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Abstract 18 

The rapid loss of coastal and estuarine biogenic habitats has reduced the delivery of 19 

valuable ecosystem services, resulting in calls for increased habitat restoration. Yet, a lack of 20 

information on how key habitat characteristics (e.g., area, vertical relief, age) influence the 21 

ability of restored habitats to deliver these ecosystem services hinders efforts to maximize the 22 

return on restoration investments. We conducted a meta-analysis to assess the influence of reef 23 

type (natural or restored), taxa, and restored reef size, vertical relief, age, and tidal zone on the 24 

presence and magnitude of recruitment enhancement for nekton (i.e. fish and swimming crabs). 25 

Both intertidal and subtidal reefs, as well as restored and natural reefs, enhanced nekton 26 

recruitment, though there was variation among taxonomic groups with reef types. Recruitment 27 

enhancement was more common across taxa on restored (six families) than on natural (one 28 

family) reefs. Resident nekton families were more consistently enhanced than transient families. 29 

Nekton enhancement varied with a number of restored reef characteristics. Recruitment 30 

enhancement increased with greater reef size across taxa, decreased with higher vertical relief for 31 

two families, and showed maximum recruitment around a single intertidal reef age for one 32 

family, and minimum recruitment around a single subtidal reef age for three families. 33 

Understanding variation across species in response to key design elements will improve 34 

restoration success and enhance return on investment. Moving forward, we recommend studies 35 

that vary reef habitat characteristics independently and in combination to identify how variation 36 

in these characteristics interact to influence nekton recruitment enhancement by oyster reefs. 37 

 38 

Keywords: habitat restoration, meta-analysis, nekton, oyster reef, recruitment enhancement, reef 39 

size, reef age, design, vertical relief 40 
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Introduction 43 

Coastal ecosystems consist of landscapes of biogenic habitats (e.g., oyster reefs, corals, 44 

salt marshes, mangroves, and seagrasses) that provide a range of ecosystem functions. They 45 

serve as nursery and foraging grounds for fish and invertebrates (Coen et al. 1999; Beck et al. 46 

2001; Soniat et al. 2004), regulate energy flow and nutrient fluxes (Dame et al. 1984; Piehler and 47 

Smyth 2011; Kellogg et al. 2013), stabilize shorelines and slow erosion (Meyer et al. 1997; 48 

Piazza et al. 2005), reduce storm surge water levels (Krauss et al. 2009), and enhance biological 49 

diversity (Wells 1961; Bahr and Lanier 1981; functions are reviewed in Powers and Boyer 50 

2014). These ecosystem functions result in a host of associated services, such as enhancing 51 

economically valuable fisheries (Peterson et al. 2003, zu Ermgassen et al. 2016), protecting 52 

shorelines and infrastructure (Meyer et al. 1997; Krauss et al. 2009; Scyphers et al. 2011), 53 

enhancing water quality by removing excess nitrogen (Piehler and Smyth 2011), and providing 54 

cultural benefits such as enhancing recreational opportunities (Carlton et al. 2016; services are 55 

reviewed in Barbier et al. 2011; Martin et al. 2016). However, degradation and loss of biogenic 56 

habitats are intensifying as human populations continue to grow and exert more pressure on 57 

coastal systems, leading to reduced aerial extent and complexity of these biogenic habitats and 58 

threatening the critical ecosystem functions they provide (Alongi 2002; Waycott et al. 2009; zu 59 

Ermgassen et al. 2012, 2013). To combat these impacts and restore ecosystem functions, habitat 60 

restoration is increasingly employed as a tool (Peterson and Lipcius 2003). Although there are 61 

many examples of successful habitat restoration efforts (e.g., oysters in protected areas, Powers 62 

et al. 2009; seagrasses in Chesapeake Bay, Lefcheck et al. 2018), overall success rates for many 63 

projects, including those in coastal habitats, are moderate (Bayraktarov et al. 2016), and 64 

ecosystem functions may remain reduced in restored versus intact habitats (Rey Benayas et al. 65 
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2009). Understanding how particular ecosystem functions vary across a range of restored habitat 66 

characteristics (e.g., areal extent, age) can inform future habitat restoration efforts by helping 67 

decision-makers better predict how restoration design elements may influence service delivery.   68 

Re-establishing biodiversity is a common goal of habitat restoration (Peterson and 69 

Lipcius 2003; Rey Benayas et al. 2009), yet distribution patterns of fauna among patchy habitats 70 

are difficult to predict because they are shaped by processes occurring at various scales of space, 71 

time, and ecological organization that often differ from the scales at which patterns are observed 72 

(Levin 1992). Understanding how restoration design influences faunal abundances across 73 

multiple taxa will enhance the ability of restoration practitioners to increase the return on 74 

investments made by future conservation and restoration efforts. Oyster reefs are broadly 75 

distributed and augment populations of many faunal species (Zimmerman et al. 1989; Coen et al. 76 

