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On Improved Training of CNN for Acoustic Source
Localisation

Elizabeth Vargas, James R. Hopgood, Member, IEEE, Keith Brown, and Kartic Subr

Abstract—Convolutional Neural Networks (CNNs) are a pop-
ular choice for estimating Direction of Arrival (DoA) without
explicitly estimating delays between multiple microphones. The
CNN method first optimises unknown filter weights (of a CNN)
by using observations and ground-truth directional information.
This trained CNN is then used to predict incident directions given
test observations. Most existing methods train using spectrally-
flat random signals and test using speech. In this paper, which
focuses on single source DoA estimation, we find that training
with speech or music signals produces a relative improvement in
DoA accuracy for a variety of audio classes across 16 acoustic
conditions and 9 DoAs, amounting to an average improvement of
around 17% and 19% respectively when compared to training
with spectrally flat random signals. This improvement is also
observed in scenarios in which the speech and music signals
are synthesised using, for example, a Generative Adversarial
Network (GAN). When the acoustic environments during test and
training are similar and reverberant, training a CNN with speech
outperforms Generalized Cross Correlation (GCC) methods by
about 125%. When the test conditions are different, a CNN
performs comparably. This paper takes a step towards answering
open questions in the literature regarding the nature of the signals
used during training, as well as the amount of data required for
estimating DoA using CNNs.

Index Terms—Microphone Arrays, Direction of Arrival, Neu-
ral Networks, Convolutional Neural Network (CNN), Generative
Adversarial Network (GAN)

I. INTRODUCTION

Estimation of the Direction of Arrival (DoA), or spatial
direction from which a sound is emitted, is an important and
well-studied problem in Acoustic Source Localisation (ASL)
with applications in numerous domains [15], [44]. The advent
of smart assistants (e.g. Amazon Echo, Google Home, Apple
HomePod) [6], equipped with arrays of microphones, has
facilitated the generation of large datasets and has motivated
research into the use of data-driven methods for DoA esti-
mation. In particular, learning via a Deep Neural Network
(DNN) architecture – deployed effectively for computer vision
applications [26] and audio processing [53] – is emerging as
an effective tool for ASL [10].

Traditional methods for performing ASL have been widely
studied in the literature [4], the most common of which
are: (i) Time Difference of Arrival (TDoA)-based approaches,
which normally employ Generalized Cross-Correlation (GCC)
methods [25], [47], [48]; (ii) beamforming-based approaches,
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including the well-known Steered Response Power (SRP) [30],
[33], which solve directly for the most likely source posi-
tion among a grid of candidate locations; and (iii) MUltiple
SIgnal Classification (MUSIC) [42], [46], which uses the
signal subspaces to estimate multiple DoA. More modern
approaches include the use of learning-based methods in ASL,
focused on feature extraction and classifiers [23], [27]. Neural
networks have been applied to various problems related to
ASL including speaker localisation using a robot [44], [45],
passive underwater sensing [15], antennas [31] and acous-
tic emission localisation on a pipeline [21]. Chakrabarty et
al. [8] perform single source localisation by treating ASL
as a classification problem, where the discretised DoA cor-
responds to a class, which they solve using a CNN. This
method has been extended to multiple sources [10] using a
flat spectral uncorrelated random process to train the network.
CNNs combined with Long Short-Term Memory (LSTM) [29]
have been shown to be useful for estimating DoA by using
Generalized Cross-Correlation Phase Transform (GCC-PHAT)
as input data. Some approaches use neural networks to perform
pre-processing such as time-frequency (TF) masking [36],
[51], [52] or denoising and dereverberation [49].

Despite the widespread use of CNNs in applications related
to ASL, numerous questions regarding the quality and quantity
of the training data remain unanswered. In [1], [2], data from
different sound classes is randomly used for both training
and testing, while in [34] the authors propose a method of
data augmentation for the task of room classification from
reverberant speech using a GAN. In [40], deep CNN and data
augmentation are used for environmental sound classification.
On the other hand, Pons et al. [37] use few training samples
(from 1 to 100) per class to train an event and acoustic scene
classifier. It is important to study the impact of training data
for a CNN that estimates DoA, as this will help to generalise
the use of deep learning methods in ASL without the need of
limiting the test data to the same one as used in the training.

In this paper, we test the impact of various sound classes
for training on the accuracy of single source DoA estimation.
We hypothesise and show that using speech and music data
for training will provide more accurate DoA estimation than
using noise, which is used by the current literature [8], [10].
Our reasoning is that speech and music data contains more
relevant spectral information that helps the CNN learn the
room acoustics much better than white noise. Our conclusion
is that using real speech data augmented with synthetic speech
data (using GAN-based methods) performs best for a wide
range of test audio classes and different incident directions.

Our main findings and novel contributions in this work are



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

that:
• training with speech data, rather than flat spectral noise,

produces an average relative improvement of 3% in the
accuracy of DoA estimates for test speech signals and
17% when the test signals belong to one of three other
classes: speech, children playing and street music, across
16 acoustic conditions and 9 DoAs in both cases;

• training with music data from a dataset produces an
average relative improvement of 19% in DoA estimation
accuracy across 16 acoustic conditions and 9 DoAs,
compared to training with flat spectral noise;

• synthetic speech data generated using a state-of-the-art
GAN [13], which can be generated automatically, is as
effective in training as using real human speech;

• compared with GCC methods, a CNN trained with speech
is 125% more accurate when the test and training environ-
ments have similar reverberation, and comparable when
the reverberation levels are different.

The article is organised as follows. We review state-of-the-
art DoA estimation using Neural Networkss (NNs) in Sec-
tion II. Section III gives details of our proposed approach for
training the CNN to estimate DoA. We present our evaluation
in Section IV, in which we compare our training methodology
against related state-of-the-art approaches. In Section V we
discuss the results of our experiments. Section VI concludes
our work and states future directions for research.

II. RELATED WORK

This section shows existing DoA-based work in NN for
ASL. We discuss the training data used in each work and at
the end of the section we highlight how our work differs from
previous ones.

