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Genetic composition of an exponentially
growing cell population

David Cheek∗ and Tibor Antal†

Abstract

We study a simple model of DNA evolution in a growing popula-
tion of cells. Each cell contains a nucleotide sequence which randomly
mutates at cell division. Cells divide according to a branching process.
Following typical parameter values in bacteria and cancer cell popula-
tions, we take the mutation rate to zero and the final number of cells
to infinity. We prove that almost every site (entry of the nucleotide
sequence) is mutated in only a finite number of cells, and these num-
bers are independent across sites. However independence breaks down
for the rare sites which are mutated in a positive fraction of the pop-
ulation. The model is free from the popular but disputed infinite sites
assumption. Violations of the infinite sites assumption are widespread
while their impact on mutation frequencies is negligible at the scale
of population fractions. Some results are generalised to allow for cell
death, selection, and site-specific mutation rates. For illustration we
estimate mutation rates in a lung adenocarcinoma.
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1 Introduction

A population of dividing cells with a mutating DNA sequence is ubiquitous
in biology. We study a simple model of this process. Starting with one cell,
cells divide and die according to a supercritical branching process. As for
DNA, we loosely follow classic models from phylogenetics [16, 25]. Each cell
contains a sequence of the nucleotides A, C, G, and T, and each site (entry of
the sequence) can mutate independently at cell division. We are interested
in the sequence distribution when the population reaches many cells.

Let’s discuss a specific motivation. In recent years, cancer genetic data has
been made available in great quantities. One especially common type of data
consists of mutation frequencies in individual tumours. These data take the
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form of a vector (xi)i∈S, where i ∈ S denotes genetic sites and xi is the
frequency of cells which are mutated at site i. To make sense of such data in
terms of tumour evolution, simple mathematical models can be helpful.

Some important works on the topic are [27, 5, 26, 8]. They consider branching
process and deterministic models of tumour evolution. They compare the-
ory with data, estimating evolutionary parameters such as mutation rates. A
central feature of their theory, and of countless other works, is the so-called in-
finite sites assumption (ISA). The ISA states that no genetic site can mutate
more than once in a tumour’s lifetime. The assumption’s simplicity drives
its popularity. However recent statistical analysis of single cell sequencing
data [20] shows “widespread violations of the ISA in human cancers”.

For a ‘non-ISA’ model of a growing population of cells, there is in fact a
famous example. Luria and Delbrück [22] modelled recurrent mutations in
an exponentially growing bacterial population. Subsequent works [21, 18,
14, 17, 19] (and others) adapted Luria and Delbrück’s model to branching
processes and calculated mutation frequencies. These works describe only
two genetic states, mutated or not mutated, effectively restricting attention
to a single genetic site. In [7] we offered an account of one such model, proving
limit theorems for mutation times, clone sizes, and mutation frequencies. We
then briefly studied an extension to a sequence of genetic sites. Now we offer
a self-contained sequel to [7], slightly adapting the model, and aiming for a
deeper understanding of the sequence distribution.

In [7] we studied several parameter regimes. In the present work by contrast,
we study only one parameter regime which is the most biologically relevant.
We take the final number of cells to infinity and the mutation rate to zero
with their product finite. This limit is relevant because a detected tumour
has around 109 cells while the mutation rate per site per cell division is
around 10−9 [15]. This limit is also standard in Luria-Delbrück-type models
of bacteria.

Now we introduce our main results. The number of cells mutated at a given
site (mutations are defined relative to the initial cell) converges to the Luria-
Delbrück distribution. This recovers a well-known result of single site models
[21, 14, 19, 17, 7]. So a site is mutated in only a finite number of cells,
standing in contrast to the infinite total number of cells. Going beyond
[21, 14, 19, 17, 7], we also study the rare event that a site is mutated in
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a positive fraction of cells. We show that, when appropriately scaled, this
fraction of cells follows a power-law distribution.

Across sites, mutation frequencies are asymptotically independent. The in-
dependence leads to a many-sites law of large numbers. Specifically, the site
frequency spectrum (empirical measure of mutation frequencies) converges
to a deterministic measure concentrated at finite cell numbers. At positive
fractions of cells, away from the mass concentration, independence breaks
down and the site frequency spectrum converges to a Cox process. These
results go beyond [10, 27, 5, 8, 7] who only give the expected site frequency
spectrum, so our work contributes an appreciation of randomness.

Our results are not all at the same level of generality. For sites mutated
in a positive fraction of cells, results are proven for a zero death rate and
homogeneous division and mutation rates. For sites mutated in a finite num-
ber of cells, results are proven for sequence-dependent death, division, and
mutation rates.

We also assess the infinite sites assumption’s validity. Our results say that
for typical parameter values, the number of sites to violate the ISA is at
least millions, or even billions, in a single tumour. Thus our work agrees
with [20]’s statistical analysis of single cell sequencing data which says that
ISA violations are widespread. It should be emphasised however that ISA
violations do not neccessarily invalidate the ISA. One of our results says that
ISA violations do not impact mutation frequencies viewed at the scale of
population fractions. Bulk sequencing data, which is the majority of cancer
genetic data [8], views mutation frequencies at the scale of population frac-
tions. Therefore our work endorses analyses of bulk sequencing data which
are reliant on the ISA, such as [27, 5, 26, 8].

Before commencing the paper, let’s note that there are a wealth of other
works on mutations in branching processes. Especially common are infinite
alleles models, for example [13, 6, 23, 9], where each individual in the pop-
ulation has an allele which can mutate to alleles never before seen in the
population. In an infinite alleles model, a mutation always deletes an indi-
vidual’s ancestral genetic information. In an infinite sites model on the other
hand, a mutation never deletes ancestral genetic information; mutations sim-
ply accumulate. The DNA sequence model which we study sits between those
extremes.
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The paper is structured as follows. In Section 2, we introduce the model in
its simplest form. In Section 3, we give notation and preliminary ideas. In
Section 4, we present the paper’s main results. In Section 5, we give general-
isations and open questions. In Section 6, we prove results on sites mutated
in a finite number of cells. In Section 7, we prove results on sites mutated in
a positive fraction of cells. In Section 8, we discuss the infinite sites assump-
tion’s validity. In Section 9, we consider data from a lung adenocarcinoma
and estimate mutation rates.

2 Model

Here the model is stated in its simplest form. It comprises two parts.

1. Population dynamics: Starting with one cell, cells divide according to
the Yule process. That is, cells divide independently at constant rate.

2. Genetic information: The set of nucleotides is N = {A,C,G, T}. The
set of genetic sites is some finite set S. The set of genomes (or DNA
sequences) is G = NS. Each cell has a genome, i.e. is assigned an
element of G. Suppose that a cell with genome (vi)i∈S ∈ G divides to

give daughter cells with genomes (V
(1)
i )i∈S and (V

(2)
i )i∈S. Conditional

on (vi), the V
(r)
i are independent over i ∈ S and r ∈ {1, 2}, and

P
[
V

(r)
i = ψ|(vi)

]
=

{
µ/3, ψ 6= vi;

1− µ, ψ = vi.

It is also assumed that mutations occur independently for different cell
divisions.

The model is generalised to cell death, selection, and nucleotide/site-specific
mutation rates in Section 5.
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3 Preliminaries

3.1 Luria-Delbrück distribution

Let (Yk)k∈N be an i.i.d. sequence of random variables with

P[Y1 = j] =
1

j(j + 1)

for j ∈ N. Let K be an independent Poisson random variable with mean c.
The Luria-Delbrück distribution with parameter c is defined as the distribu-
tion of

B =
K∑
k=1

Yk. (1)

It is commonly seen in its generating function form (e.g. [21, 30])

EzB = (1− z)c(z
−1−1). (2)

The connection between (1) and (2) is made explicit in [7] for example.
Although the distribution is named after Luria and Delbrück (due to their
groundbreaking work [22]), it was derived by Lea and Coulson [21]. See [30]
for a historical review.

The Luria-Delbrück distribution’s power-law tail was derived in [24].

Lemma 3.1. limm→∞mP [B ≥ m] = c.

3.2 Yule tree

The set of all cells to ever exist, following standard notation, is

T = ∪∞l=0{0, 1}l.

A partial ordering, ≺, is defined on T. For x, y ∈ T, x ≺ y means that cell y
is a descendant of cell x. That is, x ≺ y if
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1. there are l1, l2 ∈ N0 with l1 < l2 and x ∈ {0, 1}l1 , y ∈ {0, 1}l2 ; and

2. the first l1 entries of y agree with the entries of x.

Note that ∅ ∈ T and that ∅ ≺ x for any x ∈ T\{∅}. So ∅ is the initial cell
from which all other cells descend. For further notation, write x � y if x ≺ y
or x = y. Also, write x0 and x1 for the daughters of x ∈ T; precisely, if
x ∈ T and j ∈ {0, 1}, then xj is the element of {0, 1}l+1 whose first l entries
are the entries of x and whose last entry is j.

Let (Ax)x∈T be a family of i.i.d. exponentially distributed random variables
with mean 1. Ax is the lifetime of cell x. The cells alive at time t are

Tt :=

{
x ∈ T :

∑
y≺x

Ay ≤ t <
∑
y�x

Ay

}
.

The proportion of cells alive at time t which are descendants of cell x (in-
cluding x) is

Px,t :=
|{y ∈ Tt : x � y}|

|Tt|
.

Lemma 3.2. For each x ∈ T,

lim
t→∞

Px,t = Px :=
∏
∅≺y�x

Uy

almost surely, where

1. the Uy are uniformly distributed on [0, 1];

2. for any y ∈ T, Uy0 + Uy1 = 1;

3. (Uy0)y∈T is an independent family.

Lemma 3.2 will be proved in Section 7.
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3.3 Mutation frequency notation

When DNA is taken from a tumour, the tumour’s age is unknown, but one
may have a rough idea of its size. Therefore we are interested in the cells’
genetic state at the random time

σn = min{t ≥ 0 : |Tt| = n},

when the total number of cells reaches some given n ∈ N.

Write V µ(x) = (V µ
i (x))i∈S ∈ G for the genome of cell x ∈ T (where µ is

the mutation rate). So (V µ(x))x∈T is a Markov-process indexed by T with
transition rates given in Section 2. Write V µ(∅) = (ui)i∈S for the initial cell’s
genome. A genetic site is said to be mutated if its nucleotide differs from
that of the initial cell. Note that, according to this definition, a site which
mutates and then sees a reverse mutation to its initial state is not considered
to be mutated. Write

Bn,µ
i = |{x ∈ Tσn : V µ

i (x) 6= ui}| (3)

for the number of cells which are mutated at site i ∈ S when there are n cells
in total. The quantity (3), and its joint distribution over S, is the key object
of our study.

3.4 Parameter regime

The number of cells in a detected tumour may be in the region of n = 109,
whereas the mutation rate is in the region of µ = 10−9 [15]. The human
genome’s length is around |S| = 3× 109. Very roughly,

n ≈ µ−1 ≈ |S|.

Therefore we study the limits:

• n→∞, µ→ 0, nµ→ θ <∞;

• n → ∞, µ → 0, nµ → θ < ∞, |S| → ∞ (sometimes with |S|µ → η <
∞).

Remark 3.3. Taking the number of sites to infinity is not to be confused
with the infinite sites assumption.
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4 Main results

The first result shows that sites are typically mutated in only a finite number
of cells, and that these numbers are independent across sites.

Theorem 4.1. As n→∞ and nµ→ θ ∈ [0,∞),

(Bn,µ
i )i∈S → (Bi)i∈S

in distribution, where the Bi are i.i.d. and have Luria-Delbrück distribution
with parameter 2θ.

