

THE UNIVERSITY of EDINBURGH

Edinburgh Research Explorer

Theropod (Dinosauria) diversity from the Potiguar Basin (Early-Late Cretaceous Albian-Cenomanian), northeast Brazil

Citation for published version:

Pereira, PVGC, Ribeiro, TB, Brusatte, S, Candeiro, CRA, Marinho, TS & Bergqvist, LP 2020, 'Theropod (Dinosauria) diversity from the Potiguar Basin (Early-Late Cretaceous Albian-Cenomanian), northeast Brazil', *Cretaceous Research*, vol. 114, 104517. https://doi.org/10.1016/j.cretres.2020.104517

Digital Object Identifier (DOI):

10.1016/j.cretres.2020.104517

Link: Link to publication record in Edinburgh Research Explorer

Document Version: Peer reviewed version

Published In: Cretaceous Research

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy

The University of Édinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.

Cretaceous Research THEROPOD (DINOSAURIA) DIVERSITY FROM THE POTIGUAR BASIN (EARLY -LATE CRETACEOUS), NORTHEAST BRAZIL --Manuscript Draft--

Manuscript Number:	YCRES_2019_258R2
Article Type:	Full Length Article
Keywords:	Dinosauria; Potiguar Basin; Theropoda; faunistic richness, Taxonomic description
Corresponding Author:	Paulo Victor Luiz Gomes da Costa Pereira UFRJ Rio de Janeiro, RJ Brazil
First Author:	Paulo Victor Luiz Gomes da Costa Pereira
Order of Authors:	Paulo Victor Luiz Gomes da Costa Pereira
	Theo Baptista Ribeiro
	Stephen Brusatte
	Carlos Roberto dos Anjos Candeiro
	Thiago da Silva Marinho
	Lilian Paglarelli Bergqvist
Abstract:	The theropod record from the Cretaceous of northeastern Brazil are rare and consist mostly of isolated and incomplete remains, with only four species described. Here we describe, identify and evaluate the diversity of theropod materials from the Albian-Cenomanian Açu Formation, Potiguar Basin. The material consists of nine isolated vertebrae and a tooth. The vertebrae have been identified as belonging to four theropod groups: Abelisauria, Carcharodontosauria, Spinosauridae, Megaraptora, and Maniraptora. The isolated tooth was classified as belonging to a spinosaurid. One of the significant results so far is the occurrence of Megaraptora in the Potiguar Basin, based on the general morphology, the bones are very similar to Aerosteon and Megaraptor. Another unexpected result is the identification and presence of a maniraptoran caudal vertebrae, very rare in Brazil, with few fossils described. Besides this, other groups already found on isochronous basins of the Northeast region of Brazil and Africa as Carcharodontosauria and Spinosauridae. The presence of these theropod groups in the Açu Formation reveals a dinosaur richness in in the Potiguar Basin similar to isochronous basins in Northern Africa and increases the knowledge about the diversity of South American dinosaurs.
Suggested Reviewers:	Manuel Alfredo Medeiros manuel.alfredo@ufma.br Extensive knowledge and experience with brazilian dinosaurs fauna Juan Canale
	juanignaciocanale@hotmail.com Interest and great knowledge of theropoda fauna in south america
	Rafael Matos Lindoso rafael.lindoso@ifma.edu.br Has experience with Theropoda materials from Brazil
Opposed Reviewers:	

The suggestions were taken into consideration during the reviewing process and were a valuable contribution for the improvement of the paper.

Almost all the specific revisions and suggestions from reviewer 02 and 03 were made with no exception and are highlighted in red color in the text (in the "with highlights" version). Bellow we answer some of the edito/reviewers question and suggestions.

Editor: Place your Figure captions at the end of the manuscript file, after References.

A: Done

Editor: As the reviewers have commented below, the English of the manuscript needs to be improved (grammar, syntax, structure of sentences, odd phrasing, etc.). It is the authors' responsibility to proof their manuscript for English problems. The revised version should be carefully proofed before you resubmit it. You should seek help from your co-author, Prof. Steve Busatte, to carefully go through the manuscript before submission. This would help to remove the linguistic problems and in dealing with all the key issues mentioned by the reviewers.

A: Done. The English was improved. Prof. Steve Busatte read carrefuly the manuscript.

Editor: Order of Figures: All figures must to be presented in the same sequence that have their first citations in the manuscript text. Please check and correct carefully the order of figures in the manuscript and their corresponding first citations. Delete out-of order citations and/or rearrange them if necessary. Check also for missing citations

A: Done.

Reviewer 01: All revision in the abstract.

A: All the revisions were accepted.

Reviewer 01: I recommend to change the title for a more realistic one, for example: "Theropod dinosaur remains from..."

A: We understoood the statement of Revisor 01, but we prefered to keep the original title, as it summarizes the results seen in the manuscript.

Reviewer 03: Five theropod species only in the northeast, or in all Brazil?

A: The four specimens are only from northeastern Brazil. This detail is better explained in the second paragraph of the Introduction.

Reviewer 03: Spinosauridae was recognized by a tooth, not a vertebra

A: done

Reviewer 03: I suggest to end this sentence with something more "... about the diversity of dinosaursxxx..."

A: Done

Reviewer 01: Please, restrict to Cretaceous record, to address the relevance of the materials here reported.

A: We choose to keep this part of the text to preserve the coesion within of the Introduction, featuring the first works and discoveries on theropod paleontology of Brazil. The next paragraph has a small summary of the Cretaceous northeastern theropoddinosaurs of Brazil.

Reviewer 01: Please, restrict to Cretaceous record A: Done

Reviewer 01: Confuse

A: We rewrite this paragraph.

Reviewer 03: To this list should be added the recently described *Vespersaurus* paranaensis Langer et al., 2019 and *Gnathovorax cabreirai* Pacheco et al., 2019.

A: We choose to limit this list to the northeastern Brazil's theropod record only to make the text more easy to read/understand

Reviewer 03: The authors do not describe any osteoderm in the text.

A: Done

Reviewer 01: Do you mean the sedimentary infilling is divided into three groups?

A: Yes, we are following the terminology and geological description of the Basin.

Reviewer 03: I suggest to add its collection number

A: Done

Reviewer 03: They were described only five morphotypes in the text.

A: Done

Reviewer 01: This is not necessary to say. Anatomy is based on morphology. Avoid the use of "morphotypes", as if they were discrete biological units. Based on morphology, you identify vertebrae as corresponding to such section of the column, and to which theropod clade it may belong. Identification of "morphotypes" is useless. A: We agree. We decided to remove the word "morphology" to avoid confusion.

Reviewer 01: Considering that this is not a ms devoted to analyze theropod teeth as a whole, and taking into account that just only one tooth is described, I suggest to remove all these considerations.

A: Done.

Reviewer 03: I suggest to b econsistent with the abbreviations, using their English verisions as is usual besides FABL: CBW: crown basal width (rather than EST), CH: crown height (rather than ALT), etc. See Hendrickx et al 2015. The dentition of megalosaurid theropods . Acta Paleontologica Polonica 60 (3): 627-642.

A: We followed the reviewer 01 and removed this part.

Reviewer 03: The values of most of these parameters were not specified in the analysis of the tooth recovered. I suggest to add them.

A: We followed the reviewer 01 and removed this part.

Reviewer 03: This measurement has a big fault, given there covered tooth lacks most of its tip.

A: Done. We didn t use this measurement any more.

Reviewer 03: Other abbreviation was used in Material and methods

A: We followed the reviewer 01 and removed this part.

Reviewer 01: Remove this and replace for "Systematic Paleontology"

A: Done

Reviewer 03: I suggest that, before comparing this material with other spinosaurids, the authors should add a summary of characters that allow to asign it to Spinosauridae.

A: Done. We summarize the characteristics of spinosaurids in the Discussion.

Reviewer 03: Given there are two morphotype sassigned to Megaraptora, both showing similar characteristics, the authors should explain why there are not included in a single morphotype.

A: Done. We reorganized the material in the groups and removed the division "Morphotypes"

Reviewer 03: The word "expressive" seems wrong in this context.

A: Done.

Reviewer 01: Which is the systematic relevance of all these ratios?

A: We strongly suggest that the reviewer read the articles about the use of quantitative analysis in the identification of theropod teeth:

-HENDRICKX, C. & MATEUS, O. 2014. Abelisauridae (Dinosauria: Theropoda) from the Late Jurassic of Portugal and dentition-based phylogeny as a contribution for the identification of isolated theropod teeth. Zootaxa, 3751, 1–74.

-HENDRICKX, C., MATEUS, O., ARAÚJO, R. 2015. A proposed terminology of theropod teeth (Dinosauria, Saurischia). Journal of Vertebrate Paleontology 35 (5), e982797. http://dx.doi.org/10.1080/02724634.2015.982797.HENDRICKX, C. & MATEUS, O. 2014. Abelisauridae (Dinosauria: Theropoda) from the Late Jurassic of Portugal and dentition-based phylogeny as a contribution for the identification of isolated theropod teeth. Zootaxa, 3751, 1–74.

-HENDRICKX, C., MATEUS, O., ARAÚJO, R., AND CHOINIERE, J. 2019. The distribution of dental features in non-avian theropod dinosaurs: Taxonomic potential, degree of homoplasy, and major evolutionary trends. Palaeontologia Electronica 22.3.74 1–110. https://doi.org/10.26879/820palaeo-electronica.org/content/2019/2806-dental-features-in-theropods.

-SMITH, J.B., VANN, D.R., DODSON, P. 2005. Dental morphology and variation in theropod dinosaurs: implications for the taxonomic identification of isolated teeth. The Anatomical Record Part A285: 699-736.

-SANKEY, J.T., BRINKMAN, D.B., GUENTHER M., CURRIE, P.J. 2002. Small theropod and bird teeth from the Late Cretaceous (Late Campanian) Judith River Group, Alberta. Journal of Paleontology, 76, 751–763.

Reviewer 01: "Which are the anatomical bases to refer these elements as to Neovenatoridae/Megaraptora? The present manuscript suffers of the lack of anatomical descriptions and comparissons allowing the reader to understand why present authors conclusions.";

"Please, provide morphological bases to support this referral.";

"Please, give reasons for referring these elements as to Abelisauroidea"

"Please, explain why this element is referred as to Maniraptora"

"Please, explain why this element is referred as to Carcharodontosauria"

"Please, explain why this element is referred as to Megaraptora";

A: These parts have been rewrite to increase cohesion and make it clearer to understand. The first paragraph of the "comparisons" part has the characteristics used to allocate the fossil in the specific theropod group and the corresponding bibliography.

Reviewer 01: Please, obviate this detail. It is not morphological!

A: We removed the measurements.

Reviewer 01: Please, clarify

A: Done

Reviewer 01: Before description of any dinosaur bone, it must be glued.

A: Done. Material have been found associated, but there is no clear point of junction between both pieces, with most of the middle portion being lost.

Reviewer 03: Sem-spherical or semicircular?

A: Done. Semicircular

Reviewer 03: The authors should describe (and figure) the materials as a single vertebra, not as two different fragments. It is confusing and does not help with interpretation of the materials.

A: Ok. Done

Reviewer 03: At the beginning of this morphotype description the authors suggest that they are possibly caudal vertebrae.

A: Ok. Done

Reviewer 03: Why anterior? It could not be posterior?

A: We removed this fragment because it is not significant or relevant for this manuscript.

Reviewer 03: Why the authors assign this material to morphotype 1? They only suggest that it belongs to a theropod.

A: We removed this fragment because it is not significant or relevant for this manuscript.

Reviewer 01: I am surprised with this statement: Ceratosauria as members of Tetanurae. This is not a serious manuscript.

A: It was just a confusion when we were arranging the morphotypes. We know that Ceratosauria is not inside Tetanurae. Thanks for the revision...

Reviewer 03: This character used for differentiate this morphotype is clearly related to the position of the vertebra inside the vertebral series; This character is used for differentiate this morphotype is also present in morphotype 1; I suggest to look for other more specific characters to differentiate this morphotype.

A: We revised the attribution of this morphotype in Abelisauria and not found any solid characteristic to sustain this classification. We decided to follow the reviewers and be conservative and put these material at Theropoda indet.

Reviewer 03: I think both are synonyms

A: Done.

Reviewer 03: This sentence is confusing.

A: Done.

Reviewer 03: Think the authors should specify which transition point are referring here (I suppose that proposed by Russel (1972), but this is my guess)

A: Done

Reviewer 03: The shape of the articular face of caudal vertebrae is so variable, it show differences inside the same taxonomic group. For example inside Abelisauridae, Carnotaurus shows semicircular articular surface, and Majungasaurus show oval articular surface, as the authors clearly show in the figure 8. This makes this character not useful for separating morphotypes.

A: We don't use anymore this ratio type of character on the description.

Reviewer 03: The articular surfaces shown in the figure 4 has ovoidal articular faces.

A: Done.

Reviewer 03: hourglass-shaped

A: Done.

Reviewer 03: The lateral surfaces are slightly concave in these taxa, not very.