DoA methods are subdivided depending on whether they
estimate the DoA for a single source or multiple sources. Since
our contributions are oriented to the estimation of a single
source, we focus our review of the literature in single source
approaches.

The use of planar arrays is very common in single-source
DoA estimation. In [44], for instance, the authors train a
DNN to localise sources using a microphone array embedded
on a humanoid robot. Localisation is presented as a binary
classification problem, in which the algorithm returns either
1 or 0, depending on the existence (or not) of a source at a
given direction. The main contributions arising out of this work
are the uses of a directional activator, similar to MUSIC, and
the use of this activator to treat complex numbers (from the
spectrogram) at each sub-band. The evaluation was performed
using real data from a Japanese dataset as training and testing
sets (with different data used for each set), and accuracy
computed for 72 different DoAs and frames of 200ms. The
main limitation of this work is that the DNN is unable to
localise sources located in positions that not appear on the
training set. The authors propose a new approach to overcome
these limitations in [45], using unsupervised learning together
with a parameter adaption layer and early cessation of the
parameter updates. These changes result in improvements for
some of the DoA angles, but in a deterioration for others.

A similar approach is presented by Chakrabarty et al. [8],
where phase information of the Short-Time Fourier Transform
(STFT) coefficients is used together with a single-class clas-
sifier to train a CNN that outputs the DoA of a group of
signals from a microphone array. The DoA is modeled as a
single-class classification problem, in which the classes are
37 different angles (DoA), with 5° intervals. The network is
trained with synthetic data and tested with speech signals from
the TIMIT dataset. The results are presented as accuracy level
per frames: that is to say, the number of frames that correctly
classify the DoA, similar to [44]. Since this article is the basis
for our work, Section III-A discuss this in further detail. In [29]
the authors use a CNN combined with a LSTM to estimate
DoA. The main contribution of [29] is its adaptability to a
change in microphone array configuration and the use of a very
small amount of data, since the network uses GCC-PHAT as
the input, rather than the spectrogram as in previous cases [8],
[44].

There are a set of approaches that use a NN as a pre-
processing step, including [51], in which the authors use a
Bidirectional Long Short Term Memory (BLSTM) for time-
frequency (TF) masking to arrive at a clean phase TDoA
estimation. They use this to improve conventional Cross-
correlation (CC), beamforming, and subspace-based algo-
rithms for ASL. They perform experiments with a binaural
setup, judging the estimation as accurate when the error is
within 5 degrees. This approach is extended in [52] where
the DoA is calculated directly using monaural spectral in-
formation for mask estimation during training, and therefore
this approach could be extended to different microphone
configurations. Similar to [36], the authors use a CNN to
predict a time-frequency (TF) mask for emphasising the direct
path speech signal in time-varying interference. This approach
is applied in combination with SRP to estimate the DoA.
The main limitation is that it only works on the same audio
class as in the training set while the main assumption is that
there is only one main interference with the target of interest.
The experiments were conducted using speech (English for
training and Japanese for testing) mixed with everyday sounds
(office printer background or household noise) to train and test
the NN for both static and moving speech sources. Wang et
al [49] propose the use of an Acoustic Vector Sensor (AVS)
to estimate DoA, in conjunction with a network for denoising
and dereverberation. The authors’ hypothesis is that clean
features are better classified than unclean ones, therefore they
used a DNN for Signal Denoising and Dereverberation (DNN-
SDD), which maps noise and reverberant speech features
to their clean versions and uses them as input for a DNN
that calculates DoA. The method is evaluated in small-sized
microphone arrays, with the Mean Absolute Error (MAE) and
Root Mean Square Error (RMSE) used as evaluation metrics.

There are some works that describe ASL using NNs in
planar arrays for very specific applications. In [15], the authors
present an application of CNN for DoA to passive underwater
sensors, a technique that uses cepstrograms and generalized
cross-correlogram as input to estimate range and bearing. The
network is trained using real, multi-channel acoustic record-
ings of a surface in a shallow water environment. Another
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application is presented in [31], in which DoA estimation
using DNN is used in antennas. The main contributions of the
work in [31] are a proposed end to end DNN for general (not
only acoustic) DoA estimation, the use of an autoencoder for
pre-processing and training with various outputs of a certain
array, so the network is robust to imperfections. The authors
train and test their approach based on simulated data and use
MUSIC as a baseline for comparison. Finally, in [21] we are
presented with an application of acoustic emission localization
on a pipeline, generated when energy is released within a
material. The experiments showed an accuracy of 97% and
execution time of 0.963 milliseconds.

In general, we summarise that the literature in deep neural
networks, as applied to ASL, is focused on creating neural
network architectures and methodologies that generalise the
following:

• Room Acoustic Conditions: The network goal is to be
robust to new acoustic conditions, such as noise and
reverberation, different from those used during training.
One of the clearest examples is [8], in which the net-
work is trained and tested with different room sizes and
reverberations. Moreover, [52] test their pre-processing
TF mask in various noise and reverberant environments.
Perotin et al, [35], train their NN on a large variety of
simulated rooms and test it on unseen rooms. The main
limitation of these approaches is their assumption that
both the train and test data belong to the same audio
class.

• Source Locations: The objective is to be able to estimate
source locations different from those present in the train-
ing set. In [8] the authors considered in their experiments
the influence of source-array distance. Similarly, [35]
evaluated their algorithm on DoAs that lie anywhere on
the sphere rather than on the same discrete grid used for
training.

• Microphone Configuration: The NN should be able to
be tested on any microphone configuration, independent
of the one(s) it was trained with. This is partially achieved
in [29], in which the authors use GCC-PHAT as the input
to the NN, therefore the microphone configurations of
training and testing could be different, provided that the
microphones are located at the same distance. A better
generalisation is presented in [52], in which the NN
uses monaural information: however, this is only for TF
mask estimation as a pre-processing step, rather than DoA
estimation directly.