1999; Rodney and Paynter 2006). Although many studies have documented augmented faunal 77 

abundances by oyster reefs, the degree of enhancement varies considerably among studies, 78 

species, and ocean basins (e.g., Robillard et al. 2010; Kingsley-Smith et al. 2012; Nevins et al. 79 

2014; synthesized in zu Ermgassen et al. 2016). This variation in recruitment enhancement could 80 

stem from several differences among studies due to varying habitat characteristics, including reef 81 

areal extent, vertical relief, tidal zone (e.g., subtidal vs. intertidal) tidal elevation, salinity, or 82 

landscape setting (Lenihan 1999; Lenihan et al. 2001; Lehnert and Allen 2002; Grabowski et al. 83 

2005), but the potential role of these factors has yet to be thoroughly examined.  84 

We synthesized information from Eastern Oyster (Crassostrea virginica) restoration 85 

studies across the U.S. to assess the potential influence of habitat characteristics incorporated 86 

into reef restoration designs on the abundance of reef-associated nekton (specifically fish and 87 

swimming crabs in association with oyster reefs). Augmentation of nekton can occur through 88 
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recruitment enhancement of early life stages (which includes improved settlement, growth, and 89 

survival of juveniles; Beck et al. 2001), or enhanced growth and reproductive effort of adults 90 

(e.g., by concentrating food resources and enhancing foraging and spawning opportunities; 91 

Peterson et al. 2003, Powers et al. 2003) relative to unstructured habitats. Because growth 92 

enhancement likely contributes far less to lifetime augmented nekton production by oyster reefs 93 

than recruitment enhancement (Peterson et al. 2003, zu Ermgassen et al. 2016), our synthesis 94 

focused on recruitment enhancement. We specifically examined whether reef recruitment 95 

enhancement varies by taxonomic group and 1) reef type (i.e., natural or restored reefs) or 2) the 96 

size, vertical relief, or age of restored reefs. Our ultimate goal was to provide information for 97 

resource managers to guide future habitat restoration efforts. 98 

 99 

Methods 100 

Literature review 101 

First, we determined the variety of reef characteristics reported by studies investigating 102 

nekton recruitment enhancement by oyster reefs using citations from the reference list of a 103 

recently completed meta-analysis (zu Ermgassen et al. 2016). We identified nekton families that 104 

were regularly reported at oyster reef and control habitats, including both resident (i.e., species 105 

that feed, breed, and shelter on reefs long after initial recruitment, Coen et al. 1999; Harding and 106 

Mann 2000) and transient (i.e., species that recruit to structured habitats but are more widely 107 

distributed across multiple habitats after recruitment, Harding and Mann 2001) reef-associated 108 

species. We also performed forward searches in Google Scholar on two published syntheses: 109 

Peterson et al. (2003) and zu Ermgassen et al. (2016). We retained studies that met the following 110 

criteria: 1) authors quantified density or relative abundance of target nekton families at both 111 
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oyster reefs (or experimental units that contained oyster shell and served as a mimic for reef 112 

habitat; e.g., Humphries et al. 2011) and unstructured mud or sand habitats within the same 113 

study; 2) restored reefs used oyster shell, including shell piles, cultch, bagged shell, or shell piles 114 

from other species (e.g., surf clams) if topped by oyster shell; 3) restored reefs were within the 115 

tidal extent of natural reefs (< 10 m deep relative to mean low water [MLW] at the base of the 116 

reef; Kennedy and Sanford 1999) , 4) fishing gear(s) quantitatively censused juveniles; and 5) 117 

authors reported densities or abundances of target nekton by species or family.  118 

Data Extraction 119 

We extracted densities or abundances, measures of spread (standard deviation or standard 120 

error), and sample sizes of each nekton species from oyster reefs and their paired unstructured 121 

control habitat patches. We extracted data for nine nekton families, including reef residents: 122 

toadfish (Batrachoididae), blennies (Blenniidae), gobies (Gobiidae), and skilletfish 123 

(Gobiesocidae, which were later removed due to limited data availability); and reef transients: 124 

grunts (Haemulidae), snappers (Lutjanidae), swimming crabs (Portunidae), drums (Sciaenidae), 125 

and porgies (Sparidae; Table 1). We normalized densities to mean individuals m-2, abundances to 126 

mean individuals per sample (relative abundances), and measures of spread to one standard error 127 

of the mean (Appendix B). We extracted tidal zone (subtidal or intertidal), reef type (restored or 128 

natural), restoration method (reefs restored with or without live oysters), and when available, reef 129 

size (standardized to m2), vertical relief (distance from bare sediment to the highest point on the 130 

reef, standardized to m), tidal elevation (at the base of the reef, in m relative to MLW), adult 131 

oyster density (individuals m-2 > 75 mm in shell height, or specified as adult by the authors), and 132 

the year of restored reef construction, from which we calculated reef age (Table A1; Appendix 133 

