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Abstract

In the context of genomic selection, we evaluated and compared breeding programs using

either index selection or independent culling for recurrent selection of parents. We simulated

a clonally propagated crop breeding program for 20 cycles using either independent culling

or an economic index with two unfavourably correlated traits under selection. Cycle time

from crossing to selection of parents was kept the same for both strategies. Both methods

led to increasingly unfavourable genetic correlations between traits and, compared to inde-

pendent culling, index selection led to larger changes in the genetic correlation between the

two traits. When linkage disequilibrium was not considered, the two methods had similar

losses of genetic diversity. Two independent culling approaches were evaluated, one using

optimal culling levels and one using the same selection intensity for both traits. Optimal cull-

ing levels outperformed the same selection intensity even when traits had the same eco-

nomic importance. Therefore, accurately estimating optimal culling levels is essential for

maximizing gains when independent culling is performed. Once optimal culling levels are

achieved, independent culling and index selection lead to comparable genetic gains.

Introduction

Crop breeding seeks to develop improved cultivars. Besides high yield levels, a successful culti-

var in many crops must meet minimal standards for several other traits that are economically

important, such as pest and disease resistance and product quality. Traits are often unfavour-

ably correlated with each other [e.g., 1–5]. When traits are antagonistically correlated, selection

for one trait causes an undesired economic response in the other trait [6, 7]. This makes breed-

ing to simultaneously improve multiple traits complicated.
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Independent culling and the use of a selection index are two commonly used methods in

plant breeding programs for selecting for multiple traits [7]. Independent culling involves

establishing minimum standards (i.e., culling levels) for each trait and selecting only individu-

als that meet these minimum standards. The thresholds can be set according to a specific selec-

tion intensity or a specific value, such as a value relative to an agronomic check. The

application of independent culling can be to multiple traits simultaneously or to individual

traits sequentially. The selection index method involves selection for all traits simultaneously

based on a linear or nonlinear combination of individual traits weighted by their importance

for the breeding objective [8].

Theoretically, the selection index is the most effective method of selection for multiple traits [8–

10]. Independent culling is less effective than index selection because, when strictly applied, it will

not select individuals below the threshold for only one trait despite being exceptional for all other

traits, while the use of a selection index makes it possible to retain those individuals [7]. However,

independent culling can achieve nearly equal effectiveness using optimised thresholds [11].

When cost is considered, independent culling can be more efficient than a selection index

[11]. This is because independent culling does not require phenotypes for all traits at one time,

whereas strict application of a selection index requires phenotypes for all traits. This benefit is

particularly valuable to plant breeders, because early stages of the breeding program often have

a very large number of individuals. Phenotyping all individuals for all traits is likely to be logis-

tically and financially infeasible. For example, some traits have a high measurement cost, such

as bread quality in wheat, so that they cannot be measured on a large number of individuals.

Furthermore, some traits can be measured only on older plants, such as lifetime production in

sugarcane, or on a plot or group basis. Delaying selection until these traits become available

would be effectively equal to random selection, because the breeder would have to reduce the

overall size of the early stage. Thus, practical constraints require at least some use of indepen-

dent culling on traits that can be phenotyped simply/quickly and at a lower cost in breeding

programs utilising phenotypic selection.

Genomic selection in plant breeding may render the cost efficiency benefit of independent

culling irrelevant if all early generation individuals are genotyped. This is because genomic

selection allows accurate prediction of all traits at once [12]. While genotyping all early genera-

tion individuals is not standard in most current breeding programs, it may become so in the

future. This is likely to be the case if breeding programs adopt a two-part strategy to breeding

that explicitly splits breeding programs into a rapid cycling, genomic selection guided, popula-

tion improvement part tasked with developing new germplasm and a product development

part focused on developing new varieties. Simulations of these breeding programs suggest they

can deliver considerably more genetic gain than more conventional breeding programs [13].

Another reason why independent culling is often preferred over index selection is the need

to correctly define the economic model for selection indices to be successful. However, what

breeders often overlook is the fact that the accurate estimation of economic weights is required

to maximize gains even under independent culling. This is because there is a combination of

selection intensities for the traits that maximizes the genetic gain (optimal culling levels) and

economic weights need to be accounted for when estimating optimal culling levels [11, 14, 15].

