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28 Abstract 
 
 

29 South-East Australia has recently been subjected to two of the worst droughts in the historical 
 

30 record (Millennium Drought, 2000–2009 and Big Dry, 2017–2019). Unfortunately, a lack of 
 

31 forest monitoring has made it difficult to determine whether widespread tree mortality has 
 

32 resulted from these droughts. Anecdotal observations suggest the Big Dry may have led to 
 

33 more significant tree mortality than the Millennium drought. Critically, to be able to robustly 
 

34 project future expected climate change effects on Australian vegetation, we need to be able to 
 

35 assess the vulnerability to drought of Australian trees. Here, we implemented a model of plant 
 

36 hydraulics into the Community Atmosphere Biosphere Land Exchange (CABLE) land surface 
 

37 model. We parameterised the drought response behaviour of five broad vegetation types, 
 

38 based on a common garden dry-down experiment with species originating across a rainfall 
 

39 gradient (188–1125 mm yr-1) across South-East Australia. The new hydraulics model 

mailto:mdekauwe@gmail.com
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40 significantly improved (~35–45 % reduction in root mean square error) CABLE’s previous 
 

41 predictions of latent heat fluxes during periods of water stress at two eddy covariance sites in 
 

42 Australia. Landscape-scale predictions of the greatest percentage loss of hydraulic 
 

43 conductivity (PLC), 40–60 %, were broadly consistent with satellite estimates of regions of 
 

44 the greatest change in both droughts. In neither drought did CABLE predict that trees would 
 

45 have reached critical PLC in widespread areas (i.e. it projected a low mortality risk), although 
 

46 the model highlighted critical levels near the desert regions of South-East Australia where few 
 

47 trees live. Overall, our experimentally constrained model results imply significant resilience 
 

48 to drought conferred by hydraulic function, but also highlight critical data and scientific gaps. 
 

49 Our approach presents a promising avenue to integrate experimental data and make regional- 
 

50 scale predictions of potential drought-induced hydraulic failure. 
 
 

51 Introduction 
 
 

52 Australia is the driest inhabited continent, with the greatest inter-annual variability in rainfall, 
 

53 and is prone to severe multi-year droughts. Tree species that occur in this environment are 
 

54 well adapted to rainfall variability and extended drought periods (Myers & Neales, 1984; 
 

55 Stoneman, 1994; Arndt et al., 2015), but it is nonetheless unclear whether they will continue 
 

56 to thrive as the climate changes. Some climate studies project more intense, longer lasting and 
 

57 more frequent droughts (Dai, 2013; Trenberth et al., 2014; Cook et al., 2015), although 
 

58 divergence in model projections of future regional precipitation patterns (Collins et al., 2013) 
 

59 makes it difficult to determine how drought characteristics may change. Nevertheless, we can 
 

60 be certain that future drought episodes will occur against the widely predicted background of 
 

61 increasing air temperature in the immediate future (Reichstein et al., 2013; Williams et al., 
 

62 2013; Trenberth et al., 2014). Globally, projected changes in drought incidence are consistent 
 

63 with increased reports of severe drought events (Ciais et al., 2005; Fensham et al., 2009; 
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64 Phillips et al., 2009; Allen et al., 2015), declines in forest productivity linked to water 
 

65 limitations (Peñuelas et al., 2011) and associated tree mortality (Breshears et al., 2005; 
 

66 Anderegg et al., 2013; Mitchell et al., 2014). 
 
 

67 In contrast to the apparent increasing global trend in drought-induced tree mortality, there 
 

68 have been relatively few reports of similar events in Australia. Mitchell et al. (2014) in their 
 

69 literature review found only 17 scientific reports of drought-related die-off events since 1891. 
 

70 The decadal (2000–2010) Millennium drought was the worst drought on record for South- 
 

71 East Australia (van Dijk et al., 2013); Figures S1 and S2) and yet, Jiang et al. (2019), 
 

72 attempting to ground-truth remotely-sensed drought impacts, found only four locations where 
 

73 drought mortality was observed during the period. However, archival studies of newspaper 
 

74 reports during historical droughts, such as the Federation Drought (1891-1903), have found 
 

75 numerous observations of drought-related mortality (Fensham & Holman, 1999; Godfree et 
 

76 al., 2019). This poses an important question: is widespread drought-induced mortality rare 
 

77 among Australian trees? Or simply under-reported? 
 
 

78 Despite detailed reporting on the impacts of the Millennium drought on agriculture, 
 

79 hydrology and the economy (Carter & White, 2009; van Dijk et al., 2013), there remains a 
 

80 striking gap in the quantification of drought impacts for Australia’s tree species. This critical 
 

81 knowledge gap means that we do not know which species or forest types are most vulnerable, 
 

82 or what thresholds of drought stress are required to induce tree mortality among Australian 
 

83 species. Without this information, we are limited in our ability to develop or test a 
 

84 physiological understanding of the mechanisms that lead to tree die-off. As a result, we 
 

85 cannot robustly predict future drought vulnerability for Australian trees or predict changes in 
 

86 community species composition due to drought (Mueller et al., 2005; Nepstad et al., 2007; 
 

87 Ruthrof et al., 2015). A better understanding of the required magnitude of water stress that 
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88 would invoke hydraulic failure and lead to mortality (Adams et al., 2017) is urgently needed 
 

89 to comprehend the drought-tolerance of tree species, both within Australia and across the 
 

90 globe. 
 
 

91 Based on current literature, it is unclear whether species occurring in mesic or xeric 
 

92 environments are most vulnerable to the impacts of drought, or if both environments are 
 

93 equally vulnerable (Choat et al., 2012). We might hypothesise that species growing in more 
 

94 arid environments would be well adapted to water stress (i.e. greater xylem resilience to 
 

95 cavitation). By contrast, in mesic regions, climate variability is typically muted. As a result, 
 

96 ecological adaptions may be less plastic to stochastic drought (Arndt et al., 2015; Jump et al., 
 

97 2017), as witnessed in the large Amazon rainforest droughts (Bittencourt et al., 2020). 
 

98 Similarly, many studies have highlighted a greater drought sensitivity in larger trees, 
 

99 especially in particular taxa (Nepstad et al., 2007; Phillips et al., 2010; Rowland et al., 2015; 
 

100 Bittencourt et al., 2020), consistent with a hypothesis of greater drought stress in mesic 
 

101 species via the water transport system. Conversely, other studies have shown greater impacts 
 

102 of drought in drier environments (Ruiz-Benito et al., 2014; Anderegg et al., 2015), or for 
 

103 species growing at the edge of their distributions (Galiano et al., 2010; Anderegg et al., 2019). 
 

104 Many taller trees could also have invested more heavily in a deeper rooting structure (Fan et 
 

105 al., 2017), which implies resilience may be at odds with apparent greater drought sensitivity. 
 

106 Overall, there is no clear consensus among studies as to where, when, and which species are 
 

107 most vulnerable to the impacts of drought 
 
 

108 One way to estimate drought mortality thresholds is to use empirical approaches based on 
 

109 mortality observations. In the southwestern United States, Anderegg et al. (2015) successfully 
 

110 demonstrated a link between observed mortality of Populus tremuloides and a climatic water 
 

111 deficit metric (the difference between potential and actual evapotranspiration), then inferred 
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112 widespread future mortality based on coupled climate model projections and their observed 
 

113 mortality threshold. Where extensive monitoring networks exist (e.g. many countries in 
 

114 Europe), tree mortality has been empirically linked to climate variability (anomalies in 
 

115 temperature and precipitation) and tree age (Neumann et al., 2017). In Australia, based on the 
 

116 17 identified tree mortality events, Mitchell et al. (2014) used the intensity and duration of 
 

117 drought, in combination with heatwaves to define a common probabilistic climatic threshold 
 

118 for all vegetation types across Australia. They found that species in Australian ecosystems 
 

119 were resilient to the majority of historic climatic conditions but are likely to experience 
 

120 greater drought mortality risk by 2050. Such statistical approaches are powerful, but unless 
 

121 underpinned by extensive mortality data sets (e.g. Neumann et al. (2017)), they lack the 
 

122 sophistication to distinguish between regional, or even species behaviour (fundamentally 
 

123 limited by the climate data resolution, which is typically coarse). These statistical approaches 
 

124 also assume that the presentation of climate stresses that occurred in the past will be 
 

125 replicated in the future (i.e. with no change in the interaction between soil moisture, vapour 
 

126 pressure deficit (D), temperature and atmospheric carbon dioxide (Kelly et al., 2016)) and that 
 

127 there is no systematic acclimation and/or adaptation by the vegetation as the climate changes. 
 
 

128 Thus, despite numerous field and manipulation experiments leading to advances in our 
 

129 physiological understanding of the impact of drought, global-scale mortality thresholds 
 

130 remain elusive (Choat et al., 2012; Mencuccini et al., 2015). In places where we do not yet 
 

131 know the in situ mortality thresholds, we are unlikely to be able to link tree mortality to 
 

132 climatic water deficit metrics or hydraulic traits alone, limiting our ability to forecast drought 
 

133 impact globally. Consequently, we might opt for a more physiological approach that 
 

134 integrates climatic stress through the soil-plant-atmosphere continuum via a model. However, 
 

135 simulating the impact of water stress on vegetation function is a key weakness shared 
 

136 amongst land surface schemes used in climate models (Galiano et al., 2010; Egea et al., 2011; 
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137 Powell et al., 2013; De Kauwe et al., 2015b; Christoffersen et al. 2016; Ukkola et al., 2016a) 
 

138 and very few approaches mechanistically link soil moisture stress and turnover of plant 
 

139 tissues (but see Xu et al., 2016), or directly simulate drought-induced mortality. 
 
 

140 Our goal in this study was to examine whether we can use this physiological understanding of 
 

141 drought mortality to make predictions at landscape scale. We embedded a representation of 
 

142 plant hydraulics into the Australian land surface model, CABLE (Community Atmosphere– 
 

143 Biosphere Land Exchange). We extend the model by incorporating the “second” drought 
 

144 phase (after stomata have closed), allowing water to continue to be lost via cuticular 
 

145 conductance (Choat et al., 2018). We parameterised this new CABLE-Hydraulics based on a 
 

146 drought manipulation experiment on 12 woody species originating from a broad precipitation 
 

147 gradient (mean annual precipitation: 188-1125 mm yr-1) across southeastern Australia (Li et 
 

148 al., 2018). We then applied the new model at the landscape scale to make predictions of 
 

149 hydraulic failure due to drought in the Millennium (2000–2010) and “Big Dry” (2017–2019) 
 

150 droughts. We used our model simulations to identify if, where and when, species were most 
 

151 vulnerable to drought-induced mortality across South-East Australia (study area shown in 
 

152 Figure S3). 
 
 

153 Methods 
 
 

154 Model description 
 

155 CABLE is a land surface scheme, which can be run offline with prescribed meteorological 
 

156 forcing (Wang et al., 2011; De Kauwe et al., 2015b; Ukkola et al., 2016b; Decker et al., 
 

157 2017; Haverd et al., 2018), or fully coupled (Pitman et al., 2011; Lorenz et al., 2014) within 
 

158 the Australian Community Climate Earth System Simulator (ACCESS, see 
 

159 http://www.accessimulator.org.au; Kowalczyk et al. (2013)). 
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160 CABLE simulates the carbon, energy and water fluxes at the land surface, representing the 
 

161 vegetation using a single layer, two-leaf (sunlit/shaded) canopy model (Wang & Leuning, 
 

162 1998), with a detailed treatment of within-canopy turbulence (Raupach, 1994; Raupach et al., 
 

163 1997). In the model, soil water and heat conduction are numerically integrated over six 
 

164 discrete soil layers (4.6 m depth) following the Richards equation. The model groups 
 

165 vegetation globally into 11 plant functional types (PFTs). CABLE has the capacity to be run 
 

166 with an interactive biogeochemistry module (nitrogen and phosphorus) (Wang et al., 2010) 
 

167 and vegetation demography model (Haverd et al., 2014), but both of these were switched off 
 

168 for our simulations because leaf area index was prescribed (see below). 
 
 

169 A complete description of the model can be found in Kowalczyk et al. (2006) and Wang et al. 
 

170 (2011). The model source code can be accessed freely after registration at 
 

171 https://trac.nci.org.au/trac/cable. In this paper we used CABLE revision 6134. 
 
 

172 Simulating hydraulic failure 
 

173 Following Xu et al. (2016), we introduced an augmented plant hydraulic module (“Desica”) 
 

174 into CABLE to replace the default empirical representation of drought stress based on 
 

175 volumetric soil moisture content, weighted by the fraction of roots in each of CABLE’s six 
 

176 soil layers (De Kauwe et al., 2015b). Desica tracks water flow through the soil-plant- 
 

177 atmosphere continuum based on the gradient in water potentials between the leaf (𝛹𝛹l, MPa), 
 

178 stem (𝛹𝛹x, MPa) and the weighted average of the soil (𝛹𝛹sw, MPa). 
 
 
 

179 For each soil layer (i), we related the volumetric water content (𝜃𝜃, m3 m-3) to soil water 
 

180 potential (𝛹𝛹s, MPa) following Campbell (1974): 
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( 𝜃𝜃 ) ―𝑏𝑏 
181 𝛹𝛹𝑠𝑠,𝑖𝑖 = 𝛹𝛹𝑒𝑒 𝜃𝜃𝑠𝑠𝑠𝑠𝑠𝑠

 (1) 
 
 

182 where 𝛹𝛹𝑒𝑒 (MPa) is the air entry point water potential , 𝜃𝜃𝑠𝑠𝑠𝑠𝑠𝑠 (m3 m-3) is the soil volumetric 
 

183 moisture content at saturation and 𝑏𝑏 (unitless) is the empirical pore size distribution index 
 

184 which approximates the slope of the soil-water retention curve (Clapp & Hornberger, 1978). 
 