B). 134 
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Analyses 135 

To compare nekton recruitment to oyster reefs versus unstructured control habitat, we 136 

calculated log response ratios (LRRs, Hedges et al. 1999) with 95% confidence intervals by 137 

family (Appendix B). An LRR with CIs > 0 implies that nekton recruitment was enhanced by 138 

oyster reefs, an LRR with CIs < 0 implies the opposite, and an LRR with CIs that include 0 139 

implies no difference in recruitment between oyster reef and control habitats. For each research 140 

question, we assessed data publication bias with funnel plots (Appendix C) and data availability 141 

with mosaic and violin plots (Appendix D). 142 

To assess whether recruitment enhancement varied as a function of reef type (natural or 143 

restored) and nekton family, we conducted linear mixed model analyses separately for intertidal 144 

and subtidal reefs that included two categorical factors (reef type and nekton family) and their 145 

interaction as fixed effects, with study as a random effect. We conducted mixed model analyses 146 

separately by tidal zone since subtidal and intertidal habitats harbor different nekton 147 

communities (Lehnert and Allen 2002), and subtidal and intertidal oyster reefs are distributed 148 

unevenly in our database: intertidal reefs are more prevalent on the Atlantic coast and subtidal 149 

reefs are more common in the Gulf of Mexico (Fig. 1; Tab. A1). Furthermore, the reef 150 

characteristics in our database differed across tidal zones (Fig. D1-D12). We removed any family 151 

that was represented by fewer than three independent studies and/or fewer than 10 independent 152 

LRRs (“NA” on Fig. 2). Results of randomization and resampling in support of these criteria are 153 

presented in Appendix E.  154 

To evaluate the effects of restored reef characteristics (i.e., reef size, vertical relief, and 155 

age) on recruitment enhancement, we focused on restored reefs only, and performed linear mixed 156 

effect regression models with orthogonal polynomials (first and second order) for the continuous 157 
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reef characteristics as fixed effects, and study as a random effect. We conducted separate 158 

analyses for each reef characteristic, nekton family, and tidal zone. We did not model families 159 

represented by fewer than three independent studies and/or 10 independent LRRs covering 160 

different values of the reef characteristics (e.g., reef sizes, vertical reliefs, or ages; “insufficient 161 

data” in Figs. 3-8), and results are not reported or plotted for models that did not converge.  162 

Since not all families were represented at all values of each reef characteristic (e.g., all vertical 163 

reliefs or sizes), we performed separate analyses for each family and included all available data 164 

(but for combined-family approaches, see Appendix B for methods and Appendix E for results). 165 

We also examined the influence of tidal elevation on recruitment enhancement for each family 166 

using linear mixed effect regression models with orthogonal polynomials (first and second order) 167 

for tidal elevation as a fixed effect and study as a random effect (Appendix E). Where models 168 

indicated that predictor variables are on substantially different scales (i.e. reef size) we rescaled 169 

using natural log transformation. 170 

 All models were weighted by sample size (Appendix B). All analyses were conducted in 171 

R 3.6.1 (R Core Team, 2019) on the RStudio IDE 1.2.1335 (RStudio Team, 2019). 172 

 173 

Results 174 

We extracted density or relative abundance comparisons from 28 studies (Table A1) that 175 

generated 1,820 LRRs across eight target nekton families (excluding skilletfish), represented by 176 

51 species (Table 1). Studies were distributed along the Atlantic and Gulf of Mexico coastlines 177 

from New Jersey to Texas, USA, across 25 embayments (Fig. 1). Funnel plots indicated no 178 

evidence of publication bias (Fig. C1). 179 

Restored vs. natural reefs (reef type) 180 
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Recruitment enhancement on intertidal reefs varied interactively by family and reef type 181 

(Fig. 2a; family * reef type, F4,790 = 8.25 p < 0.001). In the intertidal, recruitment was frequently 182 

enhanced on restored reefs (i.e., LRR > 0 for two resident families: toadfish and blennies and 183 

three transient families: grunts, snappers and porgies; Fig. 2a), but not on natural oyster reefs 184 