Therefore, regardless of the method of selection, plant breeders would benefit greatly from an

increased emphasis on understanding and quantifying the economics of their species and

using more analytical approaches when selecting for multiple traits.

Several studies have already shown the benefits of incorporating genomic selection strate-

gies into crop breeding programs [13, 16–18]. Other studies have demonstrated that combin-

ing index selection and genomic prediction can increase genetic gain in breeding programs

[19, 20] and, in the long term, even higher genetic gains can be obtained when multi-trait

PLOS ONE Comparison of multi trait selection methods for breeding programs deploying genomic prediction

PLOS ONE | https://doi.org/10.1371/journal.pone.0235554 May 10, 2021 2 / 15

Funding: LGB was supported by the Coordenação
de Aperfeiçoamento de Pessoal de Nı́vel Superior

(CAPES, Computational Biology Programme, Grant

No. BEX 0043/17-6, Finance Code 001). JMH, RCG

and GG acknowledge the financial support from

BBSRC and KWS UK, RAGT Seeds Ltd., Elsoms

Wheat Ltd and Limagrain UK for the project

“GplusE: Genomic selection and Environment

modelling for next generation wheat breeding”

(grants BB/L022141/1 and BB/L020467/1). The

funders had no role in study design, data collection

and analysis, decision to publish, or preparation of

the manuscript. The funder Abacusbio provided

support in the form of salaries for authors TB and

PA but did not have any additional role in the study

design, data collection and analysis, decision to

publish, or preparation of the manuscript. The

specific roles of these authors are articulated in the

‘author contributions’ section.

Competing interests: The commercial affiliation

with Abacusbio does not alter our adherence to

PLOS ONE policies on sharing data and materials

https://doi.org/10.1371/journal.pone.0235554


optimization strategies that also control for the loss of genetic diversity are used [21]. However,

differences in how multi-trait selection methods can affect not only genetic gain but other pop-

ulation parameters such as genetic diversity and genetic correlations over several cycles of

recurrent selection have not yet been thoroughly investigated. In order to provide a more

detailed account of population dynamics in the genomic selection framework, we used simula-

tions of recurrent breeding programs to evaluate and compare both index selection and the

independent culling method for 20 cycles of selection. The purpose of these simulations was to

quantify the difference between optimally set independent culling levels and an optimal selec-

tion index. The simulations also investigated the sensitivity of independent culling using a

sub-optimal culling level.

Material and methods

Stochastic simulations of entire breeding programs for multiple traits were used to compare

the genetic gains in a breeding program using independent culling levels and a breeding pro-

gram using an economic selection index for selection of parents. In the independent culling

approach, selection was performed for one trait at a time at each stage of selection. A clonally

propagated crop species was considered. Generally, in breeding programs for clonally propa-

gated species, several crosses are performed between highly heterozygous hybrids, and all the

genotypes in the resulting F1 progenies are candidate clones to be released as cultivars or used

as parents in the next breeding cycle [22]. The methods were compared using the average of

fifty replicates, each replicate consisting of: i) a burn-in phase shared by both strategies so that

each strategy had an identical, realistic starting point; and ii) an evaluation phase that simu-

lated future breeding with different breeding strategies. The burn-in phase consisted of 20

years of breeding using independent culling for the selection of parents and the evaluation

phase consisted of 20 cycles of selection using either independent culling or index selection.

Genome sequence

For each replicate, a genome consisting of 10 chromosome pairs was simulated for the hypotheti-

cal plant species. In order to assign realistic values of simulation parameters for a crop species, we

chose AlphaSimR [23] default values for wheat. The chromosomes were assigned a genetic length

of 1.43 Morgans and a physical length of 8x108 base pairs. Sequences for each chromosome were

generated using the Markovian Coalescent Simulator [24] and AlphaSimR. Recombination rate

was inferred from genome size (i.e. 1.43 Morgans / 8x108 base pairs = 1.8x10-9 per base pair), and

mutation rate was set to 2x10-9 per base pair. Effective population size was set to 50, with linear

piecewise increases to 1,000 at 100 generations ago, 6,000 at 1,000 generations ago, 12,000 at

10,000 generations ago, and 32,000 at 100,000 generations ago [25].