A: Done

Reviewer 03: Please seeAranciaga-Rolando et al (2018) A supposed Gondwanan oviraptorosaur from the Albian of Brazil represents the oldest South American megaraptoran. Cretaceous Research 84: 107-119.

A: Done

All the reviewers: All the revisions in the discussion.

A: We followed the suggestion of the reviewer 01 and reorganized the discussion. We replaced the most part to results in the comparative morphology and rewrite the discussion based on the importance of the Potiguar's fossils.

FIGURES

We done all the revisions requested by the reviewers and improved the figures.

Highlights – article: THEROPOD (DINOSAURIA) DIVERSITY FROM THE POTIGUAR BASIN (EARLY - LATE CRETACEOUS), NORTHEAST BRAZIL

- These are the first described theropod materials from the Potiguar Basin, Brazil.
- Four morphotypes were described based on morphological and/or diagnostic characters.
- Carcharodontosauria and Spinosauridae were groups identified.
- Rare Megaraptora, and Maniraptora materials were also identified.

1

1	THEROPOD (DINOSAURIA) DIVERSITY FROM THE POTIGUAR BASIN
2	(EARLY-LATE CRETACEOUSALBIAN – CENOMANIAN), NORTHEAST
3	BRAZIL
4	
5	
5	
6 7	Paulo Victor Gomes da Costa Pereira ¹ ; Theo Baptista Ribeiro ¹ ; Stephen Louis Brusatte ² ; Carlos Roberto Dos Anjos Candeiro ³ , Thiago da Silva Marinho ⁴ ; Lilian
8	Paglarelli Bergqvist ¹
9	
10	*corresponding author – <u>paulovictor29@yahoo.com.br</u>
11	1- CCMN - Universidade Federal do Rio de Janeiro, Ilha do Fundão, Rio de Janeiro (RJ), Brazil.
12	E-mail: paulovictor29@yahoo.com;theobribeiro1@gmail.com; bergqvist@geologia.ufrj.br
13	2 - University of Edinburgh, Grant Institute, School of GeoSciences. Edinburgh, Scotland, UK. E-mail:
14	stephen.brusatte@ed.ac.uk
15	3 - Universidade Federal de Goiás (UFG), Laboratório de Paleontologia e Evolução (LABPALEOEVO),
16	Curso de Geologia. Aparecida de Goiânia, GO, Brazil. E-mail: candeiro@ufg.br
17	4- Centro de Pesquisas Paleontológicas L. I. Price, Complexo Cultural e Científico Peirópolis, Pró-Reitoria
18	de Extensão Universitária, Universidade Federal do Triangulo Mineiro, Uberaba, Minas Gerais, Brazil. E-
19	mail: <u>tsmarinho@icene.uftm.edu.br</u>
20	
21	Abstract
22	
23	The theropod record from the Cretaceous of northeastern Brazil are rare and consist
24	mostly of isolated and incomplete remains, with only four species described. Here we
25	describe, identify and evaluate the diversity of theropod materials from the Albian-
26	Cenomanian Açu Formation, Potiguar Basin. The material consists of seven isolated
27	theropod vertebrae and a tooth. We identify the material as belonging to four theropod

groups: Spinosauroidea, Carcharodontosauria, Megaraptora, and Maniraptora. One of the 28 significant results is the occurrence of Megaraptora in the Potiguar Basin; based on the 29 general morphology, some of the bones we describe are very similar to those of Aerosteon 30 31 and Megaraptor. Another unexpected result is the identification and presence of a maniraptoran caudal vertebrae; these dinosaurs are very rare in Brazil, with few fossils 32 previously described. Furthermore, we identify other groups that have already been found 33 34 in isochronous basins of the Northeast region of Brazil and Africa, including Carcharodontosauria and Spinosauroidea. The presence of these theropod groups in the 35 Acu Formation reveals a dinosaur richness in in the Potiguar Basin similar to isochronous 36 basins in Northern Africa and increases knowledge about the diversity of South American 37 dinosaurs. 38

39

40 Keywords: Dinosauria, Potiguar Basin, Theropoda, faunistic richness,
41 Carcharodontosauria, Megaraptora, Spinosauridae, Maniraptora.

42

43 Introduction

44 The first studies in Brazil that attributed vertebrate fossil remains to dinosaurs were published in the nineteenth and mid-twentieth centuries (Marsh, 1869; Derby, 1890; 45 46 Mawson and Woodward, 1907; Price, 1960, 1961). Since that time, dinosaur fossils have 47 been recorded from three principal localities and ages in Brazil: the Triassic of the Santa 48 Maria and Caturrita formations (Langer et al., 2007a), the mid-Cretaceous of the Araripe, Triufo and São Luís-Grajaú basins (Frey and Martill 1995; Kellner 1996a, b, 1999; 49 50 Medeiros et al., 2007; Carvalho et al., 2017), and the Late Cretaceous of the Bauru and Parecis groups (Franco-Rosas et al., 2004; Kellner et al., 2004; Brusatte et al. 2017). 51

There are eight theropod dinosaur species formally described from Brazil so far, four from the northeastern region: *Santanaraptor placidus* Kellner, 1999, *Irritator challengeri* Martill, Cruikshank, Frey, Small and Clarke, 2002 and *Mirischia asymmetrica* Naish, Martill and Frey 2004 from the Araripe Basin; and *Oxalaia quilombensis* Kellner, Azevedo, Machado, Carvalho and Henriques, 2011 from the São Luís-Grajaú Basin.

A promising area for new dinosaur discoveries is the rocks of the Açu Formation, in the Portiguar Basin. Until now, the macrofossils of the Açu Formation consisted of bivalve molluscs, small crustaceans, fish scales, and plant remains (Duarte and Santos, 1961). However this changed in the 2000s, when researchers from the Group of Analogs to Oil Reservoirs of the Department of Geology of the Federal University of Rio Grande do Norte, in geological mapping of the Açu 4 operational unit, found large vertebrate fossils.

65 In the decade after the discovery of these first continental vertebrate fossils in the formation (Santos et al., 2005), no other fieldwork was conducted. However, in 2015 and 66 2016, this area was again prospected by Laboratório de Macrofósseis of the Universidade 67 68 Federal do Rio Janeiro and dozens of fossils were found. The aim of the present work is to describe and identify the collected materials attributed to theropod dinosaurs, showing 69 that the Potiguar Basin preserves a large diversity of species and has great potential for 70 71 future discoveries and studies about the mid-Cretaceous paleoenvironments of the Atlantic margin of Brazil. 72

73 Geological Setting and Lithostratigraphy

The Potiguar Basin is located at the eastern continental margin of northeastern
Brazil, cropping out in the states of Rio Grande do Norte and Ceará (Fig. 01), with a total

estimated area of 60,000 km², of which 22,000 km² is interpreted as continental (Cassab,
2003). The Potiguar Basin is bounded to the east by Alto de Touros, which separates it
from the Pernambuco-Paraíba Basin, to the northwest by the Alto de Fortaleza, which
separates it from the Ceará Basin, and to the south and west by crystalline basement rocks
(Pessoa-Neto *et al.*, 2007).

The sedimentary units of the Potiguar Basin are divided into three groups: Areia Branca (Pendência and Alagamar formations), Apodi (Açu, Quebradas and Jandaíra formations) and Agulha (Ubarana, Guamaré and Tibau formations) (Araripe and Feijó, 1994). The Açu formation is divided into four subunits according to electric logs, identified from bottom to top as Açu 1, Açu 2, Açu 3 and, Açu 4 (Vasconcelos *et al.*, 1990). The material described here comes from the Açu 4 subunit, which corresponds to a transgressive, coastal-estuarine system.

The Açu-4 Unit consists of sixteen facies, fourteen being siliciclastic and two 88 being hybrid. The siliciclastic facies are grouped into nine associations, namely: (1) lag 89 90 residual deposits, (2) channel fill deposits, (3) crevasse-splay deposits, (4) floodplain 91 deposits, (5) abandoned channel deposits, (6) upper-flow regime sandflat deposits, (7) lower-flow regime sandflats, (8) sandflat/mudflat deposits of restricted environment, and 92 93 (9) mudflat deposits. The first five facies associations represent a meandering fluvial system with tidal influence, and the remaining integrate the intermediate and distal sectors 94 95 of an estuarine complex dominated by tides. The hybrid facies were deposited in a shallow platform adjacent to an estuary (Costa et al., 2014). 96

97

98

The Açu Formation has been suggested to be Albian-Cenomanian in age (Early– Late Cretaceous), based on palynological data (Araripe and Feijó, 1994).

99

100 Material and Methods

101 The fossils were collected from outcrops of the Acu Formation, Potiguar Basin (Ceará state, noutheastern Brazil) and are deposited at the Fossil Reptile Collection of the 102 103 Departamento de Geologia (DG), Universidade Federal do Rio de Janeiro (UFRJ). The 104 material consists of seven isolated theropod vertebrae (UFRJ-DG 521-R, 523-R, 524-R, 105 528-R, 558-R, 575-R, and 634-R) and a tooth (619-Rd) The following tooth characteristics were assessed, following the nomenclature 106 107 proposed by Hendrickx et al. (2015): general morphological traits of the dental crown (its overall shape, curvature, ornamentations in the enamel), denticles (presence, size and 108 shape) cross section (compression and shape), orientation of the tooth (lingual, labial, 109 mesial and distal) and measurements. 110 111 Systematic paleontology 112 113 SAURISCHIA Seeley, 1888 THEROPODA Marsh, 1881 114 115 Referred material: UFRJ-DG 532-R and 575-R. 116 117 Description: 118 **UFRJ-DG 528-R** 119 Specimen 528-R is a theropod vertebral centrum (Fig. 02, C-E). It is amphicoelous, and slightly higher than long. Its lateral surface is smooth and slightly 120 121 concave, without marks or other remarkable characteristics, giving the vertebra a straight and somewhat featureless appearance. The ventral surface smooth with no groove or keel 122 123 and it is slightly concave in lateral view. 124 The dorsal surface possesses a distinct longitudinal groove extending from one

articular facet to the other that can be identified as the neural canal. The articular faces

125

have nearly straight margins. The anterior facet is somewhat concave, and the posterior
is slightly convex and slightly oval in shape; both articular facets have the same general
proportions (height longer than length). The anterior articular face presents a deeper
concavity, and is slightly larger in size, than the posterior face, which is very flat and
without deep depressions.

131 UFRJ-DG 575-R

Specimen 575-R (Fig. 02, A-B) is a theropod vertebral centrum broken in two: a smaller anterior piece and a larger posterior section. Although the material was found associated there is no clear point of junction between both pieces, as most of the middle portion has been lost. The anterior fragment exhibits a very concave articular face of semicircular shape and slightly forward-protruding margins.

On the lateral surface of the anterior fragment there is a deep perforation close to the dorsal region that reaches the other lateral surface, which can be described as a pleurocoel. The ventral surface of the anterior fragment is smooth and concave in anterior view. The dorsal surface of the anterior fragment is broken, missing most of the surface above the pleurocoel.

The posterior fragment has a slightly smaller articular surface, which is broken on the anterior portion; it is also concave and of semi-circular shape, with slightly backwards-protruding margins. Its dorsal surface and the dorsal half of the left lateral surface are broken, while the right lateral surface is broken in a slightly more dorsal region in comparison to the left one. The ventral surface of the fragment is smooth and concave in lateral view. Due to the highly fragmentary state of UFRJ-DG 575-R, it is possible to see multiple small pervasive pneumatic chambers, the camellae, in the internal bone.

149 *Comparisons:*

150	The highly pneumatized camellate bone seen in UFRJ-DG 575-R is a
151	characteristic seen in many groups of theropods, from the basal Ceratosaurus to tetanuran
152	groups such as carcharodontosaurids and coelurosaurs mainly in its presacral vertebrae
153	(Carrano and Sampson, 2008). This feature, together with the poor preservation of this
154	specimen, which prevents the identification of other more diagnostic characteristics,
155	hinders the classification of this specimen beyond Theropoda.
156	
157	THEROPODA Marsh, 1881
158	TETANURAE Gauthier, 1986
159	? SPINOSAUROIDEA Stromer, 1915
160	
161	Referred material: UFRJ-DG 619-Rd.
162	Description:
163	UFRJ-DG 619-Rd (Fig. 03) is a fragment of a large isolated tooth crown, probably
164	belonging to the middle to almost apical portion of the tooth. The specimen lacks any
165	form of enamel, as it has dentine exposed, what prevents description of external
166	ornamentation such as transversal undulations, flutes and denticulation. The crown is
167	almost completely straight with only a subtle curvature in its lingual surface, while the
168	labial surface remains slightly convex.
169	The crown fragment has an overall cone-like shape with an almost ovoid cross
170	section. In basal view, it is possible to see concentrically deposited rings of dentine
171	surrounding a small depression, which probably represents the apical-most portion of the
172	dental pulp cavity.