Remark 4.2. Taking |S| = 1, Theorem 4.1 recovers results of single site
models [21, 14, 17, 19, 7].

The site frequency spectrum is a popular summary statistic of genetic data.
It is defined as the empirical measure of mutation frequencies:∑

i∈S

δBn,µi .

The site frequency spectrum sees a law of large numbers.

Theorem 4.3. As n→∞, nµ→ θ ∈ [0,∞), and |S| → ∞,

1

|S|
∑
i∈S

δBn,µi → Λ

in probability, where Λ is the Luria-Delbrück distribution with parameter 2θ.
Convergence is on the space of probability measures on the non-negative in-
tegers equipped with the topology of weak convergence.

Theorems 4.1 and 4.3 teach us that almost every site is mutated in only a
finite number of cells. What about the rare sites which are mutated in a
positive fraction of cells? Heuristically, the Luria-Delbrück distribution’s tail
gives the probability that site i is mutated in at least fraction a of cells:

P[n−1Bn,µ
i > a] ≈ P[Bi ∈ (na, n)] (4)

≈ 2µ(a−1 − 1). (5)

Approximation (4) is a hand-waving consequence of Theorem 4.1. Approxi-
mation (5) is due to Lemma 3.1. The next result offers rigour.
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Theorem 4.4. Let i ∈ S and a ∈ (0, 1). As n→∞ and nµ→ θ ∈ [0,∞),

µ−1P[n−1Bn,µ
i > a]→ 2(a−1 − 1).

Theorem 4.4 and linearity of expectation yield the mean site frequency spec-
trum at positive fractions of the population.

Corollary 4.5. Let a ∈ (0, 1). As n → ∞, nµ → θ ∈ [0,∞), and |S|µ →
η ∈ [0,∞),

E
∑
i∈S

δn−1Bn,µi
(a, 1)→ 2η(a−1 − 1).

The next result gives the distribution of the site frequency spectrum at pos-
itive fractions of the population.

Theorem 4.6. As n→∞, nµ→ θ ∈ [0,∞), and |S|µ→ η ∈ [0,∞),∑
i∈S

δn−1Bn,µi
→

∑
x∈T\{∅}

MxδPx

in distribution, with respect to the vague topology on the space of measures
on (0, 1]. That is, the measure applied to a finite collection of closed intervals
in (0, 1] sees joint convergence. The random variables which appear in the
limit are:

• (Mx) is a family of i.i.d. Poisson(η) random variables;

• (Px) is from Lemma 3.2 and is independent of (Mx).

Remark 4.7. The mean site frequency spectrum, according to Theorem 4.6’s
limit, is

E

 ∑
x∈T\{∅}

MxδPx(a, 1)

 = 2η(a−1 − 1),

which recovers the limit of Corollary 4.5.
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Figure 1: The number of mutant cells with respect to a single site is sim-
ulated 105 times. The parameters are µ = 10−3 and n = 103. The plot
compares P[n−1Bn,µ

1 ∈ (a, 1)] (simulation), P[n−1B1 ∈ (a, 1)] (Theorem 4.1),
and 2µ(a−1 − 1) (Theorem 4.4), for a ∈ (0, 1). Simulation and Theorem 4.1
appear indistinguishable.
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Remark 4.8. The variance of the site frequency spectrum, according to The-
orem 4.6’s limit, is bounded below by

Var

 ∑
x∈T\{∅}

MxδPx(a, 1)

 ≥ 2η(a−1 − 1).

In particular, the coefficient of variation tends to infinity as a ↑ 1.

The details of Remarks 4.7 and 4.8 are given in Section 7.5.

5 Generalisations

Motivated by biological reality, we introduce some generalisations: cell death,
selection, and heterogeneous mutation rates.

5.1 Model and notation

Starting with one cell, the cell population grows according to a continuous-
time multitype Markov branching process. The types are the genomes, ele-
ments of G = NS. It will be helpful to classify different types of genetic site.
Partition the sites into neutral and selective sites:

S = Sneut ∪ Ssel,

with Ssel 6= ∅. For a genome v = (vi)i∈S, write v′ = (vi)i∈Ssel for its restriction
to the selective sites. Let α and β be functions with domain NSsel and range
[0,∞). A cell with genome v divides at rate α(v′) (to be replaced by two
daughter cells) and dies at rate β(v′).

The initial cell is said to have genome u, which is assumed to give a positive
growth rate: α(u′) > β(u′).

Consider a cell with genome (vi)i∈S dividing to give daughter cells with

genomes (V
(1)
i )i∈S and (V

(2)
i )i∈S. Conditional on (vi), the V

(r)
i are indepen-

dent over i ∈ S and r ∈ {1, 2}, and

P
[
V

(r)
i = ψ|(vi)

]
= µvi,ψi .
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Figure 2: The site frequency spectrum is simulated a single time. The
parameters are µ = 10−3, n = 103, and |S| = 103. The plot compares∑

i∈S δn−1Bn,µi
(a, 1) (simulation), |S|P[n−1B1 ∈ (a, 1)] (Theorem 4.3), and

2|S|µ(a−1 − 1) (Corollary 4.5), for a ∈ (0, 1).
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Slightly adapting previous notation, write

µ =
(
µχ,ψi

)
i∈S;χ,ψ∈N

for the collection of mutation rates. Now let’s state the notation for mutation
frequencies (for brevity, unlike in Section 3.3, we shall do so in words). Write
Bn,µ
i for the number of cells which are mutated at site i when n cells are first

reached conditioned on the event that n cells are reached.

5.2 Generalised Luria-Delbrück distribution

Let (ξk)k∈N be an i.i.d. sequence of exponentially distributed random vari-
ables with mean λ−1. Let (Yk(·))k∈N be an i.i.d. sequence, where Y1(·) is a
birth-death branching process with birth and death rates a and b respectively
and initial condition Y1(0) = 1. Let K be a Poisson random variable with
mean c. The (ξk), (Yk(·)), and K are independent. The generalised Luria-
Delbrück distribution with parameters (λ, a, b, c) is defined as the distribution
of

B =
K∑
k=1

Yk(ξk).

Its generating function

EzB = exp

(
c(b/a− 1)F

[
1,

λ

a− b
; 1 +

λ

a− b
;
b/a− z
1− z

])
when a > b is seen in [17, 19, 7]. Here F is Gauss’s hypergeometric function.

Taking parameters (λ, λ, 0, c) recovers the Luria-Delbrück distribution with
parameter c.

The generalised Luria-Delbrück distribution with parameters (λ, λa, λb, c),
for λ > 0 and a, b, c ≥ 0, does not depend on λ. So one could define the
distribution with 3 rather than 4 parameters. We choose 4 for a cleaner
interpretation of results.
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5.3 Results

To begin, Theorem 4.1 is generalised. The genomes whose only difference
from the initial cell’s genome is at site i ∈ S,

Gi = {v ∈ G : ∀j ∈ S, (uj 6= vj ⇐⇒ i = j)}, (6)

will play a crucial role.

Theorem 5.1. Take n → ∞ and nµχ,ψi → θχ,ψi ∈ [0,∞) for all i ∈ S and
χ, ψ ∈ N with χ 6= ψ. Then

(Bn,µ
i )i∈S →

(∑
v∈Gi

Xv

)
i∈S

in distribution, where the Xv are independent and have generalised Luria-
Delbrück distributions with parameters(

α(u′)− β(u′), α(v′), β(v′),
2α(u′)θui,vii

α(u′)− β(u′)

)
.

In the next result, which generalises Theorem 4.3, we keep the number of
selective sites finite while taking the number of neutral sites to infinity. For
this limit, mutation rates require consideration. Partition the set of neutral
sites:

Sneut =
⋃
j∈J

S(j),

such that mutation rates and the initial genome’s nucleotides are homoge-
neous on S(j) (J is just some indexing set). Write µχ,ψ(j) = µχ,ψi for the
mutation rates of the sites i ∈ S(j). Write u(j) = ui for the initial genome’s
nucleotide at the sites i ∈ S(j).

Theorem 5.2. Take n→∞, nµχ,ψ(j)→ θχ,ψ(j) ∈ [0,∞), |Sneut| → ∞, and
|S(j)|/|Sneut| → q(j), for all j ∈ J and χ, ψ ∈ N with χ 6= ψ. Then

1

|S|
∑
i∈S

δBn,µi
p→
∑
j∈J

q(j)Λ(j)

16



where the Λ(j) are generalised Luria-Delbrück distributions with parametersα(u′)− β(u′), α(u′), β(u′),
2α(u′)

α(u′)− β(u′)

∑
ψ∈N\{u(j)}

θu(j),ψ(j)

 .

Convergence is on the space of probability measures on the non-negative in-
tegers equipped with the topology of weak convergence.

5.4 Open problems

To generalise Theorem 4.6 to a non-zero death rate, selection, and heteroge-
neous mutation rates, we conjecture the following.

Conjecture 5.3. Take n→∞, nµχ,ψ(j)→ θχ,ψ(j) ∈ [0,∞), and µχ,ψ(j)|S(j)| →
ηχ,ψ(j) ∈ [0,∞), for all j ∈ J and χ, ψ ∈ N with χ 6= ψ. Then

∑
i∈S

δn−1Bn,µi
→
∑
x∈T

Rx∑
r=1

Mx,rδPx

in distribution, where convergence is in the same sense as Theorem 4.6. The
random variables which appear in the limit are:

• (Px)x∈T\{∅} is distributed as in Lemma 3.2 (and Theorem 4.6), and
P∅ = 1;

• (Rx)x∈T\{∅} is an i.i.d. family of geometric random variables with pa-
rameter (α(u′)− β(u′))/(α(u′) + β(u′)), and R∅ is independent of (Rx)

but with R∅
d
= R0 − 1;

• (Px) is independent of (Rx) if and only if β(u′) = 0;

• (Mx,r)x∈T,r∈N is an i.i.d. family of Poisson random variables with mean∑
j

∑
ψ 6=u(j) η

u(j),ψ(j), independent of (Px, Rx).

See the Appendix for a heuristic derivation of Conjecture 5.3, which is based
on a Yule spinal decomposition of the branching process.
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Selection in cancer is a major research topic, and there have been attempts
to infer selection from cancer genetic data [4, 26, 8]. Pertinently, Theorem
5.2 and Conjecture 5.3 suggest that selection may not be visible in mutation
frequency data, which according to [27] is the case for around 1/3 of tumours.
However we have assumed that the number of selective sites is kept finite.
According to [4], there are 3.4 × 104 selective sites at which mutations can
positively affect growth rate. Thus insight could be gleaned, for example, by
taking |Ssel| → ∞ with µγ|Ssel| → η for γ ∈ (0, 1].

6 Mutations at finite numbers

In this section we prove results on mutations present in only a finite number
of cells. In Subsections 6.1 to 6.5 we prove Theorems 4.1 and 5.1 (where S

is finite). In Subsection 6.6 we prove Theorems 4.3 and 5.2 (where |S| tends
to infinity).

6.1 Counting genomes

Assuming mutation rates µ = (µχ,ψi )i∈S;χψ∈N, write

Xµ
v (t) (7)

for the number of cells with genome v ∈ G at time t ≥ 0. (Recall that the
initial condition is Xµ

v (0) = δu,v.) Write

σµn = min

{
t ≥ 0 :

∑
v∈G

Xµ
v (t) = n

}
for the time at which n ∈ N cells are reached, and use the convention min ∅ =
∞.