Founder genotypes

Simulated genome sequences were used to produce 50 founder genotypes. These founder

genotypes served as the initial parents in the burn-in phase. This was accomplished by ran-

domly sampling gametes from the simulated genome to assign as sequences for the founders.

Sites that were segregating in the founders’ sequences were randomly selected to serve as 1,000

causal loci per chromosome (10,000 across the genome in total). To simulate genetic correla-

tions between traits, the traits were treated as pleiotropic and the additive effects of the causal

loci alleles were sampled from a multivariate normal distribution with mean m ¼
0

0

" #

and

desired values of correlation.
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Estimated breeding values

The true genetic value of each simulated trait was determined by the summing of its causal loci

allele effects. The matrix E with the estimated breeding values of the traits for each individual

in the population was obtained according to the formula:

E ¼ YP� 1G

where Y is the matrix of phenotypes simulated by adding random error to the true genetic val-

ues of the traits, where rows correspond to individuals in the population and columns corre-

spond to traits. The random error was sampled from a multivariate normal distribution with

mean m ¼
0

0

" #

and zero covariance, with variance values tuned to achieve a target level of

accuracy (r). In this study we define accuracy as the correlation between true and estimated

breeding values. P is the phenotypic variance-covariance matrix of the traits, and G is the

genetic variance-covariance matrix for the traits.

Breeding methods

The simulations modelled breeding for two component traits (T1 and T2) that were improved

using either independent culling or an economic selection index. With both strategies, an F1

population of 5,000 individuals was generated in each cycle by randomly crossing the individ-

uals in the crossing block (parents). With independent culling, selection was applied in two

stages: a proportion of individuals was selected first based on T1 and then, from this propor-

tion, the parents of the next breeding cycle were selected based on T2. With the selection index

approach, the F1 individuals with the highest values for the index trait were selected as parents

of the next breeding cycle. The index trait (I) was the sum of the estimated breeding values for

each trait weighted by their economic importance:

I ¼ Ew

where E is, as previously described, the matrix of estimated breeding values and w is the col-

umn vector of economic weights of the traits.

The number of selected parents (50 parents) and the cycle time from crossing to selection

of new parents was kept the same for both strategies, so the comparisons between them reflect

only differences due to the method of selection. The overall selection scheme used for each

method of selection is shown in S1 Fig in S1 File. For simulation of breeding programs, we

used the R package AlphaSimR. All codes used for the simulations are shown in S2 File.

Simulated scenarios

The selection index and independent culling methods were compared in a set of scenarios that

aimed to assess the relative performance of the methods under different levels of accuracy of

selection, and relative economic importance of T2. We were interested in investigating only

the relative performance of selection methods under challenging conditions for multi-trait

selection. For this reason, only an unfavourable genetic correlation between traits was simu-

lated. We used a value of -0.50 for the genetic correlation. A summary of all simulated scenar-

ios we used in this study is shown in Table 1.

For one set of scenarios we simulated four levels of accuracy (0.3, 0.5, 0.7, and 0.99) and

assigned the same economic importance for both traits. In another set of scenarios, we varied

the relative economic importance of T2, but fixed selection accuracy at 0.7. Three levels of rela-

tive economic importance were simulated. T1 was given an economic importance of 1.0 and
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T2 an economic importance of either 1.0, 2.5 or 5.0. For each level of relative economic impor-

tance, we simulated: i) scenarios where the proportion selected was the same (10%) for both

traits, and ii) scenarios where the proportions selected were set to achieve optimal culling levels

(i.e., optimal independent culling). To find the optimal proportions at each cycle, we fixed the

number of parents selected (50 parents) and found the number of individuals to be selected in

the first culling stage that maximized parents’ economic value (measured as the index trait).,

which was obtained based on the estimated breeding values. Thus, over the cycles of selection,

when using optimal culling levels, instead of a fixed proportion selected of 10%, the proportion

selected for each trait varied between cycles.

Comparison

The comparisons were made in terms of: i) genetic gain ii) genetic diversity, iii) the efficiency

of converting genetic diversity into genetic gain for the index; and iv) genetic correlation

between traits. For genetic gain and genetic diversity, we report values based on the individuals

in the crossing block (parents) at each cycle of selection. We measured genetic gain as the

increment in genetic mean (average of true genetic values) compared to the genetic mean in

year 20. We measured genetic diversity with genetic standard deviation and genic standard

deviation. We calculated genetic standard deviation as standard deviation of true genetic val-

ues. We calculated genic standard deviation as sa ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
Pnq

i¼1 pið1 � piÞa2
i

q

, where nq is the

number of causal loci and pi and αi are, respectively, allele frequency and allele substitution

effect at the i-th causal locus.

