large-scale tests in 

real building dimensions with no control over of the fire dynamics (Nadjai et al., 2020). Three 

tests were planned: 

- A fuel controlled travelling fire, referred as test n°1; 

- A ventilation controlled fire intended to lead to a flashover, referred as test n°3: 

- Another travelling fire, with less ventilation than in test n°1, referred as test n°2. 

During these tests, gas temperatures, steel temperatures and mass loss rate were recorded, and 

this data serves as a basis for the calibration of CFD models. 

 

2.1 Steel-framed structure and openings 

For the natural fire tests, the compartment was designed to represent a part of an entire office 

layout, consisting of steel beams and columns for the main structural frame, while hollow-

core precast slabs were used for the construction of the roof. The structure layout (see Figure 

1- Layout plan of the test compartment and location of TRL4 to TRL8 (dimensions in mm)) 
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and fire load (described below) were identical for the three tests. Only the opening layouts 

were modified, to assess the influence of the ventilation conditions on the development of 

the fire. The floor plan between the outer gridlines of the test structure was 15m x 9m and 

the level of the ceiling from the floor finish surface was 2.90 m. This paper considers tests 

n°1 and n°2.  

 

For test n°1, a concrete wall was constructed along the shorter dimension of the 

compartment, along gridline 1. In addition to the back wall, down-stands were provided 

along the longer dimension of the compartment along gridlines A and B. Neither the wall 

nor the down-stands are present along the shorter dimension of the compartment, along 

gridline 4. The back wall is constructed using precast concrete, while the down-stands 

consist of two layers of gypsum fire boards having a thickness of 2 x 12.5 mm. The total 

surface area of openings is 85.2 m2.  

 

For test n°2, an additional concrete block wall was constructed along the other shorter 

dimension (along gridline 4). Furthermore, a 0.8 meter height concrete block soffit was 

constructed along the longer dimensions (gridlines A and D) such that the opening height is 

1 meter along both longer sides of the compartment. This configuration results in openings 

with a total area of 30 m2. These openings were equally distributed along gridlines A and D 

with an area of 15 m2 each. Photographs of the test compartments can be seen on Figure 2 

(a) and (b). 
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Figure 1- Layout plan of the test compartment and location of TRL4 to TRL8 (dimensions in mm) 

  

  
Figure 2 - Photographs of the experimental campaign carried out by Ulster University in the frame of TRAFIR 

project: (a) compartment for test n°1 ; (b) compartment for test n°2 ; (c) continuous fire load made of wood 
sticks for test n°1 and test n°2 ; (d) fire at the beginning of test n°2  

2.2 Fire load 

Also in the frame of the TRAFIR project, Franssen et al. (2019) performed a series of fire tests 

with uniformly distributed cellulosic fire loads, aiming at defining an arrangement 

representative of an office building according to Eurocode 1 (CEN, 2002). This work led to 

devise a well-established methodology (Gamba et al., 2020), used to define the fuel load 

(a) (b) 

(c) (d) 
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arrangement for the natural fire tests considered in this paper. The wood species consisted of 

picea abies with an average density of 470 kg/m3. To achieve a medium fire growth rate, 9 

layers of wood sticks with an axis distance of 120 mm (90 mm intervals) were provided in 

three different directions (alternation of 60°-120°-180°), as shown in Figure 2 (c), resulting in 

a fire load density of 511 MJ/m2 (80% fractile, as given in EN1991-1-2 for an office building). 

The fuel bed was provided along the centre of the test compartment, in a rectangular band shape 

of 14 m long stretching from wall to wall along the longer dimension of the test compartment 

(a gap of 0.5 m was kept between the short walls and the edge of the fire load). The width of 

the fuel bed was 4.2 m and was aligned with the centreline of the compartment. The wood 

sticks were provided on a platform constructed using concrete blocks and gypsum fireboards: 

the top surface of the platform was placed at 325 mm from the floor finish level. For each test, 

the ignition was defined at a point located at mid-width of the fire load, 0.5 m from its edge 

(i.e. at a distance of 1 m from the back wall). The fire started to grow close to gridline 1 and 

then travelled from gridline 1 to gridline 4 (see Figure 2 (d)).  