 

185 To obtain a representative value of whole root-zone 𝛹𝛹s, we weighted the average 𝛹𝛹𝑠𝑠 for each 
 

186 of the six soil layers by the weighted soil-to-root resistance to water uptake (𝑅𝑅𝑠𝑠, MPa s m2 m- 

 
187 3) of each layer (Williams et al., 2001a; De Kauwe et al., 2015b). Following Gardner (1960), 

 
188 for each soil layer, 𝑅𝑅𝑠𝑠 is defined as: 

 
 
 

𝑙𝑙𝑛𝑛( 𝑟𝑟𝑠𝑠 ) 
𝑟𝑟𝑟𝑟 

189 𝑅𝑅𝑠𝑠,𝑖𝑖 = 2𝜋𝜋𝜋𝜋𝑟𝑟𝐷𝐷𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 
(2) 

 
190 where 𝑟𝑟𝑠𝑠 is the mean distance between roots (m) (Williams et al. 2001a), 𝑟𝑟𝑟𝑟 is the fine root 

 
191 radius (m) (Williams et al. 2001a), 𝐷𝐷 is the depth of the soil layer (m) (Jackson et al. 1996), 𝑙𝑙𝑟𝑟 

 
192 is the fine root density (m m-3) (Williams et al. 2001a) and 𝐾𝐾𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is the soil hydraulic 

 
193 conductivity (m2 s-1 MPa-1) which depends on soil texture and soil water content. The total 

 
194 below-ground soil-to-root resistance is calculated as the reciprocal of the summed inverses of 

 
195 each soil layer’s resistance. 

 
 

196 To solve the leaf (𝛹𝛹𝑙𝑙) and stem water potentials 𝛹𝛹𝑥𝑥 requires integration, which can lead to an 
 

197 instability due to the dependence on 𝛹𝛹𝑙𝑙. Xu et al. (2016) proposed a simplification by treating 
 

198 𝛹𝛹𝑥𝑥 as a constant (𝛹𝛹𝑥𝑥𝑡𝑡 ― 1) by using the previous time step (Equation 5), which allows 𝛹𝛹𝑙𝑙 to be 
 

199 solved analytically. Similarly, the soil water potential is assumed to be a constant (𝛹𝛹𝑠𝑠𝑠𝑠𝑡𝑡 ― 1) 
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200 when calculating 𝛹𝛹𝑥𝑥 (Equation 8). Xu et al. (2016) argued that their simplifications did not 
 

201 result in large biases at the 10-minute timescale. Here, we followed their approach at the 30- 
 

202 minute timescale due to the limitations of the forcing data. 
 
 

203 𝛹𝛹𝑙𝑙 is solved as: 
 
 
 

204 𝛹𝛹𝑙𝑙 = 
(𝑎𝑎𝑙𝑙𝛹𝛹𝑙𝑙𝑡𝑡 ― 1 + 𝑏𝑏𝑙𝑙)𝑒𝑒(𝑎𝑎𝑎𝑎𝑎𝑎) ― 𝑏𝑏𝑙𝑙 

𝑎𝑎𝑙𝑙 
(3) 

 
 

205 where 𝛹𝛹𝑙𝑙𝑡𝑡 ― 1 is the leaf water potential from the previous time step (MPa), 𝛥𝛥𝛥𝛥 is the timestep 

206 (30 minutes in this case), 𝑎𝑎𝑙𝑙 and 𝑏𝑏𝑙𝑙 are solved as: 
 
 
 

207 𝑎𝑎𝑙𝑙 = 
— 𝑘𝑘𝑥𝑥𝑥𝑥 

𝐶𝐶𝑙𝑙 
(4) 

 
 
 

208 𝑏𝑏𝑙𝑙 = 
𝛹𝛹𝑥𝑥𝑡𝑡 ― 1𝑘𝑘𝑥𝑥𝑥𝑥 ― (LAI ⋅ 𝐸𝐸) 

𝐶𝐶𝑙𝑙 
(5) 

 
 

209 where 𝑘𝑘𝑥𝑥𝑥𝑥 is the conductance from the stem water store to the leaves (mmol m-2 s-1 MPa-1), 𝐸𝐸 
 

210 is the transpiration flux from the canopy (mmol m-2 s-1), 𝐶𝐶𝑙𝑙 the leaf capacitance (mmol m-2 s-1 

 
211 MPa-1) scaled up by the canopy leaf area (LAI, m2 m-2). 

 
 

212 𝛹𝛹𝑥𝑥 is then calculated as: 
 
 
 

213 𝛹𝛹𝑥𝑥 = 
(𝑎𝑎𝑥𝑥𝛹𝛹𝑥𝑥 

 
 

𝑡𝑡 ― 1 
+ 𝑏𝑏𝑥𝑥)𝑒𝑒(𝑎𝑎𝑎𝑎𝑎𝑎) ― 𝑏𝑏𝑥𝑥 

𝑎𝑎𝑥𝑥 
(6) 

 
 

214 where 𝛹𝛹𝑥𝑥𝑡𝑡 ― 1 is the stem water potential from the previous time step. 𝑎𝑎𝑥𝑥 and 𝑏𝑏𝑥𝑥 are solved as: 
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215 𝑎𝑎𝑥𝑥 = 

— 𝑘𝑘𝑠𝑠𝑠𝑠 
𝐶𝐶𝑠𝑠 

(7) 
 
 
 

216 𝑏𝑏𝑥𝑥 = 
𝛹𝛹𝑠𝑠𝑠𝑠𝑡𝑡 ― 1𝑘𝑘𝑠𝑠𝑠𝑠 ― 𝐽𝐽𝑠𝑠𝑠𝑠 

𝐶𝐶𝑠𝑠 
(8) 

 
 

217 where 𝛹𝛹𝑠𝑠𝑠𝑠𝑡𝑡 ― 1 is the weighted soil water potential from the previous timestep. 𝑘𝑘𝑠𝑠𝑠𝑠 is the 

218 conductance from the soil to the stem water store (mmol m-2 s-1 MPa-1), which includes the 
 

219 weighted soil-to-root conductance to water uptake (i.e. 1 / 𝑅𝑅𝑠𝑠) and the conductance from the 
 

220 root surface to the stem water pool (assumed to be halfway between the roots and the leaves). 
 

221 𝐶𝐶𝑠𝑠 is stem capacitance (mmol m-2 s-1 MPa-1) scaled up by the leaf area-to-sapwood area ratio 
 

222 (LA:SA), sapwood density (kg m-3) and height (m). 𝐽𝐽𝑠𝑠𝑠𝑠 is the flux of water from the stem to 
 

223 the leaves (mmol m-2 s-1), calculated as: 
 
 
 

224 𝐽𝐽𝑠𝑠𝑠𝑠 = 
(𝛹𝛹𝑙𝑙 ― 𝛹𝛹𝑙𝑙𝑡𝑡 ― 1)𝐶𝐶𝑙𝑙 

𝛥𝛥𝛥𝛥 + (LAI ⋅ 𝐸𝐸) (9) 
 
 

225 Xu et al. (2016) iteratively solved an optimal stomatal conductance model based on 𝛹𝛹l. 
 

226 Instead, we used a stomatal conductance model that assumes a sigmoidal sensitivity to 𝛹𝛹l 
 

227 (Tuzet et al., 2003): 
 
 

𝐴𝐴𝑛𝑛 
228 𝑔𝑔𝑠𝑠 = max(𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚,1.6𝑔𝑔1𝐶𝐶𝑠𝑠

𝑓𝑓(𝛹𝛹𝑙𝑙)) (10) 

 
229 where 𝑔𝑔𝑠𝑠 (mol m−2 s−1) is the stomatal conductance to water vapour, gmin is the water lost via 

 
230 cuticular conductance from internal stored water (Choat et al., 2018; Blackman et al., 2019), 

 

231 𝐴𝐴𝑛𝑛 is the net assimilation rate (𝜇𝜇mol m−2 s−1), 𝐶𝐶𝑠𝑠 is the CO2 concentration at the leaf surface ( 
 

232 𝜇𝜇mol mol−1) and 𝑔𝑔1 (unitless) is a fitted constant representing the slope of the sensitivity of 𝑔𝑔𝑠𝑠 
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(
 
 

) 

233 to 𝐴𝐴𝑛𝑛 (-). The factor of 1.6 converts from conductance to CO2 to conductance to water vapour. 
 

234 𝑓𝑓(𝛹𝛹𝑙𝑙) is a sigmoidal function defined as: 
 
 

1 + 𝑒𝑒(𝑆𝑆𝑓𝑓𝛹𝛹𝑓𝑓) 

235 𝑓𝑓(𝛹𝛹𝑙𝑙) = 
1 + 𝑒𝑒(𝑆𝑆𝑓𝑓(𝛹𝛹𝑓𝑓 ― 𝛹𝛹𝑙𝑙)) (11) 

 
236 where 𝑆𝑆𝑓𝑓 (MPa−1) determines the shape of the response of 𝑔𝑔𝑠𝑠 to 𝛹𝛹𝑙𝑙 and 𝛹𝛹𝑓𝑓 (MPa) is a 

 
237 reference water potential. 

 
 

238 Xylem conductance (𝑘𝑘𝑥𝑥) was assumed to decline via cavitation: i.e. a relative drop from a 
 

239 maximum value (the maximum plant hydraulic conductance, 𝑘𝑘𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝; mmol m-2 leaf s-1 MPa-1) 
 

240 following a Weibull model as 𝛹𝛹x declines (Ogle, 2009): 
 
 
 

241 2
4
1 

𝑘𝑘𝑥𝑥 
𝑘𝑘𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 

=
 

100 ― 50 𝑝𝑝 
 

 

100 

 
(12) 

 
 

242 where 
 
 

|𝑃𝑃50|𝑆𝑆50 

243 𝑝𝑝 = 
𝛹𝛹𝑥𝑥 𝑉𝑉 

 
 

|𝑃𝑃50| 
(13) 

 
 
 

244 and 
 
 

245 𝑉𝑉 = (50 ― 100)ln(1 ― 50/100) (14) 
 
 

246 where 𝑃𝑃50 is xylem pressure inducing 50% loss of hydraulic conductivity due to embolism 
 

247 (MPa) and 𝑆𝑆50 (% MPa-1) is the slope of the percentage loss of hydraulic conductivity (PLC) 
 

248 at 𝑃𝑃50. 

( 
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249 We assume that cavitation can be fully recovered following rainfall (Xu et al., 2016). We 
 

250 extend Xu et al. (2016) by allowing CABLE to track hydraulic failure until it reaches the 
 

251 critical threshold of hydraulic failure associated with mortality. To achieve this, we assume 
 

252 that following stomatal closure, 𝛹𝛹x continues to decrease as water is lost via gmin (Choat et al., 
 

253 2018; Blackman et al., 2019). Previous work has shown a strong link between a threshold 
 

254 corresponding to an 88% loss of stem hydraulic conductance (P88) and drought mortality (Urli 
 

255 et al., 2013; Li et al., 2015, 2018). Here, we do not equate P88 with mortality, but rather 
 

256 interpret it as indicative of the vegetation approaching a point of hydraulic stress likely to 
 

257 correspond to mortality, 𝛹𝛹crit. We make this distinction because each grid cell (~5 km2) would 
 

258 contain a number of trees, not all of which would be dead. To bridge the gap from 𝛹𝛹crit to 
 

259 mortality would require stochastic approaches that are beyond the scope of the study. 
 
 

260 Model simulations 
 

261 New land-cover map 
 
 

262 We replaced the standard vegetation land-cover map used in CABLE with a five-class land- 
 

263 cover map (Figure S4) derived from the National Vegetation Information System (NVIS, 
 

264 https://www.environment.gov.au/land/native-vegetation/national-vegetation-information- 
 

265 system). NVIS classifies the extent and distribution of vegetation types in Australian 
 

266 landscapes into 32 classes. We reclassified the vegetation classes that make up South-East 
 

267 Australia based on the drought manipulation experiments on 12 dominant tree species, so as 
 

268 to represent five major woody vegetation types 
 

269 (https://data.nsw.gov.au/data/dataset/4b6f1b3f-f33a-4e56-a6dd-5b052f28a361) in New South 
 

270 Wales, Australia (see below). Our five new vegetation classes (Figure S4) were: (i) rainforest 
 

271 (RF); (ii) wet sclerophyll forest (WSF); (iii) dry sclerophyll forest (DSF); (iv) grass woodland 
 

272 (GRW); and (v) semiarid woodland (SAW). 

http://www.environment.gov.au/land/native-vegetation/national-vegetation-information-
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273 Model parameterisation 
 
 

274 Each of the five new vegetation classes was parameterised based on the hydraulic and 
 

275 physiological traits measured in the drought manipulation experiments conducted by Li et al. 
 

276 (2018), Li et al. (2019) and Blackman et al. (2019). Full details are given by Li et al. (2018) 
 

277 but in brief, after 4 months of growth, seedlings of each species were transplanted to a 
 

278 polytunnel growth facility at Western Sydney University. Seedlings were placed into 25 l 
 

279 bags filled with native loamy sand top-soil. There were two drought phases: (i) plants were 
 

280 first dried until the point of visual wilting and then re-watered for 10 days to allow for full 
 

281 recovery; and then (ii) water was completely withheld to allow plants to use up all of their 
 

282 available water reserves. A full suite of hydraulic and physiological traits was measured 
 

283 during the second dry-down period. 
 
 

284 Hydraulic traits measured on young plants grown under common conditions are assumed to 
 

285 reflect trait values of mature trees growing in the field. In the case of stem xylem cavitation 
 

286 resistance, there is evidence that this is true for Eucalyptus species, with P50 measured on the 
 

287 main stem axis of younger plants closely matching P50 of branches collected from mature 
 

288 trees in the field (Bourne et al., 2017; Blackman et al., 2019). Stem P50 also appears to have 
 

289 limited plasticity in response to growth environment (Lamy et al., 2014) . Leaf hydraulic 
 

290 traits may be expected to vary more in response to growth environment and this variation 
 

291 could lead to bias in model output. 
 