Recall from (6) that Gi is the subset of genomes with exactly one mutation
which is at site i. Write

G≥2 = {v ∈ G : |{i ∈ S : vi 6= ui}| ≥ 2}

for the subset of genomes with at least two mutations.
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Theorem 6.1. Take n → ∞ and nµχ,ψi → θχ,ψi ∈ [0,∞) for i ∈ S and
χ, ψ ∈ N with χ 6= ψ. Then[

(Xµ
v (σµn))v∈G\{u}|σµn <∞

]
→ (Xv)v∈G\{u}

in distribution, where the Xv are independent and distributed according to:

• for v ∈ Gi, Xv has generalised Luria-Delbrück distribution with param-
eters (

α(u′)− β(u′), α(v′), β(v′),
2α(u′)θui,vii

α(u′)− β(u′)

)
;

• for v ∈ G≥2, Xv = 0.

Theorem 6.1 says that cells with at least two mutated sites are non-existent.
However simulations and biology tell the opposite story, that cells typically
have many mutated sites. This apparent contradiction comes because, while
the population size and mutation rate reciprocal converge to infinity, the
number of sites is kept finite. So the result only makes sense if one is con-
sidering a small subset of the billions of sites.

The mutation frequencies are

(Bn,µ
i )i∈S =

∑
v∈G
vi 6=ui

Xµ
v (σµn)


i∈S

conditional on the event {σµn <∞}. Therefore Theorem 6.1, via the contin-
uous mapping theorem, implies Theorems 4.1 and 5.1.

Theorem 6.1’s proof is rather lengthy. So, before jumping in with the tech-
nical details, let’s give an overview.

In Subsection 6.2 we present a construction of (Xµ
v (σµn))v∈G. The construction

will ultimately illuminate the importance of various subpopulations and the
mutations between them. Of particular importance is the primary subpop-
ulation, which is defined as those unmutated cells which have an unbroken
lineage of unmutated cells going back to the initial cell. The primary sub-
population, in the limit, grows deterministically and exponentially.
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In Subsections 6.3 and 6.4 we show that several events are negligible: primary
cells divide to give two mutant daughters; primary cells mutate at multiple
sites at once; mutated cells receive further mutations, including backwards
mutations. With these events neglected, the situation is pleasingly simplified.
The primary subpopulation seeds, as a Poisson process with exponential in-
tensity, single-site mutant subpopulations. The mutant subpopulations grow
without further mutations, independently. This gives independent Luria-
Delbrück distributions. Finally, in Subsection 6.5 we condition on the event
that the population reaches n cells.

Although the proof’s overview may sound simple, the details are less so. The
reader will find that the random time σµn shoulders a large responsibility for
complexity.

6.2 Construction

Additional notation to be used in the proof: for v ∈ G,

ev = (δv,w)w∈G

is the element of (N0)
G denoting that there is one genome v and zero other

genomes.

Let

[µn]n∈N =

[(
µχ,ψn,i

)
i∈S;χ,ψ∈N

]
n∈N

be a sequence of mutation rates. Assume that

lim
n→∞

nµχ,ψn,i = θχ,ψi ∈ [0,∞)

for χ 6= ψ.

Fix n ∈ N. For v, w ∈ G, write

pn(v, w) =
∏
i∈S

µui,vin,i µ
ui,wi
n,i (8)

for the probability that a cell with genome u which divides, gives daughters
with genomes v, w (which implies that we have assumed an ordering of the
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daughters - the first has genome v and the second has genome w). Now the
construction of (Xµn

v (σµnn ))v∈G begins. For the foundational step, introduce
the following random variables on a fresh probability space.

1.
(Zn(t))t≥0

is a birth-death branching process with birth and death rates

αn := α(u′)pn(u, u)

and
βn := β(u′) + α(u′)

∑
v,w∈G\{u}

pn(v, w).

The initial condition Zn(0) = 1 is assumed.

2. For j ∈ N,
En
j

are {∅} ∪ (G\{u})2-valued random variables, with

P[En
j = ∅] =

β(u′)

βn
,

and for v, w ∈ G\{u}

P[En
j = (v, w)] =

α(u′)pn(v, w)

βn
.

3. For v ∈ G\{u} and j ∈ N,
Ynv,j(·)

is a (N0)
G-valued Markov process, with the same transition rates as

(Xµn
x (·))x∈G (defined in (7)) and with the initial condition Ynv,j(0) = ev.

4. For v, w ∈ G\{u} and j ∈ N,

Ynv,w,j(·)

is a (N0)
G-valued Markov process, with the same transition rates as

(Xµn
x (·))x∈G and with the initial condition Ynv,w,j(0) = ev + ew.
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5. For v ∈ G,
(Nv(t))t≥0

are Poisson counting processes with rate 1.

The random variables[
Zn(·), En

j ,Y
n
v,j(·),Ynv,w,j(·), Nv(·)

]
(9)

are assumed to be independent ranging over v, w, j.

Let’s explain the meaning of the random variables introduced so far. Zn(·)
represents the ‘primary’ subpopulation - which we define as the type u cells
whose ancestors are all of type u. That is to say, there is an unbroken lineage
of type u cells between any primary cell and the initial cell. The rate, αn,
that a primary cell gives birth to another primary cell, is simply the type u
division rate multiplied by the probability that no mutation occurs in either
daughter cell. The rate, βn, that a primary cell is removed, is the rate that a
type u cell dies plus the rate that a type u cell divides to produce two mutant
daughter cells.

The En
j describe what happens at the jth downstep in the primary subpop-

ulation trajectory. If En
j = ∅, then the downstep is a primary cell death. If

En
j = (v, w), then the downstep is a primary cell dividing to produce two

mutant daughter cells of types v and w.

Sometimes a primary cell divides to produce one primary cell and one mutant
cell of type v. For the jth time that this occurs, Ynv,j(t) is the vector which
counts the cells with each genome amongst the descendants of that type v
cell, time t after its birth.

Sometimes a primary cell divides to produce two mutant cells of types v and
w. For the jth time that this occurs, Ynv,w,j(t) is the vector which counts the
cells with each genome amongst the descendants of the two mutants time t
after their birth.

The Nv(·) will soon be rescaled in time to represent the times at which
primary cells divide to produce one primary cell and one cell with genome v.

The random variables introduced so far, seen together in (9), provide all the
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necessary ingredients for the construction of (Xµn
v (σµnn ))v∈G. Now we build

upon these founding objects, defining further random variables.

6. For v ∈ G\{u} and t ≥ 0,

Kn
v (t) = Nv

(
2pn(u, v)α(u′)

∫ t

0

Zn(s)ds

)
. (10)

7. For j ∈ N and v ∈ G\{u},

T nv,j = min{t ≥ 0 : Kn
v (t) = j}.

8.
Sn1 = min{t ≥ 0 : Zn(t)− Zn(t−) = −1},

and then for j > 1, recursively,

Snj = min{t > Snj−1 : Zn(t)− Zn(t−) = −1}.

(Here Zn(t−) := lims↑tZ
n(s).)

9. For v, w ∈ G\{u},

T nv,w,1 = min{Snj : j ∈ N, En
j = (v, w)},

and then for j > 1, recursively,

T nv,w,j = min{Snj : j ∈ N, Snj > T nv,w,j−1, E
n
j = (v, w)}.

10. For v, w ∈ G\{u}, and t ≥ 0,

Kn
v,w(t) = |{j ∈ N : T nv,w,j ≤ t}|.

Let’s explain the meaning of the new random variables. The Kn
v (t) specify

the number of times before time t that primary cells have divided to produce
one primary cell and one type v cell. Let’s check that this interpretation
makes sense. Conditioned on the trajectory of Zn(·), Kn

v (·) is certainly a
Markov process, and increases by 1 at rate 2pn(u, v)α(u′)Zn(t) - i.e. the rate
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at which primary cells divide multiplied by the probability that exactly one
daughter cell is primary and one is type v.

Snj is the time of the jth downstep of the primary subpopulation size. Then
T nv,w,j is the time of the jth primary cell division which produces two mutant
cells of types v and w. Note that a primary cell division which produces two
mutant cells neccessarily coincides with a downstep in the primary subpop-
ulation size. Kn

v,w(t) is the number of primary cell divisions before time t
which produce cells of types v and w.

The reader might question why we have decided to construct the ‘single
mutation’ times and the ‘double mutation’ times so differently. The reason
for the difference is that single and double mutations will play different roles
in the limit, and require different techniques for the proof.

At last the construction reaches its dénouement.

11. For t ≥ 0,

Xn(t) = Zn(t)eu

+
∑

v∈G\{u}

Kn
v (t)∑
j=1

Ynv,j(t− T nv,j)

+
∑

v,w∈G\{u}

Kn
v,w(t)∑
j=1

Ynv,w,j(t− T nv,w,j).

12.
σn = min{t ≥ 0 : |Xn(t)| = n},

where | · | is the l1-norm on RG.

Note that Xn(·) has the same distribution as (Xµn
v (·))v∈G; both objects are

Markov processes on (N0)
G, whose initial conditions and transition rates co-

incide.

Next we will show that certain elements of the construction converge in
distribution. Convergence will sometimes be in the Skorokhod sense. For
notation, write D(I, R) for the space of càdlàg functions from an interval
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I ⊂ [0,∞) to a metric space R (which will always be complete and separable).
The space D(I, R) is equipped with the standard Skorokhod topology. Less
standard, we will also consider the space D([0,∞], R), which is defined by
identification with D([0, 1], R). Let’s be specific. Define ω : [0, 1] → [0,∞]
by

ω : s 7→

{
− log(1− s), s ∈ [0, 1);

∞, s = 1.

For f ∈ D([0, 1], R) define ŵ(f) = f ◦ ω−1. Then the space D([0,∞], R) is
the image of ŵ equipped with the induced topology. Note that according to
this definition, for all z ∈ D([0,∞], R), limt→∞ z(t) exists. In fact we will
only consider z ∈ D([0,∞], R) with limt→∞ z(t) = z(∞).

Lemma 6.2. As n→∞,

(e−λntZn(t))t∈[0,∞] → (e−λtZ∗(t))t∈[0,∞]

in distribution, on the space D([0,∞],R). Here

λn = αn − βn

is the growth rate of the primary cell population;

λ = α(u′)− β(u′)

is the large n limit of λn; and Z∗(·) is a birth-death branching process with
birth and death rates α(u′) and β(u′).

Remark 6.3. The processes of Lemma 6.2 are defined at t =∞. For n large
enough that λn > 0,

e−λn∞Zn(∞) := lim
t→∞

e−λntZn(t) = W n,

and

e−λ∞Z∗(∞) := lim
t→∞

e−λtZ∗(t) = W ∗.

The limits W n and W ∗ exist and are finite almost surely, which is a classic
branching process result [3].
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Proof of Lemma 6.2. The transition probabilities of the
(
e−λntZn(t)

)
t∈[0,∞]

and
(
e−λtZ∗(t)

)
t∈[0,∞]

are well-known [3, 11, 7]. These transition probabili-

ties depend continuously on the birth and death rates, so finite-dimensional
convergence is given. To show tightness we shall use Aldous’s criterion [1].
Extend ω(s) to s ∈ [0, 2] by setting ω(s) = ω(1) =∞ for s ∈ [1, 2]. Write

Mn(s) = e−λnω(s)Zn(ω(s))

for s ∈ [0, 2]. Let (ρn) be a sequence of [0, 1]-valued stopping times with
respect to (Mn(·)). Let (δn) be a positive deterministic sequence converging
to zero. Then, writing Fρn for the sigma-algebra generated by Mn(·) up to
time ρn,

E[(Mn(ρn + δn)−Mn(ρn))2|Fρn ] = E[Mn(ρn + δn)2|Fρn ]−Mn(ρn)2

=
(
e−λnω(ρn) − e−λnω(ρn+δn)

)
×αn + βn

λn
Mn(ρn),

where the last equality comes thanks to the fact that

Mn(s)2 +
αn + βn
λn

e−λnω(s)Mn(s)

is a martingale. But

e−λnω(ρn) − e−λnω(ρn+δn) = (1− ρn)λn − 1{1−ρn−δn≥0}(1− ρn − δn)λn

≤ max{λnδn, δλnn }.