(i.e., LRR = 0; Fig. 2a). Recruitment enhancement on subtidal reefs varied by family and was 185 

marginally related to reef type, but not their interaction (Fig. 2b; family, F3,513 = 8.19, p < 0.001; 186 

reef type, F1,11 = 3.53 p = 0.09; family * reef type, F3,513 = 1.81, p = 0.15). Five families (three 187 

resident: toadfishes, blennies, and gobies; two transient: grunts and porgies) were enhanced at 188 

subtidal restored reefs (Fig. 2b), and one resident family (blennies) was enhanced on subtidal 189 

natural reefs (Fig. 2b). Swimming crabs were more abundant on unstructured sedimentary habitat 190 

than natural reefs in both intertidal and subtidal zones (i.e., LRR < 0; Fig. 2a-b), though they did 191 

not differ between restored reefs and unstructured habitat in either zone (Fig. 2a-b). In the 192 

subtidal zone, drums were more abundant on unstructured sedimentary habitat than restored reefs 193 

but did not differ between natural reefs and controls (Fig. 2b).  194 

Restored reef characteristics (reef size, vertical relief, and age) 195 

Recruitment enhancement differed with reef size for only one family (blennies; Fig. 3-4). 196 

On intertidal reefs, there was no relationship between blenny recruitment and reef size (natural 197 

log transformed). On subtidal reefs, there was a marginal U-shaped relationship between blenny 198 

recruitment enhancement and subtidal reef size (t54.7 = 1.78, p = 0.08), with recruitment 199 

enhancement decreasing from 0.5 m2 to 28.3 m2 and increasing from 28.3 m2 to 50.3 m2 (Fig. 200 

4b). 201 

Recruitment enhancement of several families (grunts, drums, and blennies) varied with 202 

reef vertical relief (Fig. 5-6). Drum enhancement varied with vertical relief on intertidal reefs in 203 
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a U-shaped pattern (Fig. 5g, t6.9 = 2.66, p = 0.03), though a single experiment, at a vertical relief 204 

of 0.48 m with 20 independent replicates, appears to drive this relationship (Fig. 5g). 205 

Enhancement of blennies on subtidal reefs tended to decrease with increasing vertical relief (Fig. 206 

6b; t6.6 = -1.96, p = 0.09). On subtidal reefs, drum enhancement decreased as vertical relief 207 

increased (Fig. 6g; t7.44 = -2.52, p = 0.04). 208 

Recruitment enhancement of some families was also correlated with reef age (Figs. 7-8). 209 

On subtidal reefs, toadfish enhancement varied with reef age in a U-shaped pattern, decreasing 210 

from reefs that were between 0 and approximately 4 years of age, and then increasing from reefs 211 

aged approximately 4 to 6 years (t77.6 = 2.43, p = 0.02; Fig. 8a). Drum enhancement responded 212 

similarly to reef age on subtidal reefs (t126.8 = 7.25, p < 0.0001; Fig. 8g), decreasing from 0- to 4-213 

year-old reefs, then increasing on six-year-old reefs (Fig. 8g). Porgy enhancement on subtidal 214 

reefs also varied similarly with reef age (t56.2 = 2.56, p = 0.01; Fig. 8h), decreasing on reefs 215 

between 0- to 3-years old, and then increasing on six-year-old reefs (Fig. 8h). Porgy 216 

enhancement on intertidal reefs tended to vary with reef age in a hump-shaped pattern (Fig. 7h, 217 

t17.7 = -2.04, p = 0.06), with recruitment enhancement increasing from 0 to 7 years, and 218 

decreasing from 7 to 13 years. 219 

 220 

Discussion 221 

Our analyses confirmed that both natural and restored oyster reefs enhance nekton 222 

recruitment, and we further demonstrate that the magnitude of this enhancement is as strong or 223 

stronger on restored reefs as natural reefs for five nekton families (Fig. 2). The magnitude of 224 

enhancement also varied by family and tidal zone and key characteristics of restored reef design 225 

(i.e., reef size, reef vertical relief, and reef age) also influenced recruitment enhancement of 226 
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fishes and swimming crabs. Nekton recruitment enhancement tended to increase with intertidal 227 

reef size, though increases in vertical relief decreased enhancement, particularly at subtidal reefs. 228 

Enhancement of many nekton species occurred immediately, though enhancement of porgies 229 

peaked around 6 years on intertidal reefs, and enhancement of toadfish, drums and porgies was 230 

lowest at intermediate ages (about 3-4 years) on subtidal reefs. Further data are needed to 231 

examine whether recruitment enhancement is sustained over longer time periods.  232 

Review of past restoration projects suggest that enhancement of nekton recruitment is 233 

generally greater on restored than on natural reefs. The enhancement by restored reefs supports 234 

earlier findings that nekton communities respond rapidly to oyster reef restoration efforts 235 