 

292 Species traits were averaged within vegetation classes as grouped by Li et al. (2018). 
 

293 Specifically for each vegetation class, we estimated values for P50, kplant (plant hydraulic 
 

294 conductance, mmol m-2 leaf s-1 MPa-1), Cl, Cs, Vcmax (maximum carboxylation rate at 25 °C, 𝜇𝜇 
 

295 mol m-2 s-1), Jmax (maximum rate of electron transport at 25 °C, 𝜇𝜇mol m-2 s-1), g1; gmin (mmol 
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296 m-2 s-1), S50, Sf (MPa-1, assumed to be fixed) and 𝛹𝛹f. The key parameter values are shown in 
 

297 Table 1. 
 
 

298 To apply the model at the landscape scale we had to make several simplifying assumptions. 
 

299 To scale up the measured branch capacitance and obtain an estimate of total Cs, we used 
 

300 experimentally measured estimates of LA:SA and sapwood density (Table 1) and height 
 

301 estimates from LiDAR data (Simard et al., 2011). We estimated heights of 32 m, 29 m, 25 m, 
 

302 11 m and 7 m for the RF, WSF, DSF, GRW and SAW vegetation classes based on the median 
 

303 heights of pixels within each vegetation class derived from the Geoscience Laser Altimeter 
 

304 System, LiDAR data (Simard et al., 2011). Root biomass was prescribed based on the 
 

305 measured fine root biomass at the Eucalyptus woodland Free Air CO2 Enrichment research 
 

306 facility in native Australian forest experiment – 832 g C m-2 (Jiang et al., 2020) – and used to 
 

307 calculate 𝑙𝑙𝑟𝑟 in Equation 2. This biomass value is comparable to values used in previous 
 

308 studies (Williams et al., 2001b; Schwarz et al., 2004; Fisher et al., 2007; Hill et al., 2011) but, 
 

309 in reality, root biomass would vary spatially. We found that our single site model results were 
 

310 insensitive to varying fine root biomass between 200 and 1000 g C m-2 (Transpiration Root 
 

311 Mean Squared Error, RMSE < 1 W m-2). Root density (0.5 g cm-3) and root resistivity (25 
 

312 MPa s g mmol-1) were prescribed following Williams et al. (2001b) and Bonan et al. (2014), 
 

313 respectively. Bonan et al. (2014) found their plant hydraulics model to be most sensitive to 
 

314 root resistivity among the root parameters. CABLE-hydraulics, however, showed no notable 
 

315 sensitivity to root resistivity (Transpiration Root Mean Squared Error, RMSE < 1 W m-2), 
 

316 even when assuming a value as high as 150 MPa s g mmol-1. 
 
 

317 In our model simulations, we also assumed that each 5 km2 grid cell was only occupied by 
 

318 trees with a leaf area prescribed based on satellite data. This assumption is unrealistic 
 

319 (because a large proportion of South-East Australia is composed of a mixture of trees, 
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320 agricultural land and grasslands); we made it because we aimed to explore drought-induced 
 

321 tree mortality. As models (even dynamic vegetation models) do not realistically account for 
 

322 below-ground water competition (see Fisher et al. 2018 for a review of the state-of-the-art), 
 

323 our assumption is the same as running a tiled model (grid box divided into fractions of 
 

324 different surface type) and simply analysing the tree fraction. The model results are 
 

325 interpreted accordingly. 
 
 

326 Model forcing 
 
 

327 We performed offline simulations for South-East Australia (~400,000 km2) using gridded, 30- 
 

328 minute meteorological forcing of precipitation, downward shortwave and longwave radiation, 
 

329 surface air temperature, surface specific humidity, surface wind speed, surface air pressure 
 

330 and atmospheric carbon dioxide concentration. We ran the model over the period 2000–2010 
 

331 (Millennium Drought; spin-up 1995–1999) and 2017–2019 (Big Dry; spin-up 2011–2016) at 
 

332 a resolution of 0.05° (~5 km2). The meteorological data were sourced from the Bureau of 
 

333 Meteorology’s Australian Water Availability Project (AWAP) (Jones et al., 2009) and the 
 

334 near-surface wind data of McVicar et al. (2008; McVicar, 2011). Data were downscaled from 
 

335 daily inputs to 3-hourly time steps using a weather generator (Haverd et al., 2013) and then 
 

336 linearly interpolated to obtain 30-minute forcing. For the precipitation forcing, 30-minute data 
 

337 were obtained by first translating the 3-hourly rate to 30-minutes time slots and then assuming 
 

338 zero rainfall for the additional 30-minutes time slots. Wind data from McVicar (2011) were 
 

339 not available for 2019 so a monthly climatology from 2014-2018 was substituted. 
 
 

340 CABLE was run with prescribed LAI based on a climatology (1999–2017) derived from the 
 

341 Copernicus LAI product, which is distributed by the Copernicus Global Land portal 
 

342 (http://land.copernicus.eu/global/). The Copernicus LAI product is derived from 

http://land.copernicus.eu/global/)
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343 SPOT/VEGETATION and PROBA-V data at 10-day intervals at a 0.01° (~1 km) spatial 
 

344 resolution using a neural network approach. To force CABLE, we degraded the data from a 
 

345 resolution of 0.01° to 0.05°. By prescribing LAI we avoid the need for a long model spin-up, 
 

346 only requiring five years to stabilise the soil temperature and root-zone soil moisture. 
 

347 Prescribing the LAI also avoids the assumption that the forest is in equilibrium with the 
 

348 current climate, as would be the case had we spun up the model’s carbon cycle. The model 
 

349 was therefore spun up using five-year periods (repeating the meteorological forcing, 1995- 
 

350 1999 and 2011-2016, see below). 
 
 

351 Soil properties (e.g. texture, soil hydraulic and thermal characteristics) for CABLE were 
 

352 based on the SoilGrids (Hengl et al., 2017) data. Data were degraded using local area 
 

353 averaging from 250m to 0.05° for simulations. We also tested the sensitivity of our results to 
 

354 the 90m Soil and Landscape Grid of Australia soil dataset 
 

355 (https://www.clw.csiro.au/aclep/soilandlandscapegrid) degraded to 0.05° (~5 km) but found 
 

356 no significant impact arising from the choice of dataset. As is standard in CABLE, we 
 

357 assumed vertically uniform soil texture based on the weighted average of the 2 m SoilGrids 
 

358 data. 
 
 

359 Sensitivity experiment 
 
 

360 To better understand the resilience to drought conferred by hydraulic traits, we also carried 
 

361 out a model sensitivity experiment. Starting from a wet soil profile and without further 
 

362 precipitation, we asked: how long would it take for each vegetation class to reach 𝛹𝛹crit 
 

363 (assumed to be P88)? For each of the five vegetation types, we sampled (5 samples) ±35% of 
 

364 the measured trait averages for gmin, P50, Cl and Cs. We also sampled between the interquartile 
 

365 range (i.e. difference between 75th and 25th percentiles) LAI value, 𝜃𝜃𝑠𝑠𝑠𝑠𝑠𝑠 and 𝑏𝑏 found within 

http://www.clw.csiro.au/aclep/soilandlandscapegrid)
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366 the geographical range of each vegetation class. Temperature was fixed to 35°C and a relative 
 

367 humidity set to 10%. A temperature of 35°C is common in summers in South East Australia: 
 

368 in New South Wales, the average maximum temperature during summer is 31°C and the 10 
 

369 hottest summers on record all have days exceeding 40°C (Bureau of Meteorology; 
 

370 http://www.bom.gov.au/). 
 
 

371 For computational efficiency, we coupled the plant hydraulics module (Desica) to a big-leaf 
 

372 canopy module (with the same coupled photosynthesis-stomatal conductance approach from 
 

373 CABLE) and a single soil water “bucket” (of varying depth between 0.1 and 1 m), where the 
 

374 only losses from the soil profile were assumed to be due to transpiration (E=1.6𝑔𝑔𝑠𝑠D). In total, 
 

375 we ran 140,625 simulations in the sensitivity experiment. 
 
 

376 The sensitivity experiments were designed to examine the vegetations’ tolerance to extreme 
 

377 drought conditions but as the simulations use an imposed extreme climate and a simpler 
 

378 representation of soil hydrology, the exact simulated day of 𝛹𝛹crit should be interpreted 
 

379 cautiously. Instead, we were interested in the relative simulated differences between to 𝛹𝛹crit 
 

380 for the vegetation classes. 
 
 

381 Data sets used 
 

382 Satellite data 
 
 

383 To test whether our model realistically predicts where water stress occurred during the 
 

384 Millennium Drought, we calculated anomaly maps (percent difference) using remote sensing 
 

385 estimates of vegetation optical depth (VOD) and normalised difference vegetation index 
 

386 (NDVI). 

http://www.bom.gov.au/)
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387 VOD data describes the attenuation of microwave wavelengths through the vegetation layer 
 

388 and has been assumed to be most sensitive to above-ground vegetation water content and 
 

389 changes in leaf/branch biomass (van Dijk et al., 2013). We used two VOD datasets to 
 

390 quantify the change in the vegetation due to drought. For the Millennium drought, we 
 

391 calculated the average and greatest difference from a baseline average between 1993 and 
 

392 1999, using a merged passive microwave VOD product (Liu et al., 2011). For the Big Dry 
 

393 (2017-2018) we estimated an anomaly from a baseline between 2010 and 2016. In the latter 
 

394 case, we used the land parameter data record (LPDR) version 2 VOD product (Du et al., 
 

395 2017), which uses retrievals from the Advanced Microwave Scanning Radiometer for EOS 
 

396 (AMSR-E) and the Advanced Microwave Scanning Radiometer 2 (AMSR2). We used two 
 

397 different products because no single microwave sensor covers the entire period. 
 
 

398 NDVI quantifies the photosynthetically active radiation that is absorbed by vegetation and so 
 

399 captures changes in foliar vegetation during periods of water stress. For the Millennium 
 

400 drought, we calculated the average and greatest difference from a baseline average between 
 

401 1993 and 1999 (baseline chosen to match VOD). For the Big Dry (2017-2018), we estimated 
 

402 an anomaly from a baseline between 2010 and 2016. In each case, we used the NOAA 
 

403 Climate Data Record version 4 product based on the Advanced Very High Resolution 
 

404 Radiometer (AVHRR) sensor (Vermote, 2019). 
 
 

405 In both remotely sensed estimates, we excluded the final summer period from our anomaly 
 

406 calculation for the Big Dry (2019), owing to the potential contamination due to fires in South- 
 

407 East Australia. 
 
 

408 Climatic water deficit 
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409 A number of approaches have been used in the literature to quantify drought impact via a 
 

410 climatic water deficit. To explore the usefulness of these approaches, we calculated an 
 

411 estimate of climatic water deficit: precipitation minus potential evapotranspiration (P-PET). 
 

412 For the calculation of mean P-PET at 0.05° resolution, precipitation data was taken from 
 

413 AWAP and PET was calculated following Priestley & Taylor (1972) from AWAP monthly 
 

414 incoming shortwave radiation (converted to sunshine hours) and mean air temperature using 
 

415 the R package rstash (https://github.com/rhyswhitley/r_stash; Davis et al. (2017)). 
 
 

416 Ozflux eddy covariance 
 
 

417 To evaluate the new hydraulics module, we ran CABLE-Hydraulics at two woodland sites 
 

418 within the Australian eddy covariance network: the Wombat state forest (37.42°S, 144.09°E; 
 

419 Griebel et al. (2016)) and Tumbarumba (35.65°S, 148.15°E; Keith et al. (2012)) sites. We 
 

420 assumed that the Wombat site could be represented as a DSF and Tumbarumba as a WSF 
 

421 vegetation type. Those sites were chosen because the measurements records cover periods 
 

422 with significant drought. The CABLE outputs compared to half-hourly eddy covariance 
 

423 measurements of the exchange of carbon dioxide, energy, and water vapour obtained from 
 

424 OzFlux (http://www.ozflux.org.au/, last access: 26 April 2017). We used Level 6 gap-filled 
 

425 data following Isaac et al. (2017). Flux data were pre-processed using the FluxnetLSM R 
 

426 package Ukkola et al. (2017) and then screened to retain measured and good-quality gap- 
 

427 filled data. 
 
 

428 Analysis code 
 

429 All analysis code is freely available from 
 

430 https://github.com/mdekauwe/SE_AUS_drought_risk_paper.git 

http://www.ozflux.org.au/
http://www.ozflux.org.au/
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431 Results 
 
 

432 Sensitivity experiment 
 
 

433 Figure 1 shows the time taken for each vegetation class to reach 𝛹𝛹crit, expressed as a 
 

434 histogram. Varying all the possible trait combinations leads to a marked overlap in 
 

435 distributions of the simulated day of 𝛹𝛹crit, with the exception of the SAW class. Despite this 
 

436 overlap, there is a notable separation in the peaks of the WSF and RF classes and the GRW 
 

437 class has a very broad upper tail, which overlaps with the SAW class. Our model results 
 

438 suggest that the WSF class was the most vulnerable and the least vulnerable was SAW. 
 

439 Perhaps counter-intuitively, the RF class emerges as more resilient than all classes except 
 

440 SAW (but note broad upper tail of GRW). This result is due to a combination of the very 
 

441 negative P50 (Table 1), which is the third most resistant among the five vegetation classes and 
 

442 the lowest gmin value, meaning that the rate of cuticular water loss is relatively low. Overall, 
 

443 gmin, LAI and P50 (in that order of importance) were the predictors that contributed most to 
 

444 vegetation resilience (assessed using partial residual plots; not shown). Finally, the 
 

445 overlapping distributions in the simulated day of 𝛹𝛹crit, imply that when embedded within 
 

446 CABLE, our model should predict gradients in 𝛹𝛹crit rather than sharp boundaries that follow 
 

447 vegetation class boundaries. 
 
 

448 Drought simulation at eddy-flux sites 
 
 

449 Figures 2 and 3 show two flux site-scale comparisons between observations of latent heat flux 
 

450 (LE), flux-derived gross primary productivity (GPP) and simulated fluxes by standard 
 

451 CABLE (Control) and the new CABLE-Hydraulics (Hydraulics) model. At both sites there is 
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452 evidence of pronounced water stress (shown by the gaps between rainfall events). These site- 
 

453 scale simulations allow us to evaluate the new hydraulics model. 
 