173 *Comparisons:*

174	UFRJ-DG 619-Rd have some characteristics that it shares with the highly
175	specialized teeth of spinosauroid theropods. The most salient of these is the almost
176	straight conical shaped crown, with an ovoid cross section, a feature often seen in
177	piscivorous animals (Mateus, 2011; Hendrickx and Mateus, 2014).
178	
179	THEROPODA Marsh, 1881
180	TETANURAE Gauthier, 1986
181	MANIRAPTORA Gauthier, 1986
182	
183	Referred material: UFRJ-DG 521-R
184	Description:
185	UFRJ-DG 521-R
186	Specimen UFRJ-DG 521-R (Fig. 04) is an almost complete distal caudal vertebrae
187	of a maniraptoran theropod. It is amphicoelous with a length to height ratio of almost 2.5,
188	making it a least twice longer than tall. The dorsal surface of the centrum is almost
189	complete with half of a dorsal midline ridge reminiscent of reduced neural spine, a well
190	preserved and more dorsally positioned prezygapophysis, and a lost postzygapophysis.
191	The prezygapophysis articular surface is ellipsoid and is reclined 45° laterally. The neural
192	canal is almost completely preserved, having lost only its posterior half .
193	The lateral surfaces of the centrum are mostly smooth, marked only with a midline
194	ridge reminiscent of a reduced transverse processes. The ventral surface of the centrum
195	has a shallow groove that extends from one articular facet to the other. In the lateral view
196	the ventral surface is slightly concave.
197	The articular facets of the centrum are both concave, with the anterior facet being
198	more excavated than the posterior facet, and have a semi-circular shape. The articular

margins are almost straight, with the anterior margin being larger than the posteriormargin.

201 *Comparisons:*

UFRJ-DG 521-R has characteristics of a maniraptoran centrum positioned after
the transition point in the tail (Russell, 1972, Gauthier, 1986; Tykoski, 2005), as it is longer
than high and possesses a large reduction in both its neural spine and transverse processes,
with those structures becoming midline ridges (Senter *et al.*, 2011; Motta *et al.*, 2018).
Thus, it is possible to deduce that it is positioned after vertebra 11 of the caudal series as
seen in *Buitreraptor, Rahonavis*, Dromaeosauridae and Troodontidae (Ostrom, 1969;
Forster *et al.*, 1998; Senter *et al.*, 2012; Xu *et al.*, 2017).

The presence of a reduced transverse process forming a midline ridge after the transition point is seen in the distal caudal vertebrae of *Rahonavis* and *Buitreraptor* (Forster *et al.*, 1998; Novas *et al.*, 2017), a characteristic also seen in UFRJ-DG 521-R, which differentiates it from most other paravians as dromaeosaurids, *Archaeopteryx*, *Jeholornis* and *Anchiornis*.

In addition, the 521-R specimen also has dorsally positioned pre-zygapophyses in the same way as in *Buitreraptor, Rahonavis* and *Anchiornis* (fig. 05) (Motta *et al.*, 2018). The vertebral centrum has a length-to-height ratio between close to 2.5, a ratio usually seen in dromaeosaurids with exception to *Buitreraptor* but not seen in other maniraptorans as troodontids and microraptorians whose ratio can reach up to 5.0 to 6.0.

219

223

220THEROPODA Marsh, 1881221TETANURAE Gauthier, 1986222ALLOSAUROIDEA Marsh, 1878

CARCHARODONTOSAURIA Benson, Brusatte and Carrano, 2010

224

225 Referred material: UFRJ-DG 523-R and 524-R.

226 *Description:*

227 UFRJ-DG523-R

Specimen 523-R (Fig. 06, D-F) is a theropod vertebral centrum, with the following characteristics: it is amphicoelous, and slightly longer than high. Its lateral surface is very concave and smooth on both sides, with the shape of an hourglass in dorsal view. The ventral surface is mostly smooth on the anterior part, with marks that possibly indicate the articulation with the hemal arch on the posterior part.

The dorsal surface is marked by a long and deep longitudinal canal from one articular face to the other, which widens on the extremities and tapers in the middle. This canal was possibly the space of the neural canal of the vertebra, given the marks of fusion with the neural arch that meet on its borders.

The articular faces are ovoid in shape and have slightly forward-protruding margins, the anterior facet being higher in comparison to the posterior facet. The anterior articular face has a concavity deeper than the posterior one, being also slightly larger in its proportions.

241

242 UFRJ-DG524-R

Specimen 524-R (Fig. 06, A-C) is a centrum of a theropod caudal vertebra. It is amphicoelous and is slightly longer than high, which indicates a more proximal position in the caudal series. The lateral surface is smooth and marked by two deep concavities on both lateral faces, giving it an hourglass-like shape.. Additionally, on the most dorsal region of the lateral surface there is a small and shallow longitudinal depression on each side. The ventral surface is a double keel marked by a very superficial groove extending from the anterior part up to the posterior part. The dorsal surface is marked by the neural canal of the vertebra. Above the anterior part of this canal the entire upper portion of the neural tube is preserved, forming a small arch filled by sediment positioned slightly above the anterior articular face.

The articular faces are semi-circular and somewhat oval, with the anterior one being slightly larger than the posterior, and their margins slightly protrude forward. The anterior articular face has a concavity slightly deeper than the posterior.

257 *Comparisons:*

Both UFRJ-DG 523 and 524 present characteristics commonly found in 258 259 carcharodontosaurids (Fig. 07). For instance, depressions in the most dorsal part of the lateral surface are found in Giganotosaurus, Mapusaurus and Tyrannotitan and in the 260 261 mid-caudal vertebra Vb-870 found in the Wadi Milk Formation (Coria and Salgado, 1995; Coria and Currie, 2006; Novas et al., 2005a; Canale et al., 2015; Rauhut, 1999). 262 This condition is different from that in *Carcharodontosaurus*, which has pleurocoels in 263 264 its anterior caudal vertebrae (Stromer, 1931). Furthermore, the strongly waisted centrum 265 morphology, a double keel cut by a longitudinal groove and offset articular facets 266 (although it is a plesiomorphic feature found in Allosaurus Gilmore, 1920; Madsen, 1976) 267 are also found in specimens such as the carcharodontosaurid material from Sudan (Rauhut, 1999) and in Tyrannotitan, Mapusaurus and Acrocanthosaurus (Canale et al., 268 269 2015; Harris, 1998; Coria and Currie, 2006; Currie and Carpenter, 2000).

270

271**THEROPODA** Marsh, 1881

272 NEOVENATORIDAE Benson, Carrano and Brusatte, 2010

273 MEGARAPTORA Benson, Carrano and Brusatte, 2010

274

275 Referred material: UFRJ-DG 558-R e 634-R

276 *Description*:

277 UFRJ-DG 558-R

Specimen 558-R is a centrum of a theropod caudal vertebra, damaged by various cracks (Fig. 08, D-F). It is amphicoelous, and slightly longer than high, indicating a somewhat proximal position within the caudal series. Its ventral surface is very smooth and convex in lateral view, but is very damaged in the region where the base of the posterior articular face would be.

The dorsal surface is marked by a great depression extending longitudinally from one articular face to the other, wider in the extremities, denoting the neural canal. The lateral surfaces are marked by a longitudinal elliptic depression on their medial parts, where there is a pleurocoel on each side. The left lateral pleurocoel is deeper and better defined than the right lateral one.

Its articular faces are semi-circular and have very straight margins. The anterior articular face possesses a more distinctive depression of a slightly greater size than the posterior face and is also in a better state of preservation. The posterior articular face possesses a very slight concavity, making it almost straight, and is in a much more damaged state, presenting cracks and breaches on the ventral base of the face.

293 UFRJ-DG 634-R

This material is in a worse state of preservation than UFRJ-DG 558-R(Fig. 08, A-C). The ventral centrum portion and anterior articular face are fragmented. On its lateral surface, there is what appears to be the border of the pleurocoel in the same position seen in specimen 558-R.

- Different from the other vertebra of this group, part of the neural arch and the transverse process are preserved on the right side of the specimen. The transverse process is positioned upwards at an angle of approximately 45° degrees.
- 301 *Comparisons*

302 The presence of pleurocoels in the caudal vertebrae is characteristic of megaraptoran neovenatids (Benson et al., 2010). Pneumaticity in the caudal vertebrae is 303 304 rare in Theropoda, present only in some groups: Megaraptora, Oviraptorosauria, Therizinosauria, and Carcharodontosauridae (Benson et al., 2012). As far as is known, no 305 306 fossils of therizinosaurs have been found in South America and South American fossils 307 attributed to oviraptorosaurs have been reassigned to other taxa, including to Maniraptora 308 (e.g Agnolín and Martinelli, 2007, Aranciaga-Rolando et al., 2018). In addition, the caudal vertebrae of Oviraptorosauria have, on the ventral surface, a medial groove 309 310 delimited by two longitudinal elevations (e.g., Sues, 1997; Xu et al., 2007). Specimen UFRJ-DG 558-R does not have this feature (Fig. 09). 311

South American carcharodontosaurids (e.g., Giganotosaurus, Mapusaurus, 312 313 *Tyrannotitan*) show slightly concave lateral sides in the caudal vertebrae, but do not bear 314 actual pneumatic foramina. Stromer (1931) described an anterior caudal vertebra from northern Africa, which he identified as Carcharodontosaurus, which had pneumatic 315 316 characteristics, including a pleurocoel. However, that vertebra has a different general morphology and proportions when compared with the megaraptorid vertebrae from the 317 318 Potiguar Basin (length-height ratio is 1 in *Carcharodontosaurus* and approximately 1.48 319 in UFRJ DG 558-R) and other members of Megaraptora.

Among the Megaraptora group, only *Aerosteon*, *Aoniraptor*, *Orkoraptor* and *Megaraptor* have preserved caudal vertebrae (Fig. 10) (Sereno *et al.*, 2008; Benson *et al.*, 2010; Motta et al., 2016). The height/length ratio of UFRJ DG 558-R is 1.4, consistent with a median tail position, compared to the ratios of 1.2 and 1.3, respectively, of the medial caudal vertebrae of *Aerosteon* and *Orkoraptor* (Novas *et al.*, 2008). The Potiguar Basin specimens resemble those of *Aoniraptor* (Fig. 07, F) due to the absence of a keel in the ventral region, but are distinguished by the presence of a pair of pneumatic troughs in the lateral region, separated by a septum. Only the first caudal vertebra of *Aoniraptor* presents such fossae, a characteristic present in the other megaraptorans (e.g., Novas *et al.*, 2008; Sereno *et al.*, 2008).

Comparing the morphology of pneumatic foramina, UFRJ DG 558-R (Figure 10, A) is very similar to *Aerosteon* (Figure 10, C), *Megaraptor* (Figure 10, H) and *Orkoraptor* (Figure 10, G) in the presence of a large elliptic foramen and a second smaller circular shaped foramen. In addition, UFRJ-DG 558-R and 634-R has its cavities located on the lateral surface of the vertebral centrum near the base of the neural arch, which does not occur in the other species observed.

UFRJ-DG 558-R and 634-R also presents extensive pneumatization in the
vertebral centrum, composed of a camerate internal microstructure (Britt, 1993), with
several small chambers, similar to other megaraptorans (e.g., *Aerosteon, Megaraptor*;
Martinelli *et al.*, 2013).

340

341 **Discussion**

342 The Açu Formation material and its importance

The fossil potential of Açu Formation was poorly known, with only a few fossils recovered (Duarte and Santos, 1962; Silva-Santos, 1963; Mussa et al., 1984), until the discovery of vertebrae and teeth identified as belonging to Theropoda indet. and Titanosauria (Santos et al., 2005). No further work was conducted until 2018, when the materials described here were studied in more detail. Thus far, the dinosaur fauna of the Potiguar Basin includes two groups of Sauropoda (Diplodocoidea: Rebbachisauridae, Pereira et al., in press; Titanosauriformes, Barbosa et al., 2018; Titanosauria, Pereira et al., 2018) and four groups of Theropoda (Spinosauroidea, Carcharodontosauridae, Megaraptora and Maniraptora, present work).

353 The occurrence of these groups (except Megaraptora) in the Potiguar Basin is yet another similarity between the faunas of northeastern Brazil and multiple North Africa 354 Cretaceous units (e.g. Medeiros and Schultz, 2001a, 2002; Sereno and Brusatte, 2008; 355 Contessi, 2009; Candeiro et al., 2011; Candeiro, 2015). Except for the Elrhaz (Niger); 356 Douiret and Ain El Guettar (both in Tunisia) and Chicla (Libya) formations, which were 357 dated to the Early Cretaceous, all other Cretaceous formations from Northern Africa are 358 359 Albian-Cenomanian in age, roughly equivalent to the Acu Formation (Werner, 1994; Rossetti, 1997; Rossetti and Truckenbrodt, 1997; Smith et al., 2001; Anderson et al., 360 2007; Sereno and Brusatte, 2008; Cavin et al., 2010). Among the formations, the 361 362 Alcântara Formation (Brazil), Bahariya Formation (Egypt), Echkar Formation (Niger) and the Waldi Milk Formation (Sudan) have similarities with the Acu Formation's 363 364 dinosaur fauna.

