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A B S T R A C T

A Geant4 simulation has been carried out in order to determine the 𝛽-detection efficiency of a rare isotope
beam implantation setup, for decay spectroscopy experiments, comprising a number of Double Sided Silicon
Strip Detectors (DSSSDs) and two plastic scintillation detectors placed upstream and downstream. The absolute
efficiency for the emitted 𝛽-particle detection from radioactive fragments implanted in the DSSSDs using fast-
timing plastic-scintillator detector, is calculated. The detection efficiency of the setup has been studied with
two different distances between the Si layers and plastics. The requirement for the thickness of the Si detector
layers and its implication on the 𝛽-detection efficiency has been investigated for 1 mm and 300 μm thickness
of Si layers. The combined efficiency of DSSSD and plastic detectors were also simulated for two different
thicknesses of the DSSSD.

1. Introduction1

Plastic scintillator detectors are widely used in nuclear and high2

energy physics experiments due to their excellent time response, low3

stopping power, relatively low cost and versatility. These detectors4

are also commonly used in 𝛽 decay measurements [1–4] alongside5

Double Sided Silicon Strip Detectors (DSSSDs) [5]. The fast time re-6

sponse of plastic scintillator detectors and the good position resolution7

of DSSSD makes them complementary in measurements where high8

quality of both position and time response are demanded. A closely9

packed setup comprising stacks of DSSSDs and plastic detectors are10

chosen for the DEcay SPECtroscopy [6,7] setup, as a part of NUS-11

TAR [8,9] experiments at GSI [10] and FAIR [11,12]. A similar setup12

was installed previously for decay spectroscopy measurements with13

radioactive ion beams at RIKEN [13–15]. The DESPEC experiments will14

use the active implantation detector array, AIDA [16,17] for isomer15

decay spectroscopy measurements as well as for the spectroscopy of the16

daughter nucleus post 𝛽 decay of the implanted fragments. The DESPEC17

experiments aim at studying extremely rare isotopes produced via18

fragmentation of heavy nuclei namely 238U [18–20]. The background19

radioactivity is generally orders of magnitude higher than the rate20

of decay events from nuclei of interest. As a result, event by event21

∗ Correspondence to: 201-Pinanski, 205 Riverside St, Lowell, MA 01854, USA.
E-mail address: Sudipta_Saha@uml.edu (S. Saha).

correlation of implantation and decay are necessary to study these 22

implanted isotopes. High stopping power and granularity of the AIDA 23

DSSSD makes it a suitable candidate for an implantation detector [16] 24

whereas plastic detectors provide better timing response. Measurement 25

of the nuclear level lifetime via 𝛽-delayed 𝛾 spectroscopy provides im- 26

portant information about nuclear deformation, collective properties, 27

and more fundamentally, nucleon–nucleon interactions. The fast timing 28

LaBr3(Ce) detectors are used for the lifetime measurements using 𝛾- 29

𝛾 spectroscopy [21]. For the DESPEC experiments at GSI and FAIR, 30

an array of such LaBr3(Ce) detectors known as Fast Timing Array 31

(FATIMA) [22–25] will be used. To do such studies in 𝛽-𝛾 coincidence, 32

one needs very good timing for the beta particle as well. Fast timing 𝛽 33

plastic detectors have been planned to be used along with AIDA DSSSD 34

layers to obtain precise time of the 𝛽 decay for delayed correlation 35

with subsequent 𝛾-rays observed from the excited states of the daughter 36

nucleus in one of the LaBr3(Ce) detectors. Estimation of correlated 𝛽-𝛾 37

yield will be crucial to plan lifetime measurement experiments of very 38

exotic isotopes that can be produced in GSI as part of the FAIR Phase- 39

0 experimental campaign. A detailed simulation of the efficiency and 40

response of the setup after implantation of the radioactive fragments 41

is the key to determine expected detection yield. The present work is 42

performed, in view of a proposed setup, consisting of a stack of three 43
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DSSSDs and two plastic detectors, upstream and downstream of the1