Even though the literature covers a lot of work in gener-
alising the learning process, there is a gap in the efforts to
generalise the nature of training data. The closest effort has
been presented in [2], in which the authors use various data
classes for training and testing the network: however, they
limit their work to using the same audio class for training and
testing. Accordingly, in this paper we have focused this work
on studying the impact of the quality and quantity of training
data when it comes to DoA estimation. Studying this impact,
will help to generalise the use of deep learning methods in
ASL without the need of limiting the test data to the same

one as used in the training.

III. METHODOLOGY

A. Baseline: DoA estimation using CNNs trained with spec-
trally flat random noise

The focus of this work is on analyzing the impact of training
data, therefore we use an existing architecture [8] and follow
the methodology presented in this section for training and
testing.

The CNN, initially proposed in [8] and used in [9]–[11], is
based on a standard CNN [17] architecture. These networks
typically consist of a set of “convolution layers”, which act
as filters on the input, resulting in the set of features that the
network learns. The convolution is followed by an activation
layer, operating point-wise over each element of the feature
map. Later on, a pooling operation is applied to reduce the
feature map. In the final step, the fully connected layers
aggregate information from all different positions to perform
classification.

In this particular application, the authors use the CNN
architecture presented in [8], which has the following char-
acteristics:

• The CNN treats the phase of the STFT as an image and
the input is a matrix of size M by K, where M is the
number of microphones and K the resolution of the STFT
in the frequency domain. It is important to note that the
input is a single time frame of the total signal per training
data point, as opposed to the entire STFT.

• The CNN uses the rectified linear units (ReLU) as acti-
vation function.

• The CNN does not have any pooling layer, since it
decreases the performance of the network.

• The last layer uses softmax activation function to perform
classification.

• The network was trained using the Adam optimiser [24],
with a learning rate of 0.001, for 5 epochs, and uses
categorical cross-entropy as loss function.

• The output of the CNN is the posterior probabilities of
the input belonging to one of 37 DoA classes (discrete
values from 0 to 180, with a gap of 5 degrees).

We tested the performance of this network to have a baseline
for comparison. Fig. 1 illustrates this. It also presents the
results of the sample experiments available in [7].

B. Acoustic conditions

Four microphones arranged in a linear array were used.
The training and testing conditions are summarised in Ta-
ble I, which are the same as those described in [8], to
aid comparison. Moreover, the signals (16kHz sampling fre-
quency) were transformed using the STFT with a window of
size 256 and overlap of 129. Although the inter-microphone
distance is the same for both training and test, the arrays
are positioned in different locations within the rooms. The
training data is composed of 5.6 million frames, including
cases in which the input combined real and synthetic data,
guarantying a fair comparison among training data variations.
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The test data is composed of 100 audio files per audio
class (see Section III-D). The test signals are generated by
convolving these audio files with Room Impulse Responses
(RIRs) for 9 different DoAs, the same as those established
in the baseline: 30°, 45°, 60°, 75°, 90°, 105°, 120°, 135°and
150°. The RIR simulation is performed using the Image Source
Method (ISM) [3]. The noise on the test signals is uncorrelated
additive white Gaussian noise (that is, independent at each
microphone), added using the ISM simulator from [28].

C. Training audio classes

We used two different audio classes to train the CNN:
speech and music. For each of these classes we used different
variations to produce this data (see Section III-C1 and Sec-
tion III-C2), either by using datasets or methods to synthesise
these sounds.

1) Speech: Six different types of speech training data are
used, in order to improve the DoA estimation accuracy of
existing CNN architectures in different audio classes. The
methods used for generating the training data are as follows:

1) Speech (TIMIT) Data from the TIMIT dataset [16],
containing data of 630 speakers from 8 major dialects of
American English, who are reading phonetically rich sen-
tences. The dataset was originally designed as a database
of speech data for acoustic-phonetic studies, as well
as the development and evaluation of automatic speech
recognition systems. This dataset includes silent frames,
usually when the speaker pauses in between words, where
there is little signal energy. We do not remove these
frames. In the case of silent frames, the target label is
defined as the same as for the rest of the frames, since
we assume single static sources.

2) Speech and Voice Activity Detector (VAD)
(TIMIT+VAD) The TIMIT speech data is pre-processed
using a VAD [43], a technique in speech processing,
used to detect the absence of human speech. In this
case, silent frames were detected using a VAD and later
removed from the signal before training the NN.
In general, a VAD algorithm consists of three steps: first,
there is a noise reduction stage; then, some features are
extracted from a section of the signal (which is what is
described here as a frame); and, finally, a classification
technique is applied in order to evaluate whether the
frame contains speech or not. In the classification step,
the algorithm proposed in [5] is employed, using an
implementation available in [43]. The authors use end-
point detection to determine where speech begins and
ends, and also to determine a speech threshold for initial
estimation of silent frames. Moreover, they compute
the zero crossing rate in the vicinity of endpoints, that
is, the number of successive signal samples that have
different algebraic signs. If frames above the initial
threshold have considerable changes in zero-crossing rate,
the endpoints are re-designed to the points at which the
changes take place. The parameters used in [43] (and
in this manuscript) are threshold energy = 0.0012 and
threshold zero cross rate = 1.5.

As a result, when a VAD is applied to the TIMIT data
used for training, silent frames represent 26.47% of the
total number of frames.

3) Synthetic Speech (BSAR) Synthetic speech signal, mod-
elled by using a Block Stationary Autoregressive (BSAR)
process [14]. Eq. 1 illustrates how the signal, st, is
modelled: st is partitioned into M contiguous blocks,
with block i beginning at sample ti; et denotes the
excitation process with variance σi:

st = −
Qi∑
q=1

bi(q) st−q + et, et ∼ N (µ, σ2
i ) (1)

The rational for using this model is to investigate the
effect of a training signal with well-structured but time-
varying spectral characteristics.

