
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Maximum wave-power absorption under motion constraints
associated with both controlled and uncontrolled degrees of
freedom

Citation for published version:
Cotten, A & Forehand, D 2020, 'Maximum wave-power absorption under motion constraints associated with
both controlled and uncontrolled degrees of freedom', Applied Ocean Research, vol. 100, 102194.
https://doi.org/10.1016/j.apor.2020.102194

Digital Object Identifier (DOI):
10.1016/j.apor.2020.102194

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Applied Ocean Research

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 17. Aug. 2021

https://doi.org/10.1016/j.apor.2020.102194
https://doi.org/10.1016/j.apor.2020.102194
https://www.research.ed.ac.uk/en/publications/871e9331-e1d0-4d6d-a568-5b6a0be3aaba


Maximum wave-power absorption under motion
constraints associated with both controlled and

uncontrolled degrees of freedom

A. Cotten, D. I. M. Forehand

Institute of Energy Systems, School of Engineering, University of Edinburgh

Abstract

A semi-analytical method is derived, which enables optimisation of the power
absorption of a collection of wave-interacting bodies, subject to a weighted global
motion constraint associated with both the controlled and uncontrolled modes
of motion. As an illustrative example, the method is then applied to a six degree
of freedom solo duck with various modes of motion under direct control. This is
in order to highlight the benefits of employing the extended constraint and to
explore the dependence of the existence of a solution on the physical properties
of the system. The method is also used to investigate the effects of conceding
control of certain degrees of freedom on the capture width ratio of the solo duck.

Keywords: Complex conjugate control, linear hydrodynamics, motion
constraints, optimal control, wave energy converter

1. Introduction

Under the assumptions of linear radiation-diffraction theory, it is well known
that the optimal power that can be absorbed by a wave energy device in regular
seas can be expressed mathematically, in terms of the hydrodynamic coefficients
(e.g. [1]). For the purposes of achieving the body motions necessary for optimal5

power, the required control forces can also be expressed in terms of the hydro-
dynamic properties of the absorber (e.g. [2]). The technique is often termed
‘complex conjugate control’, since the fundamental result is that the optimum
power take-off impedance is equal to the complex conjugate of the intrinsic
impedance.10

However, for wavelengths that are large relative to the body, the demanded
excursions can greatly exceed the bounds of validity of linear theory. In or-
der to maintain results in accordance with the linearity assumptions, Evans [3]
used a method of Lagrange multipliers to optimise the absorbed power subject
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to a global constraint (proportional to the wave amplitude) on the body mo-15

tions. Pizer [4] then extended that method so that the global constraint could
encompass different weightings for each degree of freedom, each of which were
independent of the wave amplitude. One application of that theory investigated
the performance of a solo duck, with a variety of sets of controlled degrees of
freedom (DoFs), with motions prohibited in the other directions. In practice, it20

may be more economical to allow free motion in the uncontrolled DoFs instead
of imposing rigid constraints. By extending the theory to allow uncontrolled
DoFs, Pizer [5] investigated various combinations of free (controlled and uncon-
trolled) and fixed DoFs for solo ducks with DoFs only in the plane perpendicular
to the incoming wavefronts. However, the motion constraints in those models25

only applied to the controlled DoFs. This leaves the possibility of unrealistic
motions in the uncontrolled DoFs that violate the assumptions of the linear
theory.

A small number of subsequent publications have utilised the same approach
as [4] to optimise power absorption subject to a motion constraint [6][7], and30

there even exist examples of the use of multiple constraints in order to individu-
ally constrain multiple degrees of freedom, whilst maximising power absorption
[8][9]. However, to the authors’ knowledge, there have been no further pub-
lications since [5] that consider complex conjugate control in the presence of
uncontrolled degrees of freedom.35