Si stack for 𝛽-𝛾 correlation measurement. The DSSSDs are primarily2

used for implantation of radioactive fragments and correlation of the3

subsequent 𝛽 decay. Information on the position of implanted ions4

will be obtained from the horizontal(X) and vertical(Y) segmentation5

of the detectors. The implanted fragments are identified in-flight with6

standard B𝜌-𝛥E-B𝜌 method from the fragment separator [26,27]. The7

highest efficiency for the detection of ion implantation is achieved8

when ions are stopped close to the middle of the DSSSD stack. In9

order to achieve this situation with an arbitrary relativistic beam the10

particle energy can be tuned to the desired value with a degrader11

of variable thickness. The subsequent 𝛽 decay of the fragment after12

implantation occurs, depending on the 𝛽-decay lifetime, a time interval13

ranging from μs to ms and beyond. The possible long decay time14

makes direct correlation of the implantation and decay difficult to15

process electronically. Each implanted fragment and 𝛽-particle detected16

in AIDA DSSSD will be time stamped and have a localized distribution.17

The identification of the decaying nucleus will be carried out mainly18

through position correlation of energy deposition of the 𝛽 particle to19

the implantation position of the fragment. Lifetime measurement of20

the excited states of the beta-delayed daughter/grand-daughter of the21

stated ion-fragments will be carried out via 𝛽-𝛾 correlation measure-22

ments. Such experiments will require precise time response of the 𝛽23

detector. The proposed plastic detectors could achieve a time resolution24

of the order of a few hundreds of ps, which is far superior to the time25

response of the DSSSDs. The design of a setup comprising a stack of26

DSSSD and plastic detector, requires investigation of the energy loss27

(𝐸𝑙𝑜𝑠𝑠) of electrons inside the Si before being absorbed by the plastic.28

The efficiency of the combined setup, will depend upon the threshold29

of the detectors (𝐸𝑡ℎ), the 𝐸𝑙𝑜𝑠𝑠 of the 𝛽 particles inside the detector30

material, and the probability of electrons escaping the DSSSD and31

being detected in the plastic detector. Low energy 𝛽 particles will have32

small total 𝐸𝑙𝑜𝑠𝑠 in the detector material leading to limited light output33

in the scintillator. Hence, the actual energy distribution of 𝛽-decay34

probability must be factored into the calculation. This problem has been35

addressed in this work via Monte-Carlo simulation of the full setup36

with realistic calculation of the energy distribution of the 𝛽 decay of37

a typical fragment of interest. The implanted isotopes decay primarily38

by 𝛽-decay. The required thickness and placement of these detectors39

for optimal efficiency of the 𝛽-decay measurement is investigated in40

this work. A calculated energy spectrum of 𝛽 decay of 224At is used as41

a typical candidate for such a measurement. In addition, the response42

of the setup with a number of isotopes with known 𝛽 activity have been43

investigated. A numerical simulation has been carried out using Geant444

package [28] to find the best possible configuration and thickness of45

the Si layers. The dependence of the absolute efficiency of the setup46

on the distance between the DSSSDs and plastic is also investigated.47

The simulation program developed is a suitably modified version of48

a previously tested simulation code for modeling the response of a49

clover-HPGe-detector array [29].50

2. Details of simulation framework51

2.1. Geometrical model52

The simulation geometry consists of three rectangular Si layers53

(7.16 cm × 7.16 cm) and two plastic scintillators of the dimension54

(8 cm × 8 cm) (see Fig. 1). The plastic detectors are modeled as per55

the material specification of EJ212 [30], which is a special type of56

polyvinyl toluene (PVT) with a density of 1.023 g/cm3. The compo-57

sition is 8.47% Hydrogen and 91.53% Carbon. No reflective coatings58

or light absorbing materials was used in the model, following the final59

working design of the detector. The Si detectors are stacked parallel60

to each other, separated by air with a distance of 6 mm between61

each layer. The plastic scintillator detectors are placed upstream and62

downstream of the Si stack separated by air. The distance of the plastic63

Fig. 1. The simulation consists of three DSSSD stacked in the center and two plastic
scintillator detectors on both sides of the DSSSD detectors. The dark lines correspond
to 𝛽 particles and the gray lines are x-rays.

