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Prediction Versus Understanding in Computationally Enhanced 
Neuroscience 

 
 
M. Chirimuuta (forthcoming) Synthese 
 
ABSTRACT 
The use of machine learning instead of traditional models in neuroscience raises 
significant questions about the epistemic benefits of the newer methods. I draw 
on the literature on model intelligibility in the philosophy of science to offer some 
benchmarks for the interpretability of artificial neural networks (ANN’s) used as a 
predictive tool in neuroscience. Following two case studies on the use of ANN’s 
to model motor cortex and the visual system, I argue that the benefit of providing 
the scientist with understanding of the brain trades off against the predictive 
accuracy of the models. This trade-off between prediction and understanding is 
better explained by a non-factivist account of scientific understanding.  
 
 
1. INTERPRETABILITY AND INTELLIGIBILITY IN BIG-DATA NEUROSCIENCE 
 
Neuroscience is undergoing a big-data revolution, where high throughput 
methods generate terabytes of neural recordings, and machine learning 
algorithms are at work searching for meaning and pattern amongst the endless 
numbers of simultaneously recorded spikes and traces. Responses to these 
innovations have been both enthusiastic and tepid (Churchland and Sejnowski 
2016; Paninski and Cunningham 2018; Fre�gnac 2017: 471). This paper attempts 
to deliver a non-partisan analysis of the advantages and limitations of certain 
applications of machine learning in neuroscience, looking in particular at artificial 
intelligence based on connectionist networks (artificial neural networks or ANN’s)1 
used to model the responses of neurons in visual and motor areas. I will argue 
that while the predictive accuracy of such models is in a different league from that 
of previous generations of hand-coded models, this comes at a cost of the 
understanding of the neural systems afforded by modelling them. In other words, 
there is a trade-off between a model’s predictive power and its ability to increase 
the scientist’s understanding of a neural response.  
 

																																																								
1 See Buckner (2019) for an accessible review of deep learning. 
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Philosophers such as Carl Hempel took understanding to be subjective and 
peripheral to philosophy of science,2 but it is common for scientists themselves to 
characterise understanding as central to their endeavour. One example is the 
pioneering neuroscientist, Emil du Bois-Reymond (1874) who argued, not without 
controversy, that the limits of our capacity to understand nature are the limits of 
science itself. In their statement of aims for the US government funded BRAIN 
Initiative, Jorgenson and co-authors write that understanding is the ultimate goal 
of neuroscientific research: 

The overarching goal of theory, modelling and statistics in neuroscience is 
to create an understanding of how the brain works—how information is 
encoded and processed by the dynamic activity of specific neural circuits, 
and how neural coding and processing lead to perception, emotion, 
cognition and behaviour. [Emphasis added. Quoted in Fairhall and 
Machens (2017: A1)] 

The topic of understanding has recently risen in importance within the philosophy 
of science. 3  This literature is helpful not only for analysis of the goals of 
neuroscience, but also in current debates on the interpretability of AI, and other 
complex computational tools, for human users. I will argue that philosophical 
accounts of understanding (of natural systems) and intelligibility (of theories or 
models) help to shed light on the current discussion, within computer science, 
over model interpretability – the question of how to make the decisions and 
classifications generated by AI comprehensible to human users.  
 
Given the trade-off, to be presented in the next section, between prediction and 
understanding afforded by computational models in neuroscience, I will argue 
that a non-factive account of understanding best suits the case in hand. Roughly 
speaking, non-factivists about understanding do not equate understanding with 
the learning of facts about nature, or the knowledge of true explanations; rather, 
scientific understanding is a matter of skill (de Regt 2017) or an epistemic benefit 
that is more often than not conferred by idealisations rather than literally true 
representations of nature (Potochnik 2017; Elgin 2017).  
 
 

																																																								
2 See Hempel (1965: 413) discussed in De Regt (2017: 16). See also Hooker and Hooker 
(2018) on scientific realism and the requirement that science produce interpretable 
models that go beyond “naked prediction.” 
3Four books recently published are Khalifa (2017),  De Regt (2017), Elgin (2017) and 
Potochnik (2017). De Regt and Potochnik defend the view that understanding is the 
central epistemic aim of science. 
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1.1 Interpretability as Intelligibility 
 
Computer scientist Zachery Lipton (2016) observes that while there is a consensus 
that model interpretability is a good thing, there is no convergence on one 
definition or operationalization. Most discussions focus on the ability of non-
expert users to see the reasons behind an AI’s decisions. I put this issue aside as 
I am concerned with the capacity of expert users, including the model builders 
themselves, to know about the processes taking place between input and output 
of a complex, trained neural network.  Amongst the many facets of interpretability 
discussed by Lipton, the one relevant to my study is the notion of interpretability 
as transparency, which he calls “the opposite of opacity or blackbox-ness” 
(2016:4). “Black box”4 is a common, if colloquial term, for a device or piece of 
code which transforms inputs into outputs without providing any indication of the 
method behind this operation. The black box flavour of artificial neural networks 
is something discussed by experts within neuroscience. For example Omri Barak 
(2017:5) points out that “machine learning provides us with ever increasing levels 
of performance, accompanied by a parallel rise in opaqueness”.   
 
However, it would be wrong to say that ANN’s are literally black boxes because 
so many features of their internal architecture and workings are known to the 
model builders. At the same time, the exact way that a network arrives at 
predictions or classifications is often quite opaque to its makers, hence the 
concerns. As theoretical neuroscientists Gao and Ganguli (2015:151) describe 
matters,  

Each of these [artificial neural] networks can solve a complex computational 
problem. Moreover, we know the full network connectivity, the dynamics 
of every single neuron, the plasticity rule used to train the network, and 
indeed the entire developmental experience of the network….. Yet a 
meaningful understanding of how these networks work still eludes us, as 
well as what a suitable benchmark for such understanding would be. 

The issue is how to characterise the relative degrees of transparency and opacity 
exhibited by different models, and to explain the specific benefits of more 

																																																								
4 One might worry that the term “black box” is most often used pejoratively, to dismiss 
an algorithm or model that the speaker happens not to understand because she lacks 
expertise. (I thank Michael Tarr for this point.) I emphasize here that I am considering 
what is comprehensible to a maximally well-informed human, and that I do not take 
“black boxes” to be bad by definition. They certainly have their uses in science and 
engineering.    
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transparent models. I propose that the notion of intelligibility of scientific theories 
advanced by Henk de Regt is a helpful starting point.  
 
De Regt and Dieks (2005:143) make the point that a perfect black box predictor 
of empirical observations – an oracle – would not count as a scientific theory 
because it lacks intelligibility:  

In contrast to an oracle, a scientific theory should be intelligible: we want 
to be able to grasp how the predictions are generated, and to develop a 
feeling for the consequences the theory has in concrete situation. 
(emphasis original) 

On this account, intelligible theories enable scientists to build models which 
explain natural phenomena and thereby yield understanding (de Regt 2014:32). 
Thus intelligibility is not a mere psychological add-on, but is fundamental to 
scientists’ ability to use theories.  
 