(Lenihan et al.2001; Grabowski et al. 2005; La Peyre et al. 2014) and highlights the utility of reef 236 

restoration as a technique to recover nekton abundances. We do not know why restored reefs 237 

more consistently augmented nekton than natural reefs, but past or current exposure of natural 238 

reefs to destructive harvesting practices that reduced their habitat quality may have contributed 239 

to this difference. Given the dramatic losses of oyster populations to overharvesting and other 240 

contributing factors (reviewed in Kirby 2004), remaining natural reefs may be degraded and 241 

exhibiting reduced function (zu Ermgassen et al. 2012; 2013), whereas restored reefs are often 242 

protected from harvest (e.g., Dunnigan 2015). Only 10 of 29 studies in our analysis reported 243 

susceptibility to harvest, with even fewer providing specific harvest methods and amounts, 244 

precluding an analysis of the effects of harvest on nekton recruitment enhancement in this study.  245 

Habitat patch size can mediate the population dynamics of mobile species (Hanski 1999): 246 

larger habitat patches have lower metapopulation extinction rates (MacArthur and Wilson 1967, 247 

Hanski 1999) and alleviate negative edge effects in fragmented landscapes (Reis 2004). Thus, we 248 

expected enhancement of fish and mobile crustacean recruitment to increase with restored reef 249 
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(patch) size. Our analyses of individual families were not significant but there were positive 250 

trends at intertidal reefs, and our combined-family analysis provided additional support that 251 

recruitment enhancement increases with intertidal reef size (Fig. E2a). For subtidal reefs, the 252 

influence of reef size was taxon-dependent (Fig E2b), consistent with findings from the habitat 253 

fragmentation literature (Eggleston et al. 1999; Johnson and Heck 2006). Relationships between 254 

fish recruitment enhancement and reef size may be more consistent within a region than across 255 

regions. For instance, the density of commercial fishes within marine reserves increased with 256 

reserve size when marine reserves within a single region were compared to unprotected spaces 257 

(Edgar and Barrett 1997; Claudet et al. 2008), yet Lester et al. (2009) found no relationship 258 

between density enhancement and MPA size when synthesizing MPAs globally. Additionally, an 259 

over-representation of small reef sizes in our analysis, as in the global analysis of MPAs (Lester 260 

et al. 2009), may have hindered our ability to detect an impact of habitat size. Reefs in our 261 

analysis ranged in size over four orders of magnitude (0.45 to > 8000 m2), though greater than 262 

70% of restored reefs that reported sizes were ≤ 50 m2 (Fig. D3). Given the magnitude of 263 

degradation that has occurred in many estuaries in the U.S. and elsewhere, extensive restoration 264 

efforts are necessary. Studies that include larger (i.e., ~ 100 – 1000 m2) restored reefs are needed 265 

to better define the relationship between reef size and recruitment enhancement and determine 266 

whether there are optimal or minimum sizes necessary to benefit target species.  267 

The vertical relief of a reef can influence oyster survival (Taylor and Bushek 2008; 268 

Colden et al. 2017). We expected that greater relief would also increase augmentation of fish and 269 

mobile crustacean abundances, as taller reefs are less likely to be influenced by bottom-water 270 

hypoxia (Lenihan et al 2001), more likely to avoid sedimentation and sustain oyster populations 271 

(Taylor and Bushek 2008; Colden et al. 2017), and potentially provide greater reef complexity 272 
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and refuge quality. Recruitment enhancement of individual families did not vary consistently 273 

with vertical relief on intertidal reefs, which may be more strongly influenced by seldom-274 

reported tidal emersion (determined by a combination of vertical relief, tidal elevation, and tidal 275 

range in the embayment; Fodrie et al. 2014; Walles et al. 2016) than vertical relief alone. On 276 

subtidal reefs, we found evidence that increasing reef vertical relief decreased recruitment 277 

enhancement of two families. Perhaps greater vertical relief on these reefs provided more 278 

accessible area to support a wider variety of predators, leading to these negative relationships. 279 

Prior studies have described thresholds in initial height of subtidal restored oyster reefs (~0.2 – 280 

0.45 m) for the persistence of oyster growth (Lenihan 1999; Powers et al. 2009; Schulte et al. 281 

2009; Lipcius et al. 2015; Grizzle and Ward 2016; Colden et al. 2017). Our results suggest a 282 

threshold under which nekton recruitment is enhanced (< 1 m) by greater reef height; from 0 to 1 283 

m reef height, small gains in reef height can lead to substantial increases in nekton recruitment 284 

enhancement until they reach a maximum and then decline above around 1 m reef height. Thus, 285 

designing reefs to optimize oyster recruitment will likely influence enhancement of fish families. 286 

Although the mechanisms driving this relationship are not clear, if reefs are preferentially 287 

restored in areas that are not typically subjected to hypoxia, then reefs with higher vertical relief 288 

may not be necessary. Given that constructing high relief reefs is more expensive and requires 289 

greater amounts of shell material, restoration decision-makers could increase the aerial extent of 290 

restored reefs in areas where low-relief reefs will be effective. 291 

Variability in recruitment enhancement across families may also be attributable to their 292 

degree of reef fidelity (e.g., reef residents vs. transients). Oyster habitat is considered an essential 293 

habitat for resident species long after initial recruitment (Coen et al. 1999; Harding and Mann 294 