3. Modelling the experimental campaign through CFD  

Several CFD simulations were launched with the FDS software (version 6.7.3) (McGrattan et 

al., 2017) to calibrate the model for these natural fire tests, and the paper presents the 

comparison between numerical and experimental results in terms of gas and steel temperatures. 

Steel temperatures are computed using two different methods: using the incremental formula 

from EN1993-1-2 (CEN, 2005) and while coupling CFD and FEM. The CFD simulations 

consider a simplified representation of the continuous fire load consisting of discrete volumes 

(cubes) based on a regular arrangement (no detailed representation of a wood crib involving 

alternation of sticks and air gap was used here). Simplifications were targeted, as the modelling 

of the real wood stick size in CFD requires a very fine mesh and therefore a very significant 

computational time for real building geometries. Several parameters (FDS cell size, cubes size, 

ignition temperature, heat release rate per unit area and its evolution with time) were varied to 

reach the final CFD model presented below. These CFD simulations were launched on an HPC 

(High Performance Computing) cluster, and the simulations required 36.9 and 41.6 hours (for 

test n°1 and n°2, respectively) to complete using 24 cores (6 MPI processes with 4 OpenMP 

threads per process). 

3.1 Computational domain and materials 
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The FDS domain’s VENTs are all defined as OPEN, except the lower limit (representing the 

floor) which is set as INERT (the VENT group is used to prescribe planes adjacent to 

obstructions or external walls). The ceiling is made of 15 cm of concrete, and the short wall 

built along gridline 1 is represented as a succession of 3 layers: concrete (8 cm), insulation type 

1 (10 cm) and concrete (15 cm). The insulation type 2 material is used to represent the down-

stands (1,5 cm thickness) and the platform (3 cm thickness) on which the fire load lies. For test 

n°2, the additional soffit (along the longer dimension) is made of 15 cm of manufactured 

concrete blocks. Finally, the additional short wall (along gridline 4) is defined with two layers: 

1.5 cm of insulation type 2 and 15 cm of manufactured concrete blocks. The thermal properties 

of the above-mentioned materials are described in Table I. As in the test, the platform on which 

the fire load lies is elevated from the floor. All the OBST’s are less than or equal to one cell 

thick and the attached SURFs have a backing defined as “exposed” (i.e. the innermost layer is 

exposed to the air temperature on the back side). The domain size is 18.56m x 12.48m x 3.04m 

with cells of 0.16m x 0.16m x 0.16m, resulting in a total cell number equal to 171 912. The 

domain is divided into six meshes distributed along the length of the compartment (i.e. along 

gridlines A-B-C-D). 

 
Table I – Thermal properties of the different materials defined in the CFD model  

 Conductivity 
[W/m/K] 

Specific heat 
[kJ/kg/K] 

Density 
[kg/m3] 

Emissivity 
 [-] 

Concrete 1.6 1.0 2400 0.8 

Insulation type 1 0.09 0.66 45 0.9 

Insulation type 2  0.24 1.25 900 0.89 

Manufactured 
concrete blocks 

0.92 1.05 1973 0.8 

 

3.2 A simplified representation of the fire load 

The cell size used in the FDS models depends highly on the situation that is modelled and on 

the purpose of the simulation. Several attempts are considered: having cell size equal to 0.16 

m or 0.32 m and cube size equal to 0.16 m, 0.32 m or 0.64m. Concerning the cube size, Horová 

(2015) advises to define cell size at least two times smaller than the object size. Indeed, no 

proper fire spread was achieved for the simulations where the cell size equals the cube size, as 

expected. The final calibrated model considers a 0.16m cell size and 0.32 m cube size, which 

lead to an acceptable computation time. The overall heat release rate was used as input to 
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VENTs, with each VENT representing a cube face (the lower face excluded). The wood 

constituting the cubes (Picea abies, the Norway spruce or European spruce) has the following 

chemical composition: C1.0H3.584O1.55 with an assumed soot yield of 0.015 [g/g] (adopted from 

the SFPE Handbook (2002)) and a heat of combustion of 1.684 MJ/kg (obtained from a bomb 

calorimeter test conducted by the University of Edinburgh). The conductivity and the specific 

heat of the modelled wood vary with temperature (as adopted by Yang (2016)) and its density 

is approximately 468 kg/m3 (measured by Liège University). The modelled compartment for 

tests n°1 and n°2 and the simplified fire load (which is identical for each) are depicted on Figure 

3 and Figure 4 (a), respectively. 