When characterising intelligibility, de Regt employs a notion introduced by 
Werner Heisenberg and endorsed by Richard Feynman: 

Criterion of Intelligibility (CIT): A scientific theory T (in one or more of its 
representations) is intelligible for scientists (in context C) if they can 
recognize qualitatively characteristic consequences of T without 
performing exact calculations. (de Regt 2014:33; also De Regt and Dieks 
(2005: 151ff) 

Gao and Ganguli also make the point that accurate prediction does not entail 
understanding, and refer to the same criterion introduced in physics: 

we understand a physical theory if we can say something about the solutions 
to the underlying equations of the theory without actually solving those 
equations. (Gao and Ganguli 2015: 148)  

The idea is that to achieve comprehension, going beyond the bare ability to make 
accurate predictions, the scientist must have a reliable sense of under what 
circumstances the classes of predicted phenomena obtain, even before running 
the calculations. The qualitative description of the system provided by an 
intelligible theory goes beyond the bare relationships between input and output 
variables that are supplied by a black-box.  
 
For example, a simple, basically linear model of a visual neuron’s receptive field 
yields the qualitative expectation, prior to any calculation, that an increase in the 
amount of light falling in the excitatory field of the neuron, will result in an increase 
in the model’s predicted response. In addition, a theory or model that affords 
visualisation of the target system is typically more intelligible than a purely 
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abstract theory because other mathematical or concrete models can be 
constructed on the basis of such intuitive pictures (de Regt 2009:33; de Regt and 
Dieks 2005:155). As we will see below, intelligible mathematical models of neural 
responses often suggest simple circuit diagrams that illustrate a combination of 
excitatory and inhibitory inputs which would bring about the responses described 
in the model. I will take this to be a kind of visualisability. 
 
It is a feature of de Regt’s account that intelligibility is not an intrinsic property of 
theories but is relative to the scientific context – “the capacities, background 
knowledge, and background beliefs of the scientists” using the theory (de Regt 
2009:33). Thus there is a body of skills and knowledge that a trained scientist can 
employ in order to render a theory intelligible, and this is not restricted to 
visualisation. The context-relativity of intelligibility will be important to my 
discussion in Section 3.2, when I consider whether, with future developments in 
reverse engineering, ANN’s are going to become more intelligible.  I should also 
point out that in physics, where the criterion presented by de Regt has its origin, 
there is a clear separation between fundamental theory and models. According 
to De Regt, intelligible theories in physics allow scientists to build models that 
explain target systems. In the process of theory use and model building, the 
scientist comes to understand the system. Within computational neuroscience, 
the terms “theory” and “model” are often used interchangeably. Because this 
discipline lacks the strict theory-model division of labour seen in physics, I will 
speak of the quantitative representation of the neural system -- the ‘theory/model’ 
-- as providing explanations and thereby understanding.5  
 
 
1.2 Decoding the Brain 
 
My focus is on a tradition of research that builds mathematical models of neurons’ 
response profiles, aiming both at predictive accuracy and at theoretical 
understanding of the computations performed by classes of neurons. The book 
Spikes: Exploring the Neural Code (Rieke et al. 1999) has served as an important 
reference point for researchers because it gives the question of what it takes to 
“understand the neural code” a precise answer – it is the ability to decode spike 
trains, to interpret a string of neural pulses in terms of external conditions 

																																																								
5 Below in the case studies I write about neuroscientific ‘theories’ or ‘models,’ following 
the scientists’ use. Bear in mind that I mean these terms usually to refer to the 
undifferentiated class, theory/model.  



Chirimuuta Prediction vs. Understanding forthcoming 

	 6 

represented by that activity. This decoding problem places the two goals of 
understanding and prediction of neural responses at the heart of research in 
theoretical neuroscience, as Stevenson and Kording (2011: 140) describe: 

Understanding what makes neurons fire is a central question in neuroscience 
and being able to accurately predict neural activity is at the heart of many 
neural data analysis techniques. These techniques generally ask how 
information about the external world is encoded in the spiking of neurons. 
On the other hand, a number of applications, such as brain-machine 
interfaces, aim to use neural firing to predict behavior or estimate what 
stimuli are present in the external world. These two issues are together 
referred to as the neural coding problem. (citations omitted) 

Research in this area finds a practical outlet in brain machine interface (BMI) 
technology, 6  where a prominent application under development is for 
rehabilitation devices which record activity via microelectrodes implanted in the 
primary motor cortex (M1),7  decode the pattern in a computer, and use the 
decoded signal to control movements of a robotic limb or cursor. Another kind of 
decoding system, widely discussed under the name of “mind-reading” takes non-
invasive fMRI data from the visual cortex or from brain areas involved in semantic 
processing, in order to reconstruct the visual experience or the subject matter 
seen/thought by an individual.8 
 
Theories/models of what information neurons encode about the external world 
have featured in the design of computer programmes at the heart of such devices. 
These programmes are known as decoders. In the case of motor-BMI’s, decoders 
are algorithms that map neural activity to kinematics of a cursor or robotic limb. 
An encoding theory/model takes the form of a function mapping an external state 
to a neural response pattern: 
 
(1) Neural Response = f (external state) 
 

																																																								
6 For technical details see Nicolas-Alonso and Gomez-Gil (2012) and references therein; 
for philosophical discussion see Datteri (2008) (2017), Craver (2010) and Chirimuuta 
(2013).  
7 There are BMI’s which record from other areas of the motor system; for ease of 
presentation I refer only to M1 interfaces. Likewise, I focus on motor BMI’s reliant on 
invasive, intra-cortical recordings.  
8 See e.g. Nishimoto et al. (2011) and Naselaris and Kay (2015). 
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As schematised in Equation 1, the encoding model is a means of predicting how 
a neuron will respond if presented with a certain stimulus.9 This raises the question 
of whether accurate neural prediction helps to advance any further epistemic 
goals, such as explanation and understanding. In computational neuroscience, 
functions of the sort referred to in Equation 1 have been thought of as not merely 
describing the mathematical relationship between sets of variables, but as 
characterising the computation that is itself performed by a neuron or neuronal 
population. On the assumption that the brain is an information processing device, 
primary explanatory goals have been to work out which computations it carries 
out, and why (Chirimuuta 2014; 2018).10 In the case of motor cortex, the question 
of what kind of information its neurons encode is still a matter of controversy 
(Omrani et al. 2017), and may be illuminated by building encoding models. 
 
While there are numerous ways to apply machine learning in neuroscience (Glaser 
et al. 2019), my case studies are restricted to the specific application of ANN’s for 
the development of encoding models and decoders.  Thus my finding of a trade-
off between prediction and understanding does not immediately generalise to all 
kinds of modelling within neuroscience, but covers instances of models intended 
to represent the functions computed by neural systems, and hence are candidates 
for providing understanding of the neural code. It needs emphasis that the ANN’s 
discussed in my case studies are intended to represent neural computations – the 
encoding functions -- and not neural anatomy or physiology. For example, the 
nodes and connections in the ANN for the motor cortex (Section 2.1) should not 
be taken to represent, even in a highly simplified manner, a concrete population 
of biological neurons and connections amongst them. Instead, what the model is 
intended to duplicate from the neural system is its abstract computational or 
information processing capacity. Stinson (forthcoming) gives a helpful account of 
ANN’s where the target of representation is the material brain. This is an 
appropriate account for studies such as those from the di Carlo lab at MIT, where 
the target of representation of the deep neural network is the primate ventral 
stream, considered physiologically, computationally and anatomically, with its 

																																																								
9 Equally, one could think of this in terms of retrodiction of a motor state: what was the 
activity in the motor cortex neuron that preceded the rightwards movement of the arm? 
For convenience I will speak just in terms of prediction.   
10 Elsewhere I criticise this literalist interpretation of neuro-computational models, but 
for the purpose of this paper it is taken as granted (Chirimuuta forthcoming). 
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characteristic hierarchical structure (Yamins and DiCarlo 2016).11  In contrast, my 
cases utilise ANN’s not because of their brain-inspired features, but purely 
because of their mathematical property of being able to approximate any non-
linear function that relates one dataset to another, such as the mapping between 
visual stimuli and neural responses – their property of being “universal function 
approximators” (Kriegeskorte 2015: 422-23). As I will argue, this is the source of 
their predictive power, while the fact that the function discovered by the ANN is 
embedded in the connection weights of the trained network, and not delivered 
explicitly to the scientist, means that the ANN lacks what Creel (forthcoming) calls 
“functional transparency”. This renders them more opaque, and less intelligible, 
than the unsophisticated hand-coded models developed previously by 
neuroscientists.  
 