The work presented herein extends the theory of Pizer [4][5] to optimise
the power absorption subject to motion constraints on all DoFs, exploiting the
hydrodynamic, hydrostatic and inertial coupling between the controlled and
uncontrolled DoFs. To act as a precursor for the main results of this paper,
Section 2 first presents explicitly the theory that was introduced in [5], which40

covers the application of complex conjugate control to a set of controlled and
uncontrolled degrees of freedom, with a motion constraint applied to just the
controlled degrees of freedom. This theory is then extended in Section 3, with
the application of the motion constraint to all the degrees of freedom. The prop-
erties of the resulting equations are then investigated with regards to obtaining45

numerical solutions in Section 4. (Whilst the theory presented in Sections 3 and
4 is intended to be self-contained, contrasting it with the foundational theory
set out in [4] may provide the reader with a useful perspective.) The introduced
theory is then applied to a solo duck wave energy converter in Section 5, with
emphasis both on crucial aspects of the theory itself, and features of the device50

that may aid in its future development. The main results are then summarised
in Section 6. Despite the theory being applicable to a collection of bodies with
any number of degrees of freedom (including jointed bodies), the solo duck is
better able to illustrate some of the crucial aspects of the new theory.

2. Formulation with uncontrolled DoFs55

The formulation of constrained complex conjugate control presented in [4]
requires control of all the degrees of freedom. More specifically, it requires that
damping and stiffness forces can be applied to all DoFs in order to extract (or
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inject) power. For systems in which power can only be extracted from certain
DoFs and not from others, the equations of motion can be rearranged such that60

the same method can be applied to only the controlled (power-extracting) DoFs.
Whilst this treatment to handle uncontrolled or released DoFs is introduced and
applied to three DoF solo duck systems in [5], it is useful to review some of the
key results. In the rest of this paper, the power-extracting modes will be referred
to as ‘controlled’, whilst the uncontrolled modes through which power cannot65

be transferred will be referred to as ‘free’ or ‘uncontrolled’. Degrees of freedom
may also be referred as ‘modes’ of motion.

A system with N degrees of freedom oscillating in monochromatic waves of
period, T , and amplitude, A, is considered. We assume that between 1 and
N − 1 of these DoFs are controlled, with the remaining free. It is beneficial to70

represent the equations of motion of such a system in terms of the controlled
DoFs and the free DoFs (Eq. 1, [5]).[

Fc
0

]
=

[
Zcc Zcf
Zfc Zff

] [
Uc

Uf

]
−A

[
Xc

Xf

]
(1)

where A is the wave amplitude, subscripts c and f are used to denote compo-
nents relating to the controlled and uncontrolled modes, respectively, X denotes
excitation forces, F the control forces, and Z is the intrinsic impedance defined75

relative to the velocities, U.
It is necessary to use the control forces to optimise the controlled velocities,

Uc, in order to maximise power extraction. However, hydrodynamic, hydro-
static and inertial coupling between the controlled and free DoFs encapsulates
a dependence of the motions of the controlled modes on the motions of the free80

modes. The equations of motion of the free modes can be used to rewrite the
equations of motion of the controlled modes (Eqs. 2, 3, 4, [5]), using the super-
script, m, to distinguish the modified quantities from their counterparts in the
original equations of motion (Eq. 1). C is the control matrix, which can be of
particular relevance to the practical realisation of such control techniques.85

Fc = ZmccUc −AXm
c = −CUc (2)

where
Zmcc = Zcc − ZcfZ

−1
ff Zfc (3)

and
Xm
c = Xc − ZcfZ

−1
ff Xf (4)

As stated in [5], Eq. 2 can then be subjected to the same method presented
in [4], provided that the motion constraint applies only to the controlled modes
of motion. Specifically, the power can be expressed in terms of the controlled90

velocities and hydrodynamic properties (Eq. 5), where ∗ denotes the complex
conjugate transpose, and Bcc is the real part of Zmcc.