To measure efficiency, genetic mean and genic standard deviation were standardized to

mean zero and unit standard deviation in year 20. We measured efficiency of converting genetic

diversity into genetic gain by regressing the achieved genetic mean (yt ¼ ðmat
� ma20

Þ=s2
a20

) on

lost genetic diversity (xt ¼ 1 � sat
=sa20

), i.e., yt = α+bxt+et, where b is efficiency [26]. We esti-

mated efficiency with robust regression using function rlm() in R [27].

For genetic correlation, we report the correlation between the true genetic values of T1 and

T2. We calculated this metric on the individuals in the F1 population at each cycle of selection.

Results

Index selection provided consistent genetic gains and was equivalent to independent culling in

terms of genetic gains and efficiency when optimal culling levels were used. Index selection

Table 1. Summary of parameters simulated in all comparison scenarios of recurrent selection breeding programs using either independent culling or selection

index with two traits.

Scenario Selected Proportion Relative economic importance of Trait 2 Accuracy

Trait 1 Trait 2

1 Optimum Optimum 1.0 0.3

2 Optimum Optimum 1.0 0.5

3 Optimum Optimum 1.0 0.99

4 Optimum Optimum 1.0 0.7

5 Optimum Optimum 2.5 0.7

6 Optimum Optimum 5.0 0.7

7 10% 10% 1.0 0.7

8 10% 10% 2.5 0.7

9 10% 10% 5.0 0.7

https://doi.org/10.1371/journal.pone.0235554.t001
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performed better than independent culling in scenarios where independent culling was per-

formed using the same selection intensity for each trait.

We have structured the description of the results in two parts, corresponding to how the

relative performance of the selection methods was affected by: i) the accuracy of selection, and

ii) the relative economic importance of traits.

Accuracy of selection

Increases in accuracy accentuated the differences in the genotypes being selected by either

independent culling or index selection. This is shown in Fig 1, where the genotypes selected as

parents by each selection method are highlighted. Lower levels of accuracy led to a more dif-

fuse cluster of selected genotypes and, with increasing selection accuracy, the cluster of selected

genotypes approached what was expected for each method of selection [7].

Fig 2 shows the change in the genetic correlation between the component traits for both

independent culling and index selection over 20 cycles of selection at different levels of accu-

racy. Both selection methods resulted in the correlation between traits becoming increasingly

unfavourable over the cycles of selection. For both methods, the change in the genetic correla-

tion increased with higher values of accuracy. Compared to independent culling, index selec-

tion led to larger changes in the genetic correlation between the two traits. After 20 cycles of

selection with accuracy of 0.3, independent culling led to a genetic correlation that was 9%

more unfavourable than the genetic correlation in cycle 0, while index selection led to a genetic

correlation that was 17% more unfavourable than the genetic correlation in cycle 0. After 20

cycles of selection with accuracy of 0.99, independent culling led to a genetic correlation that

Fig 1. Scatterplots of true genetic values for Trait 1 (T1) and Trait 2 (T2) of the genotypes in the F1 population (grey) and genotypes selected

as parents (orange) in the third cycle of selection using either independent culling (a) or a selection index (b) with different levels of accuracy.

https://doi.org/10.1371/journal.pone.0235554.g001
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was 29% more unfavourable than the genetic correlation in cycle 0, while index selection led to

a genetic correlation that was 64% more unfavourable than the genetic correlation in cycle 0.

The change of genetic mean in parents for the component traits and the index trait over the

cycles of selection using each method is shown in Fig 3. For both methods, the genetic gains

for the component traits and the index trait increased with higher values of accuracy. In gen-

eral, the selection index method and independent culling with optimal culling levels led to

equivalent genetic gains for the component traits and the index trait. Only in the scenario with

0.99 accuracy did index selection lead to a slightly higher genetic gain than that achieved with

optimal independent culling. For the index trait, after 20 cycles of selection with accuracy of

0.99, index selection had a genetic gain 4% higher than the genetic gain achieved with indepen-

dent culling.