Physiological inspection of data generated from electrophysiological recordings 
of visual and motor neurons under naturalistic stimulation and movement 
conditions has given scientists good reason to think that the computations 
performed by those systems are very complex and nonlinear. But given the 
complexity of the brain, it is surprising that many of the models that have been 
quite predictively accurate -- albeit in a limited range of non-naturalistic 
experimental conditions -- are simple linear functions (or linear models with 
straightforward nonlinear additions) that present no interpretative difficulties.12 
This meant that until recently, in visual and motor neuroscience, there has been a 
fruitful co-alignment of the goals of prediction and understanding. The story I will 
tell in the next section is one of an emerging misalignment of those goals: 
compared to 20 years ago, the most predictively accurate models make less of a 
contribution to the project of understanding the brain. I will present two cases 
that illustrate the tendency towards divergence, then argue in Section 3 that there 
is a trade-off between the predictive accuracy and understanding afforded by the 
models. Section 4 will relate this finding to the literature on explanation in 
computational neuroscience and say why a non-factive account of scientific 
understanding helps to make sense of the trade-off.  
 
 
 

																																																								
11	But note that this group also develops encoding models of ventral stream neurons. 
The trade-off between prediction and understanding applies to some aspects of their 
work.   
12 See Carandini et al. (2005) for examples and discussion. 
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2. TWO CASE STUDIES ON THE DIVERGENCE OF PREDICTION AND 
UNDERSTANDING 
 
In this section I employ the criterion of intelligibility presented above in order to 
ask whether some examples of neuroscientific models are intelligible. We will find 
that intelligibility is not an all or nothing property, that the models differ in their 
degrees of intelligibility, and such differences track the degree of understanding 
provided by the models. Even though Hempel was dismissive of the significance 
of understanding for philosophy of science, considered as a logic of the scientific 
method, he did assert that theories which satisfy the conditions for deductive-
nomological explanation do also provide understanding: 

The argument shows that, given the particular circumstances and the laws 
in question, the occurrence of the phenomenon was to be expected; and 
it is in this sense that the explanation enables us to understand why the 
phenomenon occurred. (Hempel 1965:337, quoted in de Regt 2014:23-4) 

In this remark, Hempel ties both explanation and understanding to successful 
prediction. The divergence of prediction and understanding, that I discuss below, 
should not be too surprising given that Hempel’s account of explanation is no 
longer widely endorsed.  
 
It is reasonable to assume that models which afford more accurate predictions of 
neural responses do so in virtue of being more accurate in their representation of 
the actual computation performed by the target neural system. The observation 
of a divergence of prediction and understanding suggests that these two 
epistemic benefits of science cannot always be served by the same means, namely 
that of representing the target system in the most accurate way possible. I will 
return to this matter in Section 4.  
 
 
2.1 Decoding the Motor Cortex13 
 
The trend I describe in this section is for decoders of the motor cortex to become 
less intelligible and more opaque as modelling technology has progressed. Here, 
the relevant function – the encoding model embedded in the decoder -- is a 

																																																								
13 There are many more varieties of decoder than I can review in this brief section. The 
three classes I discuss here are prominent in the field and indicative of the trend I am 
investigating. For review of a wider range of decoders see Koyama et al. (2010) and Li 
(2014).  
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mapping from parameters of an intended movement (e.g. velocity of arm) to 
neural responses: 
 
(2)    Response = f (intended movement) 
 
Given the unresolved question of what motor cortex neurons encode or represent 
-- if anything14 -- it is a striking fact that a linear model relating neuronal firing to 
intended direction of movement, and a simple aggregative pooling rule, was used 
to decode M1 activity for nearly three decades. The population vector algorithm 
(PVA) (Georgopoulos, Schwartz, and Kettner 1986) makes the false assumptions, 
(1) that firing rate of typical neurons varies as a cosine function with intended 
direction of movement,15 and (2) that the distribution of preferred directions is 
uniform in M1. However, deleterious effects from the false assumptions do not 
arise in all conditions. As Koyama et al. (2010) report, the bias introduced by (2) is 
compensated for when the decoder is used to generate movement commands in 
real time. It is fair to characterize this first generation algorithm as a highly 
intelligible, representationally inaccurate but surprisingly useful model of motor 
cortex.  
 
Because of noise introduced in the recording process, and the inherent trial-to-
trial variability of neuronal responses, methods for smoothing the data play an 
important part in the success of a decoder. A substantial advance was made in 
this regard with the introduction of the Kalman Filter (KF) in BMI research by Wu 
et al. (2006). KF decoders still posit a linear relationship between neural activity 
and output kinematics but they use Bayesian methods such that the predicted 
movement is informed by a prior expectation of the trajectory, itself continually 
updated as decoding proceeds. This smoothing counteracts the effect of noise in 
the data that would, if uncorrected, lead to jittery and misdirected motor output. 
This generation of models is currently employed in human trials for invasive BMI. 
 
A third, entirely different approach to the decoding problem is to use machine 
learning -- training an artificial neural network to associate neural data with 
intended movements without building an explicit encoding model, or making 
assumptions about what M1 neurons represent. In work from the Shenoy group, 

																																																								
14 For the view that M1 neurons do not represent anything, see Shenoy, Sahani, and 
Churchland (2013), and see Chirimuuta (2020) for further discussion. 
15 This is the “cosine tuning” encoding model embedded in the PVA decoder.  
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a recurrent neural network (RNN)16 is shown to out-perform a KF decoder, with 
respect to the measure of minimising time taken for the user of the BCI to reach 
the targets. This new approach is motivated by an appeal to the greater realism 
that comes with a decoder sensitive to non-linear mappings between neural 
activity and intended movements:   

A standard decoder in BMI systems, the VKF [velocity KF], has seen wide 
application and performs better than its static counterpart, the linear decoder, 
presumably due to the Kalman filter’s ability to capture aspects of the plant 
dynamics in the kinematic data. However, due to the linearity of the Kalman 
filter, the power of the VKF must be limited in contexts where the relationship 
between the inputs and outputs is nonlinear. While the nature of motor 
representation in the pre-motor dorsal cortex (PMd) and motor cortex (M1) 
remains an open question, it seems likely that the relationship between neural 
activity in these areas and arm kinematics is nonlinear. Thus, it is appropriate 
to explore nonlinear methods when decoding arm kinematics from PMd/M1 
activity. [citations omitted; (Sussillo et al. 2012: 1-2)] 

 
The irony is that the enhanced realism of moving to a non-linear decoder cannot 
be cashed out as a new, more accurate and equally intelligible model of motor 
cortex. Barak (2017: 2) contrasts RNN’s that are designed according to hypotheses 
about the mechanisms or computations responsible for the neural population’s 
behaviour, with those that are trained to reproduce a mapping from inputs to 
outputs and are hypothesis free. The RNN decoder is of the latter sort and 
therefore is, as Barak (2017:3) puts it, “somewhat of a black box.”  
 