P(Uc) =
A2

8
Xm
c
∗B−1cc Xm

c −
1

2
(Uc −

A

2
B−1cc Xm

c )∗Bcc(Uc −
A

2
B−1cc Xm

c ) (5)
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The controlled velocities that are optimal under the motion constraints com-
prise an additional damping term, which is a function of µ, a Lagrange multi-
plier, and Γc, the diagonal matrix of constraint weightings, which are expressed95

relative to the velocities. Under certain wave conditions, the constraint may not
be active, in which case the multiplier vanishes, reducing the optimal velocities
to their unconstrained optimal form, which can be deduced by inspection of
Eq. 5.

Uopt
c =

A

2
(Bcc + µΓ−2c )−1Xm

c (6)

By substituting these optimal velocities back into Eq. 2, the control matrix100

can also be obtained (Eq. 7).

Ĉ = Zm∗cc + 2µΓ−2c (7)

However, as remarked by Pizer [5], this method leaves the possibility of large
motions in the uncontrolled DoFs, potentially invalidating the assumptions of
linearity.

3. Formulation with extended motion constraint105

Provided there exists strong enough coupling between the controlled and un-
controlled modes of motion, control forces applied through the controlled DoFs
could be used to some extent to effect the motions of the uncontrolled DoFs,
Uf . This motivates an extension of the weighted global velocity constraint to
include contributions from the uncontrolled DoFs (Eq. 8). Of course, Uf can be110

expressed in terms of Uc, meaning that the additional term actually increases
the restriction on Uc, which are affected directly via the control forces, Fc.

Uc
∗Γ−2c Uc + Uf

∗Γ−2f Uf ≤ 1 (8)

If the inequality given by Eq. 8 is not satisfied by the velocities demanded
by unconstrained complex conjugate control, then P(Uc) (Eq. 5) should be
maximised subject to Uc

∗Γ−2c Uc + Uf
∗Γ−2f Uf = 1. Using the method of115

Lagrange multipliers (akin to Evans [3]), this is equivalent to solving Eq. 9,
given the Lagrangian expression in Eq. 10. The partial derivative with respect
to the complex vector, Uc, is defined as the partial derivatives with respect
to both the real and imaginary parts of Uc (i.e. ∂

∂Re{Uc} + i ∂
∂Im{Uc} for each

element of the velocity vector).120 [
∂Q
∂Uc

∂Q
∂µ

]
= 0 (9)

Q(Uc, µ) = P(Uc)−
1

2
µ
(
Uc
∗Γ−2c Uc+

[
Z−1ff (AXf−ZfcUc)

]∗Γ−2f [Z−1ff (AXf−ZfcUc)
]
−1
)

(10)
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Evaluating the top row of Eq. 9 and rearranging for Uc, yields the optimal
velocities in terms of the Lagrange multiplier, µ (Eqs. 11, 12).

−Bcc(Uc −
1

2
B−1cc Xm

c )− µ
[
Γ−2c Uc − (Z−1ff Zfc)

∗Γ−2f Z−1ff (AXf − ZfcUc)
]

= 0

(11)

Uopt
c =

A

2

(
Bcc+µ

[
Γ−2c +(Z−1ff Zfc)

∗Γ−2f (Z−1ff Zfc)
])−1(

Xm
c +2µ(Z−1ff Zfc)

∗Γ−2f Z−1ff Xf

)
(12)

Substituting Eq. 12 into the second row of Eq. 9, yields a scalar equation for125

µ (Eq. 13). The power is thus determined by Eqs. 12 and 13, along with Eq. 5,
where Eqs. 14 and 15 define quantities introduced in Eq. 13.