 

454 Introducing a representation of plant hydraulics leads to marked improvements in CABLE’s 
 

455 capacity to simulate carbon and water fluxes during periods of water stress. During the 
 

456 periods of water stress, the hydraulics model approximately halves the error in the modelled 
 

457 LE relative to the Control, whilst also improving the simulation of GPP. At Wombat (Figure 
 

458 2), the RMSE in LE was reduced from 37 W m−2 to 20 W m−2 (Pearsons’s correlation 
 

459 coefficient, r: 0.61 vs 0.82) and at Tumbarumba (Figure 3), the RMSE was reduced from 56 
 

460 W m−2 to 36 W m−2 (r: 0.31 vs 0.58). These improvements result from the replacement of the 
 

461 empirical drought-stress function based on soil texture (Fig S5; Figures S6 and S7 show the 
 

462 evolution of modelled water potentials at both sites) with two drought-stress modifiers based 
 

463 on 𝛹𝛹l, 𝛹𝛹x and measured hydraulic traits (e.g. P50). Whilst it is clear that the new hydraulics 
 

464 could be improved further (i.e. the sensitivity in both the control and hydraulics model 
 

465 relative to the control remains similar), it is important to note that these simulations have not 
 

466 been tuned to any of the sites. 
 
 

467 Climatic water deficit 
 
 

468 Figure 4 shows the widely used climatic water deficit metric (P−PET) prior to (panel a) and 
 

469 the difference (during the Millennium Drought minus prior, panel b). In an environment 
 

470 where PET is always high (due to high solar radiation and temperature), this approach is of 
 

471 limited value for inferring drought impact on the vegetation, as panel b show little 
 

472 distinguishable difference (hence we do not show the Big Dry). These climatic deficit maps 
 

473 (Figure 4) can be compared to the year-to-year rainfall decile maps, which show distinct 
 

474 spatial patterns (Figure S1). 



Page 23 of 66 Global Change Biology 

23 

 

 

475 Contrasting these P−PET deficit maps with maps that depend on actual evapotranspiration 
 

476 (AET), as simulated via CABLE-Hydraulics during the Millennium drought (Figure 5a) and 
 

477 the Big Dry (Figure 5b), clearly highlights the spatially heterogeneous impact of the drought. 
 

478 Both maps show greater deficit inland (moving west), although the regions of greatest deficit 
 

479 differ in spatial location and magnitude between the droughts. Overall, the simulated water 
 

480 stress (lower P-AET) was noticeably greater throughout South-East Australia during the Big 
 

481 Dry compared to the Millennium Drought, particularly east of 145°E. 
 
 

482 Simulated hydraulic failure 
 
 

483 In the coastal regions, despite the simulated (P-AET) deficit due to the drought (cf. Figures 5a 
 

484 to 5b focussing on north of 32°S and south of 37°S), CABLE simulates no signs of 
 

485 approaching 𝛹𝛹crit (the xylem pressure inducing 88 % loss of hydraulic conductivity) at any 
 

486 point during either drought (Figures 6a,b). These predictions are consistent with the satellite 
 

487 anomaly maps (VOD and NDVI), which both suggest limited impact along the coast of 
 

488 South-East Australia (Average anomaly: Figures 7 and 8; Greatest anomaly: Figures S8 and 
 

489 S9). Moving west and inland, the impact of the Big Dry is more marked than that of the 
 

490 Millennium drought, with many regions approaching a greater maximum PLC ~40-50 % 
 

491 (145°E to 151°E). In both droughts, CABLE consistently simulates large areas that reach 𝛹𝛹crit 
 

492 (north of 35°S and west of 145°E). In those regions, CABLE-Hydraulics indicates that trees 
 

493 would be unlikely to survive those two most recent droughts. Figure S10 shows the 
 

494 timecourse of 𝛹𝛹sw, 𝛹𝛹l and 𝛹𝛹x for four representative pixels from the GRW and SAW 
 

495 vegetation classes during the Big Dry. As can be seen by comparing Figures S10c and S10d, 
 

496 greater LAI (Figure S10d, see also sensitivity experiment) and so higher losses via gmin leads 
 

497 to increased water stress for SAW pixels. 
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498 Comparing the regions of greatest drought impact according to the remote sensing data 
 

499 (Average anomaly: Figures 7 and 8; Greatest anomaly: Figures S8 and S9) to the maps of 
 

500 maximum PLC (Figure 6), there is a reasonable degree of spatial agreement. The regions of 
 

501 greatest drought impact in both the VOD and NDVI maps are also areas of significant (>50 
 

502 %) PLC. The higher agreement between the PLC map and the NDVI data, may relate to our 
 

503 assumption of perfect recovery upon rewatering (see discussion). The NDVI data for the Big 
 

504 Dry (Figure 8b) shows a more marked decline in green canopy cover than the Millennium 
 

505 drought (Figure 8a) and this is broadly consistent with the PLC maps (Figure 6). CABLE 
 

506 does appear to miss the decline in NDVI south of 37°S; however, this feature is not evident in 
 

507 the VOD data (Figure 7b). Overall, CABLE simulates a more widespread impact due to 
 

508 drought than the satellite data but is qualitatively consistent in identifying the regions of 
 

509 greatest impact. It is worth noting that CABLE is simulating uniform tree cover throughout 
 

510 the domain, so the evaluation against the satellite data is only indicative of potential drought 
 

511 impact. 
 
 

512 Figure 9 shows the PLC map as an average timeseries for each tree class, allowing us to 
 

513 visualise the point during the droughts at which CABLE simulated the greatest impact. In the 
 

514 Millennium Drought (Figure 9a), the impact was greatest for all vegetation classes during mid 
 

515 2002 – mid 2003 and mid 2006 – mid 2007, which is consistent with the rainfall decile maps 
 

516 (Figure S1). There is an increasing accumulated level of drought impact (GRW and SAW) as 
 

517 illustrated by a year-on-year increase in PLC between 2003 and 2007 (Figure 9). For the Big 
 

518 Dry, Figure 9b, there is a worsening state of the vegetated land surface leading into the 2019– 
 

519 2020 austral spring/summer. 
 
 

520 Sensitivity to soil moisture 
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521 PLC increases as soil water declines for the Millennium drought (Figure 10; Figure S11 
 

522 shows the Big Dry). We can see that in both droughts the DSF, GRW and SAW classes had 
 

523 very low available soil moisture in their top four layers (𝜃𝜃 < 0.17 m3 m-3). For the DSF class 
 

524 this led to little increase in PLC, but by contrast the simulated PLC for the GRW exceeded 
 

525 20% for a large number of pixels. Given the similarity in the parameterised traits (Table 1, see 
 

526 also Figure 1), these differences show the additional stress imposed by the climate, e.g. 
 

527 through temperature and vapour pressure deficit. This sensitivity to climate becomes more 
 

528 pronounced at low volumetric soil water content values (cf. GRW and SAW) when the total 
 

529 below-ground soil-to-root resistance (see Equation 2) is greatest and the 𝛹𝛹x and 𝛹𝛹l drop 
 

530 significantly diurnally, leading to higher PLC values. In our sensitivity experiment (Figure 1), 
 

531 we sampled the interquartile range of LAI found within the SAW vegetation class and 
 

532 matching expectations based on traits (Table 1), the SAW appeared more resilient than other 
 

533 classes. However, for a ~1 % of pixels within the SAW vegetation class, LAI values exceeded 
 

534 1.5 m2 m2, which is likely to reflect non-tree contributions (cf. Figures S10c and S10d). 
 
 

535 Discussion 
 
 

536 Did trees die during the droughts? 
 
 

537 Globally, Australia stands out with limited reports of recent widespread drought-induced tree 
 

538 mortality (Allen et al., 2015). There are a number of studies that have historically documented 
 

539 drought-related tree mortality across Australia (Hopkins, 1973; Landsberg, 1985; Pook, 1986; 
 

540 Fensham et al., 2009; Ross & Brack, 2015), but reports of mortality during the decadal 
 

541 Millennium Drought are surprisingly few (Keith et al., 2012). This contrasts with recent 
 

542 droughts in the California and Texas, in which severe droughts were estimated to have killed 
 

543 100 million and 300 million trees, respectively (Asner et al., 2016; Moore et al., 2016; 
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544 Service, 2016). Were tree deaths during the Millennium Drought simply not recorded? Or 
 

545 instead are Australian tree species exceptionally resilient to drought and did not approach 
 

546 critical hydraulic thresholds? For large areas of South-East Australia (that supports a large 
 

547 proportion of Australia’s forests), CABLE-Hydraulics did not predict that the trees 
 

548 approached 𝛹𝛹crit in either drought (Figure 6). These results were qualitatively in spatial 
 

549 agreement with remote sensing estimates, noting that the remote sensing estimates do not 
 

550 show mortality (Average anomaly: Figures 7 and 8; Greatest anomaly: Figures S8 and S9). 
 

551 However, the model is likely to be too sensitive to water stress in the initial phase (stomatal 
 

552 closure) of drought response (Figures 2 and 3), and too insensitive in the second phase 
 

553 (cuticular water loss), where we do not have data to evaluate the model. 
 
 

554 Our model did predict potential drought-induced mortality across the extremely arid regions 
 

555 in northwestern New South Wales (Fig. S3), but this result should be interpreted cautiously. 
 

556 To explore tree-related drought mortality, we assumed that trees were able to grow all across 
 

557 South-East Australia. In the northwestern region we are approaching the Simpson desert 
 

558 where Donohue et al. (2009) used a satellite-derived estimate of persistent tree cover (a proxy 
 

559 for where trees grow) for this region to indicate that no trees grow there. However, trees 
 

560 having the mallee growth form, characterised by multiple stems and a massive lignotuber, are 
 

561 present, but are patchily located and sometimes in close proximity to river features. It has 
 

562 been suggested that these mallee communities could be classified either as woodlands or as 
 

563 shrublands given their physiognomy, which appears to be uniquely Australian (Whittaker et 
 

564 al., 1979). Thus, an alternative view of CABLE’s prediction is that trees, as defined by the 
 

565 five simulated habitat types, should not be able to live there during a drought without 
 

566 additional water sources (e.g. groundwater). 
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567 Anecdotal and visual point-scale reports (e.g. the citizen science Dead Tree Detective project; 
 

568 https://biocollect.ala.org.au/acsa/project/index/77285a13-e231-49e8-b212-660c66c74bac) 
 

569 suggest extensive tree mortality during the Big Dry across South-East Australia. Much of this 
 

570 mortality was observed during significant heatwaves in summer 2019, a period that we were 
 

571 unable to examine in the remotely-sensed data owing to the extensive bushfires. These 
 

572 observations would appear to be odds with our model predictions for the Big Dry (Figure 6b). 
 

573 Our model simulations simulated broadly similar results between the two droughts we 
 

574 examined, where the emerging reports point to a greater impact from the shorter, more- 
 

575 intense Big Dry. This may imply that while we have improved simulation performance during 
 

576 the initial phase of drought response by incorporating hydraulic function, more data are 
 

577 needed to better constrain the second phase (see below). In situ measurements of leaf water 
 

578 potential, carbohydrates reserves, leaf shedding, vulnerability to cavitation (𝛹𝛹50, 𝛹𝛹88) and 
 

579 capacitance, would be particularly valuable. In addition, the anecdotal observations of canopy 
 

580 death during the heatwaves indicate that we need to more closely examine interactions 
 

581 between drought and heatwaves (so-called compound events) and simulated vegetation 
 

582 function in future work. 
 
 

583 Emerging reports of canopy death are yet to be verified: many eucalypts may appear dead due 
 

584 to total canopy defoliation following hydraulic failure i.e. they hit 𝛹𝛹crit and, yet the trees may 
 

585 not be dead, since many eucalypts, resprout following rain (Nolan et al., 2014). Furthermore, 
 

586 trees may not die directly from drought, but due to many other factors that may be associated 
 

587 with drought (e.g. pests and pathogens) (Weed et al., 2013). Thus, attempts to predict drought 
 

588 mortality may need to consider resprouting capacity as well as hydraulic failure. 
 
 

589 Australian trees are likely to be among the first ecosystems to be exposed to extremes of 
 

590 climate (e.g. higher temperatures) under climate change and insight into ecosystem responses 



Global Change Biology Page 28 of 66 

28 

 

 

591 to extremes may be disproportionately valuable (van der Horst et al., 2019) to developing 
 

592 theory for trees world-wide. Most studies that have explored responses to drought compare 
 

593 measured hydraulic traits but ignore differences in local climate. Or put another way, studies 
 

594 have evaluated vulnerability simply from the axis of sensitivity and not accounted for risk too. 
 

595 Our results highlight the importance of integrating both traits and climate to gain insight into 
 

596 mortality predictions across species. In our (experimentally constrained) model simulations, 
 

597 the divergence in ecosystem flux trajectories towards 𝛹𝛹crit is greater within vegetation classes 
 

598 than what the traits themselves would imply (cf. PLC map, Fig. 6 and Table 1). 
 
 

599 Hydraulics models in land surface models 
 
 

600 Poor model performance during periods of water stress (Powell et al., 2013; Medlyn et al., 

601 2016; Ukkola et al., 2016a) have led authors to argue that we require a more mechanistic  

602 approach to determine the impact of water stress on vegetation function in models (Sperry & 

603 Tyree, 1988; McDowell et al., 2013; Zhou et al., 2013; De Kauwe et al., 2015a; Sperry et al., 

604 2017). It is plausible that model improvements could be achieved by replacing the widespread 

605 empirical functions based on soil moisture availability and texture with more mechanistic  

606 representations of plant hydraulics. A series of land surface schemes have successfully 

607 demonstrated this point with recent model advancements (Bonan et al., 2014; Christoffersen 
 

608 et al., 2016; Xu et al., 2016; Kennedy et al., 2019; Eller et al., 2020; Sabot et al., 2020). 
 