 
Figure 3 – FDS model for the fire test n°1 with the transfer zone for SAFIR highlighted  

 

 

Figure 4 – (a) FDS model for the fire test n°2 with the transfer zone for SAFIR highlighted ; (b) Location of the 
five points of interest for steel temperature in SAFIR  

 

3.3 Fire spread and heat release rate 

All the faces of each cube, except the ones facing the floor, are set as burning surfaces. Heat 

release rate per unit area curves are predefined and assigned to these burning faces. The spread 

mechanism is governed by planar devices placed on each burning face to measure the 

temperatures on the solid surfaces. In FDS, quantitative results can be obtained through the use 

of devices, evaluated using cell centered or face centered values of the cell the device is located 

in. Devices on solid surfaces allow prescribing a solid phase quantity, and they can be coupled 

with a spatial statistics option (in which case the output quantity is not associated with just a 

single point on the surface). The spatial statistics option MAX was used, and caused FDS to 
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write out the maximum value of the surface temperature over the cells that are included in the 

specified bounded volume (Charlier et al., 2020).  If the latter reaches 250°C on at least one 

face of the cube, then all five burning faces are set to ignite and follow the prescribed heat 

release rate per unit area (HRRPUA) curve. This ignition temperature was chosen based upon 

cone calorimeter testing which found a critical heat flux for ignition of c. 13 kW/m2. The 

RAMP function describing the evolution of HRRPUA with time, presents a symmetric profile: 

a growing phase, a plateau, a peak, a plateau and finally a decay phase. For sake of clarity, the 

HRRPUA parameter is redefined here via two parameters: HRRPUA_floor refers to the heat 

release rate per unit area of floor, while HRRPUA_assigned refers to the heat release rate per 

unit area of burning faces. The calibrated model has a plateau HRRPUA_floor equal to 250 

kW/m2 (corresponding to HRRPUA_assigned equal to 217 kW/m2) and a peak 

HRRPUA_floor equal to 500 kW/m2 (corresponding to HRRPUA_assigned equal to 434 

kW/m2). Indeed, the fire load consists of 21 columns and 6 rows of cubes (i.e. a total burning 

surface of 64.5 m2) placed on a floor area of 56 m2. The surface below the RAMP function 

(and indirectly the duration of this function) can be evaluated from a given HRRPUA and a 

given fire load. In the experimental campaign, a fire load of 511 MJ/m2, representative of an 

office building according to EN1991-1-2, was set up. 

4. Calibration of the fire tests – gas temperatures 

4.1 Procedure 

Gas temperatures in the test compartment were recorded at different locations using 

thermocouples. This section focuses on thermocouple trees TRL4 to TRL8, placed within the 

central zones along the length of the compartment, between gridlines B and C, as depicted on 

Figure 1. The first thermocouple tree (TRL4) is positioned at 2.5m from the back wall (gridline 

1), i.e. at 1.5 m from the source of ignition. These thermocouple trees are equidistant, with 

2.5m between each of them. Each tree was equipped with thermocouples provided at six 

different levels: at 0.5 m (Level 1), at 1 m (Level 2), at 1.5 m (Level 3), at 2 m (Level 4), at 2.5 

m (Level 5) and at 2.7 m (Level 6) from the floor. The gas temperatures measured through the 

thermocouples are compared with FDS output 'THERMOCOUPLE' which is the temperature 

of a modelled thermocouple (with bead size set to 1.5mm as in the experimental campaign).  