Now,

E[(Mn(ρn + δn)−Mn(ρn))2] ≤ max{λnδn, δλnn }
αn + βn
λn

EMn(ρn)

= max{λnδn, δλnn }
αn + βn
λn

.

Take n→∞ to see that Mn(ρn + δn)−Mn(ρn) converges to zero in L2 and
hence in probability, thus satisfying Aldous’s criterion.

Lemma 6.4. As n→∞,

Ynv,j(·)→ Yv,j(·)ev
in distribution, where Yv,j(·) is a birth-death branching process with birth and
death rates α(v′) and β(v′) and initial condition Yv,j(0) = 1. Convergence is
on the space D([0,∞),RG).
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Proof. It is enough to note that the transition rates converge (see for example
page 262 of [12]).

Lemma 6.5. As n→∞, ∑
j≤kn3/2

1{Enj 6=∅}


k∈N

→ (0)k∈N

in distribution, on the space RN.

Proof. Note that
lim
n→∞

n3/2P[En
j 6= ∅] = 0.

Then

P

 ∑
j≤kn3/2

1{Enj 6=∅} = 0; k = 1, .., r

 = P
[
En
j = ∅; j ≤ rn3/2

]
=

(
1− P

[
En
j 6= ∅

])brn3/2c

→ 1.

Remark 6.6. The number 3/2 which appears in Lemma 6.5 is not special.
It only matters that 3/2 ∈ (1, 2). The relevance of the result will be seen in
Section 6.3.

Lemma 6.7. As n→∞,(e−λntZn(t))t∈[0,∞],
(
(Ynv,j(t))t∈[0,∞)

)
v∈G\{u},j∈N ,

 ∑
j≤kn3/2

1{Enj 6=∅}


k∈N


converges in distribution to[

(e−λtZ∗(t))t∈[0,∞];
(
(Yv,j(t)ev)t∈[0,∞)

)
v∈G\{u},j∈N , (0)k∈N

]
on

D([0,∞],R)× D
(
[0,∞),RG

)G\{u}×N × RN,

where the Z∗(·) and Yv,j(·) are independent.
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Proof. The convergence seen in Lemmas 6.2, 6.4, and 6.5 is joint convergence
over the product space due to independence.

We are yet to say how the random variables in (9) are jointly distributed
over n ∈ N. In fact, the choice of this joint distribution over n ∈ N has no
relevance to the statement of Theorem 6.1. Hence the choice can be freely
made, in a way that streamlines the proof. We assume that:

lim
n→∞

(e−λntZn(t))t∈[0,∞] = (e−λtZ∗(t))t∈[0,∞] (11)

almost surely, on the space D([0,∞],R);

lim
n→∞

(Ynv,j(t))t∈[0,∞) = (Yv,j(t)ev)t∈[0,∞) (12)

almost surely, on the space D([0,∞),RG), for v ∈ G\{u} and j ∈ N; and ∑
j≤kn3/2

1{Enj 6=∅}


k∈N

→ (0)k∈N (13)

almost surely, on the space RN.

To justify that it is possible to have constructed the random variables in
such a way that (11), (12), and (13) hold, one can bring in Skorokhod’s
Representation Theorem, to use with Lemma 6.7.

6.3 Neglecting double mutations

Call the event that a primary cell divides to produce two mutant cells a ‘dou-
ble mutation’. Recall that double mutations are represented by the events
{En

j = (v, w)}, which occur at the times Snj when the primary cell popula-
tion steps down in size. In order to comment on double mutations, we will
first prove a rather crude upper bound for the number of downsteps in the
primary cell population trajectory. Write

τn := min{t ≥ 0 : Zn(t) ∈ {0, n}}, (14)

for the time at which the primary cell population hits 0 or n. Write

Dn :=
∣∣{j ∈ N : Snj ≤ τn}

∣∣
for the number of downsteps in the primary cell population before time τn.
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Lemma 6.8.
sup
n∈N

n−3/2Dn <∞

almost surely.

Proof. For each n ∈ N, let (Rn
j )j∈N be a sequence of i.i.d. random variables

with

P[Rn
j = x] =

{
αn/(αn + βn), x = 1;

βn/(αn + βn), x = −1;

so (
1 +

k∑
j=1

Rn
j

)
k∈N

is a random walk, whose distribution matches that of the discrete-time em-
bedded chain of Zn(·). Write

ρn = min

{
k ∈ N : 1 +

k∑
j=1

Rn
j ∈ {0, n}

}

for the number of steps until the walk hits n or 0. Then the number of
downsteps before hitting n or 0 is

Dn
d
=

ρn∑
j=1

1{Rnj =−1} ≤ ρn.

Therefore we can bound the tail of Dn’s distribution:

P[Dn > n3/2] ≤ P[ρn > n3/2].
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But {ρn > n3/2} ⊂ {1 +
∑bn3/2c

j=1 Rn
j < n}, so

P[Dn > n3/2] ≤ P

1 +

bn3/2c∑
j=1

Rn
j < n


≤ P

[bn3/2c∑
j=1

Rn
j −
bn3/2cλn
αn + βn

2

(15)

>

(
bn3/2cλn
αn + βn

+ 1− n
)2
]

≤
(
bn3/2cλn
αn + βn

+ 1− n
)−2

Var

bn3/2c∑
j=1

Rn
j

 (16)

≤ cn−3/2, (17)

for some constant c > 0. Inequality (16) holds for large enough n and
Inequality (16) is Chebyshev’s inequality. Finally, (17) gives that∑

n∈N

P[Dn > n3/2] <∞,

and the result is proven by Borel-Cantelli.

Now it is to be seen that double mutations occurring before time τn can be
neglected.

Lemma 6.9. Let v, w ∈ G\{u}. As n→∞,

Kn
v,w(τn)→ 0

almost surely.
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Proof. From Lemma 6.8, C := supn∈N n
−3/2Dn <∞. Then

Kn
v,w(τn) =

Dn∑
j=1

1{Enj =(v,w)}

≤
dCn3/2e∑
j=1

1{Enj =(v,w)}

≤
dCn3/2e∑
j=1

1{Enj 6=∅}.

By (13) this converges to zero as n→∞.

6.4 Convergence of genome counts

The purpose of this section is to show that Xn(σn) converges when condi-
tioned on the event {W ∗ > 0} (W ∗ is defined in Remark 6.3). The times τn
(defined in (14)) will play the role of a helpful stepping stone in the proof.

Lemma 6.10. Condition on {W ∗ > 0}. Then, almost surely,

1. there exists n0 such that for all n ≥ n0, Z
n(τn) = n; and

2. limn→∞ τn =∞.

Proof. To see the first statement, observe that there exists n0 such that for
all n ≥ n0, W

n > W ∗/2 > 0. For such n, limt→∞ Z
n(t) = ∞, and hence

Zn(·) > 0. To see the second statement, suppose for a contradiction that
there exists a bounded subsequence (τnk) ⊂ [0, C]. Then, for large enough k,

nk = Znk(τnk) ≤ sup
n∈N

sup
t∈[0,C]

Zn(t).

The left hand side of the inequality is unbounded over k. On the other hand,
the right hand side, which does not depend on k, is finite thanks to (11).
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Lemma 6.11. Condition on {W ∗ > 0}. Suppose that (an)n∈N is a sequence
of real-valued random variables on the same probabiity space as everything
else, with

lim
n→∞

an =∞,

an ≤ τn

for each n, and
lim
n→∞

(an − τn) = l ∈ [−∞, 0]

almost surely. Then, almost surely,

lim
n→∞

Kn
v (an) =

{
K∗v (l), v ∈ Gi, i ∈ S;

0, v ∈ G≥2;

where
K∗v (s) = Nv(2λ

−1α(u′)θui,vii eλs).

Moreover, for v ∈ Gi and j ∈ N,

lim
n→∞

(
an − T nv,j

)
= l − T ∗v,j

almost surely, where

T ∗v,j = min{s ∈ R : K∗v (s) = j}.

Proof. Let t ∈ R. Since Zn(τn) = n,

n−1
∫ an+t

0

Zn(s)ds =

∫ t

−an

Zn(an + s)

eλn(an+s)
eλnτn

Zn(τn)
eλn(an−τn+s)ds.

Thanks to (11):

1. for any sequence (tn) which converges to infinity, limn→∞ e
−λntnZn(tn) =

W ∗ almost surely; and

2. supn∈N supt∈[0,∞] e
−λntZn(t) <∞ almost surely.
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So, using dominated convergence,

lim
n→∞

n−1
∫ an+t

0

Zn(s)ds = λ−1eλ(l+t)

almost surely. Note also that

lim
n→∞

npn(u, v) =

{
θui,vii , v ∈ Gi;

0, v ∈ G≥2.

Then

lim
n→∞

2pn(u, v)α(u′)

∫ an+t

0

Zn(s)ds = 2λ−1α(u′)θui,vii eλ(l+t).

Hence, recalling (10),

Kn
v (an + t) = Nv

(
2pn(u, v)α(u′)

∫ an+t

0

Zn(s)ds

)
converges almost surely to

K∗v (l + t) = Nv

(
2λ−1α(u′)θui,vii eλ(l+t)

)
,

because Nv(·) is almost surely continuous at any fixed point.

Finally we check convergence of the an − T nv,j. Let ε > 0. For sufficiently
large n,

Kn
v (an − l + T ∗v,j + ε) = K∗v (T ∗v,j + ε) ≥ j;

so
an − l + T ∗v,j + ε ≥ T nv,j,

or equivalently
an − T nv,j ≥ l − T ∗v,j − ε.

The argument is now repeated for an upper bound. For sufficiently large n,

Kn
v (an − l + T ∗v,j − ε) = K∗v (T ∗v,j − ε) < j;

so
an − l + T ∗v,j − ε < T nv,j,

or equivalently
an − T nv,j < l − T ∗v,j + ε.
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Lemma 6.12. Condition on {W ∗ > 0}. Suppose that (an) satisfies the
conditions of Lemma 6.11. Then, almost surely,

lim
n→∞

(Xn(an)− Zn(an)eu) =
∑
i∈S

∑
v∈Gi

ev

K∗
v (l)∑
j=1

Yv,j(l − T ∗v,j),

where the Yv,j(·) are from Lemma 6.4 and the K∗v (·) and T ∗v,j are from Lemma
6.11.

Remark 6.13. By definition, T ∗v,j ≤ l for j = 1, .., K∗v (l). So the limit in
Lemma 6.12 is well defined.

Proof of Lemma 6.12. Recall that

Xn(an)− Zn(an)eu =
∑

v∈G\{u}

Kn
v (an)∑
j=1

Ynv,j(an − T nv,j) (18)

+
∑

v,w∈G\{u}

Kn
v,w(an)∑
j=1

Ynv,w,j(an − T nv,w,j).

The ‘double mutation’ term in (18) converges to zero, because

Kn
v,w(an) ≤ Kn

v,w(τn),

which converges to zero by Lemma 6.9. As for the ‘single mutation’ term in
(18), Lemma 6.11 says that the Kn

v (an) and an − T nv,j converge to K∗v (l) and
l − T ∗v,j, while (12) says that the Ynv,j(·) converge to evYv,j(·).

Lemma 6.14. Condition on {W ∗ > 0}.

lim
n→∞

(σn − τn) = 0

almost surely.