609 However, to date, the focus has predominantly been on individual sites (but see Xu et al., 

610 2016) and integrating trait measurements into viable global parameterisations for land surface 

611 models remains a key challenge (not least due to the lack of high spatiotemporal resolution 

612 climate data). Current coupled climate models do not adequately represent legacy effects of 

613 drought (e.g. turnover of plant tissues, instantaneous recovery, etc), including drought- 

614 induced mortality. Recovery after drought is not likely to be instantaneous (Saatchi et al., 



Page 29 of 66 Global Change Biology 

29 

 

 

615 2013; Wigneron et al., 2020), as commonly assumed by models, implying that surface energy 
 

616 partitioning feedback on atmospheric processes may be in gross error, which may be 
 

617 particularly important in future projections. 
 
 

618 In this study, we introduced a hydraulics model into the CABLE LSM and made landscape- 

619 scale (~400,000 km2) predictions of drought-induced mortality (𝛹𝛹crit) during the Millennium 

620 drought and Big Dry across South-East Australia. The new hydraulics model notably 

621 improved simulations of carbon and water fluxes at the site level (Figures 2 and 3). In making 

622 predictions of the evolution of xylem tension during drought we have significantly advanced 

623 the predictive capacity of one state-of-the-art LSM, opening new research avenues to simulate 

624 realistic predictions of drought-induced mortality. 

 
625 Our hydraulics approach does have limitations that are pertinent for the LSM community to 

626 consider further. First, in order to produce realistic simulations of water potentials, we had to 

627 drive CABLE with 30-minute meteorological forcing, requiring us to use a weather generator. 

628 At a spatial resolution of 0.05° (~5 km2), these forcing files become significantly larger than 

629 files typically used to run offline LSMs. Using a weather generator introduces a new set of 

630 biases, for example by muting the diurnal variability in meteorological forcing, which may in 

631 turn reduce the intensity of atmospheric drivers during periods of weather extremes. 

 
632 Second, explicit representations of plant hydraulics require additional model parameters, not 

633 just the most widely available hydraulic trait, P50 (see Table 1). This is the most challenging 

634 limitation to LSMs adopting these hydraulics approaches. Where would appropriate 

635 parameters come from at the global scale? Particularly, as hydraulic traits have been shown to 
 

636 have similar distributions when re-interpreted not at the species level, but in PFTs more 
 

637 commonly used in LSMs (Konings & Gentine, 2017). Here, we were fortunate to be able to 
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638 use an existing drought manipulation experiment that considered a wide spectrum of species 

639 originating from a marked aridity gradient. In future work we plan to extend this approach, 

640 particularly to consider a wider range of species originating from mesic environments. An 

641 alternative approach that may reduce the parameterisation burden would be to move towards 

642 the new generation of stomatal optimisation models that also account for hydraulic function 

643 (Sperry et al., 2017). For example, Sabot et al. (2020) recently demonstrated considerable 

644 promise applying one of these approaches at the ecosystem-scale, improving model 

645 predictions during European droughts. Sabot et al. (2020) also proposed a number of 
 

646 simplifications that would make an optimisation approach viable within LSMs. 
 
 

647 We used a modified version of the Tuzet et al. (2003) stomatal model to limit stomatal 
 

648 conductance as a function of 𝛹𝛹l. This approach is attractive as it removes the requirement to 

649 assume a minimum 𝛹𝛹l (e.g. Williams et al., 1996; Bonan et al., 2014; Xu et al., 2016), which 

650 requires that plants follow isohydric behaviour during water stress, contrary to the emerging 

651 literature indicating a broad spectrum of isohydric and anisohydric stomatal behaviour (Klein, 

652 2014; Martin-StPaul, 2017). However, using the Tuzet et al. (2003) model approach is not 

653 without limitations: for example, Yang et al. (2019) recently showed it to simulate unrealistic 

654 declines in 𝛹𝛹l with increasing vapour pressure deficit, in contrast to experimental 

655 observations. This may also explain the discrepancy in sensitivity to water stress shown 
 

656 between model and observations in the flux evaluations (Figures 2 and 3). 
 
 

657 Future directions 
 
 

658 During the summer of 2019-2020, >5 million ha of forest burnt across South-East Australia 

659 (Nolan et al., 2020). The preceding drought which began in 2017, likely played a key role in 

660 priming the land surface to burn, due to increased dry fuel litter (leaf and branch shedding). In 
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661 our first attempt at a hydraulics model for Australia we did not consider the mechanistic 

662 turnover of plant tissues, but this is clearly an important future research direction. Xu et al. 

663 (2016) and Trugman et al. (2019) demonstrated promise in dynamically linking leaf 

664 phenology to plant hydraulics. Establishing a link between plant hydraulics and leaf shedding 

665 (Wolfe et al., 2016) may greatly improve current approaches used to predict the likelihood 

666 that the land surface will burn. Existing approaches (e.g. the McArthur Forest Fire Danger 

667 Index) make simplistic assumptions about litter and its dryness, meaning that they are over- 

668 dependent on fire weather (i.e. temperature-based) metrics. 

 
669 Our model simulations did highlight (Figures 5c and 6b) marked impact of drought across the 

670 more mesic northeastern woodlands (forests) of New South Wales, consistent with some of 

671 the lowest rainfall totals on record. However, the coastal areas that burnt in the 2019-2020 fire 

672 season were not necessarily regions our model highlighted as locations that approached 𝛹𝛹crit. 

673 That is not to say that CABLE did not predict these regions were impacted by drought, but it 

674 did not simulate that the drought was extreme enough to induce 𝛹𝛹crit. Comparing the soil 

675 water content for the RF, WSF and DSF regions between the Millennium drought and the Big 

676 Dry, shows very similar patterns (cf. Figures 10 and Figures S11). Future model-based work 

677 may address the length and severity of water deficit that would be required for more mesic 

678 vegetation areas to reach 𝛹𝛹crit. This could prove important for future land management, 

679 particularly given that the Big Dry may have been broken by recent extensive rainfall across 
 

680 South-East Australia, meaning we may not witness water stress thresholds that induce 
 

681 mortality. 
 
 

682 In our study we assumed that once stomata had closed (“first” drought phase), water 
 

683 continues to be lost at a significantly lower rate via gmin (a proxy for stomatal leakiness; 
 

684 “second” drought phase). Extensive measurements of gmin are still limited (see Duursma et al., 
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685 2018 for a review) but some studies have suggested the rate of water loss may have a 
 

686 temperature dependency in some species (Bueno et al., 2019), implying a potentially 
 

687 important interaction during drought. To make these model simulations viable at high-spatial 

688 resolution (~5 km), we had to make a series of simplifying assumptions (e.g. that there is 

689 xylem refilling (see D. et al., 2018), or additional xylary resistance (see Brodribb & 

690 Holbrook, 2004), which require careful evaluation against ground-based data. To bridge this 

691 gap, plant water potentials during heatwaves and droughts would be particularly valuable to 

692 help constrain model predictions and further develop predictive capacity. 

 
693 Acknowledgements 

 
 

694 MDK, AJP, AMU, MM, MEBS and MR acknowledge support Australian Research Council 

695 (ARC) Centre of Excellence for Climate Extremes (CE170100023). MDK, PM, LC and AJP 

696 acknowledge support from the ARC Discovery Grant (DP190101823). MDK was also 

697 supported from the NSW Research Attraction and Acceleration Program. MEBS also 
 

698 acknowledges support from the UNSW Scientia PhD Scholarship Scheme. This work used 

699 eddy covariance data acquired from the OzFlux portal (http://data.ozflux.org.au/portal/home). 

700 We thank the National Computational Infrastructure at the Australian National University, an 

701 initiative of the Australian Government, for access to supercomputer resources. All data 

702 analysis and plots were generated using the Python language and the Matplotlib library. 
 
 

703 Data Availability Statement 
 
 

704 The model source code can be accessed freely after registration at 
 

705 https://trac.nci.org.au/trac/cable. All analysis code is freely available from: 

http://data.ozflux.org.au/portal/home)
https://trac.nci.org.au/trac/cable


Page 33 of 66 Global Change Biology 

33 

 

 

706 https://github.com/mdekauwe/SE_AUS_drought_risk_paper.git. In this paper we used 
 

707 CABLE revision 6134. All satellite data used in this manuscript are freely available. 
 
 

708 708 
 
 

709 709 
 
 

710 710 
 
 

711 References 
 
 

712 Adams H, Zeppel M, Anderegg W, Hartmann H, Landhäusser S, Tissue D, Huxman T, 
 

713 Hudson P, Franz T, Allen C et al. 2017. A multi-species synthesis of physiological 
 

714 mechanisms in drought-induced tree mortality. Nature Ecology and Evolution 1: 1285–1291. 
 
 

715 Allen CD, Breshears DD, McDowell NG. 2015. On underestimation of global vulnerability 

716 to tree mortality and forest die-off from hotter drought in the anthropocene. Ecosphere 6: 

717 art129. 

 
718 Anderegg WR, Anderegg LD, Kerr KL, Trugman AT. 2019. Widespread drought-induced 

 
719 tree mortality at dry range edges indicates climate stress exceeds species’ compensating 

 
720 mechanisms. Global change biology. 

 
 

721 Anderegg WR, Kane JM, Anderegg LD. 2013. Consequences of widespread tree mortality 
 

722 triggered by drought and temperature stress. Nature Climate Change 3: 30–36. 

https://github.com/mdekauwe/SE_AUS_drought_risk_paper.git


Global Change Biology Page 34 of 66 

34 

 

 

723 Anderegg W, Schwalm C, Biondi F, Camarero JJ, Koch G, Litvak M, Ogle K, Shaw J, 

724 Shevliakova E, Williams A et al. 2015. Pervasive drought legacies in forest ecosystems and 

725 their implications for carbon cycle models. Science 349: 528–532. 

 
726 Arndt SK, Sanders GJ, Bristow M, Hutley LB, Beringer J, Livesley SJ. 2015. 

 
727 Vulnerability of native savanna trees and exotic khaya senegalensis to seasonal drought. Tree 

 
728 physiology 35: 783–791. 

 
 

729 Asner GP, Brodrick PG, Anderson CB, Vaughn N, Knapp DE, Martin RE. 2016. 
 

730 Progressive forest canopy water loss during the 2012–2015 california drought. Proceedings of 
 

731 the National Academy of Sciences 113: E249–E255. 
 
 

732 Bittencourt P, Oliveira R, Costa A da, Giles A, Coughlin I, Costa P, Bartholomew D, 

733 Ferreira L, Vasconcelos S, Barros F et al. 2020. Amazonian trees have limited capacity to 

734 acclimate plant hydraulic properties in response to long-term drought. Global Change 

735 Biology. 
 
 

736 Blackman CJ, Li X, Choat B, Rymer PD, De Kauwe MG, Duursma RA, Tissue DT, 

737 Medlyn BE. 2019. Desiccation time during drought is highly predictable across species of 

738 eucalyptus from contrasting climates. New Phytologist 224: 632–643. 

 
739 Bonan G, Williams M, Fisher R, Oleson K. 2014. Modeling stomatal conductance in the 

740 earth system: Linking leaf water-use efficiency and water transport along the soil-plant- 

741 atmosphere continuum. Geoscientific Model Development 7: 2193–2222. 



Page 35 of 66 Global Change Biology 

35 

 

 

742 Bourne AE, Creek D, Peters JM, Ellsworth DS, Choat B. 2017. Species climate range 

743 influences hydraulic and stomatal traits in eucalyptus species. Annals of Botany 120: 123– 

744 133. 

 
745 Breshears DD, Cobb NS, Rich PM, Price KP, Allen CD, Balice RG, Romme WH, 

 
746 Kastens JH, Floyd ML, Belnap J et al. 2005. Regional vegetation die-off in response to 

747 global-change-type drought. Proceedings of the National Academy of Sciences 102: 15144– 

748 15148. 

 
749 Brodribb TJ, Holbrook NM. 2004. Stomatal protection against hydraulic failure: A 

 
750 comparison of coexisting ferns and angiosperms. New Phytologist 162: 663–670. 

 
 

751 Bueno A, Alfarhan A, Arand K, Burghardt M, Deininger A-C, Hedrich R, Leide J, 
 

752 Seufert P, Staiger S, Riederer M. 2019. Effects of temperature on the cuticular transpiration 
 

753 barrier of two desert plants with water-spender and water-saver strategies. Journal of 
 

754 experimental botany 70: 1613–1625. 
 
 

755 Campbell GS. 1974. A simple method for determining unsaturated conductivity from 
 

756 moisture retention data. Soil science 117: 311–314. 
 
 

757 Carter JL, White DA. 2009. Plasticity in the huber value contributes to homeostasis in leaf 

758 water relations of a mallee eucalypt with variation to groundwater depth. Tree Physiology 29: 

759 1407–1418. 

 
760 Choat B, Brodribb TJ, Brodersen CR, Duur, Lopez R, Medlyn BE. 2018. Triggers of tree 

 
761 mortality under drought. Nature 558: 531–539. 



Global Change Biology Page 36 of 66 

36 

 

 

762 Choat B, Jansen S, Brodribb TJ, Cochard H, Delzon S, Bhaskar R, Bucci SJ, Feild TS, 

763 Gleason SM, Hacke UG et al. 2012. Global convergence in the vulnerability of forests to 

764 drought. Nature 491: 752–755. 

 
765 Christoffersen BO, Gloor M, Fauset S, Fyllas NM, Galbraith DR, Baker TR, Kruijt B, 

766 Rowland L, Fisher RA, Binks OJ et al. 2016. Linking hydraulic traits to tropical forest 

767 function in a size-structured and trait-driven model (tfs v. 1-hydro). Geoscientific Model 

768 Development 9: 4227. 

 
769 Ciais P, Reichstein M, Viovy N, Granier A, Ogee J, Allard V, Aubinet M, Buchmann N, 

770 Bernhofer C, Carrara A et al. 2005. Europe-wide reduction in primary productivity caused 

771 by the heat and drought in 2003. Nature 437: 529–533. 