According to paleobiogeographic models, South America and Africa started separating from each other in the Valanginian (Early Cretaceous), leading to the formation of the South Atlantic Ocean (Viramonte et al., 1999; Jokat et al. 2003; Macdonald et al., 2003). Although the ocean turned into one of the most important continental barriers of the southern hemisphere, faunal interchange among the terrestrial landmasses of western of Gondwana definitely occurred up to the Albian, and possibly until the Cenomanian (e.g. Petri, 1987; Reyment and Dingle, 1987; Pletsch et al., 2001,
Tello Saenz et al., 2003, Guedes et al., 2005, Bodin et al., 2010).

Based on the proposed age and geographic position, the fossil vertebrates of the Açu Formation may have lived during some of the last intervals of continental connection between South America and Western Africa, before the complete formation of the South Atlantic Ocean (Arai, 2009; Castro et al., 2012). This makes them exceedingly important for understanding biogeography and faunal evolution.

More extensive comparisons are still limited by the lack of completeness of the Açu material and the absence of formally described taxa. The continuation of studies on previously collected material (like that described in this paper) and prospecting for new fossils is important in this basin which, while still the subject of only recent research, already exhibits among the greatest diversity of dinosaur groups in Brazil.

383

384 Conclusion

In the present work we assigned the material from Açu Formation, Potiguar Basin, to four groups: Spinosauroidea, Carcharodontosauria, Maniraptora and Megaraptora (Fig. 11), the two last groups being relatively rare in Brazil. All this groups have already been found in isochronous formations in both Northeastern Brazil and Northern Africa, leading further support for faunal similarities in the "mid"-Cretaceous western Gondwana. These fossils provide the first theropod record from Potiguar Basin and an important opportunity to increase the knowledge on the diversity of this still poorly known basin.

392 Acknowledgements

393 The authors thank Prof. Dr. Valdeci dos Santos Júnior Santos for discovering the394 site where the material were found, and for the support given to the fieldwork. We thank

395 the students Luciano Vidal for assistance with the figures. PVLGCP was funded by a grant from the Jurassic Foundation and pos doctoral grant by Coordenação de 396 Aperfeiçoamento de Pessoal de Nível Superior (CAPES, number 88882.463232/2019-397 01). LPB and CRAC were financially supported by Conselho Nacional de 398 399 Desenvolvimento Científico e Tecnológico (CNPq)/Bolsista de Produtividade em Pesquisa. IMMGB and LPB were also supported by Conselho Nacional de 400 401 Desenvolvimento Científico e Tecnológico [grant 459086/2014-6]. LPB also acknowledge Fundação de Amparo a Pesquisa do Estado do Rio de Janeiro [grants #E-402 403 26/202.829/2018]. Our collaborative project was funded also by a grant from the 404 Fundação de Amparo a Pesquisa e Goiás and the Newton Fund, which supported SLB's 405 visit to Brazil to work with PVGCP and CRAC in June-July 2016.

406

407 **References**

- Agnolín, F. L., Martinelli, A.G. 2007. Did oviraptorosaurs (Dinosauria; Theropoda)
 inhabit Argentina. Cretaceous Research 28, 785–790.
- Anderson, P.E., Benton, M.J., Trueman, C.N., Paterson, B.A., Cuny, G., 2007.
 Palaeoenvironment of vertebrates on the southern shore of Tethys: the nonmarine
 Early Cretaceous of Tunisia. Palaeogeography, Palaeoclimatology, Palaeoecology
 243 (1–2), 118–131.
- Arai, M. 2011. Paleogeografia do Atlântico Sul no Aptiano: um novo modelo a partir de
 dados micropaleontológicos recentes. Boletim de Geociências da Petrobras, 17(2):
 331-351.
- 417 Aranciaga-Rolando, A. M., Egli, F. B., Sales, M. A., Martinelli, A. G., Canale, J. I.,
- 418 Ezcurra, M. D. 2018. A supposed Gondwanan oviraptorosaur from the Albian of

- 419 Brazil represents the oldest South American megaraptoran. Cretaceous Research 84,
 420 107-119.
- 421 Araripe, P. T., Feijó, F. J. 1994. Bacia Potiguar. Boletim de Geociências da Petrobras 8:
 422 27-141.
- Barbosa, F.H.S., Ribeiro, I.C., Pereira, P.V.L.G.C., Bergqvist, L.P. 2018. Vertebral
 lesions in a titanosaurian dinosaur from the Lower-Upper Cretaceous of Brazil.
 Geobios 51: 385–389.
- Benson, R. B., Carrano, M. T., Brusatte, S. L. 2010. A new clade of archaic large-bodied
 predatory dinosaurs (Theropoda: Allosauroidea) that survived to the latest Mesozoic.
 Naturwissenschaften, 97(1), 71-78.
- Benson, R. B., Butler, R. J., Carrano, M. T., and O'Connor, P. M. 2012. Air- filled
 postcranial bones in theropod dinosaurs: physiological implications and the
 'reptile'-bird transition. Biological Reviews, 87(1), 168-193.
- Bodin, S., Petitpierre, L., Wood, J., Elkanouni, I., Redfern, J. 2010. Timing of Early to
- 433 mid-Cretaceous tectonic phases along North Africa: new insights from the Jeffara
- 434 escarpment (Libya–Tunisia). Journal of African Earth Sciences 58 (3), 489–506.
- Britt, B. B. 1993. Pneumatic postcranial bones in dinosaurs and other archosaurs.
 Geology and Geophysics, University of Calgary.
- 437 Brusatte, S. L., Candeiro C. R. A., Simbras, F. M. 2017. The last dinosaurs of Brazil: The
- Bauru Group and its implications for the end-Cretaceous mass extinction. Annals of
 the Brazilian Academy of Sciences 89: 1465-1485.
- Canale, J. I., Novas, F. E., Pol, D. 2015. Osteology and phylogenetic relationships of *Tyrannotitan chubutensis* Novas, de Valais, Vickers-Rich and Rich, 2005
 (Theropoda: Carcharodontosauridae) from the Lower Cretaceous of Patagonia,

- Candeiro, C. R. A.; Fanti, F.; Therrien, F.; Lamanna, M. C. 2011. Continental fossil 445
- vertebrates from the mid-Cretaceous (Albian-Cenomanian) Alcântara Formation, 446
- Brazil, and their relationship with contemporaneous faunas from North Africa. 447
- Journal of African Earth Sciences 60, 79-92. 448

462

- 449 Candeiro, C. R. A. 2015. Middle Cretaceous dinosaur assemblages from northern Brazil and northern Africa and their implications for northern Gondwanan composition. 450 451 Journal of South American Earth Sciences 61, 147-153.
- 452 Carrano, M. T. and Sampson, S. D. 2008. The phylogeny of ceratosauria (Dinosauria: 453 Theropoda). Journal of Systematic Palaeontology, 6(2), 183-236.
- Carvalho, I. S., Salgado, L., Lindoso, R. M., Araújo-Júnior, H. I., Nogueira, F. C. C., 454
- 455 Soares, J. A. 2017. A new basal titanosaur (Dinosauria, Sauropoda) from the Lower
- Cretaceous of Brazil. Journal of South American Earth Sciences 75, 74-84. 456
- 457 Cassab, R. C. T. 2003. Paleontologia da Formação Jandaíra, Cretáceo Superior da Bacia
- 458 Potiguar, com ênfase na paleobiologia dos gastrópodos. Thesis Doctoral, Instituto de Geociências, Universidade Federal do Rio de janeiro, Rio de Janeiro, 186 p. 459 460 Unpublished.
- Cavin, L., Tong, H., Boudad, L., Meister, C., Piuz, A., Tabouelle, J., Aarab, M., Amiot, 461
- R., Buffetaut, E., Dyke, G., Hua, S., Leloeuff, J. 2010. Vertebrate assemblages from the early Late Cretaceous of southeastern Morocco: an overview. Journal of African 463 Earth Sciences 57, 391–412. 464
- Contessi, M., 2009. Vertebrate remains from the Barremian-Cenomanian (Early 465 466 Cretaceous) coastal deposits of South Tunisia. In: Fanti, F., Spalletta, C. (Eds.), 467 International Conference on Vertebrate Palaeobiogeography and Continental

- Bridges across Tethys, Mesogea, and Mediterranean Sea Abstracts Book. Museo
 Geologico Giovanni Capellini, Dipartimento di Scienze della Terra e GeologicoAmbientali, Bologna, Italy, pp. 31–32.
- 471 Coria, R. A., Currie, P. J. 2006. A new carcharodontosaurid (Dinosauria, Theropoda)
- from the Upper Cretaceous of Argentina. Geodiversitas 28, 71–118.
- 473 Coria, R. A., Salgado, L. 1995. A new giant carnivorous dinosaur from the Cretaceous of
 474 Patagonia. Nature 377, 224–226.
- 475 Costa, A. B. C., Córdoba, V. C., Netto, R. G., Lima Filho, F. P. 2014. Registro faciológico
- 476 e paleoambiental da transgressão que marca a passagem do Cenomaniano para o
- 477 Turoniano na Bacia Potiguar, NE do Brasil. Comunicações Geológicas, 101(I), 415478 420.
- 479 Currie, P.J., Carpenter K. 2000. A new specimen of *Acrocanthosaurus atokensis*480 (Theropoda, Dinosauria) from the Lower Cretaceous Antlers Formation (Lower
 481 Cretaceous, Aptian) of Oklahoma, USA.Geodiversitas. 22: 207 246.
- 482 Derby, A. O. 1890. Nota sobre a geologia e paleontologia de Mato Grosso. Arquivos do
 483 Museu Nacional. 9, 59-88.
- 484 Duarte, L. and Santos, R. 1962. Fósseis do Arenito Açu. Anais da Academia Brasileira
 485 de Ciências 34(1), 57-68.
- 486 Duarte, L., Santos, R.S. 1961. Novas ocorrências fossilíferas nos estados do Rio Grande
 487 do Norte e Ceará. Coleção Mossoroense, 56: 11 p.
- 488 Franco-Rosas A. C., Salgado L, Rosas C. F., Carvalho I. S. 2004. Nuevos materiales de
- 489 titanosaurios (Sauropoda) em el Cretácico Superior de Mato Grosso, Brasil. Rev
 490 Bras Paleont 7, 329–336.
- 491 Frey E., Martill D. M. 1995. A possible oviraptorosaurid theropod from the Santa
- 492 Formation (Lower Cretaceous, Albian) of Brazil. N Jahrb GeolPal.ont M 7: 397–412.

- Forster, C. A., Sampson, S. D., Chiappe, L.M., Krause, D.W. 1998. The Theropod:
 Ancestry of Birds: New Evidence from the Late Cretaceous of Madagascar. Science
 16 (5358), 1915-1919.
- 496 Gauthier, J. A. 1986. Saurischian monophyly and the origin of birds; pp. 1–55 in K.
- 497 Padian (ed.), The Origin of Birds and the Evolution of Flight. Memoirs of the498 California Academy of Sciences, 8.
- Gilmore, C. W. 1920. Osteology of the carnivorous Dinosauria in the United States
 National Museum, with special reference to the genera *Antrodemus* (*Allosaurus*) and *Ceratosaurus*. Bulletin U. S. National Museum. 110,1-154.
- 502 Guedes, E., Heilbron, M., Vasconcelos, P. M., De Morisson Valeriano, C., Horta De
- Almeida, J. C., Teixeira, W., Filho, A. T. 2005. K–Ar and 40Ar/39Ar ages of dikes
 emplaced in the onshore basement of the Santos Basin, Resende area, SE Brazil:
 implications for the south Atlantic opening and Tertiary reactivation. Journal of
 South American Earth Sciences 18 (3–4), 371–382.
- Harris, J. D. 1998. Are analysis of *Acrocanthosaurus atokensis*, its phylogenetic status
 and paleobiogeographic implications, based on a new specimen from Texas. Bulletin
 of New Mexico Museum of Natural History and Science 13, 1-75.
- Hendrickx, C., Mateus, O. 2014. Abelisauridae (Dinosauria: Theropoda) from the
 Late Jurassic of Portugal and dentition-based phylogeny as a contribution for the
 identification of isolated theropod teet. Zootaxa, 3759.
- 513 Hendrickx, C., Mateus, O., Araújo, R. 2015. A proposed terminology of theropod teeth
- 514 (Dinosauria, Saurischia). Journal of Vertebrate Paleontology, 35(5), e982797.
- 515 Kellner, A. W. A. 1996a. Fossilized theropod soft tissue. Nature 379, 32–32.
- 516 Kellner, A. W. A.1996b. Remarks on Brazilian dinosaurs. Memoirs of Queensland
- 517 Museum 39, 611–626.