4) GAN Speech (GAN-TIMIT) Synthetic speech signal
generated using an implementation of a GAN, known
as WaveGAN [13], trained with TIMIT speech data.
WaveGAN is a machine learning algorithm based on
GANs, which uses real (recorded) audio samples to learn
to synthesise raw waveform audio. The implementation
provided by the authors is capable of learning up to 4
seconds of audio at 16 kHz. GANs, originally proposed
in [18], are composed of two NNs: a discriminator, D,
and a generator, G. D is trained to determine whether
an example is real or not (i.e. if it is realistic enough
to resemble the signal that it is trying to synthesise)
using training data, while G is trained to try to fool the
discriminator into thinking its output is real. Therefore,
G is trained to minimise and D is trained to maximise
the value function. Eq. 2 illustrates such a value function,
V (D,G). PX is a probability distribution over the dis-
crete variable X . Ex∼PX

[f(x)] represents the expectation
of f(x) with respect to PX . The generator commonly
uses randomized input as initial seed. More details about
GANs can be found in the original publication [18].

V (D,G) = Ex∼PX
[logD(x)]+Ez∼PX

[log(1−D(G(z)))]
(2)

The approach proposed in [13] is based on a two-
dimensional deep convolutional GAN (DCGAN) pro-
posed in [38], used for image synthesis. The authors boot-
strap DCGAN to work on spectrograms, proposing an ap-
proach called SpecGAN. Moreover, they use a waveform
approach called WaveGAN, which flattens the DCGAN
architecture to work on one dimension. Moreover, they
increased the stride factor for all convolutions, removed
batch normalisation from generator and discriminator and
finally trained using the WGAN-GP [19] strategy.

5) GAN Speech (GAN-SC09) Synthetic speech signal gen-
erated using WaveGAN [13], trained with Speech Com-
mands Zero through Nine (SC09) data.

6) GAN for Speech Data Augmentation (TIMIT+GAN-
TIMIT) Half of the data is from Speech (TIMIT) while
the other half is synthetically generated using a waveGAN
and no VAD is used.
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TABLE I: Training and Testing Conditions

Parameter Train Test
Inter-mic distance 8 cm 8 cm

Source-array distance 1 m and 2 m 2 m
T60 0.3 s, 0.2 s 0.1 s

STFT window 256 256
STFT overlap 129 129

DoA 0°to 180°, 5°gap 30°, 45°, 60°, 75°, 90°, 105°, 120°, 135°and 150°

2) Music:
1) Street Music (StMu): Data from the UrbanSounds8k

dataset [41], which contains 27 hours of audio across 10
sound classes. The authors in [41] downloaded all sounds
returned by Freesound search engine when using the
class (e.g. “street music”) as query. They then manually
checked the recordings, kept the field recordings and
label the start and end times of every occurrence using
Audacity. Signals from the class “street music” were
selected to train the CNN. Similarly as for speech, in
the case of silent frames the target label is defined as the
same as for the rest of the frames, since we assume single
static sources.

2) Street Music and VAD (StMu+VAD): The Street Music
data is pre-processed using a VAD [43] in order to
remove silent frames, using parameters threshold energy
= 0.0012 and threshold zero cross rate = 1.5. When
a VAD is applied to Street Music data used for training,
silent frames represent 26.76% of the total number of
frames.

3) GAN Piano (GAN-Piano): Synthetic speech signal gen-
erated using WaveGAN [13], trained with Piano data.

4) GAN Drums (GAN-Drums): Synthetic speech signal
generated using WaveGAN [13], trained with Drums data.

D. Testing audio classes

We tested the implementation in the following audio classes:
• Example (ex): Sample test speech data provided in [7],

created when convolving a 13 sec long speech signal with
Measured RIRs from the Bar-Ilan Multi-Channel Impulse
Response Database [20].

• Speech (sp): The TIMIT dataset [16], as described above
in Section III-C1.

• Urban Sounds: Data from the UrbanSounds8k
dataset [41], as described in Section III-C2. The classes
used were: Children playing (ch), Siren (si) and
Street music (mu). Although these classes belong to
datasets from urban sounds, in the case of children
playing and street music, they could also be found in
indoors environments and there is a dominant sound
the direction of which could be estimated. In the case
of children playing in particular, while in principle it
involves multiple sounds, in practice test signals were
chosen so that a dominant sound is present. In the case
of the siren, our aim is to represent a very challenging
sound, which involves the repetition of the same signal.
Moreover, its spectral content is also a challenging

aspect, since the siren is in general a narrowband signal,
as opposed to the broadband signals used for training
the CNN. Therefore, the CNN does not learn to estimate
DoA for narrowband signals, which makes the siren a
challenging signal.

E. Evaluation metric

In order to evaluate the trained network, accuracy is used as
a performance metric, similarly to [7], [12], [22], [44], [50].
Accuracy is calculated as Nc/Nt, where Nc is the number
of correctly classified frames and Nt is the total number of
frames.

IV. EXPERIMENTAL RESULTS

For all experiments in this paper, we use RIR simulation [3]
to mimic transport of the source signals to the microphone.
The simulation introduces the appropriate delay and adds noise
and reverberation.

A. Baseline

In order to establish a baseline for comparison, we tested
the performance of a pre-trained network available in [7] on
the test audio classes presented in Section III and the room
conditions are summarised by Table I. Fig. 1 illustrates the
accuracy of testing the pre-trained network for four different
noise (noise free, 30dB, 20dB and 10dB SNR) and reverber-
ation (0s, 0.1s, 0.2s and 0.3s) conditions. Our hypothesis was
that the pre-trained network would perform accurately for the
speech class (given their accurate results in this audio class
presented in [8]), but that the performance would decrease
when presented with new audio classes for testing. The results,
shown in the top row of Fig. 1, are good for speech data under
low reverberation. For other audio classes, the accuracy drops
by about 60% for higher reverberation simulations, confirming
our hypothesis. It appears that although noise forms excellent
training data for estimating DoA from speech signals, it is
surprisingly less effective at generalising to other classes of
test signals such as music. One explanation (see Sec. V-B)
is that the spectral content of noise is better correlated with
speech than with signals that contain repetitive temporal struc-
ture such as music or sirens. This is an intriguing observation
and further work is needed to formalise these connections.