4.2 Comparison of gas temperatures 

The graphs from Figure 5 to Figure 7 present the gas temperatures measured during test n°1 

and the ones resulting from FDS, while the graphs from Figure 8 to Figure 10 present the gas 
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temperatures measured during test n°2 and the ones resulting from FDS. It can be observed 

that the global fire spread is well captured, as well as main tendency in terms of temperatures. 

Note that the temperatures generated by FDS for lower levels are higher than the ones 

measured, while the temperatures generated by FDS for middle and upper levels are closed to 

the ones measured. For level 2: the FDS temperature profiles present sharp growing and sharp 

decaying phases, while for levels 4 and 6 the FDS temperature profiles present first a smooth 

growing phase before a second sharp growth, then a sharp decay, followed by another smooth 

decaying phase. This corresponds to what was measured during the test and can be explained 

by the hot gases developing at the upper part of the compartment.  Nevertheless, the FDS model 

is not able to capture the different temperature profile of TRL4 and TRL5, as well as the small 

acceleration which can be seen from the test curves TRL6, TRL7 and TRL8 being a bit closer 

in time. It has to be noted that the FDS results corresponding to TRL8 provide lower 

temperatures than other TRLs, which can be explained by the fire plume shape, which leans 

backwards due to air entrainment from the open end of the compartment.  This methodology 

is not aimed at performing detailed analysis of the fire itself: it is aimed at evaluating the 

heating of the structural elements of the compartment to, in the end, evaluate the mechanical 

behavior of the structure subjected to travelling (or spreading) fire. Gas temperatures therefore 

represent an intermediate result to the steel temperatures, the topic of the next section. 

  

Figure 5. Comparison of gas temperatures for test n°1 at Level 2 (a) test measurements; (b) FDS results 
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Figure 6. Comparison of gas temperatures for test n°1 at Level 4 (a) test measurements; (b) FDS results 

 

  

Figure 7. Comparison of gas temperatures for test n°1 at Level 6 (a) test measurements; (b) FDS results 

  

Figure 8. Comparison of gas temperatures for test n°2 at Level 2 (a) test measurements; (b) FDS results 
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Figure 9. Comparison of gas temperatures for test n°2 at Level 4 (a) test measurements; (b) FDS results 

 

  

Figure 10. Comparison of gas temperatures for test n°2 at Level 6 (a) test measurements; (b) FDS results 
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evaluate the related steel temperature using the incremental formula from EN1993-1-2 (CEN, 

2005). This method considers a constant temperature through a given section (i.e. at a given 

height). In a second and more complex step, a coupling between CFD (FDS software) and FE 

(SAFIR® software version 2019b0 (Franssen and Gernay, 2017)) was used. Radiative 

intensities and gas temperatures calculated by FDS have been used by SAFIR® to calculate 

the temperatures in the steel column. This coupling generates a non-uniform temperature 

distribution across the different sections of the steel column.  

The steel temperature of a structural element can be obtained, in a simplified manner, from the 

incremental formula from EN1993-1-2 section 4.2.5.1 providing the increase of temperature 

∆θ ,  in an unprotected steel member during a time interval ∆t, see equation (1). The 

unprotected column is a hot rolled steel profile HE 200 A, therefore having a section factor of 

211m-1, and the correction factor for the shadow effect was considered equal to 1. The 

temperature is calculated for a column corresponding to the TRL7 position, at five heights: 

Level 1 to Level 5. The analysis was carried out using the FDS outputs 'THERMOCOUPLE'. 

These results accommodate the radiation effect, which is evaluated from all direction as the 

thermocouple is modelled as a sphere. They also consider the convective exchange with 

environment gas.  

∆𝜃 , = 𝑘   
𝐴 𝑉⁄

𝑐  𝜌
  ℎ̇   ∆𝑡 (1) 

Where 𝑘  is the correction factor for the shadow effect [-]; 

𝐴 𝑉⁄  is the section factor for unprotected steel elements [1/m]; 

𝐴  is the surface area of the member per unit length [m2/m]; 

V  is the volume of the member per unit length [m3/m]; 

𝑐  it is the specific heat of steel[J/kgK]; 

ℎ̇  is the design value of the net heat flux per unit area [W/m2]; 

𝛥𝑡 is the time interval [s]; 

𝜌  is the unit mass of steel [kg/m3].  