22

- Kellner, A. W. A. 1999. Short note on a new dinosaur (Theropoda, Coelurosauria) from
 the Santana Formation (Romualdo Member, Albian), North-eastern Brazil. Boletim
 do Museu Nacional 49, 01-08.
- 521 Kellner, A. W. A., Azevedo, S. A. K., Carvalho, L. B., Henriques, D. D. R., Costa, T.,
- 522 Campos, D. A. 2004. Bones out of the jungle: on a dinosaur locality from Mato
 523 Grosso, Brazil. Journal of Vertebrate Paleontogy 124 (Suppl3): 78a.
- 524 Kellner, A. W. A., Azevedo, S. A., Machado, E. B., Carvalho, L. B. D. Henriques, D. D.
- 525 2011. A new dinosaur (Theropoda, Spinosauridae) from the Cretaceous
 526 (Cenomanian) Alcântara Formation, Cajual Island, Brazil. Anais da Academia
 527 Brasileira de Ciências, 83(1), 99-108.
- Jokat, W., Boebel, T., König, M., Meyer, U. 2003. Timing and geometry of early
 Gondwana breakup. Journal of Geophysical Research 108 (B9, 2428), 1–15.
- Langer, M. C., Ribeiro, A. M., Schultz, C.L. Ferigolo, J. 2007a. The continental tetrapodbearing Triassic of south Brazil. Bull NMMNHS 41, 201–218.
- 532 Macdonald, D., Gomez-Perez, I., Franzese, J., Spalletti, L., Lawver, L., Gahagan, L.,
- 533 Dalziel, I., Thomas, C., Trewin, N., Hole, M., Paton, D. 2003. Mesozoic break-up of
- 534 SW Gondwana: implications for regional hydrocarbon potential of the southern
- 535 South Atlantic. Marine and Petroleum Geology 20 (3–4), 287–308.
- Madsen, J. H. 1976. *Allosaurus fragilis*, a revised osteology. Utah geological and
 mineralogical Survey Bulletin 109, 1-163.
- Marsh, O. C. 1869. Notice of some new reptilian remains from the Cretaceous of Brazil.
 American Journal of Science 47, 390–392.
- 540 Marsh, O. C. 1878. Principal characters of American Jurassic dinosaurs. American
 541 Journal of Science 95, 411-416.

- 542 Marsh, O. C. 1881. Principal characters of American Jurassic dinosaurs, part V. American
 543 Journal of Science 125, 417-423.
- Martill, D. M., Cruickshank, A. R. I., Frey, E., Small, P. G., Clarke, M. 1996. A new
 crested maniraptoran dinosaur from the Santana Formation (Lower Cretaceous) of
 Brazil. Journal of the Geological Society 153(1), 5-8.
- 540 Brazii. Journal of the Geological Society 155(1), 5-8.
- 547 Martinelli, A.G., Ribeiro, L.C.B., Neto, F.M., Méndez, A.H., Cavellani, C.L., Felix, E.,
- Ferraz, M.L.F., Teixeira, V.P.A., 2013. Insight on the theropod fauna from the
 Uberaba Formation (Bauru Group), Minas Gerais State: new megaraptoran specimen
 from the Late Cretaceous of Brazil. Rivista Italiana di Paleontologia e Stratigrafia
 119, 205–214.
- Mateus, O., Araújo, R., Natário, C., Castanhinha, R. 2011. A new specimen of the
 theropod dinosaur *Baryonyx* from the early Cretaceous of Portugal and taxonomic
 validity of *Suchosaurus*. Zootaxa 2827, 54–68.
- Mawson, J., Woodward, A. S. 1907. On the Cretaceous Formation of Bahia (Brazil), and
 on the vertebrate fossils contained therein. Journal of the Geological Society 63,

557 128–139.

- Medeiros, M. A., Schultz, C. L., 2002. A fauna dinossauriana da Laje do Coringa,
 Cretáceo médio do Nordeste do Brasil. Arquivos do Museu Nacional 60 (3), 155–
 162.
- 561 Medeiros, M. A., Freire, P. C., Pereira, A. A., Santos, R. A. B., Lindoso, R. M., Coelho,
- A. F. A., Passos, E. B., Sousa, E. 2007. Another African dinosaur recorded in the
- 563 Eocenomanian of Brazil and a revision on the paleofauna of the Laje do Coringa site.
- 564 In: CARVALHO I.S., CASSAB R. C. T., SCHWANKE C., CARVALHO M.A.,
- 565 Fernandes A. C. S., Rodrigues M. A. C., Carvalho M. S. S., Arai M. And Oliveira

566 M. E. Q. (Eds), Paleontologia: Cenários de Vida. Rio de Janeiro, Interciência 1, 413–
567 423.

- 568 Motta, M. J., Aranciaga Rolando, A. M., Rozadilla, S., Agnolín, F. E., Chimento, N. R.,
- Egli, F. B., Novas, F. E. 2016. New theropod fauna from the upper cretaceous(Huincul Formation) of Northwestern Patagonia, Argentina. New Mexico Museum
- of Natural History and Science Bulletin, 71, 231-253.
- Motta, M. J., Egli, F. B., Novas, F. E. 2018. Tail anatomy of *Buitreraptor gonzalezorum*(Theropoda, Unenlagiidae) and comparisons with other basal paravians. Cretaceous
 Research, 83, 168-181.
- Mussa, D.; Oliveira, L.D.D., Barcia-Andrade, A. 1984. Fragmentos estélicos de Palmae
 procedentes da Formação Açu (?), Bacia Potiguar, Brasil. Boletim do IGC-USP,
 Instituto de Geociências 15, 129-141.
- Naish, D.; Martill, D. M., Frey, E. 2004. Ecology, systematics and biogeographical
 relationships of dinosaurs, including a new theropod from the Santana Formation
 (Albian, Early Cretaceous) of Brazil. Historical Biology 18, 01-14.
- 581 Novas, F.E., Ribeiro, L.C.B., Carvalho, I.S., 2005a. Maniraptoran theropod ungual from
- the Marília Formation (Upper Cretaceous), Brazil. Revista Museo ArgentinoCiencias Naturales 7, 31-36.
- Novas, F. E., Ezcurra, M. D., Lecuona, A. 2008. Orkoraptor burkei nov.gen. et sp., a
- large theropod from the Maastrichtian Pari Aike Formation, Southern Patagonia,
 Argentina. Cretaceous Research, 29(3), 468-480.
- Novas, F. E., Brissón Egli, F., Agnolin, F. L., Gianechini, F. A., and Cerda, I., 2017.
 Postcranial osteology of a new specimen of *Buitreraptor gonzalezorum* (Theropoda,
- 589 Coelurosauria). Cretaceous Research.

- Ostrom, J. H. 1969. Osteology of *Deinonychus antirrhopus*, an Unusual Theropod from
 the Lower Cretaceous of Montana (Vol. 30) Peabody Museum of Natural History,
 Yale University.
- 593 Pereira, P. V. L. G. C., Marinho, T. S., Candeiro, C. R. A., Bergqvist, L. P. 2018. A new
- titanosaurian (Sauropoda, Dinosauria) osteoderm from the Cretaceous of Brazil and
 its significance. Ameghiniana 55(6), 644-650. (71).
- 596 Pereira, P. V. L. G. C., Veiga, I. M. M. G., Ribeiro, T. B., Cardozo, R. H. B., Candeiro,
- C. R. A., Bergqvist, L.P. 2020. The Path of Giants: A new occurrence of
 Rebbachisauridae (Dinosauria, Diplodocoidea) in the Açu Formation, NE Brazil, and
 its paleobiogeographic implications., Journal of South American Earth Sciences,
- 600 https://doi.org/10.1016/j.jsames.2020.102515.
- Pessoa Neto, O. D. C., Soares, U. M., Silva, J. D., Roesner, E. H., Florencio, C. P. and
 Souza, C. D. 2007. Bacia Potiguar. Boletim de Geociências da Petrobras 15:357-369.
- 603 Petri, S. 1987. Cretaceous paleogeographic maps of Brazil. Palaeogeography
- 604 Palaeoclimatology and Palaeoecology 59,117–168.
- 605 Pletsch, T., Erbacher, J., Holbourn, A., Kuhnt, W., Moullade, M., Oboh-Ikuenobede, F.,
- 606 Soding, E., Wagner, T. 2001. Cretaceous separation of Africa and South America:
- the view from the West African margin (ODP Leg 159). Journal of South American
 Earth Sciences 14, 147–174.
- Price, L. I. 1960. Dentes de Theropoda num testemunho de sonda no estado do Amazonas.
 Na Academia Brasileira de Ciências 32, 79–84.
- Price, L. I. 1961. Sobre os dinossáurios do Brasil. Na Academia Brasileira de Ciência
 33(3–4), 28-29.
- Rauhut, O. W. M. 1999. A dinosaur fauna from the Late Cretaceous (Cenomanian) of
- northern Sudan. Palaeontologia Africana 35, 61–84.

- 617 Rossetti, D. F., 1997. Internal architecture of mixed tide- and storm-influenced deposits:
- an example from the Alcântara Formation, northern Brazil. Sedimentary Geology
- 619 114 (1–4), 163–169. 115
- Rossetti, D. F., Truckenbrodt, W. 1997. Revisão estratigráfica para os depósitos do
 Albiano–Terciario Inferior (?) na Bacia de São Luís (MA), norte do Brasil. Boletim
 do Museu Paraense Emílio Goeldi, Série Ciências da Terra 9, 29–41.
- 623 Russell D. A., 1972 Ostrich dinosaurs from the Late Cretaceous of western Canada.
- 624 Canadian Journal of Earth Sciences 9, 375-402.
- 625 Santos, M. F. C. F.; Florêncio, C. P.; Reyes-Pérez, Y. A.; Bergqvist, L. P.; Porpino, K.
- O.; Uchoa, A. F. and Lima-Filho, F. P. 2005. Dinossauros na Bacia Potiguar: o
 registro da primeira ocorrência. Boletim de Resumos Expandidos do XXI Simpósio
 de Geologia do Nordeste, Recife, 19, 325-328.
- Senter, P., 2011. Using creation science to demonstrate evolution: morphological
 continuity within Dinosauria. Journal of evolutionary biology 24(10): 2197-2216. 15.
- 631 Senter, P., Kirkland, J. I., DeBlieux, D. D., Madsen, S., Toth, N., 2012. New
- dromaeosaurids (Dinosauria: Theropoda) from the Lower Cretaceous of Utah, and
 the evolution of the dromaeosaurid tail. PLoSOne, 7(5), e36790.
- 634 Sereno, P. C., Martínez, R. N., Wilson, J. A., Varricchio, D. J., Alcober, O. A. 2008.
 635 Evidence for Avian Intrathoracic Air Sacs in a New Predatory Dinosaur from
 636 Argentina. PLoS One 3, e3303.
- 637 Sereno, P. C., Brusatte, S. L. 2008. Basal abelisaurid and carcharodontosaurid theropods
 638 from the lower Cretaceous Elrhaz Formation of Niger. Acta Palaeontologica
 639 Polonica 53 (1), 15-6.
640 Silva-Santos, R. 1963. Peixes do Cretácico do Rio Grande do Norte. Anais da Academia
641 Brasileira de Ciências 35, 67-74.

- 642 Smith, J., Lamanna, M., Lacoara, K., Dodson, P., Smith, J., Poole, J., Giegengack, R.,
- Attia, Y. 2001. A giant sauropod from an Upper Cretaceous mangrove deposit in
 Egypt. Science 292, 1704–1706.
- Stromer, E. 1915. Ergebnisse der Forschungsreisen Prof. E. Stromers in den Wüsten
 Ägyptens. II. Wirbeltier-Reste der Baharije-Stufe (unterstes Cenoman). 3. Das
 Original des Theropoden *Spinosaurus aegyptiacus* nov. gen., nov. spec.
 Abhandlungen der Königlich Bayerischen Akademie der Wissenschaften,
 Mathematisch-physikalische Classe, 28(3) Abhandlung, 1–32.
- Stromer, E., 1931. Wirbeltierreste der Baharije-Stufe (unterstes Cenoman). 10. Ein
 Skelett-Rest von *Carcharodontosaurus* nov. gen: Abhandlungen Bayerische
 Akademie Wissenchafte Atheilung-naturwissenchaften Abteilung Neue Folge, 9, 1–
 23.
- Sues, H. D. 1997. On Chirostenotes, a Late Cretaceous oviraptorosaur (Dinosauria:
 Theropoda) from western North America. Journal of Vertebrate Paleontology 17,
 656 698–716.
- Tello Saenz, C., Hackspacher, P., Hadler Neto, J., Iunes, P., Guedes, S., Ribeiro, L., Paulo,
 S. 2003. Recognition of Cretaceous, Paleocene, and Neogene tectonic reactivation
 through apatite fission-track analysis in Precambrian areas of southeast Brazil:
 association with the opening of south Atlantic Ocean. J South Am Earth Sci 15,765–
 774.
- Tykoski R. S., 2005 Anatomy, Ontogeny, and Phylogeny of Coelophysoid Theropods.
 Unpublished PhD Thesis, The University of Texas at Austin, 1-553.