Table 2 shows the genetic standard deviation of parents in cycle 20 and the loss in genetic

standard deviation in cycle 20 compared to the genetic standard deviation in cycle 0 for the

component traits and the index trait. The change of genetic diversity in parents for the compo-

nent traits and the index trait over the cycles of selection using each method is shown in S2 Fig

in S1 File. For the component traits, under index selection, the genetic standard deviation

showed an initial increase in the first few cycles of selection followed by a gradual decrease in

the subsequent cycles. Under independent culling, the decrease in the genetic standard devia-

tion of the component traits was continual over the cycles of selection. Both of these trends

were more obvious with increasing values of accuracy. For all values of accuracy, independent

culling led to a higher loss in the genetic standard deviation of the component traits compared

to the index selection. For T1 and T2, independent culling with accuracy of 0.3 led to losses of

genetic standard deviation that were respectively 6% and 5% higher than the loss of genetic stan-

dard deviation observed for index selection. With accuracy of 0.99, for T1 and T2 independent

culling led to losses of genetic standard deviation that were respectively 65% and 51% higher

than the losses of genetic standard deviation observed for index selection. For the index trait,

both methods led to equivalent values of genetic standard deviation. With accuracies of 0.3 and

0.99, index selection led to a loss in the genetic standard deviation of the index trait that was 3%

higher than the loss of genetic standard deviation observed using independent culling.

Fig 2. Change in genetic correlation (mean and 95% confidence interval) between traits in the F1 population over 20 cycles of selection using either optimal

independent culling (IC) or a selection index (SI) with different levels of accuracy, and Trait 2 relative economic importance of 1.0.

https://doi.org/10.1371/journal.pone.0235554.g002
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Table 3 shows the genic standard deviation of parents in cycle 20 and the loss in genic stan-

dard deviation in cycle 20 compared to the genic standard deviation in cycle 0 for the compo-

nent traits and the index trait. The values of genic standard deviation of T1, T2, and the index

trait were similar. The highest difference between methods in the loss in genic standard devia-

tion was 1% for all values of accuracy, except with accuracy of 0.99. With 0.99 accuracy, for T1,

T2 and the index trait, index selection led to a loss in the genic standard deviation that was 3%

higher than the loss of genic standard deviation observed using independent culling.

Relative economic importance of traits

Fig 4 shows the efficiency of converting genetic diversity into genetic gain for the index trait

when the relative economic importance of T2 varies. Independent culling was compared to

index selection using either optimal culling levels or selection with the same proportion of

plants selected (10%) for each trait. Index selection had the highest efficiency and most gain

for all levels of economic importance. The efficiency and gain for optimal independent culling

Fig 3. Change in genetic mean for Trait 1 (T1), Trait 2 (T2) and Index Trait (Index) over 20 cycles of selection

using either optimal independent culling (IC) or a selection index (SI) with different levels of accuracy,

unfavourably correlated traits, and T2 relative economic importance of 1.0.

https://doi.org/10.1371/journal.pone.0235554.g003
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levels were nearly equal to those of index selection. The efficiency and gain for selecting the

same proportion of plants for both traits were lower than those of index selection for all levels

of relative economic importances. Index selection was 10%, 128% and 310% more efficient

than independent culling using the same proportion of selected plants for relative economic

importance of 1.0, 2.5 and 5.0, respectively.

Fig 4 also shows the proportion of plants selected for T1 under optimal independent culling

over the different levels of economic importance for T2. The mean proportion selected for T1

varied only slightly over the cycles of selection. The means were 29%, 93%, and 99% for relative

economic importances of 1.0, 2.5, and 5.0, respectively. The variation about those means was

Table 2. Mean genetic standard deviation (Genetic SD) of parents in cycle 20 and loss in genetic standard deviation in cycle 20 in comparison to the genetic stan-

dard deviation in cycle 0 (Loss over cycle 0) for trait 1 (T1), trait 2 (T2) and the index trait using either optimal independent culling or index selection with different

levels of accuracy, unfavourably correlated traits, and T2 relative economic importance of 1.0.