5.2 Assessment of steel temperatures through coupling CFD and FEM 

The steel temperature of a structural element can be also obtained while coupling CFD and 

FEM, using the FDS simulation results as inputs for subsequent thermal and mechanical SAFIR 

simulation. When launching the FDS simulation, a specific command is introduced to request 
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the creation of a transfer file in which gas temperatures, coefficients of convection and radiation 

intensities are written to be used by the subsequent FEM analysis by SAFIR (Tondini et al., 

2016). Indeed, the FDS command RADF allows to save the radiation intensities 𝐼 , for each 

cell with indices 𝑖𝑗𝑘 that is bounded by the transfer zone and for each solid angle l (McGrattan 

et al., 2017). Linear interpolations are performed by SAFIR when reading the transfer file to 

compute the relevant values at the requested positions in time and in space. Using this data as 

input, a series of 2D transient thermal analyses are performed along the structural members and 

the results are stored in appropriate files. A temperature distribution is calculated for each 

longitudinal point of integration of each beam finite element. In this case, two points of Gauss 

are defined along the BEAM elements. The coupled code has previously been verified in 

relation to an open car park (Tondini et al., 2016) and to a steel rack system to be placed next 

to a pool fire (Tondini et al., 2012). In these 2D thermal analyses, the impinging flux is 

computed for each boundary (in the sense of finite element discretization) of the section, 

depending on its orientation. A hypothesis that was present in SAFIR versions prior to 2019b0 

was that, when computing temperatures in a beam section or a shell section heated by a CFD 

fire, the flux at the different boundaries of the section was calculated at the position of the node 

line (for beams) or at mid-level of the shell (for shell elements), for all boundaries of the 

section. As of version 2019b0, the flux is computed at the precise position of the boundary, for 

each boundary of the section. For the boundaries on concave parts of the section, impinging 

radiative intensities from certain directions are discarded if there is an obstruction by other 

parts of the section, but mutual radiation between different boundaries of the section in the 

concave regions is not considered. 

 

The zone for which a transfer file is created in highlighted in Figure 4 (a). This zone covers the 

full width of the CFD domain and a portion of 1.6 m of its length. The upper coordinate (in 

height) of this zone was set equal to the height of the lower face of the ceiling, to avoid 

enclosing in the thermal analysis the colder temperatures from the concrete ceiling. Generally, 

in the CFD model, the dimensions of a rectangular compartment correspond to the clear 

distances between opposite walls. However, in the FE model, a slab is generally modelled in 

correspondence to its centreline. Thus, the slab would fall outside the CFD domain, and 

assumptions have to be made to determine thermal information at the slab centreline (Charlier 

et al., 2020). In this paper, the slab was not comprised in the transfer zone. The column is 

divided into 17 BEAM elements of the same length (0.16m) and two integration points are 

defined per BEAM element. Since the temperatures are computed at each integration point, the 
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heights at which SAFIR provides results slightly differ from the heights at which steel 

temperatures were measured during the test (maximum discrepancy of 5 cm). The evolution of 

the steel temperatures resulting from the SAFIR analysis presented below derives from the 

average of the steel temperatures computed in 5 points, in flanges: points 1, 2, 4, 5 and in the 

web: point 3, as highlighted in Figure 4 (b). 