A2

4
Ω∗Ψ(ΨBccΨ + µI)−1ΨΓ−2c Ψ(ΨBccΨ + µI)−1ΨΩ

+A2
(
Xf
∗ − 1

2
Ω∗Ψ(ΨBccΨ + µI)−1ΨZfc

∗
)
Z−1ff

∗Γ−2f Z−1ff

(
Xf −

1

2
ZfcΨ(ΨBccΨ + µI)−1ΨΩ

)
−1 = 0

(13)

Ψ−2 = Γ−2c + (Z−1ff Zfc)
∗Γ−2f Z−1ff Zfc (14)

Ω = Xm
c + 2µ(Z−1ff Zfc)

∗Γ−2f Z−1ff Xf (15)

It is interesting to note that, in contrast with the foundational theory pre-130

sented in Section 2, the control matrix is not so easily obtained, due to the
presence of the extra term in the second bracket of Eq. 12. However, since the
control forces and the optimal velocities are known, numerical methods could
be used to obtain at least an approximation to this matrix, if necessary.

4. Numerical solution135

Whereas the constrained systems considered in [4] depend only on the radi-
ation damping coefficients, B, and the excitation forces, X, the systems under
consideration in this paper are additionally dependent on the hydrostatic and
inertial properties, due to the interaction of the controlled motions with the
uncontrolled motions (Eqs. 1 - 4). Whilst the inertial properties derive from140

the mass distribution of the body (or collection of bodies) under consideration,
the hydrodynamic and hydrostatic properties may be obtained from physical
experiments, or as is now increasingly common, numerically by use of a radia-
tion/diffraction code, such as WAMIT [10], which has been used in this study.
Generalised modes [11] allow this technique to be applied to an arbitrary set of145

degrees of freedom, an example of which could be a collection of mechanically
interlinked bodies, as well as to more standard applications, such as a wave
energy converter array.
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As with the analysis given in [4], it is useful to diagonalise the symmetric
matrix ΨBccΨ, using its matrix of eigenvectors, Q (Eq. 16), which results in150

Eq. 17. Since Bcc and Ψ are symmetric, positive definite matrices, the elements
of Λ, λi > 0 for all i. Therefore, the poles of Eq. 17 all occur at negative µ
values, which means there exist at most 2N real roots, of which one at most is
real and positive.

Λ = Q∗ΨBccΨQ (16)

155

g(µ) ≡ 1

4
Ω∗ΨQ(Λ + µI)−1Q∗ΨΓ−2c ΨQ(Λ + µI)−1Q∗ΨΩ

+
(
Xf
∗ − 1

2
Ω∗ΨQ(Λ + µI)−1Q∗ΨZfc

∗
)
Z−1ff

∗Γ−2f Z−1ff

(
Xf −

1

2
ZfcΨQ(Λ + µI)−1Q∗ΨΩ

)
=

1

A2

(17)

When µ = 0, Eq. 12 reverts to the optimal velocities for the unconstrained
case. As defined in Eq. 10, µ > 0, which can only be the case when A > Ac =√

1
g(0) ; the constraint only becomes active when A > Ac. In this case, of the 2N

complex roots of Eq. 17, still one at most can be real and positive, corresponding
to a valid solution. As µ → ∞, g(µ) → A2X∗f (Z−1ff )∗Γ−2f Z−1ff Xf ≡ C, and160

if C > 1, Uc
∗Γ−2c Uc + Uf

∗Γ−2f Uf > 1 for all µ > 0, signifying that the
constraint (8) cannot be satisfied. In physical terms, this corresponds to an
insufficient strength of coupling between the controlled and uncontrolled modes
of motion; the motions of the uncontrolled modes will always lead to violation
of the constraint, regardless of the forces applied through the controlled modes165

of motion. Therefore, it is imperative that the nature of the application is
considered in choosing the weightings, Γf , before applying constraint (8). It
is interesting to note that the presence of a solution is directly dependent only
on properties of the uncontrolled modes, and the wave amplitude. However,
the equations of motion (Eq. 1) link these properties of the free modes to the170

coupling between the controlled and free modes. Whilst Eq. 17 is a scalar
equation, for systems with large N it is most practical to solve for µ numerically.