Independent culling

T1 T2 Index trait

Accuracy Genetic SD (cycle 20) Loss over cycle 0 Genetic SD (cycle 20) Loss over cycle 0 Genetic SD (cycle 20) Loss over cycle 0

0.3 3.51 (0.08)� -17% 3.68 (0.08) -16% 3.57 (0.06) -22%

0.5 2.56 (0.06) -30% 2.45 (0.04) -28% 2.69 (0.05) -32%

0.7 1.65 (0.04) -42% 1.64 (0.03) -37% 1.88 (0.04) -45%

0.99 0.45 (0.01) -68% 0.45 (0.01) -55% 0.74 (0.02) -62%

Index Selection

T1 T2 Index trait

Accuracy Genetic SD (cycle 20) Loss over cycle 0 Genetic SD (cycle 20) Loss over cycle 0 Genetic SD (cycle 20) Loss over cycle 0

0.3 3.80 (0.09) -11% 4.00 (0.09) -11% 3.66 (0.08) -19%

0.5 3.19 (0.08) -17% 3.19 (0.07) -14% 2.57 (0.06) -33%

0.7 2.69 (0.06) -16% 2.60 (0.06) -18% 1.86 (0.04) -41%

0.99 1.93 (0.4) -3% 1.91 (0.04) -4% 0.51 (0.01) -59%

� standard errors of the estimates are presented in parenthesis.

https://doi.org/10.1371/journal.pone.0235554.t002

Table 3. Genic standard deviation (Genic SD) of parents in cycle 20 and loss in genic standard deviation in cycle 20 in comparison to the genic standard deviation

in cycle 0 (Loss over cycle 0) for trait 1 (T1), trait 2 (T2) and the index trait using either optimal independent culling or index selection with different levels of accu-

racy, unfavourably correlated traits, and T2 relative economic importance of 1.0.

Independent culling

T1 T2 Index trait

Accuracy Genic SD (cycle 20) Loss over cycle 0 Genic SD (cycle 20) Loss over cycle 0 Genic SD (cycle 20) Loss over cycle 0

0.3 3.94 (0.06)� -15% 4.11 (0.07) -15% 4.04 (0.05) -16%

0.5 3.48 (0.06) -24% 3.41 (0.05) -24% 3.44 (0.04) -25%

0.7 2.94 (0.04) -34% 2.89 (0.04) -34% 2.89 (0.04) -34%

0.99 2.35 (0.04) -42% 2.35 (0.04) -42% 2.33 (0.04) -43%

Index Selection

T1 T2 Index trait

Accuracy Genic SD (cycle 20) Loss over cycle 0 Genic SD (cycle 20) Loss over cycle 0 Genic SD (cycle 20) Loss over cycle 0

0.3 3.92 (0.06) -16% 4.08 (0.07) -16% 4.02 (0.05) -16%

0.5 3.44 (0.06) -25% 3.37 (0.05) -25% 3.39 (0.05) -26%

0.7 2.92 (0.05) -34% 2.88 (0.05) -34% 2.87 (0.04) -35%

0.99 2.21 (0.04) -45% 2.22 (0.04) -45% 2.17 (0.03) -46%

� standard errors of the estimates are presented in parenthesis.

https://doi.org/10.1371/journal.pone.0235554.t003
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largest with relative economic importance of 1.0 and smallest with relative economic impor-

tance of 5.0.

Discussion

This study evaluated and compared breeding programs that use either index selection or inde-

pendent culling for the recurrent selection of parents by genomic prediction. Index selection

was either better than or equivalent to independent culling in this context. Index selection out-

performed independent culling when a sub-optimal culling level was used.

The main difference between index selection and independent culling is that, under index

selection, genotypes that are exceptional for one of the traits under selection are more likely to

be selected even though their performance for other traits is average. This can be seen in Fig 1,

Fig 4. Change of genetic mean and genic standard deviation for the index trait across 20 cycles of selection using

either independent culling (IC) or a selection index (SI) under three levels of relative economic importance (REI) and

using either the same proportion selected (10%) for Trait 1 (T1) and Trait 2 (T2) or optimal culling levels for each level

of relative economic importance of T2 (a); and proportion selected (mean and 95% confidence interval) for T1 used to

achieve optimal culling levels over the 20 cycles of selection (b). Traits are unfavourably correlated (-0.5). Individual

replicates are shown by thin lines and a mean regression with a time-trend arrow. Values of genetic mean and genic

standard deviation shown are standardized to mean zero and unit standard deviation in cycle 0.

https://doi.org/10.1371/journal.pone.0235554.g004
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with the cluster of individuals selected as parents with the index method including individuals

that are more contrasting for the two traits under selection than the individuals selected with

independent culling. The main implications of this are in the way each method affects the cor-

relation between traits and the genetic diversity over cycles of recurrent selection. We discuss

each of these aspects in the following two sections. Lastly, we discuss how the relative eco-

nomic importance of the traits can affect the relative performance of the methods.