detector from the Si stack is 4 mm on one side and 3 mm on the other 64

side (Fig. 1). These are the closest possible distances between the last 65

DSSSD and the plastic scintillator considering the restriction from the 66

DSSSD frame and the space for the readout cables. The simulation has 67

been carried out for two different standard thicknesses of Si layers, 68

300 μm and 1 mm respectively. The amount of light created by the 69

plastic will depend upon the energy loss of the 𝛽 particles. The thickness 70

of the plastic should be chosen such that the light produced by the 71

traversing 𝛽 particles results in a signal above the noise level. 72

2.2. Physics process 73

Necessary physics interactions models were used in the simulation 74

for cross-section calculation. The electromagnetic interactions were 75

modeled by the Geant4 Standard Electromagnetic Package [31]. This 76

package handles a number of interactions including multiple scattering, 77

ionisation, Bremsstrahlung, positron annihilation, photoelectric effect, 78

Compton and Rayleigh scattering and pair production [32]. The Pack- 79

age uses analytical methods to describe the interactions of energetic 80

particles such as, the electrons, positrons, photons, and ions in the en- 81

ergy range of 1 keV–10 PeV. The package reproduces the NIST-ESTAR 82

data set [33] for stopping power and range within 3𝜎 uncertainty [32]. 83

The NIST-ESTAR data set has an uncertainty in reproducing the stop- 84

ping power of electrons between 1% and 10% for collision stopping 85

power and in between 2% and 5% for radiative stopping power [34]. 86

2.3. Simulation of the source 87

The depth distribution of the implanted fragments, in a typical 88

DESPEC experiment will be centered at the middle layer of the DSSSD 89

stack assembly. The depth profile is approximated by two different 90

source profile distributions in the simulation. In the first case, the 91

radioactive source is assumed to be uniformly distributed in the beam 92

direction in each of the three layers of Si. The distribution perpendicu- 93

lar to the beam direction is assumed to be 2 × 1 cm2 for all three layers 94

of DSSSD. A second case is considered, where the source is assumed 95

to be distributed uniformly only in the middle layer of the Si stack. 96

In practice, the implanted ions are expected to be distributed in all 97

three layers of the DSSSDs in varying quantity, centered around the 98

middle layer. Hence, any real implantation distribution is somewhere 99

in between these two limiting cases and the simulation results will thus 100

give a systematic uncertainty to the actual response of the detector 101

system. The angular distribution of the 𝛽-particles emitted from the 102

implanted ions is an important factor of the simulated efficiency. The 103

energy release of the heavy isotope at implantation will obstruct any 104

2
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𝛽-decay measurement for ∼1 μs after implantation of the fragment.1