In a paper from the Shenoy group which compares the performance of an RNN 
decoder with the currently best performing KF (“FIT-KF”), and demonstrates the 
advantage of the RNN with respect to speed and accuracy of movement, and 
robustness in the face of day to day variation in neuronal responses, the realism 
of the nonlinear decoder is emphasised along with its potential benefits17 for 
technological applications outside of the laboratory, due to its ability to utilise 
information contained in large neural datasets. As Sussillo and co-authors state: 

																																																								
16 An artificial neural network with feedback loops. Barak (2017) is a useful guide to the 
use of RNN’s in neuroscience. 
17 I emphasise “potential” because these models have not yet shown their worth in 
human trials testing everyday applications such as control of an iPad. One obstacle is the 
high computational demand of running an ANN to decode in real time, while developers 
of BMI’s for patients are aiming at devices that are compact and portable.  
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Using this historical data would be difficult for most BMI decoders, as they are 
linear. Linear decoders are prone to underfitting heterogeneous training sets, 
such as those that might be sampled from months of data. To overcome this 
limitation, an essential aspect of our approach is to use a nonlinear and 
computationally ‘powerful’ decoder (that is, one capable of approximating any 
complex, nonlinear dynamical system), which should be capable of learning a 
diverse set of neural-to-kinematic mappings. (Sussillo et al. 2016:2; citations 
omitted) 

 
The successful utilisation of large datasets over theory-driven approaches to 
modelling the motor cortex would be another instance of the “unreasonable 
effectiveness of data” (Halevy, Norvig, and Pereira 2009). One can draw an 
analogy with the big data approach to translation, where algorithms trained on 
masses of pre-translated texts have been shown superior to older approaches 
based on hypotheses about natural language structure. The downside, for 
neuroscience, is that the model builders themselves have limited information and 
insight regarding how the enhanced performance is achieved. Thus Gao and 
Ganguli (2015:151) argue that the architects and users of the most advanced 
artificial networks cannot be said to understand their own creations because such 
models do not meet the condition for intelligibility introduced above: modellers 
are not able to give qualitative descriptions of the model’s behaviour under 
different conditions prior to running through the simulations. For example, the 
RNN model builder would not be able to describe, qualitatively, the relationship 
between velocity of intended movement and neural firing rate, whereas this is 
easy to express for the first generation model (see Figure 1).  And if the models 
are not intelligible, they cannot be expected to provide understanding of the 
neural code in the systems they represent. The example of motor cortex decoders 
is not an isolated case. The same trend from linear, intelligible and inaccurate 
models to non-linear, opaque but predictively accurate ones can be found in 
research on the visual cortex.  
 
---------FIGURE 1 NEAR HERE----------- 
 
Figure 1. Illustration of how qualitative predictions of movement associated with neural 
population activity can be obtained from first generation, “simple model” – the 
population vector algorithm. This model assumes that every neuron fires most strongly 
for one preferred direction of movement. The predicted movement is the sum of 
represented directions, weighted by intensity of firing rate. Here one sees that a high 
firing rate from the ‘downward’ preferring neuron, and a moderate firing from the ‘left’ 
preferring movement leads to an overall predicted movement down and slightly to the 
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left. In contrast the “ML model”, an RNN, makes no explicit commitments about the 
relationship between firing rate, neuronal tuning, and the movement predicted. The 
model user cannot describe, in qualitative terms, the relationship between recorded 
responses and predicted movement. [from Glaser et al. 2019, Figure 2, permission 
needed]   
 
 
 
 
2.2 Modelling the Visual System 
 
In an interview, neuroscientist Adrienne Fairhall reflects on the unease prompted 
by this trend: 

A lot of work I and others have done in the past tries to extract coding models 
of data — for example, to try to fit a receptive field to predict an output. 
With these emerging methods to analyze high-dimensional data, rather than 
fit a receptive field, you train a randomly connected recurrent network to 
produce a certain kind of output. It’s different than a simple receptive field 
model. You often get more accurate predictions of what the system will do. 
But maybe you’re giving up an intuition about what’s going on, so we end 
up building network solutions that we don’t really understand.18 

In visual neuroscience the encoding model is typically characterized as a receptive 
field (RF) describing the relationship between visual stimulus parameters and 
intensity of neural response, where: 19 
 
(3)    Response = f (stimulus) 
 
As in the motor cortex case, the first generation of models of retinal ganglion cells 
(RGC’s) and primary visual cortex (V1) “simple cells” were highly intelligible and 
surprisingly effective: it was supposed that these neurons perform a linear sum of 
light falling in inhibitory and excitatory portions of their receptive fields, and that 
this sum is converted into a spike rate by an output non-linearity. Hence these 
models are sometimes referred to as “linear/nonlinear” (LN) models. Such models 
make fairly accurate predictions of responses to very simple stimuli displayed in 
the laboratory, such as dots or bars of light, but fail to predict responses to natural 
																																																								
18  https://www.simonsfoundation.org/2018/01/02/the-state-of-computational-
neuroscience/ 
19 See Chirimuuta and Gold (2009) on the RF concept and a more detailed discussion of 
first and second generation work in visual neuroscience described here. See Carandini et 
al. (2005) for a useful review of the strengths and weaknesses of these models.  
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images or any complex artificial stimuli that elicit responses from a group of 
neurons with more than one kind of tuning preference.20 
 
This limitation indicated the need to take inhibitory interactions between neurons 
with different tuning preferences into account. The second generation 
encompasses such interactions using relatively simple formulae to summarise the 
effects of inhibition between simple cells – the Normalization Model (Heeger 
1992); or correlations between RGC responses -- the Generalized Linear Model 
(Pillow et al. 2008). However, these models have again been found wanting in 
their ability to predict responses to natural stimuli (David, Vinje, and Gallant 2004; 
Heitman et al. 2016).  
 
The problem of accurately predicting responses to natural images, such as 
photographs and movies, has been solved by the third generation of models, 
convolutional neural networks (CNN’s). This is the class of model responsible for 
the recent breakthroughs in computer object recognition. Unlike the recurrent 
neural networks discussed above, the architecture of these is entirely feedforward. 
A paper from Surya Ganguli’s lab (McIntosh et al. 2016), describes a CNN trained 
to find the stimulus-response mapping for RGC data where the stimulus was 25 
minutes’ worth of moving images--either natural stimuli (recordings of real scenes) 
or white noise movies, like the “snow storm” on an untuned analogue television. 
It is important to emphasise that these models are able to predict responses to 
novel stimuli and have not merely fit the training data. Particularly impressive is 
that the CNN trained on data collected when neurons were stimulated with white 
noise makes fairly good predictions of neuronal responses to natural stimuli, 
whereas the previous generations of models did not generalise in this way.  
 