2000), whereas transient species spend less time on reefs and are more widely distributed across 295 
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multiple structured habitats (Harding and Mann 2001). In our database, some intriguing potential 296 

differences between residents and transients emerged. Each resident species we examined 297 

demonstrated recruitment enhancement, whereas only two families of transient species were 298 

enhanced (grunts and porgies), and two demonstrated lower recruitment at some oyster reefs 299 

(drums and crabs; Fig. 2). Drums are transient among estuarine habitats and utilize oyster reefs 300 

over non-vegetated habitat in some studies (Lenihan et al. 2001; Kingsley-Smith et al. 2012), 301 

though they utilize marsh edges and subtidal areas over oyster reefs in other studies (Stunz et al. 302 

2010). Low or no recruitment of drums to oyster reefs may therefore reflect functional 303 

redundancy of structured habitats (Grabowski et al. 2005; Geraldi et al. 2009) and/or alternative 304 

habitat selection, particularly in intertidal zones where alternative structured habitats are often 305 

readily available. Understanding the influence of coastal habitat landscapes, rather than just 306 

individual habitats, on faunal abundance is a key research priority for informing habitat 307 

restoration efforts (Gilby et al. 2018). In the case of the Blue crab, Callinectes sapidus, previous 308 

studies found blue crab to be enhanced by oyster reef in the Gulf of Mexico, but not in the 309 

Atlantic coast (zu Ermgassen et al. 2016). It is possible that by using data from both regions in 310 

this analysis, this regional enhancement was masked in our results.  311 

Several other factors not included in our analysis likely influence nekton recruitment 312 

enhancement by oyster reefs. For instance, nekton densities on oyster reefs, including many of 313 

our target families, fluctuate seasonally (Lehnert and Allen 2002; Shervette and Gelwick 2008). 314 

Many studies in our synthesis reported densities pooled across repeated time points, precluding 315 

an analysis of seasonality. Further, our synthesis included studies conducted across different 316 

latitudes where seasonality effects may differ. Although we were not able to explicitly evaluate 317 
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the effects of seasonality, assuming nekton do not change their relative use of oyster vs. 318 

unstructured habitats by season, this omission should not confound our results.  319 

We are often forced to make assumptions about whether ecosystem services from 320 

restored habitats are consistent over time because of the lack of temporal data on service delivery 321 

(Barbier et al. 2011; Grabowski et al. 2012). While many studies reviewed in this meta-analysis 322 

have documented that fish and invertebrate communities respond quickly to restoration efforts, 323 

ecological theory predicts that recruitment enhancement will vary through time.  For example, as 324 

restored reefs age, we expect their associated communities will undergo succession (Connell and 325 

Slatyer 1977; Manley et al. 2010; Quan et al. 2012). Recruitment was reported at intertidal 326 

restored reefs 0 – 13 years old in our study. Though reef age was not a strong predictor of 327 

recruitment enhancement in our analyses, porgies provided some evidence for a maximum 328 

recruitment enhancement at intermediate reef ages, while recruitment enhancement data for 329 

intertidal reefs aged 8 – 12 years are not available for any family and represent a data gap (Fig. 330 

7). For restored reefs in the subtidal, a minimum recruitment enhancement value at reefs aged 3 – 331 

4 years were represented by data from a single study that reported annual recruitment on reefs > 332 

1 year old (Lenihan et al. 2001). Additional studies are needed to provide further evidence for 333 

this relationship and address the data gap beyond 6 years old for subtidal reefs. Several studies 334 

pooled densities across years (4 of 21 studies that reported reef construction date, Appendix A), 335 

indicating that services were consistent over the time these studies were sampled (e.g., La Peyre 336 

et al. 2014). However, the limited data for nekton recruitment enhancement over a decadal 337 

timescale (but see Ziegler et al. 2018) challenges our ability to project whether ecosystem service 338 

delivery remains constant or varies temporally at the scale of several years to decades. Thus, 339 
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long-term studies investigating the degree to which nekton enhancement varies with reef age 340 

would be particularly useful.  341 

Reef habitat complexity (the physical structure of an environment) is predicted to 342 

increase with reef age as oysters settle atop one another and grow vertically in the water column 343 

(Bahr and Lanier 1981; Grabowski et al. 2005; Rodriguez et al. 2014; Ziegler et al. 2018). Such 344 

habitat complexity has been linked to habitat quality for associated communities, with interstitial 345 

refuges that decrease interaction strengths (i.e., predation, Humphries et al. 2011) and increase 346 

rugosity, which alters water flow and enhances larval settlement opportunities (Breitburg et al. 347 