Hence, in practice only 𝛽 decay from the fully stopped fragments could2

be measured. Any correlations of the 𝛽-decay momentum direction3

distribution with respect to the implanted fragment momentum di-4

rection will be dependent upon the spin relaxation time scale of the5

implanted nucleus. If the spin relaxation time scale, which also depends6

on the nuclear temperature after fragmentation, is less than the time7

window between implantation of the fragment and detection of the8

subsequent 𝛽 decay all directional correlation will be lost. Considering9

a waiting time larger than 1 μs after implantation for the detectable 𝛽10

decay events it could be argued that the 𝛽-decay momentum direction11

distribution with respect to the source positions is isotropic in most12

cases. As a result no corrections for boost of the fragment is applied in13

the simulation.14

A simulated geometry and a few decay events are shown in Fig. 1.15

The source is assumed to be distributed in a rectangular area of 2 cm16

in the horizontal, X-direction, and 1 cm in vertical, Y direction, on the17

central Si layer. Simulations were carried out using the two different18

implantation profiles of the source distribution conditions in the Si19

layers as discussed above. The 𝛽-decay energy distribution can be user20

defined or the known 𝛽-decay energy distribution of any nuclei can21

be called from the Radioactive Decay data base of Geant4 [35]. The22

RadioactiveDecay data base follows the decay information from Eval-23

uated Nuclear Structure Data File (ENSDF) (2013 version) [36]. The24

build in classes of Geant4 were used to construct the decay products25

and track the electrons after decay from the nuclei, considered here26

as the primary particles. The radioactive nuclei were created using the27

G4ParticleGun class. The standard user commands /gun/particle ion and28

/gun/ion Z A method was invoked via G4ParticleGunMessenger class29

to define the specific radioactive isotopes. The track of the radioactive30

nuclei was stopped invoking the SetTrackStatus(fStopButAlive) method31

on the primary track object of G4Track class. This has allowed the32

radioactive primary ions to decay at zero momentum. The beta decay33

of the daughter nuclei was prevented using SetTrackStatus(fStopAndKill)34

method. This process also stops deexcitation of the daughter via 𝛾35

decay. This method helped simulation of only one 𝛽 decay, whereas36

in general if the daughter nucleus is 𝛽 unstable, it will follow the rest37

of the decay chain until a stable isotope is reached. In this way only38

the secondary particles such as electrons and anti-𝜈s are tracked from39

the primary decay and the energy deposition from the interaction of40

the electrons with the detector material is measured. In an actual decay41

spectroscopy experiment 𝛽 decay time stamps will be used to separately42

identify the decays in a decay chain.43

The 𝛽 decay from the parent to daughter and daughter to grand-44

daughter nuclei will be separated by a time difference governed by the45

lifetime of the parent and daughter nuclei respectively. These lifetimes46

are significantly higher (of the order of ms to seconds) than the time47

resolution of the plastic detector (∼100 ps). After implantation time48

stamp, the next decay events will be searched for within a few half49

life of the implanted isotope. The total transmitted ion rate is generally50

very low (<1 kHz) for the extremely rare isotopes that are planned51

to be studied in the DESPEC experiment [37]. The overall low rate of52

implantation will result into very low rate of accumulation of long lived53

𝛽 decaying isotopes to significantly affect the statistics by incorporating54

additional dead time to the detector and DAQ.55

Nine nuclei from two different chain of isotopes, 206,207,208,209,210Au56

and 128,130,132,134In were simulated to calculate the efficiency response of57

the detector setup. These isotopes have different 𝑄𝛽 values and average58

energy of the 𝛽 distribution, ranging from 5.7 (3) MeV to 14.8 (3) MeV59

and 2409 keV to 6937 keV, respectively.60

A realistic 𝛽-decay energy distribution is calculated for 224At and the61

uniform momentum distribution of emitted 𝛽 particles were simulated.62

In Fig. 2, the calculated 𝛽-energy distribution for 224At decay is shown.63

Due to the limitation of ENDSF data set, the application of the build-in64

decay data generator of Geant4 is limited. Hence, the Monte Carlo event65

generator DEGEN (Decay data Generator) is used for the generation66

of the 𝛽 spectrum [38,39]. The statistical distribution of the 𝛽-decay67

peaks around 2 MeV and a significantly large probability of 𝛽 decay is68

expected with energy ranging from 0–5 MeV.69

Fig. 2. Calculated beta energy distribution for 224At with Q𝛽 = 5.266(24) MeV [36].

3. Results and discussion 70

The simulated 𝛽-particles emitted from the decaying nuclei will 71

have multiple scattering in between the DSSSDs and in the plastic. 72

As the DSSSDs are electronically segmented into 128 X and 128 Y 73

channels, with each strip size of 0.56 mm only, there will be many 74

simulated events where several channel multiple hits will be recorded. 75

The efficiency of the detector system is calculated after taking into ac- 76

count the multiple interaction probability of the electron with different 77

strips of the same DSSSD and repeated counting by the same detector is 78

avoided in the simulation. The electron momentum distribution, from 79

the source position has been considered isotropic. The electrons will be 80

energetically degraded and diffused while being transported through 81

the Si detectors and air before reaching the plastic scintillator. 82

In Fig. 3 the hit pattern of electrons in the DSSSDs are shown, 83

when 200 keV and 2 MeV electron sources are simulated with the 84

same statistics. The plots in the top and bottom row represents the 85

distribution profiles of 200 keV and 2 MeV electrons, while the first, 86

second and third columns shows respectively the front, middle and back 87

layers of a 1 mm thick DSSSD stack. The X and the Y axis represents 88

the coordinates of the electron hit position in the detectors and the 89

bin size represents the size of the DSSSD strips. The colors of the 90

individual pixels correspond to the number of hits detected per pixel 91

of the DSSSDs. The source is assumed to be implanted uniformly in 92

depth of the central pixel of the middle layer of the DSSSD stack 93

assembly. Due to possibility of multiple hits by the same electron, 94

the number of hits recorded in the detectors are generally more than 95

the number of primary electrons created. The range at which the 96

statistics falls off significantly roughly represent the maximum range 97

of electron from the source position after multiple random scattering 98

within the detectors. In both cases, (200 keV and 2 MeV) the pixel 99

where the source is implanted counted the most statistics and a gradual 100

depletion of counts with increasing distance from the central pixel is 101

observed. The overall number of hits detected in the middle DSSSD 102

is much larger for electrons with 200 keV energy (Fig. 3b) compared 103

to 2 MeV (Fig. 3e) energy. On the other hand, hit counts increases 104

in the peripheral DSSSDs for 2 MeV compared to 200 keV electrons. 105

This can be observed from the counts scale in the color-coded plot. 106

This difference is observed due to the expected range of electron in 107

the DSSSD is larger at higher energies. On the other hand, the front 108

and back DSSSDs see much lower counts for 200 keV electrons (Fig. 3a 109

and c) compared to 2 MeV (Fig. 3d and f). The distribution profile is 110

much narrower for the low energy electrons than at higher energies. 111

The reason for wider distribution at higher energies can be explained 112

by the increase of the number of multiple scattering of the electrons 113

interacting with the neighboring DSSSDs. 114

3
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Fig. 3. The hit pattern of electrons in the three DSSSDs when the source is uniformly distributed in the central pixel of the middle layer only. Panel (a)–(c) shows the hit pattern
with 200 keV electron source and panel (d)–(f) shows the same for 2 MeV electrons source. The first, second and the third columns represents respectively, the front, middle and
back layer of the DSSSD stack.