B. Training with speech

In this experiment, we trained the CNN using the six types
of speech training data described in Section III, and tested
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(a) Reverb. 0 s (b) Reverb. 0.1 s (c) Reverb. 0.2 s (d) Reverb. 0.3 s

Fig. 1: Baseline [8] performs inaccurately when tested with data different than speech. The figure shows the accuracy (z-axis)
of testing the pre-trained network for four different noise (top to bottom: noise free, 30dB, 20dB and 10dB Signal-to-Noise
Ratio (SNR)) and reverberation (left to right: 0s, 0.1s, 0.2s and 0.3s) conditions in 5 different audio classes: ex, sp, ch, si and
mu — described in Section III-D. Reverb. 0 s implies that the RIR is used, but T60 = 0, so effectively only time delays and
noise are affected. For each heat-map the x-axis corresponds to the audio classes, the y-axis denotes the DoA used on the test
set and the z-axis illustrates the accuracy from 0 (yellow) to 1 (navy blue). The pre-trained network performed accurately for
the speech class: however, the performance decreased when it was presented with new audio classes for testing, particularly
in noisy and reverberant scenarios.

them on the same data as the baseline (see Table I for details).
Our main hypothesis is that using speech for training the CNN
will provide accurate results and will outperform the ones
obtained with the baseline.

Fig. 2(a) illustrates the results obtained when the TIMIT
database is used for training. It presents high accuracy for
most angles (except 30°, 75°and 150°, in which case it still
outperforms the baseline) and most audio classes (except
the siren, which is the most challenging). Fig. 2(b) presents
the results obtained when training with signals from the
TIMIT dataset, pre-processed using a VAD. In comparison
to Fig. 2(a), the accuracy decreased in general for most audio

classes and angles, except for 45°, 60°, and 120°, where it
is still above 60%. Fig. 2(c) shows the results obtained when
the network is trained using synthetic speech from a BSAR
model. This does not perform very well, perhaps because the
model does not properly represents the speech frequencies
as well as the dataset does. Figs. 2(d) and (e) show the
results using data generated using WaveGAN, using TIMIT
and SC09 respectively. Even though both generate accurate
results, using the WaveGAN trained with TIMIT provides
more accurate results than using the WaveGAN trained with
SC09, particularly for 135° when it is very accurate. These
results are comparable to the results using TIMIT. Finally,
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Fig. 2: A comparison of DoA estimation accuracy (heatmap – 0 in yellow and 1 in navy blue) by training with different
sources of speech data and testing in four different audio classes (x-axis) and 9 DoAs (y-axis). Using speech from the TIMIT
dataset (a) or waveGAN (d) yields the best performance. However, training with any speech achieves higher accuracy than the
baseline (second row of fig. 1) across audio classes. The test data is the same as that used for the baseline, with 30 dB SNR
and 0.1 s reverberation.

Fig. 2(f) illustrates the results obtained when the data from
TIMIT is augmented using WaveGAN with TIMIT input. This
latest approach is the one that presents the best results amongst
speech, surpassing even the ones obtained with TIMIT. These
experiments confirm our hypothesis that using speech for
training the CNN provides accurate results for DoA estimation.

Fig. 3 presents the results obtained when using the pre-
trained network from the baseline compared with the results
obtained when we use synthesised speech from WaveGAN
with TIMIT as input. The results show that our results are
superior to the ones obtained by the baseline, particularly when
the reverberation levels are high. This confirms our hypothesis
that training the CNN using speech data outperforms the
results obtained when the CNN is trained with noise.

C. Training with music

Next, we trained the CNN using the four types of music
training data described in Section III, and tested them on
the same data as the baseline (see Table I for details). Our
hypothesis in this case is that using music for training will
provide accurate results, outperforming those of the baseline,
though not as robust as those obtained with speech. The
rationale behind this hypothesis is that speech data uses speech
recorded especially for a dataset, that is, no background noises,
while street music is recorded in urban scenarios, as explained
in Section III.

Fig. 4(a) illustrates the results obtained when training with
Street Music signals, as recorded in the Urban Sounds 8K
dataset. It shows that the accuracy is very high for all the
tested angles and audio classes, except for siren, where the
accuracy is around 40%. When using a VAD to remove
silent frames, the accuracy obtained is decreased, as presented
in Fig. 4(b). On the other hand, the use of WaveGAN to
generate synthetic music data generates accurate results in both
scenarios, but it shows better performance when the GAN
is trained with Drums, Fig. 4(d), in comparison to when it
is trained with Piano, Fig. 4(c). These results support our
hypothesis that using music for training generates accurate
results, outperforming those obtained using the baseline.

D. Speech vs music

Fig. 5(a) compares the average accuracy for all DoAs
on the test set for the different test audio classes, obtained
when using a CNN trained with variations of speech data.
In general, training the neural network using data from the
TIMIT dataset presents the most accurate DoA estimation,
not only for the test that uses speech, but also for the rest
of the audio classes. Similar results are obtained when using
data generated from WaveGAN for training. In both cases,
the accuracy outperforms that obtained using the pre-trained
network (baseline). In contrast, training using a VAD to pre-
process the signals or using synthetic speech from a BSAR
process decreases the accuracy of the DoA estimation.
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Ours: Trained with music from a dataset
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(a) Reverb. 0 s (b) Reverb. 0.1 s (c) Reverb. 0.2 s (d) Reverb. 0.3 s

Fig. 3: A comparison of the DoA accuracy (heatmap – 0 in yellow and 1 in navy blue) for different audio classes (X-axes)
and multiple incident directions (Y-axes). The baseline (top row) performs well for speech signals (particularly at 90°) or when
reverberation levels are low. Training with speech (middle row) is more robust to incident directions as well as audio classes.
Training with music (bottom row) generates the best results. The test data consists of simulated Room Impulse Responses
using the Image Source Method, for 30 dB SNR. Legend: example [7] test data (ex), speech (sp), children playing (ch), siren
(si) and street music (mu).