1995). Oyster density and biomass are often used as quantitative measures of reef complexity 348 

(Baggett et al. 2015); thus, we expected augmentation of fish and mobile crustaceans to increase 349 

with oyster density and biomass on oyster reefs, even in the absence of explicit information 350 

about reef age. However, we could not assess nekton responses to oyster density, as only five out 351 

of the 22 studies of restored reefs in our database reported oyster density, and fewer yet reported 352 

biomass.  353 

Syntheses across restoration efforts can identify potential influences of reef 354 

characteristics on recruitment enhancement, determine restoration designs that are most 355 

beneficial to target species, and help assess tradeoffs among targeted services. Future 356 

experiments that manipulate multiple restoration design factors orthogonally will further our 357 

understanding and predictive capacity of how they potentially interact to influence ecosystem 358 

service delivery by restored habitats, including nekton recruitment enhancement at oyster reefs. 359 

Such manipulations are difficult at scales relevant for restoration, so data syntheses are also a 360 

critical tool for advancing restoration science. Future synthesis efforts will be facilitated by 361 

consistent reporting across restoration efforts; therefore, we highlight Baggett et al.’s (2015) 362 
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recommendations for reporting universal oyster reef metrics (project footprint and reef area, reef 363 

vertical relief, oyster density, and oyster size‐frequency distribution) and environmental variables 364 

(water temperature, salinity, and for subtidal reefs, dissolved oxygen) from all oyster restoration 365 

projects, in addition to densities of target species when reefs are intended to benefit nekton. We 366 

also support Walles et al. (2016)’s recommendation to add tidal emersion for intertidal reefs to 367 

this set of recommendations, and we further suggest that tidal elevation, reef age at the time of 368 

sampling, and exposure to oyster harvest be reported for effective comparisons across restored 369 

reefs. Given the magnitude of restoration needed to recover lost ecosystem services from 370 

biogenic habitats, experimental and synthetic efforts aimed at guiding restoration decision-371 

making are critical.  372 
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Table 1. List of species represented in the dataset by reef association, family common and 621 

scientific name, and species common and scientific names.  622 

Reef 

Association 

Family 

(common) Common Name Species 

Resident 

Toadfish 

(Batrachoididae) 

Gulf toadfish Opsanus beta 

 Oyster toadfish Opsanus tau 

 Stiped blenny Chasmodes bosquianus 

 Florida blenny Chasmodes saburrae 

 Crested blenny Hypleurochilus geminatus 

 Feather blenny Hypsoblennius hentz 

 Freckled blenny Hypsoblennius ionthas 

 Highfin blenny Lupinoblennius nicholsi 

 Blenny species  Blennidae spp. 

 
Skilletfish 

(Gobiesocidae) 
Skilletfish Gobiesox strumosus 

 

Goby 

(Gobiidae) 

  

Frillfin goby Bathygobius soporator 

  Darter goby Ctenogobius boleosoma 

  Freshwater goby Ctenogobius shufeldti 

  Emerald goby Ctenogobius smaragdus 

  Highfin goby Gobionellus oceanus 

  Naked goby Gobiosoma bosc 

  Seaboard goby Gobiosoma ginsburgi 

  Code goby Gobiosoma robustum 

  Clown goby Microgobius gulosus 

  Green goby  Microgobius thalassinus 

  Goby species 

Gobiosoma spp.; 

Microgobius spp.;  

Gobiidae 

Transient Grunt 

(Haemulidae) 

 

Barred grunt Conodon nobilis 

 White grunt Haemulon plumierii 

 Pigfish Orthopristis chrysoptera 

 Snapper 

(Lutjanidae)  

 

Gray snapper Lutjanus griseus 

 Lane snapper Lutjanus synagris 

 Swimming crab 

(Portunidae) 

Blue crab Callinectes sapidus 

 Lesser blue crab Callinectes similis 
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 Iridescent 

swimming crab 
Portunus gibbesii 

 
Blotched 

swimming crab 
Portunus spinimanus 

 
Swimming crab 

species 

Callinectes spp.; 

Portunidae 

 

Drum 

(Sciaenidae) 

Silver perch Bairdiella chrysoura 

 Sand seatrout Cynoscion arenarius 

 Spotted seatrout Cynoscion nebulosus 

 Silver seatrout Cynoscion nothus 

 Weakfish Cynoscion regalis 

 Banded drum Larimus fasciatus 

 Spot croaker Leiostomus xanthurus 

 Southern kingfish Menticirrhus americanus 

 Northern kingfish Menticirrhus saxatilis 

 Atlantic croaker Micropogonias undulatus 

 Black drum Pogonias cromis 

 Red drum Sciaenops ocellatus 

 
American 

stardrum 
Stellifer lanceolatus 

 Drum species 
Cynoscion spp. 