Fig. 4. Efficiency of plastic for 300 μm thick Si layers.

The energy dependence of the efficiency of the detector system is1

calculated in steps with mono-energetic and isotropic 𝛽 sources of 2002

keV to 3 MeV. The efficiency is defined as the ratio of the electrons3

detected above the threshold vs. the number of 𝛽-particles simulated4

in the source. Combined efficiency of the two plastic detectors is5

calculated for a thin (300 μm) and thick (1 mm) DSSSD assembly.6

Fig. 4, shows the absolute efficiency of the plastic detector simulated7

with 300 μm Si layers in the minimum possible distance configuration.8

The dashed line represents the efficiency obtained when the source is9

uniformly distributed in the center layer of the Si (along the Z direction,10

i.e. thickness of the Si detector). The solid line represents the case when11

the source is uniformly distributed in all three layers of the Si. The12

actual distribution (if assumed to be a Gaussian) will be centered at13

the middle layer of Si and distributed in all 3 DSSSD layers. These two14

curves roughly represent the maximum and the minimum 𝛽 efficiency15

of the plastic detector for these two extremes of the source implantation16

distribution.17

The drop in efficiency of the plastic detector at electron energy less18

than 1.5 MeV is consistent with the expected absorption of electrons in19

the DSSSD at low energy. A considerable number of electrons emitted20

from the source implanted in the middle layer of the DSSSD stack21

does not reach the plastic detectors after losing energy in the Si and22

Fig. 5. Efficiency of plastic scintillators for 1 mm thick Si layers.

air layers. The number of electrons detected in plastic detector is less 23

for source implanted in the central DSSSD compared to all DSSSDs, 24

because in the former case the electrons travel through thicker layers 25

Si and air. Since at higher energy more electrons will reach to the 26

plastic detectors from the central DSSSD, the difference in the efficiency 27

in these two cases decreases with increase in energy of the electron. 28

Similarly, simulation study with 1 mm thick Si layers is shown in 29

Fig. 5. The efficiency of the plastic detector remains below 80% up to 30

3 MeV with an increasing slope. This represents a sharp drop in overall 31

efficiency of the plastic detector when a thicker Si stack is used, as a 32

result of increased stopping of low energy electrons. 33

Further simulations have been carried out to observe the depen- 34

dencies of efficiency on the distance between Si and plastic detectors. 35

Due to operational reasons the distances between the DSSSDs could not 36

be reduced any further. The corresponding plot for minimum distance 37

configuration and 10 mm distance between outer Si layer and the 38

plastic in both sides of the stack is shown in Fig. 6. This plot indicates 39

a minor improvement in the efficiency from 71% at 10 cm distance 40

to 74% at minimum distance for 3 MeV 𝛽 particle when the detectors 41

are brought closer. However, for low energy electrons no increase in 42

efficiency is observed. For a distance variation from minimum distance 43

configuration to 10 mm distance of the plastic detector only marginal 44

4
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Fig. 6. Plot of efficiency for different distances between plastic and outer Si layer.
Source position uniformly distributed at the central Si layer only.

Fig. 7. Plot of the efficiency of DSSSD as a function of energy of the emitted 𝛽 particles
for 0.3 mm and 1 mm thickness. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