5. Applications to a solo duck

The solo duck is a single body wave energy device, derived from the originally
proposed spine-based system [12]. Though initially designed to extract power175

through its pitch rotations, allowing power extraction via multiple degrees of
freedom can benefit the total absorbed power, whilst reducing the cost of rigidly
fixing degrees of freedom in a harsh sea environment. Furthermore, it may
reduce costs further to concede control of certain degrees of freedom, especially
if there were no significant negative impact on the power extraction. In this180

section, the methods described in this paper are applied to a solo duck whose
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shape is adapted from that of the D0018 Medium Beak Duck in [13]. Figure 1
shows a side view of the duck used in this study, with the axes defining the
body motions overlaid. Seven cylindrical ballast tubes of 1.27m diameter, each
of constant density, permit the desired mass distribution, and are defined in185

Table 1. The radial positions are defined from the centre of rotation, and angular
positions defined clockwise from the part of the centreline joining the centre of
rotation and the beak tip (the pointed edge of the duck). The centreline is
orientated at 36◦ to the horizontal, the distance from the centre of rotation to
the beak tip along the centreline is 11.8m, and a duck width of 29.5m is presented190

to the incoming waves. The portion of the duck surrounding the ballasts has
a mass of 1.226x106kg, giving an average density of 337kgm−3. This results
in a mean waterline 4.12m above the centre of rotation, and gives a duck that
is statically stable in roll and pitch. Given the similarity in size of the duck
employed in this study to the duck used in [4], the same constraint weightings195

are used - βi of 2.5m for the translational motions, 0.5rad for pitch, and 0.2rad
for roll and yaw, where the velocity constraint weightings, γi = ωβi are the
diagonal elements of Γ.

Except for a single case, in which the wave amplitude is clearly stated, the
incident waves used in this section are of unit amplitude.200

Centre of

rotation

Incident

wave

direction

1

4

6

5

2
3

7

Heave

11.8m

Surge

36°

Centreline

5m

4.12m

mean waterline

Figure 1: Side view of the solo duck in its equilibrium configuration, with the seven ballast
tube locations. Sway is defined into the page, with the axes centred halfway along the duck’s
width.
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Ballast index Mass / kg Radial position / m Angular position / ◦

1 0 10 0
2 456000 5.5 45
3 312000 4.75 65
4 134000 6 0
5 0 4.75 -65
6 56000 5.5 -45
7 752500 4 -120

Table 1: Definitions of the masses and positions of the seven ballast tubes.

Under head-on waves, the symmetry of the device reduces the solo duck to a
three degree of freedom system. Studying a similar solo duck system, Pizer [5]
noted that releasing control of the surge degree of freedom resulted in a larger205

reduction in power than by releasing heave or pitch, for whom the reduction was
small. Consequently, a solo duck with control over just surge and heave motions
may provide comparable performance to a system with pitch also controlled. We
adopt this example to highlight the potential importance of using the extended
constraint introduced in Section 3. Surge and heave are controlled, whilst the210

pitch degree of freedom is uncontrolled. Wavefronts are parallel to the axis of
pitch rotation, and 1m and 2m wave amplitudes are considered. (Given the
periods that are likely to accompany them in a real sea climate, these wave
amplitudes are not thought to be large enough to hinder the use of a linear
model.)215
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Figure 2: The impact of extending the motion constraint to uncontrolled degrees of freedom
on the capture width ratio for a solo duck. Surge and heave motions controlled, 1m wave
amplitude.
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Figure 3: The impact of extending the motion constraint to uncontrolled degrees of freedom
on the capture width ratio for a solo duck. Surge and heave motions controlled, 2m wave
amplitude.