Sciaenidae 

 
Porgy 

(Sparidae) 

Sheepshead Archosargus probatocephalus 

 Spottail seabream Diplodus holbrookii 

 Pinfish Lagodon rhomboides 

 623 
 624 

  625 
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Figure 1. Map of study sites along the Gulf of Mexico and Atlantic Coasts of the USA. States 626 

shaded in gray are represented in the dataset. Each point represents an independent study, with 627 

shapes representing tidal zone (circles represent intertidal reefs and triangles represent subtidal 628 

reefs). Additional study attributes are listed in Table A1. 629 

 630 

Figure 2a-b. Mean and 95% confidence intervals of the Log Response Ratios (LRR) of nekton 631 

densities at oyster compared to unstructured sedimentary control habitats for each family 632 

(toadfish = Batrachoididae, blenny = Blenniidae, goby = Gobiidae, grunt = Haemulidae, snapper 633 

= Lutjanidae, crab = Portunidae, drum = Sciaenidae, porgy = Sparidae), at natural vs. restored 634 

reefs, for a) intertidal reefs, and b) subtidal reefs. Numbers indicate the total number of LRRs 635 

that contributed to the mean LRR for each family. Asterisks indicate 95% confidence intervals 636 

that do not overlap 0. NA indicates that data were insufficient to include in analyses, as there 637 

were fewer than 10 LRRs included in the mean. 638 

 639 

Figure 3a-h. Variation in mean Log Response Ratios (LRR) of nekton densities by reef size (m2) 640 

on intertidal reefs. Point size is weighted by the number of independent replicates for each reef. 641 

The model for Toadfish (panel a) has a singular fit and should be interpreted with caution.  642 

 643 

Figure 4a-h. Variation in mean Log Response Ratios (LRR) of nekton densities by reef size (m2) 644 

on subtidal reefs. Studies that included multiple experiments with reefs of different sizes are 645 

assigned separate points for each reef. Point size is weighted by the number of independent 646 

replicates for each reef. For readibility, mean LRRs (0.921 for toadfish, 0.679 for drums and 1.63 647 
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for porgies) for the study with the largest subtidal reef (> 8000 m2; Table A1) are not pictured. 648 

The model for Gobies (panel c) has a singular fit and should be interpreted with caution.  649 

 650 

Figure 5a-h. Variation in mean Log Response Ratios (LRR) of nekton densities by vertical relief 651 

(m) on intertidal reefs. Studies that included multiple experiments with reefs of different reliefs 652 

are assigned separate points for each reef. Point size is weighted by the number of independent 653 

replicates for each reef. Plots with a solid trend line and 95% confidence intervals (gray areas) 654 

indicate a significant effect of vertical relief from single-family mixed model analysis. The 655 

model for Grunts (panel d) has a singular fit and should be interpreted with caution.  656 

 657 

Figure 6a-h. Variation in mean Log Response Ratios (LRR) of nekton densities by vertical relief 658 

(m) on subtidal reefs. Studies that included multiple experiments with reefs of different reliefs 659 

are assigned separate points for each reef. Point size is weighted by the number of independent 660 

replicates for each reef. Plots with a solid trend line and 95% confidence intervals (gray areas) 661 

indicate a significant effect of reef age from single-family mixed model analysis. Dashed lines 662 

indicate vertical relief effects for which 0.05 ≤ P ≤ 0.1. 663 

 664 

Figure 7a-h. Variation in mean Log Response Ratios (LRR) of nekton densities by reef age 665 

(years) on intertidal reefs. Studies that included multiple experiments with reefs of different ages 666 

are assigned separate points for each reef. Point size is weighted by the number of independent 667 

replicates for each reef. Plots with a dashed trend line and 95% confidence intervals (gray areas) 668 

indicate a reef age from single-family mixed model analysis for which 0.05 ≤ P ≤ 0.1. The model 669 

for Toadfish (panel a) has a singular fit and should be interpreted with caution.  670 
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Figure 8a-h. Variation in mean Log Response Ratios (LRR) of nekton densities by reef age 671 

(years) on subtidal reefs. Studies that included multiple experiments with reefs of different ages 672 

are assigned separate points for each reef. Point size is weighted by the number of independent 673 

replicates for each reef. Plots with a trend line and 95% confidence intervals (gray areas) indicate 674 

a significant effect of reef age from single-family mixed model analysis.  675 
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Figure 1. 681 
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Figure 2a-b. 683 
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Figure 3a-h.  686 
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Figure 4a-h.  689 
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Figure 5a-h.  693 
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Figure 6a-h.  695 
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Figure 7a-h.  698 
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Figure 8a-h.  701 
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