improvement in efficiency is noticed. Each of the 128 strips in x1

direction, of the AIDA DSSSD, is considered to have a threshold of2

100 keV. Due to the multiple scattering of electrons, energy sharing3

among different strips, is likely resulting in multi-hit events, provided4

the energy deposited in the respective strips, is higher than the thresh-5

old. Hence, the strip-wise threshold is needed to be considered in6

the simulation. In Fig. 7, the efficiency of the electrons for different7

energies above the threshold has been plotted for 0.3 mm (black) and8

1 mm (red) thick DSSSD detectors in minimum distance configuration9

of the AIDA assembly. The solid lines corresponding to the fragment10

implantation at the central layer (leading to higher detection efficiency)11

while the dashed line corresponds to uniform fragment implantation in12

all layers of the Si stacks respectively. The efficiency of the 1 mm Si13

detector remains higher than that of the 0.3 mm at all energies in both14

source configurations.15

It should be noted that for typical decay experiments the energy16

distribution of the 𝛽 particles falls off rapidly above 2 MeV as shown17

in Fig. 2. On the other hand, the plastic detector efficiency increases18

up to 1.5 MeV and becomes almost flat at higher energies as shown in19

Fig. 4. For this reason, a straight forward estimation of the combined20

efficiency is difficult for a realistic 𝛽-decay case and requires detailed21

simulation of the source energy distribution for each isotope of interest.22

As a typical example, the 𝛽-decay energy distribution of 224At is approx-23

imated with a polynomial and a random distribution of 𝛽-decay events24

following the energy distribution is generated. The implanted source25

distribution profile is again considered to be uniformly distributed26

in all Si layers and in the middle layer only. For this isotope the 27

total efficiency of the two plastic detectors together for an assumed 28

middle layer distribution is 75.5% and for a uniform distribution in 29

all layers it is ∼ 78.0%. For a thick (1 mm) DSSSD stack, simulation 30

of uniformly implanted 224At 𝛽-decay distribution in the middle layer 31

of the Si only provides 45.8% efficiency, while the same for all layers 32

of Si provides 52.8% efficiency in the plastic detector. The detection 33

efficiency for the 1 mm thick DSSSD detectors for the 224At 𝛽 decay, 34

with fragments uniformly distributed in the middle layer of the Si is 35

98.7% while the same for uniform distribution in all layers of the 36

Si is 93.9%. The efficiency for 0.3 mm thick DSSSDs is respectively 37

86.5% and 76.3%, for uniform central distribution and uniform in all 38

Si distribution configurations. The combined efficiency of plastic and 39

AIDA Si of the calculated 224At decay will be between 45%–48% for 40

1 mm and between 60%–65% for 0.3 mm Si respectively. 41

In Fig. 8, the combined efficiency of the DSSSDs and plastic de- 42

tectors for 𝛽 decay of 206,207,208,209,210Au and 128,130,132,134In isotopes 43

as a function of the average electron energy are plotted. The calcu- 44

lated efficiencies of the 𝛽-decaying nuclei are considered to be the 45

average of the two different source profile distributions considered in 46

the simulation, while the difference in the efficiency for these two 47

distributions are the systematic uncertainties. For the detector setup 48

with 1 mm thick DSSSD, the uncertainty increases with increase in 49

the average energy of the 𝛽-decay distribution while it remains almost 50

same for 300 μm DSSSD. It has also been observed, that the systematic 51

uncertainty in efficiency is larger for 300 μm DSSSD as compared to the 52

1 mm DSSSD stack. This is due to the fact that the electron momentum 53

distribution becomes more diffused and isotropic when number of 54

multiple scattering is increased. Hence, as shown in Fig. 6, when the 55

distance between source position and detector increases, the efficiency 56

is reduced more at higher energies. For the uniform source distribution 57

in all DSSSD configuration the effective distance between the source 58

position and detector is increased than the uniform central distribu- 59

tion configuration. The thin DSSSD stack having much less screening 60

effect than the thick stack, leads to more events being detected in the 61

furthest plastic detector. This increases the average efficiency and the 62

systematic uncertainty for thin DSSSD stack relative to the thick DSSSD 63

at lower energies. At higher energies of 𝛽 distribution for the thick 64

DSSSD become more opaque to the electrons and the efficiencies of 65

both detector setups become comparable. The absolute efficiency of the 66

setup for 1 mm thick DSSSD increases smoothly from ∼50% for 207Au 67

to ∼80% for 134Sn nuclei. Whereas, the efficiency remains almost same 68

for all these isotopes when the DSSSDs thickness is reduced to 300 μm. 69

In Table 1, the calculated efficiency with there respective systematic 70

errors for each isotopes are shown, along with their Q𝛽 values and 71