Similarly, Fig. 5(b) compares the average DoA accuracy,
when the network was trained with variations of music. In
this case, the best results are obtained when training directly
with Street Music (StMu), even when a VAD is used. The use
of synthetic data from a GAN is not as accurate as in the case
of speech: however, they outperform the results obtained using
the baseline for children, siren and music audio classes.

In Fig. 6 we compare the various variations we used for
training among themselves in order to determine the best
training strategy depending on the test scenario. Fig. 6(a)
illustrates the case in which the datasets and VAD are used for
training. In this case, Street Music generates the best results
for all the test audio classes, even when a VAD is used.
In contrast, Fig. 6(b) illustrates the comparison when data
from WaveGAN is used. In this scenario, the best results are
obtained when TIMIT speech data is used as input for the
GAN. Finally, Fig. 6(c) compares the best results for each
type of training data against the baseline. This confirms that
training with either speech or music produces more accurate

results than using the baseline and the best results are obtained
when training with Street Music data. This also confirms that
our hypothesis that training with speech is better than training
with music is not completely accurate, since the best results
are obtained using Street Music. The fact that the CNN trained
with music performs better on speech data than the CNN
trained with speech is because the CNN trained with music
performs better for all DoAs while the one trained with speech
fails for 30° and 150°. However, it is important to remember
that when using data from WaveGAN, it is better to use speech
rather than music.

E. Impact of Amount of data

We investigated the impact of decreasing the amount of
training data on the accuracy of DoA estimation. Our hypoth-
esis is that the data from datasets will be more affected by the
change in the amount of data, rather than the data from the
GAN, since the first one has more variation between samples,
while the latter one is more homogeneous.
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(a) StMu (b) StMu+VAD (c) GAN-Piano [13] (d) GAN-Drums [13]

Fig. 4: A comparison of DoA estimation accuracy by training with different sources of music data. For each heat-map the
x-axis corresponds to the audio classes, the y-axis denotes the DoA used on the test set and the z-axis illustrates the accuracy
from 0 (yellow) to 1 (navy blue). Using speech from the Street Music class from Urban Sounds 8K (a) or WaveGAN trained
with Drums (d) yields the best performance. However, training with any variation of music achieves higher accuracy than the
baseline (second row of fig. 1) across audio classes. The test data is the same as that used for the baseline, with 30 dB SNR
and 0.1 s reverberation.

children speech siren music
Audio Class

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ac
cu

ra
cy

baseline
TIMIT
TIMIT+VAD
BSAR

GAN-TIMIT
GAN-SC09
TIMIT+GAN-TIMIT

children speech siren music
Audio Class

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ac
cu

ra
cy

baseline
StMu
StMu+VAD

GAN-Piano
GAN-Drums

(a) Trained with Speech (b) Trained with Music

Fig. 5: Using synthesized speech (GAN) is marginally worse than using real speech data (TIMIT). However, augmenting real
speech with synthetic (TIMIT+GAN) performs similarly to TIMIT and with a lower standard deviation. Each bar depicts the
accuracy averaged over 9 different DoAs angles and 4 different audio classes, in a simulated scenario with 30 dB SNR and
0.1 sec reverberation.

Fig. 7 presents the results of this study for a network trained
with speech. We used different percentages of the original
training data, 25%, 50% and 75%. In general, the five proposed
training methods do not present a high variation in accuracy;
however, training with WaveGAN yields the least change in
accuracy, even when the amount of data used is 25% of the
original set.

Fig. 7 presents the same results, but for a network trained
with music. Similarly to the speech case, there is a large
variation in the accuracy; however, using data generated with
WaveGAN produces a smaller change in accuracy than it does
to use data from the dataset directly or even using a VAD,
which produces the highest variation.

These experiments slightly confirmed our hypothesis that
data generated from GAN produces the smallest variation in
the output when the amount of training data is considerably

decreased. However, overall the change in the accuracy is
so small for all the training methodologies that it does not
produce a meaningful conclusion.

For the sake of completeness, we also decreased the per-
centage of training data for speech (TIMIT+GAN-TIMIT)
and music (StMu), illustrated in Figure 9. In general, 25%
is the lowest amount of training data that produces accurate
results for both speech and music, however speech seems to be
more robust for lower volumes of training data. For speech,
lowering the volume of training data below 25% decreases
the overall DoA estimation accuracy, with a significant drop
in accuracy at 5%. While in this case the change is not sudden,
it does decrease significantly, as opposed to results obtained
when using 25% (or more) of the data. On the other hand,
when using music, the CNN is unable to learn after a certain
point; therefore, we see that the accuracy suddenly drops to
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Fig. 6: Comparison of training strategies using datasets and synthetic data from speech and music.
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Fig. 7: Impact of the volume of training data (X-axes) on
accuracy (Y-axes) for five different speech training datasets.
The shaded area around the lines represents the uncertainty.
Training with synthesized speech, BSAR and GAN, exhibit
lowest variation across different training volumes with the
latter performing better. 100% corresponds to the full training
data used in other experiments.

0 when 15% of the training data is used. When the volume
of training data is lowered to 1% for speech, the accuracy
drops significantly, reaching the levels obtained when music
is lowered to 20%.

F. Learning vs Cross-Correlation

Finally, we compare our method against a tradi-
tional approach that uses GCC (with no weighting) and
GCC-PHAT [25] (using the PHAT weighting), to understand
the relative merits of machine learning. The GCC-PHAT was
tested using the function available in MATLAB. Fig. 10
illustrates the DoA estimation accuracy under two different
reverberation conditions, one that was used during training
(0.3 s) and one that was not (0.1 s). For 0.1 s, it can be
seen that GCC, GCC-PHAT and both GAN perform very
similarly across the four audio classes. For 0.3 s, however,
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Fig. 8: Impact of the volume of training data (X-axes) on
accuracy (Y-axes) for four different music training datasets.
The shaded area around the lines represents the uncertainty.
Training with synthetic data from a GAN exhibits the lowest
variation across different training volumes. 100% corresponds
to the full training data used in other experiments.