Figure 11 provides the evolution of the steel temperatures across the section located at level 5, 

as a function of time and at the five points of interest highlighted in Figure 4 (b). From the start 

of the fire until around 40 minutes: steel temperatures are below 200°C and all five curves 

follow a similar evolution. From around 40 minutes until around 70 minutes: steel temperatures 

increase to around 650°C. From around 70 minutes until around 90 minutes: steel temperatures 

decay to around 300°C. The same information is provided in Figure 11 for test n°2: from the 

start of the fire until around 50 minutes: steel temperatures are below around 300°C and all five 

curves follow a similar evolution. From around 50 minutes until around 67 minutes: steel 

temperatures rise up to around 750°C. From around 67 minutes until around 90 minutes: steel 

temperatures decay to around 300°C. For both tests, during the sharply growing phase: points 

n°2, 3 and 5 heat slightly faster, as these points corresponds to the left part of the profile (facing 

gridline 1), and during the decay phase points n°2 and 5 cool slightly faster. The mesh within 

each section can be seen on Figure 13: two finite elements are defined across the width of the 

flanges and of the web. Figure 13 (a) and (b) depicts the steel temperature distribution obtained 

across the section located at level 5 with SAFIR at 50 minutes and 80 minutes, respectively. At 

50 minutes (i.e. before the temperatures peak), a gradient can be observed in the flanges from left 

(higher steel temperatures towards gridline 1) to right (lower temperatures towards gridline 4). At 

80 minutes, the reverse effect can be observed (i.e. higher steel temperatures towards gridline 4), 

and this reflects the spread of the fire in the compartment from left to right. Globally, the 

temperatures at the five points of interest present a similar evolution, the temperature gradient 

within the section being quite limited, and the same tendency is observed for the different levels 

of the column. The evolution of the steel temperatures resulting from the SAFIR analysis 

shown below will therefore be presented as the average of the steel temperatures from the five 

points of interest. 



18 
 

 
Figure 11. Steel temperatures evolution in test n°1 at level 5 from SAFIR at different locations of the section  

 

 
Figure 12. Steel temperatures evolution in test n°2 at level 5 from SAFIR at different locations of the section  

 

  
Figure 13. Steel temperature distribution in test n°2 across the section located at level 5 at (a) 50 minutes; (b) 80 

minutes; (c) Steel temperatures evolution at level 5 from SAFIR at different locations of the section  

 

5.3 Comparison of steel temperatures 

The Figure 14 and Figure 15 present the steel temperatures in column close to TRL7 during 

test n°1, from level 2 (1 m from the floor level) to level 5 (2,5 m from the floor level). Similarly, 

the Figure 16 and Figure 17 present the steel temperatures in column close to TRL7 during test 

n°2. The following results are presented: steel temperatures directly measured during the test 

(“TEST – measure”), the steel temperatures evaluated considering the FDS output from 

“thermocouple devices” and applying the formula from EN1993-1-1 (“FDS tmc – via EC3”) 

0

100

200

300

400

500

600

700

0 10 20 30 40 50 60 70 80 90 100 110 120 130

T
em

pe
ra

tu
re

 (°
C

)

Time (min)

Point 1

Point 2

Point 3

Point 4

Point 5

0

100

200

300

400

500

600

700

800

0 10 20 30 40 50 60 70 80 90 100 110 120 130

T
em

pe
ra

tu
re

 (°
C

)

Time (min)

Point 1

Point 2

Point 3

Point 4

Point 5



19 
 

and the steel temperatures computed by SAFIR, using the radiation intensities from FDS as 

input (“SAFIR”). The results obtained through coupling FDS and SAFIR are quite similar to 

the ones obtained through the application of the EN1993-1-1 formula, the main difference 

being the maximum temperatures (the temperatures obtained via FDS-SAFIR are lower and 

closer to the ones measured during the test). The following conclusions can be brought 

(comparing the measured temperatures with the ones obtained with FDS-SAFIR):  

 Steel temperatures from lower levels are too high in comparison to the ones of the test 

(the results for level 1 are not shown but the tendency is similar to the one at level 2); 

 Steel temperatures from higher levels (from level 3 to level 5) show a very good 

correspondence with the ones of the test. For test n°1, they are nevertheless a bit cooler 

– around 80°C - at level 5. This is not the case for test n°2; 

 The global profile versus time is well captured; 

 There is an important difference in the descending branch: the ones obtained 

numerically being sharper than the ones measured. This could be explained by FDS’s 

inability to properly capture glowing embers as well as the heat accumulated within the 

compartment. 