Methods of selection and genetic correlation between traits

After only a few cycles of selection, index selection generates F1 populations with a more unfa-

vourable genetic correlation between traits than the F1 populations generated by independent

culling (Fig 2). An explanation for the faster decrease of the genetic correlation observed with

index selection is that the index is a linear combination of component traits. As shown by Bul-

mer [28], selection on a linear combination leads to negative covariances between components

(the Bulmer effect). Consequently, the same principle applies to the component traits and

index selection, with index selection leading to an unfavourable genetic correlation between

the component traits [29, 30].

In general, genetic gains in multi-trait selection, regardless of the method of selection, are

expected to be higher when the correlation between traits is favourable and lower when this

correlation is unfavourable [9]. As index selection generated F1 populations with more unfa-

vourable genetic correlation between traits than independent culling, the genetic gains for

index selection were potentially lower than for independent culling. Nevertheless, despite

index selection being carried out under increasingly unfavourable genetic correlations over

the cycles, the genetic gains obtained for the index trait were equivalent to the gains obtained

using independent culling (Fig 3).

Over the cycles of selection, both independent culling and index selection resulted in

increasingly unfavourable genetic correlations between traits. Generally, it is assumed that

unfavourable genetic correlations that cannot be broken after repeated cycles of recombination

are likely due to pleiotropy. This is assumed to be the case in several crops, e.g., grain yield and

protein content in cereal crops [31–33], quality and disease resistance in forage crops [34], and

yield and disease resistance in barley [35]. However, the extent of the genetic correlation due

to pleiotropy in these examples is unknown because, as our study demonstrates, unfavourable

genetic correlations between the traits could also be, at least partly, induced by selection.

Methods of selection and genetic diversity over cycles of selection

According to Bulmer [28], reduction in the genetic variance due to selection stems mostly

from the build-up of negative linkage disequilibrium between causal loci when selection is per-

formed. This can be seen by comparing genetic and genic variation (Tables 2 and 3, respec-

tively). Genic variation is a function of the allele frequencies and the allele substitution effect

only, and thus is not affected by changes in linkage disequilibrium. The results in Table 3 show

that the losses of genic standard deviation of the component traits and index trait were not

greatly affected by the method of selection. Also, the method of selection did not greatly affect

the trait means, as shown in Fig 3. This indicates that, in terms of allele frequencies, there was

little difference in the parents selected by either independent culling or selection index in situa-

tions similar to our simulation. Therefore, the difference between the selection methods

derives from how they induce and exploit linkage disequilibrium between the causal variants

of the component traits. Specifically, as shown in Table 2, independent culling induced a

greater degree of negative linkage disequilibrium between the causal variants of the compo-

nent traits resulting in those traits having less genetic variation. A deviation from this result is
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expected with more intense selection schemes and more component traits selected in successive

stages, which would induce larger changes in allele frequencies due to drift. As a consequence,

differences between index selection and independent culling would be accentuated. In a previ-

ous study [36], the authors simulated and compared wheat breeding programs using different

selection strategies under high and low selection intensities. They observed that index selection

resulted in higher population coancestry over cycles of selection than independent culling, and

the difference between methods increased in scenarios with high selection intensity. Their

results indicate that index selection leads to a higher loss of genic standard deviation.

Somewhat surprisingly, it is possible to make an argument for the superiority of indepen-

dent culling relative to a selection index on the basis of the differences observed in linkage dis-

equilibrium. This is because independent culling produced populations with nearly equal

mean performance, but with more consistent performance between individuals, as demon-

strated by the lower variation observed for the component traits. This property could be bene-

ficial from a management perspective if differences in the component traits require variations

in management of individuals. Breeding for plant-architecture traits in outbreeding cultivars is

a good example where this property might be valuable, as having more uniform plants in the

field favours mechanical harvest. However, we believe this property is more of an academic

curiosity than something that will have practical application.