Proof. By Lemma 6.10, for large enough n, Zn(τn) = n. So |Xn(τn)| ≥ n,
and hence σn ≤ τn. Therefore

lim inf
n→∞

(σn − τn) ≤ 0.
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Suppose, looking for a contradiction, that

lim inf
n→∞

(σn − τn) = l ∈ [−∞, 0).

Take a subsequence with

lim
k→∞

(σnk − τnk) = l.

Then, by Lemma 6.12,

|Xn(σnk)− Zn(σnk)eu|

converges, and so must be a bounded sequence. However it is also true that,
taking k →∞,

|Xn(σnk)− Zn(σnk)eu| = nk − Znk(σnk)

= nk

(
1− Znk(σnk)

eλnkσnk

eλnkτnk

Znk(τnk)
eλnk (σnk−τnk )

)
∼ nk(1− eλl),

which is unbounded.

Lemma 6.15. Condition on {W ∗ > 0}.

lim
n→∞

(Xn(σn)− Zn(σn)eu) =
∑
i∈S

∑
v∈Gi

ev

K∗
v (0)∑
j=1

Yv,j(−T ∗v,j),

almost surely.

Proof. By Lemma 6.14, (σn) = (an) satisfies the conditions of Lemma 6.11
with l = 0. Then Lemma 6.12 gives the result.

Let’s look at the limit in Lemma 6.15. For v ∈ Gi, K
∗
v (0) is Poisson

distributed with mean 2λ−1α(u′)θui,vii . Conditional on K∗v (0), the times

(−T ∗v,j)
K∗
v (0)

j=1 , unordered, are i.i.d. exponentially distributed random variables
with mean λ−1. So

K∗
v (0)∑
j=1

Yv,j(−T ∗v,j)
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has generalised Luria-Delbrück distribution with parameters(
λ, α(v′), β(v′), 2λ−1α(u′)θui,vii

)
.

Therefore the limit of Lemma 6.15 is a vector of independent generalised
Luria-Delbrück distributions:

∑
i∈S

∑
v∈Gi

ev

K∗
v (0)∑
j=1

Yv,j(−T ∗v,j)
d
=

∑
v∈G\{u}

evXv,

where the Xv are as stated in Theorem 6.1. To complete the proof of Theorem
6.1 we need to show that conditioning on {W ∗ > 0} can be translated to
conditioning on {σn <∞}, which is the subject of the next subsection.

6.5 Conditioning on reaching n cells

In order to connect {W ∗ > 0} and {σn < ∞}, the next result is the key. It
states that these events are approximately the same for large n.

Proposition 6.16.

1. limn→∞ P[W ∗ > 0, σn =∞] = 0, and

2. limn→∞ P[W ∗ = 0, σn <∞] = 0.

Let’s break the proof of Proposition 6.16 into several lemmas; the idea is that
the random variable W n be used as an intermediary.

Lemma 6.17.
lim
n→∞

P[W ∗ > 0,W n = 0] = 0.

Proof. If W ∗ > 0, then there exists n0, such that for all n ≥ n0

W n >
W ∗

2
.

So
lim
n→∞

1{W ∗>0,Wn=0} = 0.
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Therefore, by dominated convergence,

P[W ∗ > 0,W n = 0] = E1{W ∗>0,Wn=0} → 0.

Lemma 6.18.
P[W n > 0, σn =∞] = 0.

Proof. If W n > 0, then limt→∞X
n(t) =∞, and so σn <∞.

Proof of Part 1 of Proposition 6.16.

P[W ∗ > 0, σn =∞] = P[W ∗ > 0, σn =∞,W n = 0]

+P[W ∗ > 0, σn =∞,W n > 0]

≤ P[W ∗ > 0,W n = 0]

+P[σn =∞,W n > 0]→ 0

as n→∞, by Lemmas 6.17 and 6.18.

The structure for the proof of Part 2 of Proposition 6.16 is much the same
as that of Part 1. However the details will require a little extra work.

Lemma 6.19.
lim
n→∞

P[W ∗ = 0,W n > 0] = 0.

Proof. Let ε > 0. If W ∗ = 0, then there exists n0 such that for all n ≥ n0

W n < ε.

So
lim
n→∞

1{W ∗=0,Wn≥ε} = 0

almost surely. Then by dominated convergence,

lim
n→∞

P[W ∗ = 0,W n ≥ ε] = 0.
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Meanwhile for each n,

P[W n ∈ (0, ε)] =
λn
αn

(
1− e−

λn
αn

ε
)
≤ ε

(the distribution of W n is seen in [3, 7]). Therefore

lim sup
n→∞

P[W ∗ = 0,W n > 0]

≤ lim sup
n→∞

P[W ∗ = 0,W n ≥ ε] + lim sup
n→∞

P[W n ∈ (0, ε)]

≤ ε.

But ε > 0 was arbitrary, giving the result.

Lemma 6.20.
lim
n→∞

P[W n = 0, σn <∞] = 0.

Proof. If the primary population size never reaches n and there are never
any mutations, then the total population size never reaches n. That is, if
Zn(τn) = 0, Kn

v (·) = 0 and Kn
v,w(·) = 0 for all v, w ∈ G\{u}, then

sup
t≥0
|Xn(t)| < n,

which means that σn =∞. Equivalently,

{σn <∞} ⊂ {Zn(τn) = n} ∪ {∃v,Kn
v (·) 6= 0} ∪ {∃(v, w), Kn

v,w(·) 6= 0}
= {Zn(τn) = n} ∪ {∃v,Kn

v (·) 6= 0}
∪{∃(v, w), Kn

v,w(·) 6= 0, Zn(τn) = 0},

where the equality relies on the fact that {Zn(τn) = 0}∪{Zn(τn) = n} covers
the whole probability space. It follows that

P[W n = 0, σn <∞] ≤ P[W n = 0|Zn(τn) = n]

+
∑

v∈G\{u}

P[Kn
v (·) 6= 0|W n = 0]

+
∑

v,w∈G\{u}

P[Kn
v,w(·) 6= 0|Zn(τn) = 0]. (19)
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We will show that each term of the right hand side of Inequality (19) con-
verges to zero. Firstly,

P[W n = 0|Zn(τn) = n] =

(
βn
αn

)n
,

which is the probability that Zn(·), if starting at size n, eventually goes
extinct; this clearly converges to zero.

Secondly,

E
[
sup
t
Kn
v (t)

∣∣∣W n = 0

]
= E

[
Nn
v

(
2pn(u, v)α(u′)

∫ ∞
0

Zn(s)ds

) ∣∣∣W n = 0

]
= E

[
E
[
Nn
v

(
2pn(u, v)α(u′)

∫ ∞
0

Zn(s)ds

) ∣∣∣Zn(·)
]∣∣∣W n = 0

]
= E

[
2pn(u, v)α(u′)

∫ ∞
0

Zn(s)ds
∣∣∣W n = 0

]
= 2pn(u, v)α(u′)

∫ ∞
0

E[Zn(s)|W n = 0]ds

= 2pn(u, v)α(u′)

∫ ∞
0

e−λnsds

→ 0,

because pn(u, v)→ 0. Hence

P
[
sup
t
Kn
v (t) 6= 0

∣∣∣W n = 0

]
→ 0.

Lastly,

P[Kn
v,w(·) 6= 0|Zn(τn) = 0] = P[Kn

v,w(τn) 6= 0|Zn(τn) = 0]

≤
P[Kn

v,w(τn) 6= 0]

P[Zn(τn) = 0]
.

But P[Kn
v,w(τn) 6= 0] converges to zero by Lemma 6.9, while P[Zn(τn) = 0]

converges to P[W ∗ = 0] > 0 by (11).
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Proof of Part 2 of Proposition 6.16. Just as for Part 1,

P[W ∗ = 0, σn <∞] = P[W ∗ = 0, σn <∞,W n > 0]

+P[W ∗ = 0, σn <∞,W n = 0]

≤ P[W ∗ = 0,W n < 0]

+P[σn <∞,W n = 0]→ 0

as n→∞, by Lemmas 6.19 and 6.20.

Corollary 6.21 (to Proposition 6.16). For any sequence of events (Hn)n∈N,

lim
n→∞

P[Hn, σn <∞] = lim
n→∞

P[Hn,W
∗ > 0]

if the limit exists.

Proof. Partition the event {Hn ∩ (W ∗ > 0∪σn <∞)} in two ways to obtain

P[Hn, σn <∞] + P[Hn,W
∗ > 0, σn =∞]

= P[Hn,W
∗ > 0] + P[Hn,W

∗ = 0, σn <∞],

and take n→∞.

Finally we are in a position to prove Theorem 6.1.

Proof of Theorem 6.1. For any R ⊂ (N0)
G\{u},

lim
n→∞

P
[
(Xµn

v (σn))v∈G\{u} ∈ R, σn <∞
]

P [σn <∞]

= lim
n→∞

P
[
(Xµn

v (σn))v∈G\{u} ∈ R,W ∗ > 0
]

P [W ∗ > 0]
(20)

= P[(Xv)v∈G\{u} ∈ R], (21)

where (20) is due to Corollary 6.21 and (21) is due to Lemma 6.15.
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6.6 Law of large numbers

Proof of Theorem 5.2 (and Theorem 4.3). The expected site frequency spec-
trum is given by

E

[
|S|−1

∑
i∈S

δBn,µi {k}

]
= |S|−1

∑
i∈S

P[Bn,µ
i = k]

= |S|−1
∑
i∈Ssel

P[Bn,µ
i = k]

+|S|−1
∑
j∈J

∑
i∈S(j)

P[Bn,µ
i = k], (22)

for k ∈ N0. The penultimate term of (22) vanishes:

|S|−1
∑
i∈Ssel

P[Bn,µ
i = k]→ 0

because |Ssel|/|S| → 0. The last term of (22) can be written as

|S|−1
∑
j∈J

∑
i∈S(j)

P[Bn,µ
i = k] =

∑
j∈J

|S(j)|
|S|

P[Bn,µ(j) = k],

where P[Bn,µ(j) = k] = P[Bn,µ
i = k] for i ∈ S(j). But

|S(j)|
|S|

→ q(j),

while Theorem 5.1 implies that

P[Bn,µ(j) = k]→ Λ(j){k}.

Therefore the expected site frequency spectrum converges:

E

[
|S|−1

∑
i∈S

δBn,µi {k}

]
→
∑
j∈J

q(j)Λ(j){k}.
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The variance is

Var

[
|S|−1

∑
i∈S

δBn,µi {k}

]
= |S|−2

∑
i∈S

Var[1{Bn,µi =k}]

+|S|−2
∑
i,j∈S
i 6=j

Cov[1{Bn,µi =k}, 1{Bn,µj =k}]

≤ |S|−1 + max
i,j∈S
i 6=j

Cov[1{Bn,µi =k}, 1{Bn,µj =k}].

Because Ssel and J are finite sets and the random variables are exchangable
over S(j), the maximum is taken over a finite set. Theorem 5.1 says that the
covariances converge to zero.

7 Mutations at positive fractions

In this section we return to the basic Yule process setting, proving results on
mutations present in a positive fraction of cells. In Subsection 7.1 we prove
Theorem 4.4 and also prove an upper bound for mutation frequencies. In 7.2
we prove Lemma 3.2 and another result concerning cell descendant fractions.
In 7.3 we determine mutation frequencies under the infinite sites assumption.
In 7.4 we show that the infinite sites assumption can offer an approximation
for mutation frequencies, concluding the proof of Theorem 4.6. In 7.5 we
give details of Remarks 4.7 and 4.8.