664	Vasconcelos, E. P., Lima Neto, F. F., Roos, S. 1990. Unidades de correlação da Formação
665	Açu. 36º Congresso Brasileiro de Geologia (Natal), Actas, 227-240.
666	Viramonte, J., Kay, S., Becchio, R., Escayola, M., Novitski, I. 1999. Cretaceous rift
667	related magmatism in central-western South America. Journal of South American
668	Earth Sciences 12, 109–121.
669	Werner, C., 1994. Die kontinentale Wirbeltierfauna aus der unteren Oberkreide des Sudan
670	(Wadi Milk Formation). Berliner Geowissenschafliche Abhandlungen Reihe E 13,
671	221–249.
672	Xu X., Tan Q., Wang J., Zhao XJ., Tan L. 2007. Gigantic bird-like dinosaur from the
673	Late Cretaceous of China. Nature, 447, 844-847.
674	Xu, X., Qin, Z. C. 2017. A new tiny dromaeosaurid dinosaur from the Lower Cretaceous

Jehol Group of western Liaoning and niche differentiation among the Jehol
dromaeosaurids. Vertebrata PalAsiatica, 55(2), 129-144.

677

678 Figure captions

679

Figure 01: Geological map of the continental part of the Potiguar Basin with the region
near the Limoeiro do Norte municipality (Ceará state) where the material were discovered
(dark star). CE, Ceará state; RN, Rio Grande do Norte state and its capital, Natal.
Modified from Cassab (2003).

684

Figure 02: The theropod vertebrae UFRJ-DG 528-R (A-C) and UFRJ-DG 575-R (D-E).

686 UFRJ-DG 575-R: A, lateral view; B, the anterior articular facet. UFRJ-DG 528-R: C, the

687 lateral view; D, the ventral view; E, anterior articular facet. Note the large pneumatic

689	foramen. Scale bar: 2 cm.
690	
691	Figure 03: Spinosauroid tooth (UFRJ-DG 619-R): A, the labial view; B, the lingual view;
692	and C, the cross section. Scale: 1 cm
693	
694	Figure 04: Maniraptoran caudal vertebrae (UFRJ-DG 521-R): A, Lateral view; B,
695	ventral view; C, anterior articular facet. Prz, prezygophysis; Nc, neural canal. Scale:
696	1cm.
697	
698	Figure 05: Comparison of UFRJ-DG 521-R and other maniraptorans. A, Potiguar's
699	material; B, Rahonavis; C, Buitreraptor; D, Anchiornis. Pr, prezygapophysis; lg,
700	Longitudinal groove. Modified from Motta et al., (2018).
701	
702	Figure 06: Carcharodontosaurid caudal vertebrae UFRJ-DG 523(A-C) and UFRJ-DG
703	524-R (D-F). UFRJ-DG 524-R: A, ventral view; B, lateral view; C, anterior articular
704	facet. UFRJ-DG 523-R: D, ventral view; E, lateral view; F, anterior articular facet. Nc,
705	neural canal. Scale: 1cm.

foramen on the side of the anterior fragment of UFRJ-DG 575-R. pfr = pneumatic

706

688

Figure 07: Comparison of UFRJ-DG 523-R and 524-R and other carcharodontosaurids.

A and B, UFRJ DG 523-R; C and D, UFRJ DG 524-R; E and F, Kem Kem beds material

709 (from Rauhut, 1999); G, Tyrannotitan chubutensis MPEF-PV 1156 (Modified from

710 Canale et al., 2015); H, Mapusaurus roseae MCF-PVPH-108.81 (Modified from Coria

and Currie, 2006) ; I, Acrocanthosaurus atokensis NCSM 14345 (Modified from Currie

and Carpenter, 2000). Scale bar = 5 cm.

Figure 08: Caudal vertebrae UFRJ-DG. UFRJ-DG 558-R: A, posterior articular facet; B, lateral view; C, ventral view. UFRJ-DG 634-R: D, anterior articular facet; E, lateral view; F, ventral view. Pfr, Pneumatic foramen. Scale bar: 1cm. Figure 09: Brazilian megaraptoran vertebrae findings. A and B, UFRJ DG 558-R; C and D, MPMA 08-003-94 (Méndez et al., 2012); E and F, CPPLIP 1324 (Martinelli et al., 2013).A, C e E, lateral view; B, D e F, ventral view. Pfr, Pneumatic foramen. Scale bar = 1cm. Figure 10: Megaraptoran caudals vertebrae. A and B, UFRJ DG 558-R; C and D, Aerosteon; E and F, Aoniraptor; G, Orkoraptor. H, Megaraptor. A, C, E, G e H, lateral view; B, D e F, ventral view. Pfr, pneumatic foramen. Scale bar = 5cm. Figure 11: Reconstruction of the theropods groups from Acu Formation, Potiguar Basin. In the center, a group of megaraptorans slaughtering a titanosaur; on the right a carcharodontosaurid awakens from its sleep; in the top center, a maniraptoran just watches. Art by Luciano da Silva Vidal.

2 cm

Figure

Do not remove this file (contains research data)

Click here to access/download **RDM Data Profile XML** DataProfile_3987663.xml

Declaration of interests

 \boxtimes The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

□The authors declare the following financial interests/personal relationships which may be considered as potential competing interests:

Author Statement

Paulo Victor Luiz Gomes da Costa Pereira: Conceptualization, Investigation, Writing - Original Draft, Writing - Review & Editing, Supervision, Funding acquisition.

Theo Baptista Ribeiro: Investigation. Writing - Original Draft, Writing - Review & Editing, Visualization.

Stephen Louis Brusatte: Validation, Writing - Review & Editing, Supervision

<u>Carlos Roberto dos Anjos Candeiro:</u> Writing - Original Draft, Writing - Review & Editing, Supervision.

Thiago da Silva Marinho: Investigation, Writing - Review & Editing

Lilian Paglarelli Bergqvist: Resources, Writing - Review & Editing, Supervision, Project administration, Funding acquisition.

Dear Editor

I, Dr. Paulo Victor Luiz Gomes da Costa Pereira, the first author of this manuscript, send this letter in order to request the change of the reviewer 01. I know that such a change can cause a delay in publication, but I believe that is important. We consider all the changes requested by you and the other reviewers and I am absolutely sure that the manuscript improved a lot with the changes proposed by you all. But I have to point out that the criticisms made by the reviewer 01 were often disrespectful and arrogant, a role that does not compete with the duties of a reviewer in a major international magazine.

His comments, did not contribute much to our work, since the reviewer limited himself to not agreeing with our classifications, always without presenting actual arguments or presenting bibliography that disagreed with our results, a totally different behavior when compared to the other two reviewers.

Our work is based on morphological description and comparison between materials, based on several similar articles with African and European fossils that have already been published, including by Cretaceous Research.

The role of our manuscript (and science in general) is to contribute as much as possible with the fossils collected. Nothing prevents better preserved fossils from disagreeing with our considerations in the future.

I'm really upset that I had to wait more than 8 months for a review that did not seek to improve the manuscript at all.

I thank you very much for the attention given by you and the other reviewers to our manuscript. Be sure that our work has improved a lot with your contributions!

Yours sincerely,

Dr. Paulo Victor Luiz Gomes da Costa Pereira

1	THEROPOD (DINOSAURIA) DIVERSITY FROM THE POTIGUAR BASIN	Commented [PP1]:
2 3	(EARLY-LATE CRETACEOUS <u>ALBIAN – CENOMANIAN</u>), NORTHEAST BRAZIL	Revisor 01: I recommend to change the title for a more realistic one, for example: "Theropod dinosaur remains from" A: We understoood the statement of Revisor 01, but we prefered to keep the original title, as it summarizes the results seen in the manuscript.
4 5		Commented [BS2R1]: I actually agree with the reviewer. Because we are describing a series of new fossils, 'Theropod dinosaur remains' sounds better. But this is your choice.
6 7 8 9	Paulo Victor Gomes da Costa Pereira ^{1*} ; Theo Baptista Ribeiro ¹ ; Stephen Louis Brusatte ² ; Carlos Roberto Dos Anjos Candeiro ^{3,} Thiago da Silva Marinho ⁴ ; Lilian Paglarelli Bergqvist ¹	Formatted: English (United States)
10	*corresponding author – paulovictor29@yahoo.com.br	Formatted: English (United States)
11	1 COMULUTIVE Stars de Esdevel de Die de Lengine Ille de Eurodão Die de Lengine (DI) Descil	Field Code Changed
11	1- CCMIN - Universidade Federal do Rio de Janeiro, lina do Fundao, Rio de Janeiro (RJ), Brazil.	
12	E-mail: paulovictor29@yahoo.com;theobribeiro1@gmail.com; bergqvist@geologia.ufrj.br	
13	2 - University of Edinburgh, Grant Institute, School of GeoSciences. Edinburgh, Scotland, UK. E-mail:	Formatted: Portuguese (Brazil)
14	stephen.brusatte@ed.ac.uk	Formatted: Portuguese (Brazil)
15	3 - Universidade Federal de Goiás (UFG), Laboratório de Paleontologia e Evolução (LABPALEOEVO),	Formatted: Portuguese (Brazil)
16	Curso de Geologia. Aparecida de Goiânia, GO, Brazil. E-mail: candeiro@ufg.br	
17	4- Centro de Pesquisas Paleontológicas L. I. Price, Complexo Cultural e Científico Peirópolis, Pró-Reitoria	
18	de Extensão Universitária, Universidade Federal do Triangulo Mineiro, Uberaba, Minas Gerais, Brazil. E-	
19	mail: <u>tsmarinho@icene.uftm.edu.br</u>	Field Code Changed
20		
21	Abstract	
22		Commented [3]: Five theropod speciesonly in the northeast, or in all Brazil?
23	The theropod records from the Cretaceous of northeastern Northeast of Brazil are rare	Commented [LM4]: A: The four specimens are only from northeastern Brazil. This detail is better explained in the second paragraph of the Introduction.
24	and consist mostly of isolated and incomplete remains, with only fourive species	Formatted: No underline, Font color: Auto, English (United States)
25	described. Here we describe, identify and evaluate the diversity of theropod materials	Formatted: No underline, Font color: Auto, English (United States)
26	trom the Albian-Cenomanian Açu Formation, Potiguar Basin. The material consists of	Formatted: No underline, Font color: Auto, English (United States)
27	<u>Seven miller</u> Isolaleu <u>meropou</u> venebrae (UFKJ-DG 321-K, 323-K, 324-K, 328-K, 332- /	Formatted: No underline, Font color: Auto, English (United States)

28	R, 547 R, 558 R, 575 R, 587 R and 589 R) and a tooth (UFRJ DG 653 R). <u>TWe identify</u>
29	the material have been identified as belonging to four theropod groups:-Abelisauria.
30	Carcharodontosauria, Spinosauroidea, Carcharodontosauriajidae, Megaraptora, and
31	Maniraptora. The vertebrae were classified into five four morphotypes based on
32	morphological form and/or diagnostic characters and comprised represented at this
33	moment by five <u>four groups: Abelisauria, Carcharodontosauria</u> ,
34	Spinosauridae, Megaraptora, and Maniraptora. <u>We classify the The isolated tooth was</u>
35	classified as belonging to a spinosaurid One of the significant great results so far is the
36	occurrence of Megaraptora in the Potiguar Basin,-: based on the general morphology,
37	some of the boneselements described we describe are very similar to those of Aerosteonm
38	and MegaraptorAnother unexpectedremarkable result is the description-identification
39	and presence of <u>a maniraptoran-a</u> caudal vertebra <u>e-of a maniraptora,-; these dinosaurs are</u>
40	very rare in Brazil, with few fossilsremnants previously described. Besides
41	this Furthermore, we identify other groups that have already been found on in isochronous
42	basins of the Northeast region of Brazil and Africa, including as Carcharodontosauria and
43	Spinosauroidaea. The presence of these theropod groups in theat Açu Formation reveals
44	an-unexpected dinosaur richness_ <u>faunain theatin the</u> Potiguar Basin_similar to
45	isochronous basins in Northern Africa and opens up an important opportunity to-increases
46	the knowledge about the diversity of South American dinosaurs
47	
48	Keywords: Dinosauria, Potiguar Basin, Theropoda, faunistic_richness, Abelisauria,
49	Carcharodontosauria, Megaraptora, Spinosauridae <u>, and</u> Maniraptora.
50	

51 Introduction

52

The first works studies in Brazil that attributed vertebrate fossil remains to

Commented [BS5]: Five groups are listed

 Formatted: No underline, Font color: Auto, English (United States)

 Formatted: No underline, Font color: Auto, English (United States)

 Formatted: No underline, Font color: Auto, English (United States)

Formatted: No underline, Font color: Auto, English (United States)

Commented [6]: Spinosauridae wasrecognizedby a tooth, not a vertebra

Formatted: No underline, Font color: Auto, Strikethrough

Commented [7]: I suggest to end this sentence with something more "... about the diversity of dinosaurs xxx..." Commented [PP8]: A: Done Formatted: No underline, Font color: Auto Formatted: English (United States) Formatted: No underline, Font color: Auto