For simplicity and ease of implementation, our simulations considered the same genetic

architecture for both traits, with both traits being controlled by a high number (10,000) of

causal loci with small additive effects. Under different circumstances, such as at least one of the

traits being controlled by few causal loci with higher allele substitution effects, different results

could be expected. The results for the two-locus model in [37] show that independent culling

tends to eliminate genotypes that are homozygous for alleles with low effect for one of the

traits. For one pleiotropic causal locus, when both alleles are favourable for one trait and unfa-

vourable for the other trait, both homozygous genotypes tend to be culled, and independent

culling would select the heterozygous genotypes. If heterozygous genotypes were preferred, the

fixation of alleles would be slower and, therefore, the loss in genic standard deviation would be

lower. Our results indicate that, for highly polygenic traits, differences between methods of

selection in the loss of genetic diversity are mostly due to changes in linkage disequilibrium as

opposed to distinct changes in allele frequencies. Therefore, in terms of conserving genetic

diversity there was no obvious advantage for either method. Other strategies such as optimal-

cross selection [26, 36, 38, 39] or the multi-objective optimized approach [21] should be con-

sidered in order to optimize gains while also controlling the loss of genetic diversity over cycles

of selection.

Economic importance of the traits

In general, when the same selection intensity is applied to both traits, index selection will per-

form better than independent culling as the difference in the economic importance of the traits

increases (Fig 4). Optimal independent culling performed better than independent culling

using the same selection intensity for both traits for all levels of relative economic importance,

including the scenario where traits had the same economic importance. The results in Fig 4

show that, when traits had the same economic importance, independent culling approached

its maximal gain when a higher selection intensity was used for T1 and a lower selection inten-

sity was used for T2. This indicates that the economic importance of the traits is not the only

factor affecting the estimates of optimal culling levels and that accurately estimating them is

essential for maximizing gains when independent culling is performed. The results also show

that the effect of the economic importance of the traits in the estimates of optimal culling levels
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becomes more pronounced with increasing differences in the economic importance of the

traits. In fact, when one trait had 5 times the economic importance of the other trait, the opti-

mum was achieved when almost no selection was applied for the less important trait.

Our results show that the two ways of incorporating the true economic weights of the traits

in the selection process, either by optimal culling levels or a selection index, lead to nearly

equal genetic gains. However, it is worth noting that optimal independent culling would

require the complex estimation of optimal culling levels for each trait [11, 14, 15]. When

parents are selected based on an index, optimal gain is achieved by simply summing the values

of the traits weighted by their economic importance, a much simpler way of maximizing

genetic gains in a breeding program.

There is little to no evidence suggesting that plant breeders use analytical techniques to

determine optimal independent culling thresholds and/or constructing selection indices in

most plant breeding programs. More likely, the majority of breeders rely on their intuition for

setting thresholds and constructing indices. Their decisions are likely guided by the perfor-

mance of agronomic checks and are prone to fluctuations between seasons and individual

breeders. This model has clearly been successful, because plant breeding programs have con-

tinued to deliver genetic gain. However, it is likely sub-optimal, and the value of a more analyt-

ical approach becomes greater as genomic selection is more widely used.

Conclusions

We evaluated and compared breeding programs using either independent culling or index

selection for recurrent parent selection with genomic prediction. Even in the presence of unfa-

vourable genetic correlations, index selection achieved genetic gains equal to or greater than

those achieved with independent culling in all simulated scenarios. In terms of genetic diver-

sity, the differences between methods in the studied system were driven mostly by differences

in the generation of linkage disequilibrium between causal loci induced and not by differences

in allele frequencies. When linkage disequilibrium was not considered, the two methods had

similar losses of genetic diversity, and the differences in efficiency of converting genetic diver-

sity into genetic gains between the methods mostly reflected the differences in the genetic

gains obtained with each method. To obtain higher genetic gains, accurately estimating opti-

mal culling levels is essential for maximizing gains when independent culling is performed.

Once optimal culling levels are estimated, independent culling and index selection lead to

nearly equal genetic gains.
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