7.1 Single site mutation frequencies and an upper bound

Write
B
µ
i = {x ∈ T : V µ

i (x) 6= ui}
for the cells which are mutated at site i ∈ S, and

B̂
µ
i = {y ∈ T : ∃x ∈ B

µ
i , x � y}

for their descendants. Recall that Tσn are the cells alive when the total
number of cells reaches n. Note the inequality

B̂n,µ
i := |B̂µ

i ∩ Tσn| ≥ |B
µ
i ∩ Tσn| = Bn,µ

i . (23)
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The goal of this subsection is to prove Theorem 4.4 and the following closely
related result, which will later play a crucial role in the proof of Theorem
4.6.

Proposition 7.1. Let i ∈ S and a ∈ (0, 1). As n→∞ and nµ→ θ ∈ [0,∞),

µ−1P[n−1B̂n,µ
i > a]→ 2(a−1 − 1).

For this subsection we are always talking about a single site i ∈ S; for
convenience, let’s drop the subscript i from the notation. To begin the proofs
of Theorem 4.4 and Proposition 7.1, fix µ, and observe that (Br,µ)r∈N is a
Markov process on the nonnegative integers with transition probabilities

P[Br+1,µ = k|Br,µ = j]

=


j
r
(µ/3)2, k = j − 1;
j
r
2(µ/3)(1− µ/3) + r−j

r
(1− µ)2, k = j;

j
r
(1− µ/3)2 + r−j

r
2µ(1− µ), k = j + 1;

r−j
r
µ2, k = j + 2.

(24)

Here, j/r is the probability that one of the j mutant cells divides, while µ/3
is the probability that a mutant’s daughter reverts to the unmutated state.
The process (B̂r,µ)r∈N has transition probabilities

P[B̂r+1,µ = k|B̂r,µ = j]

=


r−j
r

(1− µ)2, k = j;
j
r

+ r−j
r

2µ(1− µ), k = j + 1;
r−j
r
µ2, k = j + 2.

(25)

The key idea of the proof will be to condition on the number of cells when
the first mutant (with respect to site i) arises. For this purpose, introduce

ξµ = min{r ∈ N : Br,µ > 0}

for the total number of cells when the first mutant cell arises. Let

Ξµ
j = {Bξµ,µ = j}

be the event that the first cell division to see a mutation gives j mutant cells,
for j ∈ {1, 2}.
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Lemma 7.2. For r ∈ N,

lim
µ→0

µ−1P[ξµ = r,Ξµ
j ] =

{
2, j = 1;

0, j = 2.

Proof. The probability that the first r − 2 cell divisions give no site i mu-
tations multiplied by the probability that the (r − 1)th cell division gives
exactly one mutant daughter is

P[ξµ = r,Ξµ
1 ] = (1− µ)2r−32µ.

Similarly
P[ξµ = r,Ξµ

2 ] = (1− µ)2r−4µ2.

Divide by µ and take µ→ 0.

The next result gives conditional mutation frequencies.

Lemma 7.3. Let a > 0. As n→∞ and nµ→ θ ∈ [0,∞),

P[n−1Bn,µ > a
∣∣ξµ = r,Ξµ

1 ]→ (1− a)r−1

and
P[n−1B̂n,µ > a

∣∣ξµ = r,Ξµ
1 ]→ (1− a)r−1

Proof. Calculating from the transition probabilities (24),

E
[
Bs+1,µ|Bs,µ = k

]
= k + s−1k(1− 8µ/3) + 2µ.

So

E
[
(s+ 1)−1Bs+1,µ|Bs,µ = k

]
= s−1k + s−1(s+ 1)−1

(
2s− 8

3
k

)
µ,

and hence

s−1k − 2s−1µ ≤ E
[
(s+ 1)−1Bs+1,µ|Bs,µ = k

]
≤ s−1k + 2s−1µ. (26)
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For the rest of the proof we will condition on the event {ξµ = r,Ξµ
1}. That is,

we will consider the processes (Bs,µ)s≥r and (B̂s,µ)s≥r conditioned on Br,µ =

B̂r,µ = 1. Write
Er,1[·] = E[·|ξµ = r,Ξµ

1 ]

for the conditional expectation. From (26), for s ≥ r,

Er,1
[
s−1Bs,µ

]
− 2s−1µ ≤ Er,1

[
(s+ 1)−1Bs+1,µ

]
≤ Er,1

[
s−1Bs,µ

]
+ 2s−1µ. (27)

Combining (27) with
Er,1

[
r−1Br,µ

]
= r−1,

we have that, for n ≥ r,

r−1 − 2µ
n−1∑
s=r

s−1 ≤ Er,1
[
n−1Bn,µ

]
≤ r−1 + 2µ

n−1∑
s=r

s−1.

Therefore, as µ→ 0 and nµ→ θ,

Er,1
[
n−1Bn,µ

]
→ r−1.

In just the same manner,

Er,1
[
n−1B̂n,µ

]
→ r−1.

Consider the single mutant cell present when the total number of cells is r.
Write Dn for the number of cells which have descended from this mutant cell
when the total number of cells is n ≥ r. The process (Dn, n−Dn)n≥r is just
Polya’s urn. So

Er,1
[
n−1Dn

]
= r−1.

Moreover a well-known result (e.g. [10]) says that, as n → ∞, n−1Dn con-
verges to a Beta random variable. That is, for a ∈ (0, 1),

Pr,1[n−1Dn > a]→ (1− a)r−1, (28)
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which is exactly the limit we wish to show for n−1Bn,µ and n−1B̂n,µ. To show
that n−1Dn, n−1Bn,µ, and n−1B̂n,µ share the same limiting distribution, we
will show that their differences converge to zero. The inequality

Dn ≤ B̂n,µ

gives that

Er,1|n−1B̂n,µ − n−1Dn| = Er,1n−1B̂n,µ − Er,1n−1Dn → 0.

The inequality
Bn,µ ≤ B̂n,µ

gives that

Er,1|n−1B̂n,µ − n−1Bn,µ| = Er,1n−1B̂n,µ − Er,1n−1Bn,µ → 0.

Lemma 7.4. Consider (µn)n∈N with nµn → θ ∈ [0,∞). Then

sup
n∈N

P[n−1Bn,µn > a
∣∣ξµn = r,Ξµn

j ] ≤ sup
n∈N

P[n−1B̂n,µn > a
∣∣ξµn = r,Ξµn

j ]

≤ cr−2,

where c > 0 does not depend on r, j.

Proof. The first inequality is immediate. We prove the second. From the
transition probabiities (25),

E
[
(B̂s+1,µn)2|B̂s,µn = k

]
= k2

(
1 + 2s−1 − 4µns

−1)
+k
(
4µn + s−1(1− 2µn − 2µ2

n)
)

+2µn + 2µ2
n

≤ k2(s+ 1)2s−2 + 4nµn + 2µn + 2µ2
n + 1.

So, for s ≤ n,

E
[
(s+ 1)−2(B̂s+1,µn)2|B̂s,µn = k

]
≤ s−2k2 + s−2c1, (29)
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where c1 > 0 is a constant which does not depend on k, n, s. Now let’s con-
dition on {ξµn = r,Ξµn

j }, again writing Er,j for the conditional expectation.
From (29), for s ∈ {r, .., n},

Er,j[(s+ 1)−2(B̂s+1,µn)2]− Er,j[s−2(B̂s,µn)2] ≤ s−2c1.

This leads to, for s ∈ {r, .., n},

Er,j[s−2(B̂s,µn)2] ≤ Er,j[r−2(B̂r,µn)2] + c1

s−1∑
t=r

t−2

= r−2j2 + c1

s−1∑
t=r

s−2

≤ c2r
−1, (30)

where c2 is a constant which does not depend on j, n, r, s. (In the follow-
ing, c3, .., c6 will also be constants.) Calculating third moments from the
transition probabilities,

E
[
(B̂s+1,µn)3|B̂s,µn = k

]
= k3

(
1 + 3s−1(1− 2µn − 4µ2

n)
)

+k2
(
6µn + 3s−1(1− 2µn − 6µ2

n)
)

+k
(
6µn + 6µ2

n − s−1(1 + 2µn + 6µ2
n)
)

+2µn + 6µ2
n

≤ k3(s+ 1)3s−3 + c3k
2s−1 + c4kn

−1.

Then

E
[
(s+ 1)−3(B̂s+1,µn)3|B̂s,µn = k

]
≤ s−3k3 + c3s

−4k2 + c4s
−2n−1.

Hence

Er,j
[
(s+ 1)−3(B̂s+1,µn)3

]
− Er,j

[
s−3(B̂s,µn)3

]
≤ c3s

−2Er,j[s−2(B̂s,µn)2] + c4s
−2r−1,

which combined with (30) gives that

Er,j[n−3(B̂n,µn)3] = Er,j[r−3(B̂r,µn)3] + c5r
−1

n−1∑
s=r

s−2

≤ r−3 + c6r
−2

≤ cr−2.
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Apply Markov’s inequality to conclude.

Proof of Theorem 4.4 and Proposition 7.1.

µ−1P[n−1Bn,µ > a]

=
∞∑
r=2

2∑
j=1

µ−1P[ξµ = r,Ξµ
j ]P[n−1Bn,µ > a

∣∣ξµ = r,Ξµ
j ]. (31)

Lemmas 7.2, 7.3, and 7.4, along with the Dominated Convergence Theorem,
show that the limit of (31) is

2
∞∑
r=1

(1− a)r = 2(a−1 − 1).

The same argument works for B̂n,µ.

7.2 Cell descendant fractions

Here we are concerned with the Px,t (the fraction of cells alive at time t ≥ 0
which are descendants of cell x ∈ T).

Aldous [2], in a different language to ours, gives a similar result to Lemma
3.2. Rather than adapting his result, we now give a distinct proof of Lemma
3.2.

Proof of Lemma 3.2. Write

Dx = {y ∈ T : x � y}

for the descendants of cell x ∈ T, and write

Dx,t = Dx ∩ Tt

for the descendants of cell x ∈ T which are alive at time t ≥ 0. Observe that

Dx,
∑
y≺x Ay+t

=

{
y ∈ T : x � y,

∑
x�z≺y

Az ≤ t <
∑
x�z�y

Az

}
.
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Hence (
|Dx,

∑
y≺x Ay+t

|
)
t≥0

is measurable with respect to the sigma-algebra generated by (Ay)y∈Dx , and
has the same distribution as

(|D∅,t|)t≥0 = (|Tt|)t≥0 .

It follows that
lim
t→∞

e−t|Dx,
∑
y≺x Ay+t

| =: Wx

almost surely, where Wx ∼Exp(1); moreover if x, y ∈ T are such that Dx ∩
Dy = ∅, then Wx and Wy are independent. In particular, Wx0 and Wx1 are
independent. Now,

lim
t→∞

|Dx0,t|
|Dx,t|

= lim
t→∞

|Dx0,t|
1 + |Dx0,t|+ |Dx1,t|

=
Wx0

Wx0 +Wx1

=: Ux0

almost surely, and Ux0 + Ux1 = 1. A standard calculation shows that Ux0 is
uniformly distributed on (0, 1): for u ∈ (0, 1),

P[Ux0 < u] =

∫ ∞
0

∫ ∞
z(1−u)/u

e−ye−zdydz = u.

It remains to show independence of the Ux0. Another standard calculation
shows that

Ux0 =
Wx0

Wx0 +Wx1

is independent of
Wx0 +Wx1 :

for (u, v) ∈ (0, 1)× (0,∞),

P[Ux0 < u,Wx0 +Wx1 < v] =

∫ uv

0

∫ v−z

z(1−u)/u
e−ye−zdydz

= u(1− (1 + v)e−v)

= P[Ux0 < u]P[Wx0 +Wx1 < v].