Likewise, Cadena et al. (2019) trained CNN’s to predict the responses of V1 
neurons. Their networks outperformed the best of the second generation models. 
They observe that,  

[r]ecent advances in machine learning and computer vision using deep 
neural networks (‘deep learning’) have opened a new door to learn much 
more complex non-linear models of neural responses (Cadena et al. 2019:2).  

However, this invites the question of who is “learning” these complex nonlinear 
models. Lacking functional transparency (Creel forthcoming), the mathematical 
relationship learned by the CNN, between visual stimuli and neuronal responses, 
is not made explicit to the human model builder. I will argue in the next section 

																																																								
20 See Demb and Tolhurst sections in Carandini et al. (2005). 
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that this is one barrier to such models providing understanding of the visual 
cortex. 
 
 
3. THE TRADE-OFF 
 
The notion that two or more of the desiderata held important for theories or 
models in science trade off against each other and cannot be simultaneously 
optimised has occurred elsewhere in the philosophy of physics and biology 
(Levins 1966; Cartwright 1983; Cushing 1991). To make the case that a trade-off 
between prediction and understanding occurs in this branch of neuroscience, 
where models are built to represent computations occurring in neural systems, I 
will first say more about what the lack of intelligibility of the most predictively 
powerful models consists in, and how predictive power and intelligibility relate to 
one another. Then in Section 3.2 I address the question of how future 
developments in ANN modelling may or may not increase the intelligibility of the 
networks, arguing that even if they do become more transparent they will remain 
relatively less intelligible than the previous generations of models, such that the 
trade-off between prediction and understanding will still obtain. This supports my 
claim that the trade-off is not contingent on the current under-developed state of 
methods for reverse engineering ANN’s.  
 
 
3.1 Sources of Intelligibility 
 
Above I observed that the most predictively powerful models failed the test of 
intelligibility: they did not allow scientists to make the kinds of qualitative 
predictions of neuronal responses afforded by the earlier models. I will now say 
more about what this difference in intelligibility consists in, discussing four 
characteristics of the earlier models that led to their greater intelligibility: (1) 
visualisability, (2) theoretical articulation, (3) linearity, and (4) functional 
transparency.  
 
The characteristic of visualisability features prominently in discussions of the 
intelligibility of quantum mechanics (de Regt 2017, chapter 7). In physics the value 
of visualisability is still controversial. Fortunately, for our discussion, the 
significance of visualisability in neuroscientific modelling does not depend on the 
outcome of the debate in physics. By the characteristic of visualisability, I mean 
here specifically whether or not the model is accompanied by a picture of neural 
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coding, such as a “circuit” or “wiring diagram”, which indicates how neurons 
could be connected together in order to generate the responses described 
quantitatively by the model. A well known example from visual cortex modelling 
is given in Figure 2. The coding schematic of the “simple model” of Figure 1 
would also count as a visualisation of the population vector algorithm.  
 
 
-----------FIGURE 2 NEAR HERE---------- 
Figure 2. Diagram of the normalisation model of primary visual cortex (V1). Circles depict 
linear weighting functions, with excitatory (bright) and inhibitory (dark) subregions. 
Arrows represent excitatory connections, while connections terminating in curved lines 
are inhibitory. [Figure 1 from Heeger (1992), permission needed] 
 
This kind of visualisability facilitates qualitative predictions of the model’s 
behaviour, and it also gives researchers a hypothesis as to the physiological and 
anatomical basis of the neuronal responses, which lends itself to experimental 
investigation, opening out paths of investigation. ANN’s used to generate 
decoding and encoding models are not visualisable in this sense -- they do not 
offer visualisable pictures of neural circuits implementing the functions that they 
compute. Remember that in these cases, the ANN does not represent anything 
in the anatomy of the neural system under investigation. Rather, the ANN is used 
purely as a mathematical instrument for learning the complex function relating 
stimulus conditions to neural responses. Therefore, in our cases the ANN 
architecture itself cannot be used as a visualisable picture of the target visual or 
motor system.  
 
The next point of comparison is whether a model has articulated theoretical 
assumptions or is hypothesis free. This came up in the discussion of M1 decoders, 
where early generation models made assumptions about the neural code in that 
region, whereas machine learning based decoders do not make such 
assumptions. Such assumptions produce intelligibility because they give model 
builders information about the conditions under which different model outputs 
will occur, thus allowing for qualitative predictions. The early generation visual 
models also came with explicit assumptions about the code – e.g. that retinal 
ganglion and simple cells have the function of summing quantity of light falling 
within their excitatory fields. Again, this leads to qualitative predictions as to the 
stimulus conditions under which a neuron will give the strongest response. The 
important matter of the empirical testing and falsity of these assumptions will be 
brought up in Section 4.2. 
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The assumptions of the early M1 and V1 models – respectively, that the intended 
movement is governed by a sum of responses of individual neurons with different 
tuning preferences, and that simple cell response represents the sum of light 
falling into the excitatory field – relate to the linearity of these models. In other 
words, the assumption that the neural code in these regions basically involves a 
summation is what motivates their being modelled as performing linear 
 computations. The intelligibility of (essentially) linear models is high because of 
the proportionality relationship between the input and output of the model. This 
makes for easy qualitative predictions of model behaviour. Qualitative prediction 
becomes harder for nonlinear models, but not impossible if the model is 
functionally transparent.  
 
On the definition of Creel (forthcoming), a computer programme has functional 
transparency if it is possible to know the algorithm that the programme 
instantiates. Now, to say that the ANN models under discussion lack functional 
transparency I must reframe this definition slightly. While in these cases the 
algorithm that initially makes the model – the layered architecture, number of 
nodes, the learning rule – may be fully known to the modeller, what is not known 
is the mathematical function mapping inputs to outputs in the trained model. I am 
applying the notion of functional transparency to this function, for the trained 
model, which is taken to be an approximation of the computation performed by 
the actual neural system. In contrast to the ANN’s, the earlier hand-coded models 
have full functional transparency. Since this function is the “scientific product” 
most significant to the modeller’s effort to understand the neural code, the lack 
of transparency will be an obstacle to the use of ANN’s for increasing scientific 
understanding. For networks of sufficient size and complexity to achieve the 
performance described in my cases, there is not currently a method for 
‘recovering’ the function from the trained network, though illuminating analyses 
are possible for very small ANN’s (Beer and Williams 2015). Is this a permanent 
obstacle to the intelligibility of such predictively powerful models?  In Section 3.2 
I say more about the contingency and context-sensitivity of these obstacles to 
understanding. 
 
The conclusions we can draw now are important for explication of the trade-off. 
We have said that the greater predictive power of ANN’s is based on their 
achievement of a much closer approximation to the complex non-linear function 
computed by the actual neural system than possible with the simple hand-coded 
models. The thing now to recognise is how this capacity is inherently related to 
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their deficiency with respect to the four characteristics of intelligibility. A model 
that uses machine learning to achieve a close approximation to a very complex, 
nonlinear neural computation will not be as functionally transparent as a hand 
coded model. It will obviously not be linear. And so long as the approximation to 
the neural computation remains implicit in the trained model it will not be possible 
to relate it to theoretical assumptions about the neural code, or to visualise the 
coding scheme in a wiring diagram. Conversely, the traditional modelling 
methods that score high on the four characteristics of intelligibility, only achieve 
this by remaining inaccurate in the approximation of the actual neural 
computation. Thus these models of neural systems are either very intelligible, or 
predictively accurate, but not both.  
 