Especially around the peak in capture width ratio, whether or not the motion
constraint is enforced on all degrees of freedom, or just those of surge and heave,
makes a significant difference. Under 1m incident waves, a small difference in220

capture width ratio is present between 8 and 11s wave periods (Fig. 2). For
2m wave amplitudes, which are not unlikely to be encountered in a real wave
climate, the difference extends to a much wider range of wave periods, and is
more significant (Fig. 3). Capture width ratio is reduced from a peak value of
around 1.5 to a peak value around 1.2. Note also that the peak in capture width225

ratio with both versions of the constraint is lower in the 2m waves (than in the
1m waves) because a greater departure from the unconstrained control case is
required in order to satisfy the motion constraints. (In the unconstrained case,
one would expect equivalent capture width ratio plots, since both the extracted
power and the power in the waves scale with the square of the wave amplitude,230

under linear theory.) In other words, the constraint more severely curtails the
motions in waves of larger amplitude. It is for this reason, along with the fact
that the motions demanded by complex conjugate control strategies tend to
increase for longer waves, that the power in the 2m wave case is also reduced
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over a wider range of wave periods when the constraint is extended, than with235

the 1m waves.
In the case with 2m waves shown here, that follows the method from Section

2, the unconstrained pitch motions reach unrealistically high values (around
2rad for a wave period of 9.6s), which violates the assumption of linearity
(Fig. 4). Extending the constraint to also restrict the pitch motions unsurpris-240

ingly results in reduced pitch motions for wave periods above 7s, with surge ex-
cursions reduced similarly. Interestingly, heave motions actually increase slightly
for wave periods above 8.5s.
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d
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Pitch Heave Surge

Figure 4: The impact of extending the motion constraint to uncontrolled degrees of freedom
on motions on the surge, heave and pitch body motions. Surge and heave motions controlled,
2m wave amplitude. Dotted lines: Constraint applied only to controlled modes. Solid lines:
Constraint applied to all modes.

In general, the extended constraint (Eq. 8) can only be satisfied if the con-245

trolled modes have enough influence on the uncontrolled modes via the hydrody-
namic, hydrostatic and inertial coupling, to restrict the motions sufficiently. In
the case of the solo duck under head-on waves considered above, the constraints
on the out-of-plane motions (in sway, roll and yaw) are trivially satisfied since
they are not excited by the waves. The constraints on the in-plane motions can250

be satisfied because coupling between the pitch degree of freedom and the surge
and heave degrees of freedom is sufficiently strong. However, oblique waves
excite the out-of-plane motions, sometimes to the extent that no amount of
force imparted through the surge and heave motions is sufficient to restrict the
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out-of-plane motions in accordance with the weighted constraint. Fig. 5 shows255

that between 7 and 8s wave periods, and for wave angles greater than 10◦, a
solution that satisfies the extended constraint does not exist when only surge,
heave and pitch are controlled. In this case, the constraint violation is due to
resonant response in sway and roll, which are not coupled strongly enough to
surge, heave and pitch.260
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Figure 5: Capture width ratio of a solo duck with uncontrolled sway, roll and yaw modes.
Motion constraint applied to all modes, 1m wave amplitude. Legend defines the data lines for
each wave heading, in degrees.

Bolstering this strategy with (direct) control over the sway motions also
increases the degree of indirect control over the roll motions via coupling. Solu-
tions are now found for all wave periods, with heading angles up to and including
60◦, but there still remain regions in which no solution exists for greater wave265

angles (Fig. 6).
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Figure 6: Capture width ratio of a solo duck with uncontrolled roll and yaw modes. Motion
constraint applied to all modes, 1m wave amplitude. Legend defines the data lines for each
wave heading, in degrees.

The greater range of solutions is largely due to the hydrodynamic coupling
between the sway and roll modes, enabling control forces applied through sway
to restrict the motion in roll. However, this strategy results in larger sway270

excursions, increasingly so for more oblique wave headings, which ultimately
causes constraint violation for wave angles above 60◦. Fig. 7 shows the limiting
case with 60◦ waves, in which control forces are just about able to sufficiently
restrict the roll motions at the expense of increased sway excursions, without
violating the motion constraint (Eq. 8). Fig. 8 shows the motion amplitudes275