Now fix l ∈ N. Because Ux0 and Wx0 + Wx1 are measurable with respect to
the sigma-algebra generated by (Ay)y∈Dx\{x}, we have that[

(Ux0)|x|=l, (Wx0 +Wx1)|x|=l, (Ax)|x|≤l
]

(32)
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forms an independent family of random variables.

Finally we complete the proof by induction. Suppose that (Ux0)x∈T:|x|<l is an
independent family. Observing that for any x ∈ T,

Wx = e−Ax(Wx0 +Wx1),

we have that (Ux0)x∈T:|x|<l is measurable with respect to the sigma-algebra
generated by

[(Wx0 +Wx1)|x|=l, (Ax)|x|≤l].

Then, thanks to the independence of (32), (Ux0)x∈T:|x|≤l forms an independent
family.

Next comes a technical result whose value will become apparent in the next
subsection.

Lemma 7.5. Let ε ∈ (0, 1). The set

{x ∈ T\{∅} : ∃t ≥ 0, Px,t > ε}

is almost surely finite.

Proof. For t ≥ 0, let Ft be the sigma-algebra generated by (Ts)s∈[0,t]. For
t ≥ s ≥ 0, conditional on Fs, (Py,t)y∈Ts is exchangable. So for y ∈ T,

E[1{y∈Ts}Py,t|Fs] =
1{y∈Ts}
|Ts|

.

Now let x ∈ T\{∅}. We have

Px,t ≥ 1{|Dx,s|>0}Px,t =
∑
y∈Dx,s

Py,t

and hence
E[Px,t|Fs] ≥ Px,s.

That is, (Px,t)t≥0 is a submartingale with respect to (Ft)t≥0. Then by Doob’s
inequality,

P[∃t ≥ 0, Px,t > ε] = P[sup
t≥0

Px,t > ε] ≤ ε−2E[(Px)
2].
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But Px is simply a product of |x| independent Uniform(0, 1) random variables,
where |x| ∈ N is the generation of x (that is, x ∈ {0, 1}|x|). So E[(Px)

2] =
3−|x|. Hence

P[∃t ≥ 0, Px,t > ε] = P[sup
t≥0

Px,t > ε] ≤ ε−23−|x|.

Now ∑
x∈T\{∅}

P[∃t ≥ 0, Px,t > ε] ≤
∑
l∈N

ε−2(2/3)l <∞,

so the Borel-Cantelli lemma concludes the proof.

7.3 Mutation frequencies under the infinite sites as-
sumption

Enumerate the elements of T,

T = (xk)k∈N,

in such a way that

xj ≺ xk =⇒ j < k. (33)

Let’s give an example of such an enumeration: map (x(r))lr=1 ∈ {0, 1}l ⊂ T

to 2l +
∑l

r=1 2l−rx(r).

Assuming a mutation rate µ, write

φµi = min{x ∈ T : V µ
i (x) 6= ui}

for the first cell (with respect to the enumeration) which sees a mutation at
site i ∈ S.

Remark 7.6. φµi has geometric distribution:

P[φµi = xk] = µ(1− µ)k−1.

In this subsection we are concerned with Pφµi ,σn , which is the fraction of cells
alive at time σn (when n total cells are reached) which are descendants of
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cell φµi . Phrased another way, Pφµi ,σn is the fraction of cells alive at time σn
which are mutated at site i under the infinite sites assumption.

Next we give an infinite-sites analog of Theorem 4.6.

Proposition 7.7. As n→∞, µ→ 0, and |S|µ→ η ∈ [0,∞),∑
i∈S

δPφn
i
,σn
→

∑
x∈T\{∅}

MxδPx

in distribution, with respect to the vague topology on the space of measures
on (0, 1].

The proof of Proposition 7.7 will require us to count the number of sites which
see their first mutation at cell x ∈ T\{∅} (with respect to the enumeration);
write

Mµ,S
x = |{i ∈ S : φµi = x}|.

Lemma 7.8. As µ→ 0 and |S|µ→ η ∈ [0,∞),

(Mµ,S
x )x∈T\{∅} → (Mx)x∈T\{∅}

in distribution, where the Mx are i.i.d. Poisson(η) random variables.

Proof. The initial cell is x1 = ∅. The number of sites which mutate in cell
x2, M

µ,S
x2

, is binomially distributed with parameters S and µ. This converges
to a Poisson(η) random variable. Now, for induction, suppose that

lim
n→∞

(
Mµ,S

xj

)k
j=2

=
(
Mxj

)k
j=2

in distribution, where the Mx are i.i.d. Poisson(η) random variables. Then

P
[(
Mµ,S

xj

)k+1

j=2
= (mj)

k+1
j=2

]
= P

[
Mµ,S

xk+1
= mk+1

∣∣∣∣ (Mµ,S
xj

)k
j=2

= (mj)
k
j=2

]
×P
[(
Mµ,S

xj

)k
j=2

= (mj)
k
j=2

]
. (34)

Due to the property (33) of the enumeration, Mµ,S
xk+1

conditioned on the event(
Mµ,S

xj

)k
j=2

= (mj)
k
j=2 is just a binomial random variable with parameters

|S| −
∑k

j=2mj and µ. Therefore (34) converges as required.
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Proof of Proposition 7.7. Fix a sequence of sets of sites (Sn)n∈N and a se-
quence of mutation rates (µn)n∈N with µn|Sn| → η. Apply Skorokhod’s Rep-
resentation Theorem to Lemma 7.8 to obtain random variables (Mn

x )x∈T\{∅},n∈N
and (M ′

x)x∈T\{∅} which satisfy

1. (Mn
x )x∈T\{∅}

d
= (Mµn,Sn

x )x∈T\{∅} for each n ∈ N;

2. (M ′
x)x∈T\{∅}

d
= (Mx)x∈T\{∅}; and

3. limn→∞(Mn
x )x∈T\{∅} = (M ′

x)x∈T\{∅} almost surely.

Put the Mn
x ,M

′
x on the same probability space as the Px,t, Px so that the

Mn
x ,M

′
x are independent of the Px,t, Px. Then∑

i∈S

δP
φ
µ
i
,σn

=
∑

x∈T\{∅}

Mµn,Sn
x δPx,σn

d
=

∑
x∈T\{∅}

Mn
x δPx,σn .

Let I1, .., Ik ⊂ (0, 1] be closed intervals. Then

(∑
i∈S

δP
φ
µ
i
,σn

(Ij)

)k

j=1

d
=

 ∑
x∈T\{∅}

Mn
x δPx,σn (Ij)

k

j=1

. (35)

Lemma 3.2 says that Px,σn converges to Px; and Px does not lie on the
boundaries of the Ij with probability one, so the summands of (35) converge
pointwise. Meanwhile Lemma 7.5 says that the sum is over a finite subset of
T\{∅}.

Lemma 7.9. Let a ∈ (0, 1). As n→∞, µ→ 0, and |S|µ→ η ∈ [0,∞),

E

[∑
i∈S

δPφn
i
,σn

(a, 1)

]
→ 2η(a−1 − 1).
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Proof. First,

lim inf E

[∑
i∈S

δPφn
i
,σn

(a, 1)

]
≥ E

[
lim
∑
i∈S

δPφn
i
,σn

(a, 1)

]

= E

 ∑
x∈T\{∅}

MxδPx(a, 1)


= 2η(a−1 − 1),

by Fatou’s lemma, Proposition 7.7, and Remark 4.7. Second,

E

[∑
i∈S

δPφn
i
,σn

(a, 1)

]
≤ E

[∑
i∈S

δn−1B̂n,µi
(a, 1)

]
→ 2η(a−1 − 1),

by the inequality Pφni ,σn ≤ n−1B̂n,µ
i and then Proposition 7.1.

7.4 The infinite sites assumption approximation

Lemma 7.10. Let a ∈ (0, 1). As n→∞, nµ→ θ ∈ [0,∞), and |S|µ→ η ∈
[0,∞),

E

∣∣∣∣∣∑
i∈S

δPφn
i
,σn

(a, 1)−
∑
i∈S

δn−1Bn,µi
(a, 1)

∣∣∣∣∣→ 0.

Proof. The inequalities

n−1Bn,µ
i ≤ n−1B̂n,µ

i ≥ Pφµi ,σn ,

imply that∑
i∈S

δn−1Bn,µi
(a, 1) ≤

∑
i∈S

δn−1B̂n,µi
(a, 1) ≥

∑
i∈S

δP
φ
µ
i
,σn

(a, 1).
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Hence

E

∣∣∣∣∣∑
i∈S

δPφn
i
,σn

(a, 1)−
∑
i∈S

δn−1Bn,µi
(a, 1)

∣∣∣∣∣
≤ E

∣∣∣∣∣∑
i∈S

δn−1B̂n,µi
(a, 1)−

∑
i∈S

δPφn
i
,σn

(a, 1)

∣∣∣∣∣
+E

∣∣∣∣∣∑
i∈S

δn−1B̂n,µi
(a, 1)−

∑
i∈S

δn−1Bn,µi
(a, 1)

∣∣∣∣∣
= 2E

∑
i∈S

δn−1B̂n,µi
(a, 1)− E

∑
i∈S

δPφn
i
,σn

(a, 1)− E
∑
i∈S

δn−1Bn,µi
(a, 1),

which converges to zero thanks to Corollary 4.5, Proposition 7.1, and Lemma
7.9.

Proof of Theorem 4.6. Let I1, .., Ik ⊂ (0, 1] be closed intervals. Writing || · ||
for the l1-norm on Rk,

E

∣∣∣∣∣∣
∣∣∣∣∣∣
(∑

i∈S

δn−1Bn,µi
(Ij)

)k

j=1

−

(∑
i∈S

δP
φ
µ
i
,σn

(Ij)

)k

j=1

∣∣∣∣∣∣
∣∣∣∣∣∣

=
k∑
j=1

E

∣∣∣∣∣∑
i∈S

δn−1Bn,µi
(Ij)−

∑
i∈S

δP
φ
µ
i
,σn

(Ij)

∣∣∣∣∣
→ 0,

due to Lemma 7.10. Therefore(∑
i∈S

δn−1Bn,µi
(Ij)

)k

j=1

and (∑
i∈S

δP
φ
µ
i
,σn

(Ij)

)k

j=1

share the same limiting distribution, if it exists. This limiting distribution,
by Proposition 7.7, is  ∑

x∈T\{∅}

MxδPx(Ij)

k

j=1
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as required.

7.5 Mean and variance of the site frequency spectrum

Finally, let’s check Remarks 4.7 and 4.8. Note that

− log(Px) = −
∑
y�x

log(Uy)

is a sum of i.i.d. mean-1 exponentially distributed random variables, which
is just a gamma random variable with parameters |x| and 1. Then

P[Px > a] = P[− log(Px) < − log(a)]

=

∫ − log(a)

0

s|x|−1e−s

(|x| − 1)!
ds.

So

E

[∑
x

MxδPx(a, 1)

]
= η

∑
x

P[Px > a]

= η
∑
x

∫ − log(a)

0

s|x|−1e−s

(|x| − 1)!
ds

= η

∫ − log(a)

0

∑
l∈N

2l
sl−1e−s

(l − 1)!
ds

= 2η

∫ − log(a)

0

esds

= 2η(a−1 − 1).
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As for the variance of the site frequency spectrum,

Var

[∑
x

MxδPx(a, 1)

]
= Var

[
E

[∑
x

MxδPx(a, 1)
∣∣(Px)]]

+E

[
Var

[∑
x

MxδPx(a, 1)
∣∣(Px)]]

≥ E

[
Var

[∑
x

MxδPx(a, 1)
∣∣(Px)]]

= E

[∑
x

δPx(a, 1)Var [Mx]

]

= ηE

[∑
x

δPx(a, 1)

]
.