  
3.2 Opening the Black Box? 
 
One objection to the claim that this the trade-off obtains is to argue that it is just 
a temporary problem because the use of ANN’s in neuroscience of this scale and 
complexity is quite new. One might hope that with further research and practice 
using them, such models will become as intelligible as the traditional sort. As 
mentioned above, the criterion of intelligibility is a context-sensitive one, which 
leaves it as an open possibility that one and the same ANN could be intelligible 
given a different background context of mathematical methods, neuroscientific 
concepts, and scientists’ experience with modelling methods. Ultimately, I will 
argue that even if there is some increase in intelligibility the ANN’s will remain 
relatively less intelligible than their hand-coded counterparts, and so the trade-
off will persist.  
 
 “Explainable AI” (XAI) is much discussed, but most of the focus is on the use of 
machine learning as a tool for prediction where decisions have immediate 
consequences for citizens and society (Zednik 2019). Computer scientist Cynthia 
Rudin has argued that in such contexts there are cases of equivalent accuracy 
being reached by other kinds of models, including linear models, that are much 
more interpretable than standard deep neural networks (e.g. Rudin and Radin 
2019), and also that for image classification CNN’s with “interpretability 
constraints” can achieve “comparable accuracy” to standard CNN’s (Chen et al. 
2019). While these are important findings, I emphasise that they are not very 
relevant to my cases of the use of ANN’s as a tool in scientific discovery. They are 
certainly not counter examples to my claim that a trade-off between prediction 
and understanding occurs for neural decoding models. One obvious difference is 



Chirimuuta Prediction vs. Understanding forthcoming 

	 19 

that the kind of interpretability useful in image classification – the model’s output 
of what visual features influenced its classification – is not applicable to these 
cases in neuroscience.  
 
It is more relevant to consider work on model interpretation within science. For 
RNN’s used in neuroscience, methods have been developed to reverse-engineer 
trained networks in order to understand which of its features are responsible for 
its arriving at the solution to the task.21 This yields some degree of functional 
transparency – some knowledge of the process transforming inputs to outputs in 
the trained network, but not full recovery of the function. Regarding theoretical 
articulation, Omri Barak (2017:1) argues that even though a trained RNN is 
hypothesis free by design, the process of reverse engineering them can lead to 
the generation of “complex, yet interpretable, hypotheses” about how real neural 
circuits perform their tasks.  
 
Work on visualisation of information processing within CNN’s is ongoing (Buckner 
2018). It should also be emphasised that such visualisations cannot deliver 
functional transparency of the sort found in hand-coded models, as the procedure 
falls well short of the recovery of the function computed by the trained network. 
It is possible (though unlikely) that a procedure will be invented for making such 
functions explicit, so it is worth asking what the implications would be for the 
intelligibility of the model. I contend that even if we could write down by hand 
the equations embedded in the trained ANN’s employed in my case studies, 
those models would still be far less intelligible than their low-tech predecessors, 
because they would be nonlinear and contain very many more terms than the 
ones occurring in the traditional models. Eyeballing an equation of such 
complexity would not give the neuroscientist the same qualitative sense of how 
adjustment of parameters or variables would make a difference to the behaviour 
of the system, and would not readily be associated with circuit diagrams of the 
brain area. For this reason I conclude that even for an ANN which has undergone 
an ideal degree of reverse engineering – whose internal layers have been 
visualised, and whose input-output function has been rendered explicit – it will 
still be relatively less intelligible than a hand-coded model and for this reason the 
trade-off between prediction and understanding for neural decoders will not go 
away even if reverse-engineering of ANN’s progresses far beyond what is possible 
today.  
 

																																																								
21 Sussillo and Barak (2013); for discussion see Chirimuuta (2018b: §4). 
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3.3 Scope of the Trade-Off 
 
I have just argued that the presence of the trade-off will be a permanent feature 
of research in this area of neuroscience, not one that will just go away as progress 
is made in building more interpretable ANN’s. Although ANN’s may well become 
more intelligible to the scientists using them, they will always be less intelligible 
than their low-tech counterparts, if for no other reason than their much greater 
mathematical complexity. At the same time, there are cases elsewhere in science 
where the same model is both highly intelligible and predictively accurate. We 
know that the trade-off does not hold universally. This naturally raises a question 
about the scope of the trade-off as I have described it. Is it no more than a one-
off instance in a small sub branch of computational neuroscience, or should we 
expect it to pop up elsewhere as the use of machine learning in science becomes 
common?   
 
My expectation is that the trade-off will occur beyond these two case studies, in 
scenarios where the same basic problem structure occurs, which could be in the 
biological, physical or social sciences. Namely, scenarios in which the target 
system comprises a complex set of nonlinear dependencies that can only be 
poorly approximated by linear functions or the more simple nonlinear functions 
that can be arrived at through traditional modelling methods. Accurate 
representation of these complex relationships is a requirement for accurate 
prediction, but the complexity of the model able to achieve this more accurate 
representation will make it less intelligible, for the reasons given above. Moreover, 
the scenario will bear an important similarity to my neuroscience cases when 
scientists are striving to predict the system’s behaviour in naturalistic conditions, 
where the challenge is to make predictions outside of the contrived experimental 
conditions that artificially simplify the system’s behaviour.  If the decoding 
challenge discussed above had not had the ambition to predict visual and motor 
system behaviour unfettered by the simplifying constraints of the laboratory 
(where restriction can be made to artificial visual stimuli and stereotyped motor 
responses), the early generation models may well have been regarded as perfectly 
adequate.  This leads to the expectation that the trade-off is more likely to be felt 
in branches of research that put a premium on predictive success outside of 
controlled conditions, because the ultimate goal of research is to develop 
applications that work “in the wild”. Biological research aiming at medical 
application is an obvious example here. 
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4. IMPLICATIONS FOR EXPLANATION AND NON-FACTIVE UNDERSTANDING  
 
In this section I take a deeper look at the explanatory status of the ANN’s 
presented in the two case studies, arguing in Section 4.1 that they do provide 
certain kinds of explanations but that this does not in itself allow them to confer 
understanding. In Section 4.2 I explain why the existence of the trade-off lends 
endorsement to non-factive accounts of scientific understanding. 
 
4.1 Explanation With and Without Understanding 
 
Up to this point I have been silent on the explanatory status of the various models 
discussed above. I now present a discussion of the kinds of explanations afforded 
by the different kinds of models, and how this lines up with intelligibility and 
ultimately to their ability to increase understanding. In contrast to de Regt’s 
account, where it is assumed that any pairing of an intelligible physical theory and 
explanatory model will yield understanding of the system described, I point out 
that in neuroscience there are models which fulfil some common criteria for being 
explanatory, but are nonetheless not intelligible and therefore do not, by 
themselves, enhance the model-builder’s understanding of the target system.  
 