of the undamped and unstiffened system (i.e. all modes uncontrolled) with a
60◦ wave heading; the sway and roll motions are resonant together around 7.5s.
In particular, the roll amplitude exceeds its individual weighting (β) between 7
and 8s wave periods, indicating constraint violation, whilst the sway excursion
is considerably below its corresponding weighting, giving the necessary buffer280

for some of the excess motion in roll to be converted to sway motion. Fig. 6
also highlights that the power tends towards a large negative value either side
of the region containing no solutions to the Lagrange problem. As this region is
neared from lower or higher wave periods, the approaching resonance of the roll
motions increasingly necessitates counteractive force provision in order to satisfy285

the weighted global constraint. This comes at the expense of power generation,
but prevents the constraint being violated. In turn, this causes increased sway
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excursions, and further reduces power generation until eventually, there are no
solutions to the constraint, regardless of the decrease in power.

Of the 62 (6 + 15 + 20 + 15 + 6) combinations of controlled modes of the290

solo duck (excluding the cases where all are controlled or all are uncontrolled),
the non-existence of solutions has been found at most to involve a narrow range
of wave periods and less than the full range of wave angles. In those cases, the
peaks in capture width ratio generally lie outside the period-angle combinations
of the non-existence regions.295
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Figure 7: Motions of the solo duck in 60◦ oblique waves, optimised for power under the
extended global motion constraint. Controlled modes: surge, sway, heave, pitch.
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Figure 8: Motions of the undamped and unstiffened solo duck in 60◦ oblique waves. Controlled
modes: surge, sway, heave, pitch.

Under head-on waves, where the simplified system has three degrees of free-
dom, locking a degree of freedom does not necessarily cause a significant reduc-
tion in performance [4]. From a two degree of freedom system, releasing (i.e.300

changing it from fixed, to free but uncontrolled) the third degree of freedom
results in a loss in power, which is much greater when surge is released rather
than heave or pitch [5]. Of course, that study [5] left open the possibility of
large motions in the uncontrolled degree of freedom. However, a similar trend
is found in the duck system studied here under the impact of the extended mo-305

tion constraint. Under head-on waves (a wave heading of 0◦), conceding control
of surge results in a greater loss of power than conceding control of heave or
pitch (Fig. 9). The peak capture width ratio value of 1.97 reduces only to 1.79
in conceding control of heave. Despite some additional loss of bandwidth, this
may still provide an advantage if the systems required to control the heave (or310

pitch) degree of freedom are costly.
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Figure 9: Capture width ratio of the solo duck in head-on waves, with control of each in-plane
degree of freedom conceded in turn. Wave angle: 0◦; wave amplitude: 1m. Legend indicates in
which degree of freedom control has been conceded, if any. (Note that the three out-of-plane
degrees of freedom do not affect this system because of the symmetry of the device, and so
have not been plotted.)

Whilst out-of-plane degrees of freedom (sway, roll and yaw) do not affect
the power capture with a 0◦ wave heading due to the plane of symmetry of the
duck, it is not the case that the in-plane degrees of freedom do not affect the315

power capture with a 90◦ wave heading. In transitioning between 0◦ and 90◦

wave headings, the roles of surge and sway broadly interchange. In head-on
waves, conceding control of surge results in a significant power reduction across
a wide range of wave periods, whilst conceding control of sway has no effect.
Conversely, in 90◦ waves, conceding control of sway reduces power significantly,320

whereas little effect is had by conceding control of surge (Fig. 10). Conceding
control of heave or pitch tends to diminish the power across the full range
of wave angles, especially in longer wave periods, but the power reduction is
relatively insignificant (Fig. 9). Conceding control of yaw or roll does not have
any significant impact on power in wave angles close to either end of the range325

(Figs. 9, 10), and causes only modest reductions in power for intermediate
wave angles (e.g. at 30◦, see Fig. 11), the majority of which occurs at lower
wave periods. In fact, conceding control of roll actually increases power for
wave periods between 7.3 and 8.5s, and for intermediate angles, compared to
the case in which all degrees of freedom are controlled. This may seem counter-330

15



intuitive, but the situation (greater power with control over fewer degrees of
freedom) is possible if a greater shift away from true optimality (by providing
extra damping) is required, in order to satisfy the constraint in the case where
all six degrees of freedom are controlled.