average energy of 𝛽 for the setup comprising of 1 mm and 300 μm 72

DSSSDs respectively. 73

The efficiency will change for different possible shapes of the im- 74

planted ions. The simulations were carried out assuming a rectangular 75

distribution of 2 × 1 cm2. The shape of the implanted fragment distri- 76

bution was varied to calculate the resulting deviation in the efficiency 77

of the detector. The source distribution was assumed to be uniform in 78

depth over all three 300 μm thick DSSSD detectors for this simulation. 79

The total 𝛽 efficiency of the detector for a few different shapes, namely 80

a square, a uniform circular and a Gaussian circular distribution of 81

dimensions respectively, 1 × 1 cm2, 1 cm diameter and 1 cm diameter at 82

the FWHM are calculated along with the rectangular type distribution 83

mentioned above. A 1 MeV and a 5 MeV electron source energy was 84

considered for this calculation. The resulting variation in efficiencies 85

of the square, uniform circular and Gaussian circular distributions from 86

the square shaped distribution are less than 0.2% at 1 MeV and 0.7% 87

at 5 MeV. It can be concluded, that for a small central implantation 88

distribution the shape of the distribution does not play a significant 89

role in the overall efficiency of the detector. 90

The primary implantation fragment with A/Q ratio corresponding 91

to the central B𝜌 value of the separator will be centered (in the X-Y 92

5
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Table 1
Simulated absolute efficiencies for 𝛽-decay measurement of implanted 206,207,208,209,210Au and 128,130,132,134In
isotopes for the setup consist of 1 mm and 300 μm thick DSSSD stack have been plotted along with their
respective Q𝛽 and average 𝛽 spectrum energy (𝛽𝑎𝑣𝑔). The quoted error in the efficiency is the systematic
uncertainty in efficiency from two different source profile distribution as mentioned in the text.

Name Q𝛽 (keV) 𝛽𝑎𝑣𝑔 (keV) Abs. Efficiency
(1 mm DSSSD)

Abs. Efficiency
(300 μm DSSSD)

207Au 5.7 × 103(3) 2409 53.96 (4) 63 (4)
209Au 6.1 × 103(3) 2644 57.4 (3) 64 (4)
206Au 6.7 × 103(3) 2884 60.8 (3) 64 (4)
208Au 7.2 × 103(3) 3090 63.1 (6) 65 (4)
210Au 7.7 × 103(4) 3328 65.7 (10) 65 (4)
128In 9.22 × 103(15) 2814 59.3 (1) 64 (4)
130In 1.025 × 104(4) 3072 62.6 (5) 65 (4)
132In 1.414 × 104(6) 3592 68.2 (11) 66 (4)
134In 1.48 × 104(3) 6937 80.3 (22) 65 (5)

Fig. 8. Absolute efficiency of 206,207,208,209,210Au and 128,130,132,134In isotopes are plotted as
a function of average energy of their 𝛽-decay distribution. The efficiency of 1 mm and
300 μm thick DSSSD is shown in filled circles and open squares, respectively. The name
of the isotope is shown next to the data point representing the calculated efficiency.

plane) with respect to the DSSSD detector. However, fragments with1

non-central B𝜌 will be focused at other positions of the DSSSD detector.2

The position distribution of the fragments will be dependent upon3

the respective settings of the fragment separator. The dependence of4

efficiency on the XY position of the source distribution is estimated by5

simulating a 1 MeV electron source placed at various source positions6

in the first quadrant of the DSSSD detector. A symmetric efficiency dis-7

tribution in all four quadrants with respect to the center of the DSSSD8

is expected. The efficiency is simulated at 16 grid points separated9

by 1 cm from the origin up to 3 cm at the positive X and positive Y10

directions. The plots representing the calculated efficiency for the front11

and central DSSSDs are shown as Fig. 9(a) and (b) respectively. The12

total efficiency of the detector is much less for implantation in the front13

and back DSSSD compared to the implantation in the middle DSSSD.14

Also, efficiency reduces by a small 0.4% when the source position is15

shifted by 1 cm in the X or Y direction. However, the efficiency reduces16

by 2.5% and 16% of the value at origin when the source is shifted by17

further 2 cm and 3 cm, respectively. It is also observed that the rate18

of change in efficiency along the diagonal is comparatively less than19

that along the axes. In this simulation the thickness of the DSSSD is20

considered to be 300 μm. Due to low stopping power for individual21

DSSSD’s in this case, more electrons from the central DSSSD is expected22

to get scattered and detected by the plastic detectors on both side of the23

stack compared to the electrons sourced from the front or back DSSSDs.24

At this energy around 92% contribution to the total efficiency of the25

detector comes from the implantation of fragments in the central DSSSD26

alone.27

The total efficiency of the setup will depend upon the threshold of28

the detectors. It can be seen in Figs. 4 and 5 that the efficiency of the29

Fig. 9. The combined total efficiency of the DSSSDs and plastic detectors for a
simulated 1 MeV electron source is plotted as a function of source implantation position
on 300 μm DSSSD detectors. The panel (a) shows the efficiency plot for various source
positions in the front DSSSD and panel (b) shows the same for source positions in the
central DSSSD.