 
772 Clapp R, Hornberger G. 1978. Empirical equations for some soil hydraulic properties. 

 
773 Water resources research 14: 601–604. 

 
 

774 Collins M, Knutti R, Arblaster J, Dufresne J-L, Fichefet T, Friedlingstein P, Gao X, 

775 Gutowski WJ, Johns T, Krinner G et al. 2013. Long-term climate change: Projections, 

776 commitments and irreversibility. In: Climate change 2013-the physical science basis: 

777 Contribution of working group i to the fifth assessment report of the intergovernmental panel 
 

778 on climate change. Cambridge University Press, 1029–1136. 
 
 

779 Cook BI, Ault TR, Smerdon JE. 2015. Unprecedented 21st century drought risk in the 
 

780 american southwest and central plains. Science Advances 1: e1400082. 



Page 37 of 66 Global Change Biology 

37 

 

 

781 D. VM, S. SJ, M. LD, H. FE, G. AM, Yujie W, L. AWR. 2018. A stomatal control model 

782 based on optimization of carbon gain versus hydraulic risk predicts aspen sapling responses to 

783 drought. New Phytologist. 

 
784 Dai A. 2013. Increasing drought under global warming in observations and models. Nature 

 
785 Climate Change 3: 52–58. 

 
 

786 Davis T, Prentice IC, Stocker B, Thomas R, Whitley R, Wang H, Evans B, Gallego-Sala 

787 A, Sykes M, Cramer W. 2017. Simple process-led algorithms for simulating habitats (splash 

788 v. 1.0): Robust indices of radiation, evapotranspiration and plant-available moisture. 

789 Geoscientific Model Development 10: 689–708. 
 
 

790 De Kauwe MG, Kala J, Lin Y-S, Pitman AJ, Medlyn BE, Duursma RA, Abramowitz G, 

791 Wang Y-P, Miralles DG. 2015a. A test of an optimal stomatal conductance scheme within 

792 the CABLE land surface model. Geoscientific Model Development 8: 431–452. 

 
793 De Kauwe M, Zhou S-X, Medlyn B, Pitman A, Wang Y-P, Duursma R, Prentice I. 

794 2015b. Do land surface models need to include differential plant species responses to 

795 drought? Examining model predictions across a mesic-xeric gradient in europe. 

796 Biogeosciences 12: 7503–7518. 
 
 

797 Decker M, Or D, Pitman A, Ukkola A. 2017. New turbulent resistance parameterization for 

798 soil evaporation based on a pore scale model: Impact on surface fluxes in cable. Journal of 

799 Advances in Modeling Earth Systems. 

 
800 Dijk AI van, Beck HE, Crosbie RS, Jeu RA, Liu YY, Podger GM, Timbal B, Viney NR. 

 
801 2013. The millennium drought in southeast australia (2001–2009): Natural and human causes 



Global Change Biology Page 38 of 66 

38 

 

 

802 and implications for water resources, ecosystems, economy, and society. Water Resources 
 

803 Research 49: 1040–1057. 
 
 

804 Donohue RJ, McVICAR TR, Roderick ML. 2009. Climate-related trends in australian 

805 vegetation cover as inferred from satellite observations, 1981–2006. Global Change Biology 

806 15: 1025–1039. 

 
807 Du J, Kimball JS, Jones LA, Kim Y, Glassy JM, Watts JD. 2017. A global satellite 

808 environmental data record derived from amsr-e and amsr2 microwave earth observations. 

809 Earth System Science Data 9: 791. 

 
810 Duursma RA, Blackman CJ, Lopéz R, Martin-StPaul NK, Cochard H, Medlyn BE. 

 
811 2018. On the minimum leaf conductance: Its role in models of plant water use, and ecological 

 
812 and environmental controls. New Phytologist 0. 

 
 

813 Egea G, Verhoef A, Vidale PL. 2011. Towards an improved and more flexible 
 

814 representation of water stress in coupled photosynthesis–stomatal conductance models. 
 

815 Agricultural and Forest Meteorology 151: 1370–1384. 
 
 

816 Eller CB, Rowland L, Mencuccini M, Rosas T, Williams K, Harper A, Medlyn BE, 
 

817 Wagner Y, Klein T, Teodoro GS et al. 2020. Stomatal optimisation based on xylem 
 

818 hydraulics (sox) improves land surface model simulation of vegetation responses to climate. 
 

819 New Phytologist n/a. 
 
 

820 Fan Y, Miguez-Macho G, Jobbágy EG, Jackson RB, Otero-Casal C. 2017. Hydrologic 
 

821 regulation of plant rooting depth. Proceedings of the National Academy of Sciences: 
 

822 201712381. 



Page 39 of 66 Global Change Biology 

39 

 

 

823 Fensham R, Holman J. 1999. Temporal and spatial patterns in drought-related tree dieback 
 

824 in australian savanna. Journal of Applied Ecology: 1035–1050. 
 
 

825 Fensham R, Fairfax R, Ward D. 2009. Drought-induced tree death in savanna. Global 
 

826 Change Biology 15: 380–387. 
 
 

827 Fisher R, Williams M, COSTA D, Lola A, Malhi Y, Costa R da, Almeida S, Meir P. 

828 2007. The response of an eastern amazonian rain forest to drought stress: Results and 

829 modelling analyses from a throughfall exclusion experiment. Global Change Biology 13: 

830 2361–2378. 

831 Fisher, RA, Koven, CD, Anderegg, WRL, et al. 2018. Vegetation demographics in Earth 
 

832 System Models: A review of progress and priorities. Global Change Biol. 24: 35–54. 
 
 

833 Galiano L, Martínez-Vilalta J, Lloret F. 2010. Drought-induced multifactor decline of scots 

834 pine in the pyrenees and potential vegetation change by the expansion of co-occurring oak 

835 species. Ecosystems 13: 978–991. 

 
836 Gardner WR. 1960. Dynamic aspects of water availability to plants. Soil science 89: 63–73. 

 
 

837 Godfree RC, Knerr N, Godfree D, Busby J, Robertson B, Encinas-Viso F. 2019. 
 

838 Historical reconstruction unveils the risk of mass mortality and ecosystem collapse during 
 

839 pancontinental megadrought. Proceedings of the National Academy of Sciences. 
 
 

840 Griebel A, Bennett LT, Metzen D, Cleverly J, Burba G, Arndt SK. 2016. Effects of 

841 inhomogeneities within the flux footprint on the interpretation of seasonal, annual, and 

842 interannual ecosystem carbon exchange. Agricultural and forest meteorology 221: 50–60. 



Global Change Biology Page 40 of 66 

40 

 

 

843 Haverd V, Raupach M, Briggs P, Canadell J, Isaac P, Pickett-Heaps C, Roxburgh S, 
 

844 Gorsel E van, Viscarra Rossel R, Wang Z. 2013. Multiple observation types reduce 
 

845 uncertainty in australia’s terrestrial carbon and water cycles. Biogeosciences 10: 2011–2040. 
 
 

846 Haverd V, Smith B, Nieradzik L, Briggs P. 2014. A stand-alone tree demography and 

847 landscape structure module for earth system models: Integration with global forest data. 

848 Biogeosciences 11: 2343–2382. 

 
849 Haverd V, Smith B, Nieradzik L, Briggs PR, Woodgate W, Trudinger CM, Canadell JG. 

 
850 2018. A new version of the cable land surface model (subversion revision r4601) 

 
851 incorporating land use and land cover change, woody vegetation demography, and a novel 

852 optimisation-based approach to plant coordination of photosynthesis. Geoscientific Model 

853 Development 11: 2995–3026. 

 
854 Hengl T, Jesus JM de, Heuvelink GB, Gonzalez MR, Kilibarda M, Blagotić A, 

 
855 Shangguan W, Wright MN, Geng X, Bauer-Marschallinger B et al. 2017. SoilGrids250m: 

 
856 Global gridded soil information based on machine learning. PLoS one 12. 

 
 

857 Hill T, Williams M, Woodward F, Moncrieff J. 2011. Constraining ecosystem processes 
 

858 from tower fluxes and atmospheric profiles. Ecological Applications 21: 1474–1489. 
 
 

859 Hopkins ER. 1973. Eucalypt dieback inAustralia. In: C. MG, Idczak RM, eds. Victoria: 
 

860 Forests Comission, 1–16. 
 
 

861 Horst SVJ van der, Pitman AJ, De Kauwe MG, Ukkola A, Abramowitz G, Isaac P. 2019. 

862 How representative are fluxnet measurements of surface fluxes during temperature extremes? 

863 Biogeosciences 16: 1829–1844. 



Page 41 of 66 Global Change Biology 

41 

 

 

864 Isaac P, Cleverly J, McHugh I, Van Gorsel E, Ewenz C, Beringer J. 2017. OzFlux data: 
 

865 Network integration from collection to curation. Biogeosciences 14: 2903–2928. 
 
 

866 Jiang M, Medlyn BE, Drake JE, Duursma RA, Anderson IC, Barton CVM, Boer MM, 

867 Carrillo Y, Castañeda-Gómez L, Collins L et al. 2020. The fate of carbon in a mature forest 

868 under carbon dioxide enrichment. Nature 580: 227–231. 

 
869 Jiang M, Zaehle S, De Kauwe MG, Walker AP, Caldararu S, Ellsworth DS, Medlyn BE. 

870 2019. The quasi-equilibrium framework revisited: Analyzing long-term enrichment responses 

871 in plant–soil models. Geoscientific Model Development 5: 2069–2089. 

 
872 Jones DA, Wang W, Fawcett R. 2009. High-quality spatial climate data-sets for australia. 

 
873 Australian Meteorological and Oceanographic Journal 58: 233. 

 
 

874 Jump AS, Ruiz-Benito P, Greenwood S, Allen CD, Kitzberger T, Fensham R, Martínez- 

875 Vilalta J, Lloret F. 2017. Structural overshoot of tree growth with climate variability and the 

876 global spectrum of drought-induced forest dieback. Global change biology 23: 3742–3757. 

 
877 Keith H, Van Gorsel E, Jacobsen KL, Cleugh HA. 2012. Dynamics of carbon exchange in 

878 a eucalyptus forest in response to interacting disturbance factors. Agricultural and Forest 

879 Meteorology 153: 67–81. 

 

880 Kelly JW, Duursma RA, Atwell BJ, Tissue DT, Medlyn BE. 2016. Drought × co 2 
 

881 interactions in trees: A test of the low-intercellular co 2 concentration (ci) mechanism. New 
 

882 Phytologist 209: 1600–1612. 



Global Change Biology Page 42 of 66 

42 

 

 

883 Kennedy D, Swenson S, Oleson KW, Fisher RA, Lawrence DM, Costa ACL da, Gentine 

884 P. 2019. Implementing plant hydraulics in the community land model, version 5. Journal of 

885 Advances in Modeling Earth Systems. 

 
886 Klein T. 2014. The variability of stomatal sensitivity to leaf water potential across tree 

887 species indicates a continuum between isohydric and anisohydric behaviours. Functional 

888 Ecology 28: 1313–1320. 

 
889 Konings AG, Gentine P. 2017. Global variations in ecosystem-scale isohydricity. Global 

 
890 Change Biology 23: 891–905. 

 
 

891 Kowalczyk E, Stevens L, Law R, Dix M, Wang Y, Harman I, Haynes K, Srbinovsky J, 

892 Pak B, Ziehn T. 2013. The land surface model component of access: Description and impact 

893 on the simulated surface climatology. Aust Meteorol Oceanogr J 63: 65–82. 

 
894 Kowalczyk EA, Wang YP, Wang P, Law RH, Davies HL. 2006. The csiro atmosphere 

895 biosphere land exchange (CABLE) model for use in climate models and as an offline model. 

896 CSIRO. 

 
897 Lamy J-B, Delzon S, Bouche PS, Alia R, Vendramin GG, Cochard H, Plomion C. 2014. 

898 Limited genetic variability and phenotypic plasticity detected for cavitation resistance in a m 

899 editerranean pine. New Phytologist 201: 874–886. 

 
900 Landsberg J. 1985. Drought and dieback of rural eucalypts. Austral Ecology 10: 87–90. 

 
 

901 Li X, Blackman CJ, Choat B, Duursma RA, Rymer PD, Medlyn BE, Tissue DT. 2018. 

902 Tree hydraulic traits are co-ordinated and strongly linked to climate-of-origin across a rainfall 

903 gradient. 



Page 43 of 66 Global Change Biology 

43 

 

 

904 Li X, Chris BJ, Peters JM, Choat B, Rymer PD, Medlyn BE, Tissue DT. 2019. More than 
 

905 iso/anisohydry: Hydroscapes integrate plant water-use and drought tolerance traits in ten 
 

906 eucalypt species from contrasting climates. Functional Ecology. 
 
 

907 Li S, Feifel M, Karimi Z, Schuldt B, Choat B, Jansen S. 2015. Leaf gas exchange 

908 performance and the lethal water potential of five european species during drought. Tree 

909 physiology 36: 179–192. 

 
910 Liu YY, Jeu RA de, McCabe MF, Evans JP, Dijk AI van. 2011. Global long-term passive 

 
911 microwave satellite-based retrievals of vegetation optical depth. Geophysical Research 

 
912 Letters 38. 

 
 

913 Lorenz R, Pitman A, Donat M, Hirsch A, Kala J, Kowalczyk E, Law R, Srbinovsky J. 

914 2014. Representation of climate extreme indices in the access1. 3b coupled atmosphere-land 

915 surface model. Geoscientific Model Development 7: 545–567. 

 
916 Martin-StPaul NK et a. 2017. Plant resistance to drought depends on timely stomatal 

 
917 closure. Ecology Letters. 

 
 

918 McDowell NG, Fisher RA, Xu C, Domec J, Hölttä T, Mackay DS, Sperry JS, Boutz A, 
 

919 Dickman L, Gehres N et al. 2013. Evaluating theories of drought-induced vegetation 
 

920 mortality using a multimodel–experiment framework. New Phytologist. 
 