GAN clearly outperforms GCC, especially for DoAs 30°, 45°,
135°and 150°, where the accuracy improves 16× on average.
Even the use of PHAT weighting did not improve performance,
since the accuracy is higher than GCC, but not comparable to
that obtained when training a CNN for the target reverberation.
This suggests that the CNN is potentially learning information
about the room acoustics, whereas GCC and GCC-PHAT
assume a free-field environment.

V. DISCUSSION

A. Nature and volume of training data

In our experiments, we observed that CNNs trained using
real music outperformed other training datasets at estimating
DoA. The next best training data to music was real speech data
augmented with synthetic speech. The augmentation enables
scaling the volume of training. It is indeed possible that these
observations are due to peculiarities in the datasets we used
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Fig. 9: Lowest amount of training data for speech
(TIMIT+GAN-TIMIT) and music (Street Music). Shaded area
around the lines represent the uncertainty. Speech is more
robust for lower volume of training data.

for training. Further investigation is required to generalise this
claim. Curiously, we observed that generating synthetic speech
with WaveGAN yields about a 15% relative improvement in
accuracy over methods such as synthesis using a BSAR model
across 16 acoustic conditions and 9 DoAs. On the other hand,
using a VAD decreases the accuracy by around 8% when it is
used in speech data, but only 3% when used on music data.
Given that the training data, both speech and music, has a high
number of silent frames (around one quarter of the training
data — 26%), the decrease in performance cannot be due to a
low number of silent frames in the training data. Instead, the
VAD we used (described in Section III-C1), eliminates not
only silent frames but also some of the frames that contain
actual speech, which is leading to poorer results in DoA
estimation. We consider that using different parameters could
lead to better results, however further experiments are required
to achieve a significant conclusion. The use of WaveGAN to
generate training data provides higher accuracy for speech than
for music, but only 2% on average.

We also observed that using only 25% of the training
data (as reported in other experiments in this paper) was
sufficient to obtain similar accuracy. Furthermore, for a given
method (and training data), we found that accuracy is not very
dependent on the amount of training data up to 25%. When
smaller amounts of data are used, then the decrease in accuracy
is significant, particularly for music.

B. Insights

Using spectrally flat random signals for training, as pro-
posed in [8], was mainly motivated by the need to accelerate
training data generation, since no datasets were required. This
improves scalability and results in a NN that does not favour
any particular audio class.

Although training with noise has the obvious advantage of
not requiring a dataset to train on, we show that (unsurpris-
ingly) training with speech and music enables more accurate
estimates of DoA. We explain this using importance sampling
as an analogy. While white noise is effective as training, the
spread of energy across the frequency spectrum necessitates
a large volume of training data for accurate estimation across
multiple classes. Speech and music data, on the other hand,
steer the network towards focusing on the ‘important’ spectral
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Fig. 10: CNN outperforms GCC and GCC-PHAT for un-
trained data. Comparison of waveGAN-trained network with
GCC and GCC-PHAT under different reverberation conditions.
For each heat-map the x-axis corresponds to the audio classes,
the y-axis denotes the DoA used on the test set and the z-axis
illustrates the accuracy from 0 (yellow) to 1 (navy blue). The
network used was trained with reverb. of 0.3s. When the test
environment is different (left), the network performs similarly
on average (but with lower variance). When the test condition
matches training (right), the network outperforms GCC and
GCC-PHAT. As expected, GCC’s performance suffers when
the reverberation is increased. An advantage of using super-
vised learning is that the method can be trained to handle such
difficulties.

bands – where the energy is likely to lie in the test signals
– making them more efficient for training. In other words,
spectral correlations in the training signals are important to
learning an accurate estimator for DoA.

In our experiments, training with either synthetic [32], [39]
or real speech yields similar performance. However, for music,
training with synthetic data is not effective. We conjecture that
this is due to synthetic speech generators being able to generate
accurate speech samples, while current music generators are
simple and usually focus on one instrument. Moreover, the
synthetic music generator produces harmonically clean signals
with artificially added noise, which contrasts with the natural
noise present in music sources.
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C. Advantage of learning

Training can be viewed as advantageous when certain
aspects of the test conditions might be known a priori.
For example, training data may be generated specific to the
acoustic behavior of a particular auditorium if the goal is to
track only speakers in that auditorium. Although traditional
methods such as GCC and GCC-PHAT do not require train-
ing, this can be seen as a shortcoming since such specific
information cannot be encoded. For example, if reverberation
within the auditorium is known to be high, it is not trivial
to develop a method that augments GCC or GCC-PHAT with
that information.

D. Limitations and future work

The main limitation of supervised learning is its difficulty in
generalisation. For example, training a CNN to suit a variety
of acoustic environments incurs a penalty (of lower accuracy).
Further investigation is required to ascertain the details of this
trade-off between accuracy and generalisation.

Another avenue for future work could be the extension
of our work for multiple simultaneous sources. The authors
of the original CNN architecture have themselves extended
their work for multiple simultaneous sources in [8] and [10]
by using Sigmoid activation in the last layer. Their main
assumption is W-disjoint orthogonality, which means that two
speakers cannot be active at a given time-frequency point. We
consider that, under the same assumption, our method could
be adapted to work in those type of scenarios.

VI. CONCLUSION

We presented novel findings regarding the training data used
to train a CNN for DoA estimation.

First of all, we observed that training using noise was not
very robust to test signals that involved various audio classes
different from speech, therefore we decided to use variations
of speech and music data, which come from either datasets or
synthetic approaches. We discovered that training with music
data performs better than training with speech data and both of
them performed better than training with spectrally flat random
signals. This is an intriguing observation that warrants further
theoretical as well as empirical investigation.