plastic detector below an energy of 150 keV is practically negligible 30

for both 1 mm and 300 μm DSSSD stacks. This requires the threshold 31

of the plastic detector to be at least 150 keV without loss of efficiency. 32

However, the higher DSSSD threshold significantly reduces the total 33

efficiency. Due to the high stopping power of DSSSD, only higher 34

energy electrons will be able to scatter through the DSSSDs and reach 35

the plastic detector. This makes the total efficiency of the detector less 36

affected by the plastic threshold compared to the DSSSD threshold. The 37

DSSSD threshold becomes even more important to the total efficiency, 38

due to the higher efficiency of the detectors for low energy electrons 39

(Fig. 7). On the other hand, the loss of electron energy in the plastic 40

detector is negligible. Experimentally, the threshold for the plastic 41

scintillator will come from the number of light photons generated from 42

a valid event in the scintillator and the level of background noise 43

6
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Fig. 10. The combined efficiency of the setup with 300 μm DSSSD stack with 1 MeV
and 5 MeV point e− source embedded in the middle of the central DSSSD stack is
plotted for various threshold of the DSSSD ranging from 50 keV to 200 keV.

photons detected with the signal. For DSSSD detectors the number1

of thermal electron hole (e-h) pairs created in the Si detector vs the2

number of e-h pairs created from interaction of 𝛽 particle will define3

the threshold. For AIDA setup the conservative estimate of threshold of4

the DSSSD detector is 100 keV.5

The total efficiency of the DSSSD and plastic detectors are studied6

while varying the thresholds of the DSSSD detectors and the plastic7

detectors independently from 50 keV to 200 keV with a 5 MeV point8

electron source placed at the center of the middle DSSSD. The com-9

bined efficiency decreases marginally by less than 1% only when the10

threshold of the plastic detector increased from 50 keV to 200 keV. This11

trend is observed for both setups with 300 μm and 1 mm thick DSSSD.12

However, when the threshold of the plastic detector is kept constant at13

100 keV and the DSSSD threshold is increased from 50 keV to 200 keV14

the change in efficiency is very different for 1 mm and 300 μm Si stack.15

For the 1 mm thick DSSSD the efficiency is reduced by a nominal 2%,16

while for the 300 μm thick DSSSD stack it is reduced by more than 50%.17

The large drop in efficiency at higher energy threshold is understood18

from the relatively small amount of energy deposition in the thin Si19

detectors compared to the thick detector stack. The combined efficiency20

is plotted in Fig. 10 with respect to the threshold of the DSSSDs for21

300 μm DSSSD stack for 1 MeV and 5 MeV electron beam. Although,22

the overall efficiency of the detectors for the 1 MeV electron energy23

is less than that of the 5 MeV, the fall in efficiency shows similar24

trend for both the results. The result also suggests that for a broad25

𝛽 decay energy spectrum (Fig. 2), statistics will be primarily reduced26

by the same amount at various energies with the increase in detector27

threshold.28

4. Conclusions29

The simulation demonstrates the requirement for bringing the 𝛽-30

plastic detector the closest possible to the Si layers and reducing the31

thickness of the Si layers to improve the 𝛽-detection efficiency in the32

plastic detectors. The improvement in efficiency with further closely33

pack geometry is only marginal and relevant for high energy elec-34

trons only. The combined efficiency of the detector system improves35

from the range of 45%–48% for 1 mm to the range of 60%–65% for36

0.3 mm Si respectively. However, such wider difference is observed37

when the average energy 𝛽 decay distribution is lower than 2500 keV.38

Absolute efficiencies were calculated from the 𝛽-decay distribution of39
206,207,208,209,210Au and 128,130,132,134In isotopes. These nuclei have Q𝛽40

values and average 𝛽-decay energies ranging from 5.7 MeV to 14.8 MeV41

and 2.4 MeV to 6.9 MeV respectively. The absolute efficiency of the42

setup increases smoothly when 1 mm thick DSSSD stack was used. 43

However, the distribution of the efficiency as a function of average 44

energy shows almost flat variation when 300 μm Si is used in this energy 45

range. It can be concluded from this simulation that for experiments 46

where the expected average 𝛽-decay energy is lower than 2500 keV 47

the thin DSSSD performs better while above 3500 keV the thick DSSSD 48

gives better efficiency. However, from ∼2500 keV to 3500 keV their 49

performance are more or less similar. Since a thinner stack of Si 50

layers will effectively reduce the stopping power for the radioactive 51

fragments, the fragment energy will needed to be suitably reduced 52

before implantation. The effect of slowing down of fragments before im- 53

plantation on the rate of implanted fragments, need to be investigated 54

further. In this simulation, the efficiency is calculated for a 2 × 1 cm2 55

centered distribution of the fragments, which will differ from an off- 56

centered distribution or a different distribution profile. Combining the 57

simulation result from fragment distribution profile would be necessary 58

to further improve the accuracy of the efficiency expected in a typical 59

decay spectroscopy experiment. 60
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