Considering that a real deployment location may only experience a small335

range of incident wave angles, the device is likely to be set at an angle of around
30◦ since this enables a very wide bandwidth, without sacrificing much in peak
power (Figs. 9, 11, see also [4]). In this light, conceding control of heave, pitch
or roll seem to be least detrimental to performance, though conceding control
of yaw may be a better option towards higher wave periods.340
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Figure 10: Capture width ratio of the solo duck in 90◦ incident waves, with control of each
degree of freedom conceded in turn. Legend indicates in which degree of freedom control has
been conceded, if any.
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Figure 11: Capture width ratio of the solo duck in 30◦ incident waves, with control of each
degree of freedom conceded in turn. Legend indicates in which degree of freedom control has
been conceded, if any.

Furthermore, conceding control of two degrees of freedom can even retain the
majority of the power capture across a slightly narrowed band of wave periods
(see the red and green lines in Fig. 12). However, sacrificing control of both345

heave and pitch results in a much reduced capture width ratio (see the blue line
in Fig. 12), inferring that when just heave or pitch is uncontrolled, control of
the other is necessary to compensate. Should it be desired that three degrees
of freedom are uncontrolled, it is best to retain control over the translational
degrees of freedom. This case compares favourably to the one in which all350

degrees of freedom are controlled (see the purple line in Fig. 12). Conversely,
conceding control of the translational degrees of freedom, but retaining control
of the rotational degrees of freedom, results in a large loss of power across a
wide range of wave periods (see the light blue line in Fig. 12).
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Figure 12: Capture width ratio of the solo duck in 30◦ incident waves, with a selection of
better performing combinations of uncontrolled modes. Legend indicates in which degrees of
freedom control has been conceded, if any.

6. Conclusions

In reference [4], a method was derived to apply complex conjugate control
with a global motion constraint. That constraint consisted of a set of weight-
ings associated with only controlled modes of motion. The present study has
extended that constraint to also include weightings associated with uncontrolled360

modes of motion.
The new method was then applied to a six degree-of-freedom solo duck,

initially focussing on an in-plane case where there was no direct control over
pitching. That case demonstrated that the use of the extended constraint can
often be essential, in order to avoid unrealistic motions and significant overesti-365

mation of the power.
However, more generally, care should be taken when applying the extended

constraint, since its satisfaction relies upon sufficient levels of hydrodynamic, hy-
drostatic and inertial coupling between the controlled and uncontrolled degrees
of freedom. The presence of a solution is dictated by the wave amplitude, and370

properties of only the uncontrolled modes, although a subset of those properties
can be related to the coupling between the controlled and uncontrolled modes
via the equations of motion. With the constraint weightings, wave amplitude
and duck geometry considered in this paper, regions of solution non-existence
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were confined to only a narrow range of wave periods, and importantly were375

situated away from the peaks in capture width ratio.
With regards to the cost savings (particularly of the power take-off system)

that may accompany a relinquishment of control of certain degrees of freedom,
a number of conclusions can be made for the solo duck.

� In head-on waves, control can be conceded in either heave or pitch (but380

not both) without significant reductions in power. Surge control should
be retained.

� In oblique waves, conceding control of roll can actually result in increases
in capture width ratio for certain wave period ranges.

� In 30◦ oblique waves, there are several key permutations of control con-385

cessions, which result in only small performance reductions:

– Conceding control of heave, roll or pitch (leaving 5 controlled modes),

– Conceding control of heave and roll or pitch and roll (leaving 4 con-
trolled modes),

– Conceding control of roll, pitch and yaw (leaving 3 controlled modes).390

� In general, control of only one of the heave and pitch modes at most should
be sacrificed; conceding control of both results in significantly lowered
capture width ratio.
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