Formatted: No underline, Font color: Auto

53	dinosaurs were conducted published into the nineteenth and mid-twentieth centuries
54	(Marsh, 1869; Derby, 1890; Mawson & and Woodward, 1907; Price, 1960, 1961). Since
55	that time, dinosaur fossils have been recorded in-from three principal localities/ and ages
56	in Brazil: the Triassic of the Santa Maria and Caturrita formations (Langer et al., 2007a),
57	the mid-Cretaceous of the Araripe, Triufo and São Luís-Grajaú basins (Frey & and Martill
58	1995; Kellner 1996a, b, 1999; Medeiros et al., 2007; Carvalho et al., 2017), and the Late
59	Cretaceous of the Bauru and Parecis groups (Franco-Rosas et al., 2004; Kellner et al.,
60	2004; Brusatte <i>et al.</i> 2017).
61	As of now, there have been five theropod dinosaur species formally described
62	from Brazil: Staurikosaurus pricei Colbert, 1970 and Guaibasaurus candelariensisai
63	Bonaparte, Ferigolo & Ribeiro, 1999 from the Caturrita Formation; Angaturama limai
64	Kellner & Campos, 1996, Santanaraptor placidus Kellner, 1999, Irritator challengeri
65	Martill, Cruikshank, Frey, Small and Clarke, 2002 and Mirischia asymmetrica Naish,
66	Martill & Frey 2004 from the Araripe Basin; Oxalaia quilombensis Kellner, Azevedo,
67	Machado, Carvalho & Henriques, 2011 from the São Luís-Grajaú Basin, and
68	Pycnonemosaurus nevesi Kellner & Campos, 2002 from the Bauru Group. There are eight
69	theropod dinosaur species formally described from for-Brazil so far, four of those
70	described for its from the northeastern region: Santanaraptor_placidus Kellner, 1999,
71	Irritator challengeri Martill, Cruikshank, Frey, Small and Clarke, 2002 and Mirischia
72	asymmetrica_Naish, Martill_and Frey 2004 from the Araripe Basin; and Oxalaia
73	quilombensis Kellner, Azevedo, Machado, Carvalho and Henriques, 2011 from the São
74	Luís-Grajaú Basin.
75	A promising area for new dinosaur discoveries is the rocks of the Acu Formation.

in the Portiguar Basin. RecentlyUntil now, the macrofossils of the Açu Formation (in this

76

Commented [PP9]: Revisor 01: Please, restrict to Cretaceous record, to address the relevance of the materials here reported.

A: We choose to keep this part of the text to preserve the cohesion within of the Introduction, featuring the first works and discoveries on theropod paleontology of Brazil. The next paragraph has a small summary of the Cretaceous northeastern theropod dinosaurs of Brazil.

Formatted: Font: Italic
Formatted: Font: Italic

Commented [10]: To this list should be added the recently described *Vespersaurus paranaensis* Langer et al., 2019 and *Gnathovorax cabreirai* Pacheco et al., 2019

Commented [LM11]: We choose to limit this list to the northeastern Brazil's theropod record only to make the text more easy to read/understand

77	area were restricted to a few occurrences from outcrops on the western border of the basin
78	(Russas and Tabuleiro do Norte municipalities, Ceará state), consisteding of bivalve
79	molluscs, small crustaceans, fish scales, and plant remains (Duarte & and Santos, 19612).
80	This situation lasted untilHowever this changed in the 2000s, when researchers from the
81	Group of Analogs to Oil Reservoirs of the Department of Geology of the Federal
82	University of Rio Grande do Norte, in geological mapping of the Açu 4 operational unit,
83	found large vertebrate fossils. These fossils were attributed to Titanosauria and
84	Theropodaindet., but were not described in detail (Santos et al., 2005).

85 In the decade after the discovery of these first continental vertebrate fossils in the 86 formation (Santos et al., 2005), no other fieldwork was conducted. However, in the years 87 2015 and 2016, this area was again prospected by Laboratório de Macrofósseis of the Universidade Federal do Rio Janeiro and dozens of fossils were collected found. The aim 88 89 of the present work is to describe and identify the collected materials attributed to 90 theropod dinosaurs, showing that the Potiguar Basin preserves a great large diversity of species and has great potential for future discoveries and studies about the mid-91 Cretaceous paleoenvironments of the Atlantic margin of Brazil. 92

93

94 Geological Setting and Lithostratigraphy

95 The Potiguar Basin is located at the eastern continental margin of northeastern
96 Brazil, cropping out in the states of Rio Grande do Norte and Ceará (Fig. 01), with a total
97 estimated area of 60,000 km², of which 22,000 km² is interpreted as continental (Cassab,
98 2003). The Potiguar Basin is bounded to the east by Alto de Touros, which which
99 separates it from the Pernambuco-Paraíba Basin, to the northwest by the Alto de

Formatted: Font: Italic

Formatted: Line spacing: Double

Commented [BS12]: You need the which

Fortaleza, which bordering separates it from the Ceará Basin, and to the south and west
by crystalline basement rocks (Pessoa-Neto_et al., 2007).
Figure 01: Geological map of the continental part of the Potiguar Basin with the region
near the Limoeiro do Norte municipality (Ceará state) where the osteoderm were was
discovered (dark star), CE, Ceará state; RN, Rio Grande do Norte state (Capital is Natal).

107 ModifiedfromCassab (2003).

108

109

The sedimentary units of the Potiguar Basin is are divided into three groups: Areia

Branca (Pendência and Alagamar formations), Apodi (Açu, Quebradas and_Jandaíra
formations) and Agulha (Ubarana, Guamaré and Tibau formations) (Araripe & and Feijó,
1994). The Açu formation is divided into four subunits according to electric logs,
identified from bottom to top as Açu 1, Açu 2, Açu 3 and, Açu 4 (Vasconcelos *et al.*,
1990). The material described here comes from the Açu 4 subunit, which corresponds to
a transgressive, coastal-estuarine system.

The Aceu-4 Unit consists of sixteen facies, fourteen being siliciclastic and two 116 being hybrid. The siliciclastic facies were are grouped into nine associations, namely: (1) 117 118 lag residual deposits, (2) channel fill deposits, (3) crevasse-splay deposits, (4) floodplain deposits, (5) abandoned channel deposits, (6) upper-flow regime sandflat deposits, (7) 119 lower-flow regime sandflats, (8) sandflat/mudflat deposits of restricted environment, and 120 121 (9) mudflat deposits. The first five facies associations represent a meandering fluvial system with tidal influence, and the remaining integrate the intermediate and distal sectors 122 of an estuarine complex dominated by tides. The hybrid facies were deposited in a shallow 123 124 platform adjacent to an estuary (Costa et al., 2014).

5

Commented [13]: The authors do not describe any osteoderm in the text.

Commented [LM14]: Done.

Formatted: English (United States)

Formatted: Indent: First line: 0.49'

Commented [PP15]: Revisor 01: Do you mean the sedimentary infilling is divided into three groups? A: Yes, we are following the terminology and geological description of the Basin.

Formatted: English (United States)

Formatted: English (United States)

Formatted: Font: Italic

125	The Açu Formation has been suggested to be Albian-Cenomanian in age (Early-	
126	Late Cretaceous), based on palynological data (Araripe <u>& and</u> Feijó, 1994).	
127		
128	Material and Methods	
129	The fossils were collected from outcrops of the Açu Formation, Potiguar Basin	
130	(Ceará state, noutheastern Brazil) and are deposited at the Fossil Reptile Collection of the	
131	Departamento de Geologia (DG), Universidade Federal do Rio de Janeiro (UFRJ). The	For
132	material consists of 10-seven isolated theropod vertebrae (UFRJ-DG 521-R, 523-R, 524-	For
133	R, 528-R, 532 R, 547 R, 558-R, 575-R, 587 R and 589634 -R) and a tooth (619-Rd)	For
134	tooth. The vertebrae were classified into <u>five</u> six morphotypes based on morphological	For
135	form and/or diagnostic characters.	Cor
136	The following tooth characteristics were analyzed assessed, according following to	Cor
137	the nomenclature proposed by Hendrickx <u>et al. (2015):</u> describing: general	Cor
138	morphological traitsogy of the dental crown (geometric shape, relative curvature and	For For
139	surface ornamentationits overall shape, curvature, ornamentations in the enamel),	
140	denticles (presence, size and shape)_and, cross section (compression and shape).	
141	orientation of the tooth (lingual, labial, mesial and distal) and measurements) and blood	 Cor
142	grooves (presence and visibility) (Currie et al., 1990; Sankey et al., 2002; Smith et al.,	anc
143	2005; Candeiro, 2007):<u>.</u>:	A: [
144	_ AL: Maximum apicobasal extent, of the tooth crown mesial base, measured from the	For
145	mesial portion at the level of the cervix to the apical most point of the crown (Smith et	For
146	al., 2005).	For
147	- CBL: Maximum mesiodistal extent of the tooth crown at the level of the cervix (Smith	For
148	et al., 2005). Equivalent to FABL used by some authors (Currie et al., 1990; Farlow et	(Un

al., 1991; Sankey et al., 2002).

Formatted: English (United States)
Formatted: English (United States)
Commented [16]: I suggesttoadd its collectionnumber
Commented [LM17]: Done.
Commented [18]: Theyweredescribedonlyfivemorphotyp es in thetext.
Commented [LM19]: Done.
Formatted: English (United States)
Formatted: Font: Italic

Commented [PP20]: Revisor 01: Considering that this is not a ms devoted to analyze theropod teeth as a whole, and taking into account that just only one tooth is described, I suggest to remove all these considerations. A: Done.

Formatted: No underline, Font color: Auto, English (United States)

Formatted: Indent: First line: 0"

Formatted: English (United States)

Formatted: No underline, Font color: Auto, English (United States)

Formatted: English (United States)

		_
150	<u>CBW: Maximum labiolingual extent of the tooth crown base, perpendicular to the CBL</u>	Fo
151	and at the level of the cervix. (Smith et al., 2005).	F
152	<u>CBR: Ratio expressing the narrowness, the lateral compression of the base of the crown,</u>	F
153	corresponding to the quotient of CBW by CBL (CBR=CBW/CBL, Smith et al., 2005). A	(t
154	strongly labiolingually narrow crown has a quotient of less than 0.4; a moderately narrow	
155	tooth is around 0.5-0.6; a weakly narrow crown, with an ovoid cross section, has a ratio	
156	fluctuating between 0.6-0.7; and a tooth with a subcircular transversal section has a ratio	
157	between 0.9 and 1.1 (Smith et al., 2005).	F
158	CH: Maximum apicobasal extent of the distal margin of the crown (Smith et al., 2005).	F
159	Equivalent to the TCH proposed by Farlow et al. (1991).	- Fi
160	CHR: Ratio expressing elongation, the relative size of the tooth, equivalent to the	F
161	guotient of CH by CBL (CHR=CH/CBL, Smith et al., 2005). A short crown tooth has a	(L
162	quotient less than 1.5; a medium crown tooth has a quotient varying from 1.5-2.5 and a	
163	strongly elongated crown has a ratio above 2.5.	F
164	_ DC: Number of denticles on the distal carina at mid-crown per 5mm (Smith et	F
165	al., 2005). Equivalent to five times the posterior medial carina denticles per millimeter	(L
166	(Buckley et al., 2010). In this study, teeth with less than 20mm had their denticles	
167	measured over 1mm, with this value then multiplied by five.	F
168	_ MC: Number of denticles on the medial part of the mesial carina per5mm (Smith	F
169	et al., 2005). Corresponds to five times the number of denticles of the medial part of the	(L
170	mesial carina per millimeter (Buckley et al., 2010).In this study, teeth smaller than 20mm	
171	had their denticles measured over 1mm, and this value was then multiplied by five.	
172	 Anteroposterior basal length commonly referred to as FABL (fore aft basal 	F
173	length) - a measure taken between the most extreme points of the tooth at its base. It is	St
174	conceptually represented by a straight line,	F

Formatted: No underline, Font color: Auto, English (United States)

Formatted: English (United States)

7

Formatted: No underline, Font color: Auto, English (United States)

Formatted: English (United States)

Formatted: No underline, Font color: Auto, English (United States)

Formatted: English (United States)

Formatted: No underline, Font color: Auto, English (United States)

Formatted: English (United States)

Formatted: No underline, Font color: Auto, English (United States)

Formatted: English (United States)

Formatted: No underline, Font color: Auto, English (United States)