In our cases, the broad explanandum phenomenon is the response of neurons in 
the motor cortex, or visual system, either to a range of visual stimuli, or under 
specific conditions of motor intention. Classes of neurons, such as V1 simple cells, 
exhibit similar patterns of activation, so the explanandum phenomenon can also 
be thought of as the behaviour of the neuronal type rather than the responses of 
an individual neuron. Because all of the models target the mathematical 
relationship between external states and neural responses (Equation 1), not the 
biological mechanisms giving rise to the neurons’ responses (i.e. physiological 
mechanisms of the target neuron), nor the causal process leading up to the 
responses (e.g. causal chain from stimulus, to eye, to visual cortex), the models 
offer computational explanations, of the sort discussed in Chirimuuta (2014; 
2018a; 2018b), rather than the constitutive or aetiological explanations discussed 
in the literature on mechanisms in neuroscience (Craver and Darden 2013).  
 
As argued in those previous publications, I submit that the first and second 
generation linear-nonlinear models of visual neurons provide efficient coding 
explanations of the responses: they specify a mathematical function potentially 
computed by the neurons, and offer information theoretic reasons why it would 
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be efficient to process visual information in this manner. They provide answers to 
the more specific questions (explananda), “what is computed by the neurons, and 
why this function rather than another?” Similarly, the linear encoding models at 
the heart of the first and second generation motor cortex BCI’s answer the “what 
is computed?” question, and also suggest reasons why the brain would represent 
movements in this manner -- though for reasons not so much due to efficiency of 
processing but more in terms of the channelling of the information relevant to 
governing downstream neurons and muscles.  
 
I have argued that such models often fail the necessary condition for constitutive 
mechanistic explanation -- “models-to-mechanism mapping” (3M) (Kaplan and 
Craver 2011) – while satisfying one condition for interventionist explanation, the 
ability to answer “what-if-things-had-been-different-“ or “w-questions” 
(Woodward 2003). If we now turn to the ANN’s used for decoding, we find that 
they all fail the 3M condition because there is no sense in which the nodes and 
connections of the ANN should be thought of mapping onto structures in the 
actual brain. As emphasised above, the purpose of building the network is not, 
here, to represent biological networks but to use the computational power of the 
ANN to find the function that maps external states to neural responses.22 So 
neither the ANN’s nor the traditional models should be thought of as offering 
aetiological or constitutive mechanistic explanations because they are not 
intended to represent the causal processes which generate the neurons’ 
responses.   
 
It can be said of the networks that go beyond the trained data and make accurate 
generalisations to new cases that they satisfy the condition for interventionist 
explanation. For example, they can answer w-questions by reporting what the 
responses would have been if other stimuli had been presented.	Moreover we 
could say, for instance, that the network for predicting a simple cell’s response is 
exhibiting a relationship of causal dependency between the arrangement of pixels 
in a visual stimulus and the neuron’s firing rate. It is just that it is not revealing 
anything of the causal process that leads from the stimulus, via the early visual 
system, to the neuron’s output; and that would not be a condition for 
interventionist explanation in any case. However, if one reads Woodward (2003) 
as proposing something more stringent – that explanatory theories and models 

																																																								
22 Again, I emphasise that the cases presented above form the target of my analysis; I 
am not making the general claim that ANN’s are never constrained by biological 
plausibility and so cannot offer explanations by this route (see Stinson forthcoming).  
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must explicate a dependency relationship – then we should say that ANN’s fall 
short of interventionist explanations. I leave this as an open question. 
 
In terms of Hempel’s inductive-statistical category of explanation, today’s AI’s are 
stunningly successful. They are far better at making inductions on the basis of 
statistical regularities than the hand-crafted models of the earlier generations. This 
is likely because the networks are sensitive to subtle patterns in the neural data 
which appear only as noise to a human building a model from computational first 
principles and observation of datasets. Hempel (1966: 832) writes that explanation 
is achieved “by exhibiting the phenomena as manifestations of common, 
underlying structures and processes”. This is quite a good description of the 
achievements of some AI in neuroscience. For example, the LFADS data 
smoothing algorithm employs an RNN, taking noisy neurophysiological data and 
learning the latent structure in the dataset which can then be used to generate a 
“cleaned up” version of the data (Pandarinath et al. 2017). It can rightly be said 
to show how the noisy recorded data are manifestations of the underlying 
structures of the neural population activity; the catch is that the patterns this 
model latches onto are not made available to the human user because they 
remain implicit in the trained network.  
 
If one followed Hempel, one would be tempted to declare the problem of 
understanding neural coding in primary visual and motor cortex solved. The task 
was to find a function that very accurately maps external variables to neural 
responses (Equations 1-3). Such functions have been found, though they are 
implicit in the neural networks. All of the candidate functions offer answers to the 
w-question “what would the response be if the input were…..?”, but only the AI 
solutions have met the neuroscientists’ own standards for predictive accuracy. On 
the Hempelian view this ought to count as having an understanding of these brain 
areas, and what is missing is merely the subjective feeling of comprehension.  
 
In response, I argue that these Hempelian explanations are insufficient for 
understanding because they tell you what is to be expected, but not why.23 Of 
particular importance is the ANNs’ failure to answer the contrastive question of 
the form, “why this encoding function and not another?”, or to provide the 

																																																								
23 Following Khalifa (2017:2) I take it that “explanatory understanding” is equivalent to  
“understanding why”, such that understanding of a system enables one to explain why 
certain things happen.  



Chirimuuta Prediction vs. Understanding forthcoming 

	 24 

requisite information on the basis of which this question might be answered.24 So 
long as the functions which solve the prediction problem remain embedded in 
the networks, they cannot be analysed in relation to information theoretic 
principles, or hypotheses about the neural code. We do not know what, according 
to the network, the visual or motor cortex neurons are computing and this means 
that we are left in the dark about the significance of the ANN’s discovery for our 
broader theories of neural function.  
 
Table 1: Comparison of Models  
 

 FIRST & SECOND 
GENERATION 

ARTIFICIAL NEURAL 
NETWORK 

PREDICTION Fails outside simple cases Impressive across cases 
EXPLANATION Not mechanistic; Maybe I-

S; Interventionist; Efficient 
Coding 

Not mechanistic; I-S; 
Maybe interventionist; Not 
efficient Coding 

INTELLIGIBILITY Display four 
characteristics of 
intelligibility.  
Enable qualitative 
predictions.  

Lacking in four 
characteristics of 
intelligibility.   
Do not enable qualitative 
predictions. 

UNDERSTANDING Intelligible; Provide 
explanations that answer 
“WHY?” questions.  

Not intelligible; No 
explanations that answer 
“WHY?” questions. 

 
Table 1 summarises the comparison of AI and traditional models in terms of their 
ability to predict, explain, and offer understanding.  
 
 
4.2 Is Understanding Factive? 
 
To recap, a longstanding goal of computational neuroscience has been to 
produce predictively accurate models of neural responses to a wide range of 

																																																								
24 Elsewhere I present the case that “efficient coding explanations” offer answers to this 
kind of question (Chirimuuta 2014; 2018a; 2018b). Similarly, Fairhall (2014:ix) writes, 
“[receptive field] theory has addressed not just what is encoded, but why the encoded 
features may assume the form they do. Two key principles have emerged: that these 
features may provide an efficient way to represent the specific statistical structure of 
the natural world, and that neural representations are sparse, in the sense that any 
natural input can be represented by the activation of relatively few neurons.” 