 

921 McVicar TR. 2011. Near-surface wind speed for australia. V10. Data collection. 
 
 

922 McVicar TR, Van Niel TG, Li LT, Roderick ML, Rayner DP, Ricciardulli L, Donohue 
 

923 RJ. 2008. Wind speed climatology and trends for australia, 1975–2006: Capturing the stilling 



Global Change Biology Page 44 of 66 

44 

 

 

924 phenomenon and comparison with near-surface reanalysis output. Geophysical Research 
 

925 Letters 35. 
 
 

926 Medlyn BE, De Kauwe MG, Zaehle S, Walker AP, Duursma RA, Luus K, Mishurov M, 

927 Pak B, Smith B, Wang Y-P et al. 2016. Using models to guide field experiments: A priori 

928 predictions for the CO2 response of a nutrient-and water-limited native eucalypt woodland. 

929 Global Change Biology 22: 2834–2851. 
 
 

930 Mencuccini M, Minunno F, Salmon Y, Martínez-Vilalta J, Hölttä T. 2015. Coordination 
 

931 of physiological traits involved in drought-induced mortality of woody plants. New 
 

932 Phytologist in press. 
 
 

933 Mitchell P, O’Grady A, Tissue D, Worledge D, Pinkard E. 2014. Co-ordination of growth, 

934 gas exchange and hydraulics define the carbon safety margin in tree species with contrasting 

935 drought strategies. Tree physiology 34: 443–458. 

 
936 Moore GW, Edgar CB, Vogel JG, Washington-Allen RA, March RG, Zehnder R. 2016. 

 
937 Tree mortality from an exceptional drought spanning mesic to semiarid ecoregions. 

 
938 Ecological Applications 26: 602–611. 

 
 

939 Mueller RC, Scudder CM, Porter ME, Talbot Trotter III R, Gehring CA, Whitham TG. 
 

940 2005. Differential tree mortality in response to severe drought: Evidence for long-term 
 

941 vegetation shifts. Journal of Ecology 93: 1085–1093. 
 
 

942 Myers BA, Neales T. 1984. Seasonal changes in the water relations of eucalyptus behriana f. 

943 Muell. And e. Microcarpa (maiden) maiden in the field. Australian Journal of Botany 32: 

944 495–510. 



Page 45 of 66 Global Change Biology 

45 

 

 

945 Nepstad DC, Tohver IM, Ray D, Moutinho P, Cardinot G. 2007. Mortality of large trees 
 

946 and lianas following experimental drought in an amazon forest. Ecology 88: 2259–2269. 
 
 

947 Neumann M, Mues V, Moreno A, Hasenauer H, Seidl R. 2017. Climate variability drives 
 

948 recent tree mortality in europe. Global change biology 23: 4788–4797. 
 
 

949 Nolan RH, Boer MM, Collins L, Resco de Dios V, Clarke H, Jenkins M, Kenny B, 

950 Bradstock RA. 2020. Causes and consequences of eastern australia’s 2019-20 season of 

951 mega-fires. Global change biology. 

 
952 Nolan RH, Mitchell PJ, Bradstock RA, Lane PN. 2014. Structural adjustments in 

 
953 resprouting trees drive differences in post-fire transpiration. Tree physiology 34: 123–136. 

 
 

954 Ogle K. 2009. Hierarchical bayesian statistics: Merging experimental and modeling 
 

955 approaches in ecology. Ecological Applications 19: 577–581. 
 
 

956 Peñuelas J, Canadell J, Ogaya R. 2011. Increased water-use efficiency during the 20th 

957 century did not translate into enhanced tree growth. Global Ecology and Biogeography 20: 

958 597–608. 

 
959 Phillips RP, Bernhardt ES, Schlesinger WH. 2009. Elevated CO2 increases root exudation 

960 from loblolly pine (pinus taeda) seedlings as an n-mediated response. Tree Physiology 29: 

961 1513–1523. 

 
962 Phillips OL, Van Der Heijden G, Lewis SL, López-González G, Aragão LE, Lloyd J, 

 
963 Malhi Y, Monteagudo A, Almeida S, Dávila EA et al. 2010. Drought–mortality 

 
964 relationships for tropical forests. New Phytologist 187: 631–646. 



Global Change Biology Page 46 of 66 

46 

 

 

965 Pitman A, Avila F, Abramowitz G, Wang Y, Phipps S, Noblet-Ducoudré N de. 2011. 

966 Importance of background climate in determining impact of land-cover change on regional 

967 climate. Nature Climate Change 1: 472–475. 

 
968 Pook E. 1986. Canopy dynamics of eucalyptus maculata hook. IV. Contrasting responses to 

 
969 two severe droughts. Australian journal of botany 34: 1–14. 

 
 

970 Powell TL, Galbraith DR, Christoffersen BO, Harper A, Imbuzeiro HMA, Rowland L, 
 

971 Almeida S, Brando PM, Costa ACL da, Costa MH et al. 2013. Confronting model 
 

972 predictions of carbon fluxes with measurements of amazon forests subjected to experimental 
 

973 drought. New Phytologist 200: 350–365. 
 
 

974 Priestley CHB, Taylor R. 1972. On the assessment of surface heat flux and evaporation 
 

975 using large-scale parameters. Monthly weather review 100: 81–92. 
 
 

976 Raupach M. 1994. Simplified expressions for vegetation roughness length and zero-plane 

977 displacement as functions of canopy height and area index. Boundary-Layer Meteorology 71: 

978 211–216. 

 
979 Raupach M, Finkele K, Zhang L. 1997. SCAM (soil-canopy-atmosphere model): 

 
980 Description and comparison with field data. Aspendale, Australia: CSIRO CEM Technical 

 
981 Report: 81. 

 
 

982 Reichstein M, Bahn M, Ciais P, Frank D, Mahecha MD, Seneviratne SI, Zscheischler J, 

983 Beer C, Buchmann N, Frank DC et al. 2013. Climate extremes and the carbon cycle. Nature 

984 500: 287–295. 



Page 47 of 66 Global Change Biology 

47 

 

 

 

985 Ross C, Brack C. 2015. Eucalyptus viminalis dieback in the monaro region, nsw. Australian 

986 forestry 78: 243–253. 

 
987 

 
Rowland L, Costa ACL da, Galbraith DR, Oliveira RS, Binks OJ, Oliveira AAR, Pullen 

988 AM, Doughty CE, Metcalfe DB, Vasconcelos SS et al. 2015. Death from drought in tropical 

989 forests is triggered by hydraulics not carbon starvation. Nature 528: 119–122. 

 
990 

 
Ruiz-Benito P, Madrigal-Gonzalez J, Ratcliffe S, Coomes DA, Kändler G, Lehtonen A, 

991 Wirth C, Zavala MA. 2014. Stand structure and recent climate change constrain stand basal 

992 area change in european forests: A comparison across boreal, temperate, and mediterranean 

993 biomes. Ecosystems 17: 1439–1454. 

 
994 

 
Ruthrof K, Matusick G, Hardy G. 2015. Early differential responses of co-dominant 

995 canopy species to sudden and severe drought in a mediterranean-climate type forest. Forests 

996 6: 2082–2091. 

 
997 

 
Saatchi S, Asefi-Najafabady S, Malhi Y, Aragão L, Anderson L, Myneni R, Nemani R. 

998 2013. Persistent effects of a severe drought on amazonian forest canopy. Proceedings of the 

999 National Academy of Sciences 110: 565–570. 

 
1000 

 
Sabot ME, De Kauwe MG, Pitman AJ, Medlyn BE, Verhoef A, Ukkola AM, 

1001 Abramowitz G. 2020. Plant profit maximisation improves predictions of european forest 

1002 responses to drought. New Phytologist. 

 
1003 

 
Schwarz PA, Law BE, Williams M, Irvine J, Kurpius M, Moore D. 2004. Climatic versus 

1004 biotic constraints on carbon and water fluxes in seasonality drought-affected ponderosa pine 

1005 ecoystems, Global Biogeochemical Cycles 18: GB4007, doi:10.1029/2004GB002234. 



Global Change Biology Page 48 of 66 

48 

 

 

 

1006 Service UF. 2016. USDA forest service pacific southwest region. Aerial detection surveys 

1007 report: Summary for may 15–19 report no. Fseprd506698. USDA Forest Service. 

 
1008 

 
Simard M, Pinto N, Fisher JB, Baccini A. 2011. Mapping forest canopy height globally 

1009 with spaceborne lidar. Journal of Geophysical Research: Biogeosciences 116: G04021. 

 
1010 

 
Sperry JS, Tyree MT. 1988. Mechanism of water stress-induced xylem embolism. Plant 

1011 Physiology 88: 581–587. 

 
1012 

 
Sperry JS, Venturas MD, Anderegg WR, Mencuccini M, Mackay DS, Wang Y, Love 

1013 DM. 2017. Predicting stomatal responses to the environment from the optimization of 

1014 photosynthetic gain and hydraulic cost. Plant, Cell &amp; Environment 40: 816–830. 

 
1015 

 
Stoneman G. 1994. Ecology and physiology of establishment of eucalypt seedlings from 

1016 seed: A review. Australian Forestry 57: 11–29. 

 
1017 

 
Trenberth KE, Dai A, Van Der Schrier G, Jones PD, Barichivich J, Briffa KR, Sheffield 

1018 J. 2014. Global warming and changes in drought. Nature Climate Change 4: 17–22. 

 
1019 

 
Trugman A, Anderegg L, Wolfe B, Birami B, Ruehr N, Detto M, Bartlett M, Anderegg 

1020 W. 2019. Climate and plant trait strategies determine tree carbon allocation to leaves and 

1021 mediate future forest productivity. Global change biology. 

 
1022 

 
Tuzet A, Perrier A, Leuning R. 2003. A coupled model of stomatal conductance, 

1023 photosynthesis and transpiration. Plant, Cell & Environment 26: 1097–1116. 

 
1024 

 
Ukkola A, De Kauwe MG, Pitman AJ, Best MJ, Haverd V, M. D, G. A, Haughton N. 

1025 2016a. Land surface models systematically overestimate the intensity, duration and 



Page 49 of 66 Global Change Biology 

49 

 

 

 

1026 magnitude of seasonal-scale evaporative droughts. In review. Environmental Research Letters 

1027 11: 104012. 

 
1028 

 
Ukkola AM, Haughton N, De Kauwe MG, Abramowitz G, Pitman AJ. 2017. FluxnetLSM 

1029 R package (v1.0): A community tool for processing fluxnet data for use in land surface 

1030 modelling. Geoscientific Model Development 10: 3379–3390. 

 
1031 

 
Ukkola AM, Pitman AJ, Decker M, De Kauwe MG, Abramowitz G, Kala J, Wang Y-P. 

1032 2016b. Modelling evapotranspiration during precipitation deficits: Identifying critical 

1033 processes in a land surface model. Hydrology and Earth System Sciences 20: 2403–2419. 

 
1034 

 
Urli M, Porté AJ, Cochard H, Guengant Y, Burlett R, Delzon S. 2013. Xylem embolism 

1035 threshold for catastrophic hydraulic failure in angiosperm trees. Tree physiology 33: 672–683. 

 
1036 

 
Vermote E. 2019. NOAA climate data record (cdr) of avhrr surface reflectance, version 5. 

 
1037 

 
Wang Y, Leuning R. 1998. A two-leaf model for canopy conductance, photosynthesis and 

1038 partitioning of available energy i::: Model description and comparison with a multi-layered 

1039 model. Agricultural and Forest Meteorology 91: 89–111. 

 
1040 

 
Wang YP, Kowalczyk E, Leuning R, Abramowitz G, Raupach MR, Pak B, Gorsel E 

1041 van, Luhar A. 2011. Diagnosing errors in a land surface model (CABLE) in the time and 

1042 frequency domains. Journal of Geophysical Research: Biogeosciences (2005–2012) 116. 

 
1043 

 
Wang YP, Law RM, Pak B. 2010. A global model of carbon, nitrogen and phosphorus 

1044 cycles for the terrestrial biosphere. Biogeosciences 7: 2261–2282. 



Global Change Biology Page 50 of 66 

50 

 

 

 

1045 Weed AS, Ayres MP, Hicke JA. 2013. Consequences of climate change for biotic 

1046 disturbances in north american forests. Ecological Monographs 83: 441–470. 

 
1047 

 
Whittaker R, Niering W, Crisp M. 1979. Structure, pattern, and diversity of a mallee 

1048 community in new south wales. Vegetatio 39: 65–76. 

 
1049 

 
Wigneron J-P, Fan L, Ciais P, Bastos A, Brandt M, Chave J, Saatchi S, Baccini A, 

1050 Fensholt R. 2020. Tropical forests did not recover from the strong 2015–2016 el niño event. 

1051 Science advances 6: eaay4603. 

 
1052 

 
Williams AP, Allen CD, Macalady AK, Griffin D, Woodhouse CA, Meko DM, Swetnam 

1053 TW, Rauscher SA, Seager R, Grissino-Mayer HD et al. 2013. Temperature as a potent 

1054 driver of regional forest drought stress and tree mortality. Nature climate change 3: 292–297. 

 
1055 

 
Williams M, Bond B, Ryan M. 2001a. Evaluating different soil and plant hydraulic 

1056 constraints on tree function using a model and sap flow data from ponderosa pine. Plant, Cell 

1057 &, Environment 24: 679–690. 

 
1058 

 
Williams M, Law BE, Anthoni PM, Unsworth MH. 2001b. Use of a simulation model and 

1059 ecosystem flux data to examine carbon-water interactions in ponderosa pine. Tree physiology 

1060 21: 287–298. 

 
1061 

 
Williams M, Rastetter EB, Fernandes DN, Goulden ML, Wofsy SC, Shaver GR and. 

1062 1996. Modelling the soil-plant-atmosphere continuum in a quercus-acer stand at harvard 

1063 forest: The regulation of stomatal conductance by light, nitrogen and soil/plant hydraulic 

1064 properties. Plant, Cell and Environment 19: 911–927. 