8 Infinite sites assumption violations

The infinite sites assumption (ISA) is a popular modelling assumption, stat-
ing that each genetic site can mutate at most once during the population’s
evolution. There are influential and insightful analyses of tumour evolution
which rely on the ISA, for example [27, 5, 26, 8]. However, recent statistical
analysis of single cell sequencing data shows “widespread violations of the
ISA in human cancers” [20]. Thus it is unclear to what extent [27, 5, 26, 8]’s
analyses can be trusted. Our studied model of DNA sequence evolution does
not use the ISA and invites a theoretical assessment of the ISA’s validity.

Let’s check the prevalence of ISA violations. For simplicity, consider the most
basic version of the model, which was introduced in Section 2. Building upon
notation of Section 3.2, write

T(n) = {x ∈ T : ∃y ∈ Tσn , x ≺ y}

for the set of ancestors of those cells alive at time σn (when the total number
of cells reaches n). Write

Xn,µ
i =

∣∣{(x, xj) : x ∈ T(n), j ∈ {0, 1}, V µ
i (x) 6= V µ

i (xj)}
∣∣
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for the number of times that site i mutates up to time σn. Observe that
Xn,µ
i is binomially distributed with parameters 2n − 2 and µ. Site i is said

to violate the ISA if Xn,µ
i ≥ 2, which occurs with probability

p(n, µ) = P[Xn,µ
i ≥ 2]

= 1− (1− µ)2n−2 − (2n− 2)µ(1− µ)2n−3.

Then the number of sites to violate the ISA,

|{i ∈ S : Xn,µ
i ≥ 2}| ,

is binomially distributed with parameters |S| and p(n, µ). If parameter val-
ues are indeed in the region of n = 109 and µ = 10−9, then the expected
proportion of sites to violate the ISA is in the region of 0.5. This means
that the expected number of sites to violate the ISA may be in the billions.
Even if very conservative parameter estimates were plugged in, the number
of violations is still massive. In fact violations are even more common if
one considers cell death. Suppose that cells divide at rate α and die at rate
β. Then to go from a population of 1 cell to n cells requires approximately
nα/(α− β) cell divisions, where the factor α/(α− β) may be as large as 100
[5].

Depite the apparent prevalence of ISA violations, our results suggest that
their impact on mutation frequencies is negligible at the scale of population
fractions. Importantly, bulk sequencing data is only sensitive on the scale
of population fractions. Our theoretical work stands in support of the data-
driven works [27, 5, 26, 8, 20].

Note however that our model only considers point mutations; it does not,
for example, consider deletions of genomic regions, which are thought to be
a significant cause of ISA violations [20].

9 Estimating mutation rates

In this section we wish to give the reader a light flavour of mutation frequency
data and its relationship to the model. We estimate mutation rates in a lung
adenocarcinoma.
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9.1 Diploid perspective

Before presenting data, an additional ingredient needs to be considered:
ploidy. Normal human cells are diploid. That is, chromosomes come in
pairs. Therefore a particular mutation may be present zero, one, or two
times in a single cell. It should be said that the story is far more complex
in tumours, with chromosomal instability and aneuploidy coming into play.
Even so, many tumour samples display an average ploidy not so far from two
(for example see Figure (1a) of [28]). We imagine an idealised diploid world.

To illustrate the diploid structure, label the genetic sites as

S = {1, 2} × {1, .., L},

for some L ∈ N. The first coordinate of a site (i, j) ∈ S states on which
chromosome of a pair the site lies, and the second coordinate refers to the
site’s position on the chromosome. Mutations at sites (1, j) and (2, j) are
typically not distinguished in data. In the original model set up, mutations
were defined as differences to the initial cell’s genome. Let’s slightly improve
that definition. Now a genome v ∈ G is said to be mutated at site (i, j) ∈ S if
vi,j 6= rj, where (rj)

L
j=1 is some reference. Then data is simplistically stated

in the model’s language as

Fj =
1

2n

2∑
i=1

Bn,µ
i,j (36)

for j = 1, .., L. That is, the total number of mutations at position j divided
by the total number of chromosomes which contain position j.

9.2 A lung adenocarcinoma

The mutation frequency data of a lung adenocarcinoma was made available
in [29] (499017, Table S2). The data is plotted in Figures 3 and 4. This is
just one tumor to illustrate our results. A broader picture of data is seen in
[27, 5]. They analysed hundreds of tumors. Around 1/3 of the tumors were
said to have a power-law distribution for mutation frequencies, resembling
the one we consider.
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Figure 3: A histogram of mutation frequencies from a lung adenocarcinoma.

Figure 4: The number of mutations (of the lung adenocarcinoma) whose
frequency is in the interval (0.1, x), for x ∈ (0.1, 0.25).
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Our method to estimate mutation rates is, to a large extent, inspired by
[27, 5]. Their attention is restricted to a subset of mutations. They ignore
mutations at frequency less than 0.1, saying that their detection is too un-
reliable. They ignore mutations above frequency 0.25, in order to neglect
mutations present in the initial cell (which are relatively few). We do the
same.

Write
M(a, b) = |{j ∈ {1, .., L} : Fj ∈ (a, b)}|

for the number of mutations with frequency in (a, b) ⊂ (0.1, 0.25). Then,
adapting Corollary 4.5 to (36), the expected number of mutations with fre-
quency in (a, b) is

EM(a, b) ≈ µ|S|(a−1 − b−1). (37)

Under different models, [27, 5] derive the same approximation (37). They
estimate the mutation rate µ by applying a linear regression to (37). We
simplify matters even further. Our estimator for µ is

µ̂ =
M(0.1, 0.25)

6|S|
, (38)

which (37) says is asymptotically unbiased. Now let’s calculate µ̂ for the
data example. The data shows mutations on the exome, which has rough
size |S| = 3×108 [5]. And the number of mutations in the specified frequency
range is M(0.1, 0.25) = 112. This gives

µ̂ = 6.2× 10−8.

Next let’s consider mutation rate heterogeneity. Write µχ for the rate that
nucleotide χ ∈ N mutates. Partition the genetic sites:

S = SA ∪ SC ∪ SG ∪ ST ,

where
Sχ = {i ∈ S : ui = χ}

is the set of sites which are represented by nucleotide χ in the initial cell.
Just as before,

µ̂χ =
Mχ(0.1, 0.25)

6|Sχ|
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is an unbiased estimator for µχ. The data gives

(µ̂A, µ̂C , µ̂G, µ̂T ) = (0.7, 12.8, 15.0, 1.5)× 10−8.

This method could easily be extended to offer more detail, for example to
estimate the rate at which nucleotide A mutates to C or to estimate mutation
rates on different chromosomes.

The just presented statistical analysis is of course simple and brief. We
recommend [8] for a far more comprehensive statistical analysis of mutation
frequency data. However their infinite-sites framework does not consider
mutation rate heterogeneity.

Appendix

A heuristic ‘proof’ of Conjecture 5.3 is given.

First we argue that, in the conjecture’s limit, selection is unimportant. Write

Gsel = {v ∈ G : ∃i ∈ Ssel, vi 6= ui}

for the set of genomes which are mutated at a selective site. Write

Qµ
sel(t) =

∑
v∈Gsel

Xµ
v (t)∑

v∈GX
µ
v (t)

for the proportion of cells at time t ≥ 0 whose genomes are mutated at a
selective site. Then, according to Theorem 6.1,

(Qµ
sel(σ

µ
n)|σµn <∞)→ 0

in probability. Therefore we neglect selection.

Cells divide and die at rates α(u′) and β(u′), which we now abbreviate to α
and β. Some cells have an ultimately surviving lineage of descendants. Other
cells eventually have no surviving descendants. Name these cells immortal
and mortal respectively. In a supercritical birth-death branching process, it
is well-known (eg. [10]) that the immortal cells grow as a Yule process and
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the mortal cells grow as a subcritical branching process. An immortal cell
divides to produce two immortal cells at rate α− β, or it divides to produce
one immortal and one mortal cell at rate 2β. A mortal cell divides at rate
β to produce two mortal cells, or it dies at rate α. Because the process is
conditioned to reach a large population size, let’s assume that the initial cell
is immortal.

The notation of Section 3.2, T = ∪∞l=0{0, 1}l and its partial ordering ≺, will
be used to represent the immortal cells. Let (Ax)x∈T be i.i.d. Exp(α − β)
random variables, which represent the times for immortal cells to divide to
produce two immortal cells. The immortal cells at time t ≥ 0 are

Tt =

{
x ∈ T :

∑
y≺x

Ay ≤ t <
∑
y�x

Ay

}
.

The immortal descendants of x ∈ T are

DI
x = {y ∈ T : x � y}.

The number of immortal descendants of cell x at time t is

DI
x,t = |DI

x ∩ Tt|.

Let ((Rx(t))t≥0)x∈T be i.i.d. Poisson processes with rate 2β. Write Rx,r =
min{t ≥ 0 : Rx(t) = r} for r = 1, .., Rx(Ax). Then the seeding times of
mortal cells are

Sx,r =
∑
y≺x

Ay +Rx,r.

Each seeding event initiates a subpopulation of mortal cells; let (Yx,r(t))t≥0
be i.i.d. birth-death branching processes with birth and death rates β and
α. Then the number of mortal descendants of x at time t is

DM
x,t =

∑
y∈Dx

Ry(Ay)∑
r=1

1{t−Sy,r≥0}Yy,r (t− Sy,r) .

The number of descendants of x at time t is

Dx,t = DI
x,t +DM

x,t.

The next result shows the long-term proportion of a cell’s descendants which
are immortal. The result is a basic consequence of classic branching process
theory [3], and was mentioned in its specific form by [10].
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Lemma A.1. There is c ∈ (0,∞) with

lim
t→∞

DI
x,t

Dx,t

= c

almost surely.

We use Lemma A.1 to see the number of descendants of a cell as a proportion
of the total population.

Lemma A.2. For x ∈ T\{∅},

lim
t→∞

Dx,t

D∅,t
= Px

almost surely, where the Px are as in Lemma 3.2.

Proof. By Lemma 3.2 and Lemma A.1,

Dx,t

D∅,t
=
Dx,t

DI
x,t

DI
x,t

DI
∅,t

DI
∅,t

D∅,t

converges to the required limit.

Let’s look at mutations. In the proof of Theorem 4.6 it was shown that the
number of new mutations to arise at a cell’s birth is approximately Poisson.
Here, with heterogeneous mutation rates, the number of new mutations to
arise at a cell’s birth is approximately Poisson with mean

η :=
∑
j∈J

∑
ψ∈N\{u(j)}

ηu(j),ψ(j).

Each x ∈ T\{∅} witnesses 1+Rx(Ax) cell divisions, while ∅ witnesses R∅(A∅)
cell divisions (one less because there is not a cell division associated to the
initiation of ∅). So the number of new mutations to arise at x is{∑Rx(Ax)

r=0 Mx,r, x 6= ∅;∑Rx(Ax)
r=1 Mx,r, x = ∅;
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where the Mx,r are i.i.d. Poisson random variables with mean η. In the proof
of Theorem 4.6 it was also shown that a mutation which arises in cell x will
have approximate frequency Px. Here, thanks to Lemma A.2, the situation
appears identical. It only remains to discuss mutations arising in mortal
cells. Any subpopulation of cells which descended from a mortal cell must
eventually die out. Hence mutations arising in mortal cells are negligible
when compared to the infinite total population size.
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