The fact that temperatures are too high at lower levels (close to the cubes) can be explained by 

the simplified representation of the fire load. With the wood cubes, it is prescribed that the heat 

is released at each cube’s exterior, while in reality (continuous wood crib) some burning sticks 

are hidden by other sticks, implying that some heat is contained inside the crib and not radiated 

externally. 

  
Figure 14. Steel temperatures in column close to TRL7 during test n°1 (a) at level 2; (b) at level 3 
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Figure 15. Steel temperatures in column close to TRL7 during test n°1 (a) at level 4; (b) at level 5 

 

  

Figure 16. Steel temperatures in column close to TRL7 during test n°2 (a) at level 2 ; (b) at level 3 
 

  

Figure 17. Steel temperatures in column close to TRL7 during test n°2 (a) at level 4; (b) at level 5 
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The methodology used for the representation of burning fuel has some limitations. Before a 

cell reaches the ignition temperature, its heating is computed while considering heat exchanges 

with the environment. But as soon as the ignition temperature is met, FDS represents the fire 

by releasing volatile combustibles which, if all are burnt, results in the prescribed HRR curve. 

This is done without considering the evolution of heat exchange with the environment. 

Moreover, the simplified representation of the fire load using discrete cubes prevents air to 

flow through the objects, and implies heat being released at each cube’s exterior instead of at 

each stick’s boundary. This limitation has shown consequences on the temperatures computed 

within or just next to the burning cubes, these being too high in comparison with the 

experimental ones. Finally, it also leads to a non-negligible difference in the steel temperature 

descending branch, which could be explained by the CFD model’s inability to properly capture 

glowing embers as well as the heat accumulated within the compartment, and such aspects 

could be improved in future research.  

 

The authors would like to point out that this methodology is not aimed at performing detailed 

analysis of the fire itself – it is aimed at evaluating the structural response (i.e. heating of the 

structural elements, followed by a mechanical analysis) in a compartment subjected to 

travelling fire (or spreading fire) at the global level. Although it implies some simplifications, 

the proposed approach can allow for both an acceptable representation of the travelling fire in 

terms of fire spread and steel temperatures while being less computationally demanding than 

modelling the exact geometry of the fire load (the CFD simulations detailed in this paper 

required 36.9 and 41.6 hours to complete for test n°1 and n°2 respectively), making it more 

desirable for practical applications. 

 

7. Conclusion 

This paper presents a simplified representation of the fire load for travelling fire development 

using CFD analyses with FDS software.  The potential benefit of such representation is shown 

while modelling two of the three TRAFIR natural fire tests and comparing gas temperatures 

measured at mid-width, along the length of the compartment and steel temperatures measured 

on a central steel column. The steel temperatures resulting from the CFD model were evaluated 

using two methods: one based on the incremental formula from EN1993-1-2 and other one 

linking CFD (FDS software) and FEM (SAFIR® software). The results obtained through these 

two methods are quite similar, the main difference being the maximum temperatures: the 

temperatures obtained via FDS-SAFIR are closer to the ones measured during the test. The 
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steel temperature profiles globally showed a good correspondence with the ones of the test but 

with the following limitations: too high steel temperatures in the vicinity of the fuel and an 

underestimated descending branch. This work has revealed, within the limits of the modelled 

compartments, that the proposed simplified representation of the fire load appears to be 

appropriate to evaluate the temperature of steel structural elements. This paper also presents 

the first comparisons of FDS-SAFIR coupling with experimental results, highlighting 

promising outcomes.  

 

This simplified fire load representation, as well as the described FDS-SAFIR coupling, could 

be used by design offices for practical applications (evaluating the structural response in a 

compartment subjected to travelling or spreading fire at the global level) and for future research 

concerning compartments subjected to travelling fire (or spreading fire).  In the frame of the 

same research project TRAFIR, this simplified fire load representation is also used in 

parametric analyses performed to reproduce a broader range of scenarios encompassing 

different geometries, fires and end-use situations, so as to generate an extended virtual 

experimental dataset. 
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