Page 51 of 66 Global Change Biology 

51 

 

 

 

1065 Wolfe BT, Sperry JS, Kursar TA. 2016. Does leaf shedding protect stems from cavitation 

1066 during seasonaldroughts? A test of the hydraulic fuse hypothesis. New Phytologist 212: 1007– 

1067 1018. 

 
1068 

 
Xu X, Medvigy D, Powers JS, Becknell JM, Guan K. 2016. Diversity in plant hydraulic 

1069 traits explains seasonal and inter-annual variations of vegetation dynamics in seasonally dry 

1070 tropical forests. New Phytologist 212: 80–95. 

 
1071 

 
Yang J, Duursma R, De Kauwe M, Kumarathunge D, Jiang M, Mahmud K, Gimeno T, 

1072 Crous K, Ellsworth D, Peters J et al. 2019. Incorporating non-stomatal limitation improves 

1073 the performance of leaf and canopy models at high vapour pressure deficit. Tree Physiology 

1074 39: 1961–1974. 

 
1075 

 
Zhou S, Duursma RA, Medlyn BE, Kelly JW, Prentice IC. 2013. How should we model 

1076 plant responses to drought? An analysis of stomatal and non-stomatal responses to water 

1077 stress. Agricultural and Forest Meteorology 182-183: 204–214. 

 
1078 

 
Figure Captions 

 
1079 

 
Figure 1: Probability density and histograms showing the time taken to reach the point of 

1080 hydraulic failure (Ψcrit) for each of the five vegetation classes in the absence of precipitation, 

1081 with a constant air temperature of 35°C and a relative humidity of 10%. For each vegetation 

1082 class, the (horizontal) spread in the time taken to reach hydraulic failure relates to resilience 

1083 infered from sampling all possible photosynthetic (e.g. Vcmax), hydraulic (e.g. P50) and 

1084 structural (LAI) traits. The vegetation classes shown are: Rainforest (RAF), Wet sclerophyll 

1085 forest (WSF), Dry sclerophyll forest (DSF), Grassy Woodland (GRW) and Semi-arid 
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1086 woodland (SAW). For each vegetation class, the curved line shows the fitted kernel density 

1087 estimate (KDE). 

 
1088 

 
Figure 2: A comparison between fluxes simulated by the Control and Hydraulics model for 

1089 gross primary productivity (GPP) and latent heat flux (LE) at the Wombat State Forest 

1090 FLUXNET site during a pronounced period of water stress. The data have been smoothed 

1091 with a 5-day moving window to aid visualisation. 

 
1092 

 
Figure 3: A comparison between fluxes simulated by the Control and Hydraulics model for 

1093 gross primary productivity (GPP) and latent heat flux (LE) at the Tumbarumba FLUXNET 

1094 site during a pronounced period of water stress. The data have been smoothed with a 5-day 

1095 moving window to aid visualisation. 

 
1096 

 
Figure 4: Average climatic water deficit: precipitation (P) minus potential evapotranspiration 

1097 (PET) (a) prior to the Millennium Drought (1990–2000) and (b) the difference: during the 

1098 Millennium Drought minus prior for South-East Australia. 

 
1099 

 
Figure 5: Average climatic water deficit: precipitation (P) minus actual evapotranspiration 

1100 (AET) (a) simulated by CABLE-hydraulics for (a) Millennium Drought (2000–2009) and (b) 

1101 the Big Dry (2017–2019). 

 
1102 

 
Figure 6: Maximum percentage loss of hydraulic conductivity (%) simulated by CABLE 

1103 during (a) the Millennium drought (2000–2009) and (b) the Big Dry (2017–2019) (panel b). 

1104 Ψcrit is the xylem pressure inducing a 88 % hydraulic conductivity. 

 
1105 

 
Figure 7: Remotely sensed map of the relative percentage difference between: (a) the mean 

1106 summer (December–February) vegetation optical depth (VOD) during the Millennium 
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1107 drought (2000–2009) relative to 1993–2000 and (b) the mean summer VOD during the Big 

1108 Dry (2017–2018) relative to 1993–2016. Note we do not include the final summer 2019 due 

1109 to the confounding impact of fires across South-East Australia. 

 
1110 

 
Figure 8: Remotely sensed map of the relative percentage difference between: (a) the mean 

1111 summer normalised difference vegetation index (NDVI) during the Millennium drought 

1112 (2000–2009) relative to 1993–2000 and (b) the mean summer NDVI during the Big Dry 

1113 (2017– 2018) relative to 1993–2016. Note we do not include summer 2019 due to the 

1114 confounding impact of fires across South-East Australia. 

 
1115 

 
Figure 9: Timeseries of the percentage loss of hydraulic conductivity (%) for each of the five 

1116 vegetation classes during (a) the Millennium drought and (b) Big Dry. For each vegetation 

1117 class, the line shows the spatial average across all pixels. The vegetation classes shown are: 

1118 Rainforest (RAF), Wet sclerophyll forest (WSF), Dry sclerophyll forest (DSF), Grassy 

1119 Woodland (GRW) and Semi-arid woodland (SAW). 

 
1120 

 
Figure 10: Sensitivity of percentage loss of hydraulic conductivity (%) to soil water 

1121 availability in the top four soil layers (0.64 m, 80% of roots) for each vegetation class during 

1122 the Millennium drought. The vegetation classes shown are: Rainforest (RAF), Wet 

1123 sclerophyll forest (WSF), Dry sclerophyll forest (DSF), Grassy Woodland (GRW) and Semi- 

1124 arid woodland (SAW). Ψcrit is the xylem pressure inducing a 88 % hydraulic conductivity. 

 
1125 

 
Supplementary Figure 1: South-East Australia’s July to June annual rainfall during the 

1126 Millennium drought (2000–2009) relative to historic records (1900–2018). Maps show each 

1127 year’s rainfall ranked against historic records expressed as a percentile. 
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1128 Supplementary Figure 2: South-East Australia’s July to June annual rainfall during the Big 

1129 Dry (2016–2018) relative to historic records (1900–2018). Maps show each year’s rainfall 

1130 ranked against historic records expressed as a percentile. 

 
1131 

 
Supplementary Figure 3: Study area in South-East Australia. 

 
1132 

 
Supplementary Figure 4: New tree landcover map for South-East Australia, classified from 

1133 the National Vegetation Information System’s distribution of vegetation types in Australian 

1134 landscapes. The legend shows: Rainforest (RAF), Wet sclerophyll forest (WSF), Dry 

1135 sclerophyll forest (DSF), Grassy Woodland (GRW) and Semi-arid woodland (SAW). 

 
1136 

 
Supplementary Figure 5: Water stress modifiers used in CABLE shown as: (a) a function of 

1137 volumetric soil moisture content in the Control model and (b) (leaf and stem) water potential 

1138 in the Hydraulics model. In the Control model, the water stress modifier limits canopy gas 

1139 exchange, whereas in the hydraulics model Ψl limits stomatal conductance as a function of 

1140 leaf water potential and Ψx limits whole-plant hydraulic conductance as a function of stem 

1141 water potential. In the Control model, the water stress sensitivity is shown for a sand soil and 

1142 in the Hydraulics model, the sensitivities are shown for the wet sclerophyll forest vegetation 

1143 class. 

 
1144 

 
Supplementary Figure 6: Modelled pre-dawn weighted soil (Ψsw), midday leaf (Ψl) and 

1145 midday stem (Ψx) water potentials at the Wombat State Forest FLUXNET site during a 

1146 pronounced period of water stress. 

 
1147 

 
Supplementary Figure 7: Modelled pre-dawn weighted soil (Ψsw), midday leaf (Ψl) and 

1148 midday stem (Ψx) water potentials at the Tumbarumba FLUXNET site during a pronounced 

1149 period of water stress. 
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1150 Supplementary Figure 8: Remotely sensed map of the relative percentage difference between: 

1151 (a) the lowest summer (December–February) vegetation optical depth (VOD) during the 

1152 Millennium drought (2000–2009) relative to 1993–2000 and (b) the mean summer VOD 

1153 during the Big Dry (2017–2018) relative to 1993–2016. Note we do not include the final 

1154 summer 2019 due to the confounding impact of fires across South-East Australia. 

 
1155 

 
Supplementary Figure 9: Remotely sensed map of the relative percentage difference between: 

1156 (a) the lowest summer normalised difference vegetation index (NDVI) during the Millennium 

1157 drought (2000–2009) relative to 1993–2000 and (b) the mean summer NDVI during the Big 

1158 Dry (2017–2018) relative to 1993–2016. Note we do not include summer 2019 due to the 

1159 confounding impact of fires across South-East Australia. 

 
1160 

 
Supplementary Figure 10: Modelled pre-dawn weighted soil (Ψsw), pre-dawn stem (Ψx) and 

1161 midday leaf (Ψl) water potentials for two representative Grassy Woodland (GRW) (panels a 

1162 and b) pixels and two representative Semi-arid woodland (SAW) (panels c and d) pixels 

1163 during the Big Dry (2016–2019). Note the difference in trajectories between panels c and d 

1164 relates to differences in leaf area index: 0.22 m2 m-2 (c) vs 1.6 m2 m-2 (d). 

 
1165 

 
Supplementary Figure 11: Sensitivity of percentage loss of hydraulic conductivity (%) to soil 

1166 water availability in the top four soil layers (0.64 m, 80% of roots) for each vegetation class 

1167 during the Big Dry. The vegetation classes shown are: Rainforest (RAF), Wet sclerophyll 

1168 forest (WSF), Dry sclerophyll forest (DSF), Grassy Woodland (GRW) and Semi-arid 

1169 woodland (SAW). Ψcrit is the xylem pressure inducing a 88 % hydraulic conductivity. 
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Figure 4: Average climatic water deficit: precipitation (P) minus potential evapotranspiration (PET) (a) prior 
to the Millennium Drought (1990–2000) and (b) the difference: during the Millennium Drought minus prior 

for South-East Australia. 
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Figure 5: Average climatic water deficit: precipitation (P) minus actual evapotranspiration (AET) (a) 
simulated by CABLE-hydraulics for (a) Millennium Drought (2000–2009) and (b) the Big Dry (2017–2019). 
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Figure 6: Maximum percentage loss of hydraulic conductivity (%) simulated by CABLE during (a) the 
Millennium drought (2000–2009) and (b) the Big Dry (2017–2019) (panel b). Ψcrit is the xylem pressure 

inducing a 88 % hydraulic conductivity. 
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Figure 7: Remotely sensed map of the relative percentage difference between: (a) the mean summer 
(December–February) vegetation optical depth (VOD) during the Millennium drought (2000–2009) relative 

to 1993–2000 and (b) the mean summer VOD during the Big Dry (2017–2018) relative to 1993–2016. Note 
we do not include the final summer 2019 due to the confounding impact of fires across South-East Australia. 
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Figure 8: Remotely sensed map of the relative percentage difference between: (a) the mean summer 
normalised difference vegetation index (NDVI) during the Millennium drought (2000–2009) relative to 1993– 
2000 and (b) the mean summer NDVI during the Big Dry (2017– 2018) relative to 1993–2016. Note we do 

not include summer 2019 due to the confounding impact of fires across South-East Australia. 
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Figure 10: Sensitivity of percentage loss of hydraulic conductivity (%) to soil water availability in the top 
four soil layers (0.64 m, 80% of roots) for each vegetation class during the Millennium drought. The 

vegetation classes shown are: Rainforest (RAF), Wet sclerophyll forest (WSF), Dry sclerophyll forest (DSF), 
Grassy Woodland (GRW) and Semi-arid woodland (SAW). Ψcrit is the xylem pressure inducing a 88 % 

hydraulic conductivity. 
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 Definitions Units RF WSF DSF GRW SAW 
g1 Stomatal slope - 4.2 3.2 4.8 4.8 5.1 

gmin Cuticular conductance mmol 0.25 0.65 0.7 0.65 0.8 
 

Vcmax 

 
Value of Vcmax at 25 °C 

m-2 s-1 

𝜇𝜇mol 
 

44.1 
 

84.9 
 

75.6 
 

62.3 
 

92.8 
 

Jmax 

 
Value of Jmax at 25 °C 

m-2 s-1 

𝜇𝜇mol 
 

73.6 
 

141.7 
 

126.3 
 

104.1 
 

154.9 

𝛹𝛹f 
 

Reference water 
m-2 s-1 

MPa 
 

-2 
 

-2.5 
 

-1.7 
 

-3.4 
 

-3.7 
 

Sf 
potential 
Shape of response to 𝛹𝛹𝑙𝑙 

 
MPa−1 

 
2 

 
2 

 
2 

 
2 

 
2 

kplant Plant hydraulic mmol 2.3 1.6 2.4 2.2 2.9 
conductance 

 
 

S50 Slope of the percentage 
loss of hydraulic 
conductivity 

m-2 

MPa-1 

leaf s-1 

% MPa- 
1 

 
 

74.3 35.3 30.5 26.7 17.8 

P50 Water potential at 50% 
loss of hydraulic 
conductivity 

MPa -4.3 -3 -3.5 -4.5 -7.1 

Cl        Leaf capacitance mmol 
m-2 s-1 

MPa-1 

Cs       Stem capacitance mmol 
m-2 s-1 

MPa-1 

659.1 342.9 349.2 405.1 509.1 
 
 

8819.2 53266.1 26255.4 32508.6 11598.5 

LA:SA Leaf area-to-sapwood m2 m-2 10000.0 9434.7 7908.6 6139.2 2556.9 
 area ratio  

WD Sapwood density kg m-3 540.0 355.0 460.0 436.7 613.3 
 
 
Table 1: Summary of vegetation type parameter values. The five vegetation types are: 

rainforest (RF); wet sclerophyll forest (WSF); dry sclerophyll forest (DSF); grass woodland 

(GRW); and semiarid woodland (SAW). Values shown are species averages based on Li et 

al. (2018), except for Sf, which was assumed to be fixed and the LA:SA for the RF class 

which was assumed to be 10,000 m2 m-2. 
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