Chirimuuta Prediction vs. Understanding forthcoming 

	 25 

external conditions, which also confer understanding of the systems modelled. I 
have argued that this ambition has not been realised by any single kind of model: 
models simple enough to be intelligible give false descriptions of the function 
computed by the neurons such that their predictions fail beyond a very limited 
range of conditions; models sophisticated enough to closely approximate the 
complex nonlinear functions computed by actual neurons, and hence give very 
accurate predictions across a range of conditions, are not intelligible to the 
scientists. I have argued that even if the AI models become more intelligible with 
time, they will always be relatively less intelligible than the hand-coded ones, 
which means that the trade-off will still obtain.  
 
An objection to my account poses the question:  how is it that a less realistic 
model can be said to provide more understanding? The intelligible models are 
false of the neural systems so, one might object, it is a mistake to say that they 
confer understanding. This line of objection presupposes a factive notion of 
understanding, one that treats understanding as resting on the scientist having 
the relevant true beliefs (Khalifa 2017:155). This indicates that a non-factive 
account of understanding is required to make sense of my case studies and the 
finding of the trade-off.  
 
The non-factivist denies that understanding requires belief in true or 
approximately true explanations of the phenomenon (Khalifa 2017:156). The core 
intuition of non-factivism is that theories and models that confer understanding 
are a compromise between the mind-boggling complexity of nature and the 
limited human capacity to make sense of complex patterns of phenomena. A 
model of the brain that just presented The Truth of the brain (in the sense of a 
representation that copies some or all of its features) would be no more 
comprehensible to us than the brain itself. Therefore substantial abstraction 
(simplification) and idealisation (distortion) are the departures from the truth that 
are the necessary ingredients of intelligible models. As de Regt summarises: 

an approximately true description of the system is no precondition for 
understanding; on the contrary, if one wants to understand a complex 
system it is often advisable to abandon the goal of a realistic description. 
Typically, representations that are closer to the truth are less intelligible 
and accordingly less useful for achieving scientific understanding. (de Regt 
2015:3789; cf. Elgin  2004; Potochnik 2017:chap. 4). 



Chirimuuta Prediction vs. Understanding forthcoming 

	 26 

While there are important objections to non-factivism (Khalifa 2017: chapter 6),25 
the findings of this paper suggest that the relationship between a model’s 
representational accuracy, and its capacity to render nature in a way 
comprehensible to us, is contingent at best.  
 
It was mentioned above that the assumptions made by the early generations of 
models were found to be incorrect on empirical testing. For example, it turns out 
that all directions of movement are not represented by an equal number of 
neurons in M1, as assumed by the PVA model (Koyama et al. 2010). However, 
employment of these models carried on even after these empirical “falsifications”. 
Again, this is consistent with the non-factivist point that the aims of science are 
not always to be pursued by making theories and models more realistic. Or as 
Elgin (2017) puts it, models with false assumptions are often “true enough” for 
certain purposes – such as decoding under some conditions, and generating an 
understanding of the target system.  
 
 
5. CONCLUDING REMARKS 
 
In this paper I have argued that research on decoding in computational 
neuroscience reveals a trade-off between predictive accuracy and the ability of 
the models to confer understanding. If I am right, progress in accuracy of 
prediction will not be accompanied by progress in understanding the brain. Faced 
with the criticism that the use of machine learning to model the brain does not 
yield an acceptable level of understanding, some neuroscientists have suggested 
that understanding be redefined as ability to predict and control, and that 
understanding can be operationalised as the ability of the experimenter to control 
the brain (Bashivan, Kar, and DiCarlo 2019: 1). By articulating a fuller notion of 
scientific understanding, contrasting it with prediction, and applying it to cases in 
computational neuroscience, I hope to have shown why it would be unsatisfactory 
to opt for semantic revision.  
 
I have concluded that a non-factivist account of understanding – one which takes 
understanding to be provided by models that reduce natural complexity down to 
a humanly manageable size via abstraction and idealisation – is reinforced by the 
finding of the trade-off. It should not be surprising that intelligibility, a human-
relative virtue of models, is compromised when models of natural systems are 

																																																								
25 Responses are in preparation for a future publication. 
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learned by algorithms instead of being devised by humans. An important question 
for the scientific community is whether a place must be retained for models which 
retain intelligibility, even if their instrumental utility falls short in comparison to 
high-tech rivals. In other words, the question of the value of understanding as an 
end in itself, not as means towards prediction and control, is presented to us by 
the trade-off outlined in this paper.  
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trained on. The capacity of a method to overfit to data can be lowered
with regularization methods, which penalize the complexity of a model.
Still, overfitting is especially worrisome for small datasets and complex
models. While different methods have different sensitivities to the
number of data points, all methods become less vulnerable to over-
fitting when datasets are large. Sometimes simpler methods may be
better choices on small datasets, even if a more complex method could
better express the underlying input/output relationship (if there was
sufficient data). The risk of overfitting means that all ML practitioners
must be aware of regularization techniques, their dataset size, and the
importance of reporting accuracy on a test set not used for training.

Yet another practical drawback of ML is that it can be slow. For
large datasets and complex models, the time it takes to train the model
can be prohibitive without proper hardware, like GPUs for deep
learning. Once a model is trained, however, it is much faster to make
predictions. Still, for applications that require real-time predictions,
even the prediction step may be too slow for some ML methods. For
example, predictions for brain-computer interfaces often need to be
made in the timescale of tens of milliseconds, which can be a challenge
for models requiring many computations. This tradeoff between com-
plexity and run-time is an important aspect in choosing a model for
many engineers.

3. Role 2: identifying predictive variables

Neuroscientists often ask questions of the form, “which variables are
related to something of interest?” For example, which brain regions can
predict each other? Which brain regions contain information related to
a subject's decision? Which cell types are affected by a certain disease?
Machine learning (ML) can help to more accurately identify how in-
formative one set of variables is about another. This is particularly in-
structive when there is a complex nonlinear relationship between the
variables, which is often the case in neural systems. Answering these
types of questions allows researchers to better understand the re-
lationship between parts of the brain, stimuli, behavior, and more.

The general strategy resembles that of the engineering applications
(Role 1). However, instead of only searching for maximal predictive
accuracy, one examines which input variables lead to that accuracy.
The process of determining the variables (“features”) that are relevant
for increasing predictive ability is known as “feature importance” (also
known as “feature selection”), and there are many methods for doing
so. Two of the simplest are the leave-one-out strategy, in which each
variable is removed and one observes the decrease in accuracy, and the
best-first strategy, in which the algorithm is run on each variable alone
to determine its importance. Leave-one-out reflects the information in
that variable but not the others, while best-first reflects the total
(learnable) task information in each variable. The development of

Fig. 2. Examples of the four roles of supervised machine
learning in neuroscience. 1 – ML can solve engineering problems.
For example, it can help researchers control a prosthetic limb
using brain activity. 2 – ML can identify predictive variables. For
example, by using MRI data, we can identify which brain re-
gions are most predictive for diagnosing Alzheimer's disease
(Lebedev et al., 2014). 3 – ML can benchmark simple models.
For example, we can compare the predictive performance of
the simple “population vector” model of how neural activity
relates to movement (Georgopoulos et al., 1986) to a ML
benchmark (e.g. an RNN). 4 – ML can serve as a model of the
brain. For example, researchers have studied how neurons in
the visual pathway correspond to units in an artificial network
that is trained to classify images (Yamins and DiCarlo, 2016).
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