Then, we compared variants of speech and music data. The
speech data included a speech dataset (TIMIT), pre-processed
speech data using a VAD, synthetic data using a BSAR pro-
cess, and synthetic data using a GAN. Our results indicate that
using a combination of real and synthetic (using WaveGAN)
data performs best, yielding an average relative improvement
of 17% in DoA accuracy across 16 acoustic conditions and
9 DoAs. The music data, on the other hand, included a
street music dataset (StMu), pre-processed data using a VAD,
synthetic data using a GAN from two different instruments,
piano and drums. Our experiments showed that using the data
from the dataset (StMu) performed best, yielding an average
relative improvement of 19% in DoA accuracy across 16
acoustic conditions and 9 DoAs. We also found that the choice
in parameters on the VAD is very relevant in the training
phase, since removing frames that are not silent decreases the

performance of the DoA estimation compared to that obtained
when all the frames are used. Moreover, when comparing the
results obtained when training with speech and music, we
concluded than when using data from recorded datasets, the
best results are obtained when using music; however, when
using synthetic data from GAN, the best results are obtained
using speech.

We also investigated the impact of the amount of data used
for training the CNN. It is encouraging to note that using just
25% of the training data does not notably reduce estimation
accuracy, either with speech or music. Synthetic data generated
with GAN is slightly less prone to changes in the accuracy than
real data from datasets. However, when the amount of data is
decreased further than 25%, the accuracy decreased as well,
particularly when music data is used.

Finally, we showed how the use of a learning-based ap-
proach overcomes the limitations of the GCC approach in
scenarios in which there is some a priori knowledge of the test
environment, improving the DoA accuracy by about 125%.

Our conclusion about training CNN for DoA estimation is to
use data recorded from datasets when the application is related
to music signals. However, when the system will be used in
speech signals, the best approach is to train using synthetic
data from a GAN.

Future work includes the use of transfer learning techniques
in order to use simulated environments for training the CNN
and test using data from real scenarios.
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estimation using deep convolutional networks trained with noise signals.
IEEE Journal of Selected Topics in Signal Processing, 2019.

[12] Eleonora D’Arca, Neil M Robertson, and James R Hopgood. Look who’s
talking: detecting the dominant speaker in a cluttered scenario. In IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 1532–1536, 2014.

[13] Chris Donahue, Julian McAuley, and Miller Puckette. Adversarial audio
synthesis. In International Conference on Learning Representations
(ICLR), 2019.

[14] Christine Evers and James R Hopgood. Parametric modelling for single-
channel blind dereverberation of speech from a moving speaker. IET
Signal Processing, 2(2):59–74, 2008.

[15] Eric L Ferguson, Stefan B Williams, and Craig T Jin. Sound source
localization in a multipath environment using convolutional neural
networks. In IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pages 2386–2390, 2018.

[16] John S Garofolo. Timit acoustic phonetic continuous speech corpus.
Linguistic Data Consortium, 1993.

[17] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning.
MIT press, 2016.

[18] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David
Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Gen-
erative adversarial nets. In Advances in Neural Information Processing
Systems (NeurIPS), pages 2672–2680, 2014.

[19] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin,
and Aaron C Courville. Improved training of wasserstein gans. In
Advances in Neural Information Processing Systems (NeurIPS), pages
5767–5777, 2017.

[20] Elior Hadad, Florian Heese, Peter Vary, and Sharon Gannot. Multichan-
nel audio database in various acoustic environments. In International
Workshop on Acoustic Signal Enhancement (IWAENC), pages 313–317,
2014.

[21] Hoo Yu Heng, Jeeva Sathya Theesar Shanmugam, Madhavan
al Balan Nair, and Ezra Morris Abraham Gnanamuthu. Acoustic
emission source localization on a pipeline using convolutional neural
network. In IEEE Conference on Big Data and Analytics (ICBDA),
pages 93–98, 2018.

[22] Carlos T Ishi, Jani Even, and Norihiro Hagita. Using multiple micro-
phone arrays and reflections for 3d localization of sound sources. In
IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), pages
3937–3942, 2013.

[23] Hendrik Kayser and Jörn Anemüller. A discriminative learning approach
to probabilistic acoustic source localization. In International Workshop
on Acoustic Signal Enhancement (IWAENC), pages 99–103, 2014.

[24] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. arXiv preprint, 2014.

[25] Charles Knapp and Glifford Carter. The generalized correlation method
for estimation of time delay. IEEE/ACM Transactions on Audio, Speech,
and Language Processing, 24(4):320–327, 1976.

[26] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet
classification with deep convolutional neural networks. In Advances in
Neural Information Processing Systems (NeurIPS), pages 1097–1105,
2012.

[27] Bracha Laufer, Ronen Talmon, and Sharon Gannot. Relative transfer
function modeling for supervised source localization. In IEEE Workshop
on Applications of Signal Processing to Audio and Acoustics (WASPAA),
pages 1–4, 2013.

[28] Eric A. Lehmann. Image-source method for room impulse response
simulation (room acoustics). https://rb.gy/wddphz, 2020.

[29] Qinglong Li, Xueliang Zhang, and Hao Li. Online direction of arrival
estimation based on deep learning. In IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages 2616–2620,
2018.

[30] Markus VS Lima, Wallace A Martins, Leonardo O Nunes, Luiz WP
Biscainho, Tadeu N Ferreira, Maurı́cio VM Costa, and Bowon Lee. A

volumetric srp with refinement step for sound source localization. IEEE
Signal Processing Letters, 22(8):1098–1102, 2015.

[31] Zhang-Meng Liu, Chenwei Zhang, and S Yu Philip. Direction-of-
arrival estimation based on deep neural networks with robustness to
array imperfections. IEEE Transactions on Antennas and Propagation,
66(12):7315–7327, 2018.

[32] Loren Lugosch, Brett H Meyer, Derek Nowrouzezahrai, and Mirco
Ravanelli. Using speech synthesis to train end-to-end spoken language
understanding models. In IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 8499–8503, 2020.

[33] Maurizio Omologo, Marco Matassoni, and Piergiorgio Svaizer. Speech
recognition with microphone arrays. In Microphone arrays, pages 331–
353. Springer, 2001.

[34] Constantinos Papayiannis, Christine Evers, and Patrick A Naylor. Data
augmentation of room classifiers using generative adversarial networks.
arXiv preprint, 2019.
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