Formatted: No underline, Font color: Auto, Strikethrough

Formatted: Strikethrough

175	• Total crown height ALT the distance between the apex and the base of the		Formatted: No underline, Font color: Auto, Strikethrough
176	crown.		Formatted: Strikethrough
177	• Relative crown height IAR division of the total crown height by		Formatted: No underline, Font color: Auto,
178	baselineanteroposterior length (ALT/FABL).		Ecrmetted: Striketbrough
179	• Transverse section thickness EST measure of the labial lingual thickness of		Formatted: No underline, Font color: Auto, Strikethrough
180	the basal cross section of the tooth.		Formatted: Strikethrough
181	 Density of denticles – DDA (anterior carina, also known as mesial carina) – DDP 		Formatted: No underline, Font color: Auto, Strikethrough
182	(posterior carina, also known as distal carina). Measurement of the number of denticles		Commented [21]:
183	per 1 mm on the medial part of the crown, in both carinae,		suggesttobeconsistentwiththeabbreviations, usingtheir English verisions as is usual besides FABL: CBW: crown basal
184			width (ratherthan EST), CH: crownheight (ratherthanALT), etc. SeeHendrickx et al 2015. The
		\mathbb{N}	dentitionofmegalosauridtheropods. Acta PaleontologicaPolonica 60 (3): 627-642
185	Terminology	()	Commented [LM22]: Done. We updated the method and
186	In the present work, the terminologies proposed by Smith et al., (2005) were used		nomenclatures according to Hendrickx et al., 2015 A proposed terminology of theropod teeth (Dinosauria,
187	to refer to both the dental structures and the positioning of the analyzed teeth. According		Saurischia). We also cut some redundant parts of the methods, such as the terminology.
188	to these authors, the dental crown is divided into three parts: apical (the most distal part		Commented [23]: The valuesofmostoftheseparameterswerenotspecified in
189	of the tooth), medial (region between the apical and basal), and basal (lower part of the		theanalysisotthetoothrecovered. I suggesttoaddthem.
100	tooth alocar to the root). The outhors defined as the label surface the surface that uses in		Formatted: Strikethrough
190	tooth, closer to the root). The authors defined as the fabial surface the surface that was in		Formatted: Strikethrough
191	contact with the animal's lips, and the lingual surface to that which faced the tongue of		Commented [LM24]: The values of the measurements are now stated in the description of UFRJ 654-Rd.
192	the animal.		Formatted: Strikethrough
100			Formatted: English (United States)
193			Formatted: Justified, Right: 0"
194	Results		Formatted: Font: 14 pt, Bold, No underline, English (United States)
195	<u>-Dental element:</u>		Formatted: Font: 14 pt, Bold, No underline, English (United States)
196	Sistematic Systematic paleontology		Formatted: Font: 14 pt, Bold, Not Italic, No underline, English (United States)
197	_ 		Formatted: Font: Bold, Not Italic, English (United States)
198	THEROPODA Marsh, 1881		Formatted: Right: 0", Space After: 10 pt, Line spacing: Multiple 1.15 li
1			Formatted: Font: Bold

199	TETANURAE Gauthier, 1986		
200	SPINOSAURIDAEStromer, 1915		
201	Referred material: UFRJ-DG-653-R, a tooth.		
202	Description and comparisons:		
203			
204	The material consists of an incomplete Spinosauridae crown (Fig. 02, A and B) whose		
205	apex has been lost. The crown has a high relative height (HIR = 2.4) and is lingually		Commented [25]: This measurement has a big fault, given the recovered tooth lacks most of its tip
206	curved. Its cross section is rounded with a Crown Base Ratio (CBR) of 7.8 (Smith et al.,		A: Done. We added to the text that we estimated the total height of the crown based on the works of (CITE)
207	2005).		Commented [26]: Other abbreviation was used in Material and methods A: Done
208 209	This crown does not have denticulation in any of its carinae is shared with Irritator challengeri and Spinosaurus aegyptiacus but differs from the denticulated		Commented [27]: This ratio was not mentioned in Materials and methods A: Done
210	carinae of Baryonyxwalkeri (Mateus et al., 2011). On the labial surface, there are no		Commented [28]: I suggest that, before comparing this material with other spinosaurids, the authors should add a
211	striations, while on the lingual surface there are ca.? nine well defined striations that		summary of characters that allow to asign it to Spinosauridae. A: Done. We summarize the characteristics of spinosaurids in the Discussion
212	bifurcate near the base of the crown.	$\left(\right)$	Commented [29]: I suggesttochangeto "carinae, a
213	UFRJ-DG 653Rd shares many characteristics seen in other spinosaurines as a		A: Done.
214	conical teeth crown with a ovoid shaped crown base, feature usually seen in piscivorous		Formatted: Highlight
215	animals; the non serrated carinae, which differentiates it from the other spinosauroid		
216	family, the Baryonychinae, whose teeth features a large number of small sized serrations		
217	on both of its carenae; <i>flutes</i> (Must see the material again)?		Commented [PP30]: A: Review the tooth description and explain why
218			
219			
220			
221			
222	-Axial elements:		
223			

224	SAURISCHIA CiteSeeley, 1888yearMorphotype 1:		Formatted: Font: Bold, No underline
2 2⊑		\sum	Formatted: No underline
225			Formatted: Centered
226	THEROPODA Marsh, 1881		
227	AVEROSTRA Paul, 2002	<	Formatted: Font: Bold
228			Formatted: Left
220			
229	TETANURAE Gauthier, 1986		Formatted: English (United States)
230	NEOVENATORIDAE Benson, Carrano & Brusatte, 2010		
231	? MEGARAPTORA Benson, Carrano & Brusatte, 2010		Commented [31]: Given there are two morphotypes
1 21			assigned to Megaraptora, both showing similar characteristics, the authors should explain why there are
232			not included in a single morphotype.
233	•		Formatted: English (United States)
234	Referred material: UFRI-DG 532-R and 575-R and 587-R		Formatted: Centered
231	Referred material of the DO		Formatted: English (United States)
235	Description and comparisons:		Formatted: Font: Italic
236	Morphotype 1 consists of two specimens (Fig. 02, C-F) based on partial centra		Formatted: Indent: First line: 0.49"
237	and is characterized by semicircular articular surfaces and high pneumaticity. They are		
238	possibly caudal vertebrae, but a more conclusive description is difficult because of the		
239	poor preservation of the material.		
240			
240			
241	4		Formatted: Indent: First line: 0.49"
242			
242			Commented [32]: Which view?
243	Figure 02: Tooth and vertebrae attributed to Morphotype 01: Spinosauridae tooth,		
244	A: tooth cross section R: Articular view C(LIEPLDC 587 P): D (LIEPLDC 575 P).		A: FAZER
244	n, wour closs_section, b, mitcular view, c(orns bo sorn), b (orns bo sis Kj.		strongly suggest to add the real basal cross-section picture.
245	Lateral view, E and F(UFRJ DG 575-R). Note the large pneumatic foramen on the side		A: FAZER
246	of the anterior fragment of - proumatic foramen. Scale har 1 cm.		Commented [34]: Those are lateral views of the same
0	or the uncertor fugment, pri – pheumatic forallen, beale bar, fem.		fragment, or one of each fragment?
247	<u>UFRJ-DG_528-R</u>		A: FAZERPAULO

Formatted: English (United States)

248	Specimen 528-R is a theropod vertebral centrum (Fig. 023, CA-EBC). It is	 Formatted: English (United States)
249	amphicoelous, and slightly higher than long. Its lateral surface is smooth and slightly	
250	concave, without marks or other remarcable remarkable -characteristics, giving the	
251	vertebra a straight and eleansomewhat featureless appearance. The ventral surface	
252	smooth with no groove or keel and is not very concaveit is slightly concave in lateral	
253	view., being smooth on the medial region and presenting a groov con the posterior region	
254	close to the articular face margin.	
255	The dorsal surface possesses a distinct longitudinal groove extending from one	
256	articular facetend to the other that, and this groove can be identified as the neural canal.	
257	The anterior part of this groove is covered, but this covering is lost from the medial part	
258	further posteriorly, exposing the neural canal of this region in dorsal view.	
259	The articular faces have almostnearly straight margins. The anterior facet is somewhat	
260	concave, and the posterior is slightly convex and slightly oval in shape; both articular	
261	facets have the same general proportions (height longer than length). The anterior	
262	articular face presents a deeper concavity, and is slightly larger in size, than, the posterior	Commented [35]: The word "expressive" seems wrong in this context
263	face, which is very flat and without deep depressions.	A: Done.
264	•	Formatted: Indent: First line: 0.49"
265	UFRJ-DG 575-R	
266	Specimen 575-R (Fig. 02, <u>AC-BED-F</u>) is a theropod vertebral centrum broken in	
267	two: a 4,5cm long smaller anterior piece and a 5,2cm long larger posterior section.	
268	Although the material have been was found associated there is no clear point of junction	
269	between both pieces, withas most of the middle portion beinghas been lost. The anterior	 Commented [PP36]: Revisor 01: Before description of
270	fragment presents exhibits a very concave articular face of semi-circular shape and	A: Done.
 271	slightly forward-protruding margins.	

272	On the lateral surface of the anterior fragment there is a deep perforation close to	
273	the dorsal region that reaches the other lateral surface, which can be described as a	
274	pleurocoel_(pneumatic_foramen) (pneumatic_foramen)(asthe_left_lateral_surface_close	
275	to the dorsal surface is missing a piece, exposing the internal part of thebone). The ventral	
276	surface of the anterior fragment is smooth and concave in anterior view. The dorsal	
277	surface of the anterior fragment is broken, missing most of the surface above the	
278	pleurocoel.	
279	The posterior fragment has a slightly smaller articular surface, which is broken on	
280	the anterior portion; it is also concave and of semi-spherical circular shape, with slightly	Commented [37]: Sem-spherical or semicircular?
281	backwards-protruding margins. Its dorsal surface and the dorsal half of the left lateral	Done.
282	surface are broken, while the right lateral surface is broken in a slightly more dorsal region	
283	in comparison to the left one. The ventral surface of the fragment is smooth and concave	
284	in lateral view. Due to the highly fragmentary state of UFRJ-DG 575-R, itsit is possible	
285	to see multiple small pervasive pneumatic chambers, the camellae, in the internal bone.	
286	When both fragments are joined, it is clear that the length of the centrum is even	Commented [38]: The authors should describe (and
287	larger than the height on its most complete point, in this case the anterior articular face.	different fragments. It is confusing and does not help with interpretation of the materials.
288	This is common in anterior dorsal vertebrae of Allosauroidea (measured next to the	Commented [39]: At thebeginningofthismorphotype
289	pleurocoels, which confirms the more anterior location). Furthermore, the margins of the	vertebrae.
290	articular facets have forward protrusions like those found in this group (Gilmore, 1920;	
291	Madsen, 1976).	
292		
293	<u>Comparisons:</u>	Formatted: Font: Italic
294	*	Formatted: Indent: First line: 0"
295		Formatted: Font: Italic
		Formatted: Font: Italic

the highly pneumatized camellate bone seen in UFRJ-DG 575-R is a characteristic seen many groups of theropods, from the basal <i>Ceratosaurus</i> to tetanuran groups such as rcharodontosaurids and coelurosaurs mainly in its presacral vertebrae (Carrano & and 2000) This for the second se	Formatted: Font: Italic
many groups of theropods, from the basal <i>Ceratosaurus</i> to tetanuran groups such as rcharodontosaurids and coelurosaurs mainly in its presacral vertebrae (Carrano & and	Formatted: Font: Italic
rcharodontosaurids and coelurosaurs mainly in its presacral vertebrae (Carrano & and	
impson, 2008). This feature, together with the poor preservation of this specimen,	
hich prevents the identification of other more diagnostic characteristics, hinders the	
assification of this specimen beyond AverostraTheropoda.	
UFRJ-DG587-R	Formatted: Indent: First line: 0.49"
Specimen 587 R is the anterior articular face of a theropod vertebra (Fig. 02, C).	
has an semicircular shape, is slightly taller (9,5 cm) than wide (8cm), and has a shallow	
ncavity on its articular surface, possibly indicating it <mark>is the anterior face of an</mark>	Commented [40]: Why anterior? It could not be posterior?
nphicoelous vertebra <mark>, characteristic of Theropoda</mark> . The dorsal surface is indented with	Commented [41]: Why the authors assign this material to
concavity representing the beginning of the neural canal.	theropod.
orphotype 2:	
THEROPODA Marsh, 1881	
TETANURAE Gauthier, 1986	
CERATOSAURIA Marsh 1884	Formatted: English (United States)
NEOCERATOSAURIA Novas 1989	
ABELISAURIANovas 1992	
oferred material: UFRJ DG 528 R and 532 R.	
escription: and comparisons:	Formatted: Font: Italic
	In poor, 2005). This reduce, together with the poor preservation of this specified, ich prevents the identification of other more diagnostic characteristics, hinders the ssification of this specimen beyond AverostraTheropoda. UFRJ-DG587-R • • Specimen 587 R is the anterior articular face of a theropod vertebra (Fig. 02, C): has an semicircular shape, is slightly taller (9,5 cm) than wide (8cm), and has a shallow neavity on its articular surface, possibly indicating it is the anterior face of an phicoelous vertebra, characteristic of Theropoda. The dorsal surface is indented with oneavity representing the beginning of the neural canal. arphotype 2: THEROPODA Marsh, 1881 TETANURAE Gauthier, 1986 CERATOSAURIA Novas 1989 ABELISAURIANovas 1992 ferred material: UFRJ DG 528 R and 532 R. seription; and comparisons:

320	Morphotype 2 (Fig. 03) includes two vertebrae with a low length/height ratio and	Com
321	semicircular articular faces with little lateral compression.	vertet
322	•	Com
323	UFRJ-DC528-R	this m
324	Specimen 528-R is a theropod vertebral centrum (Fig. 03, A-C). It is amphicoelous, and	specif
325	slightly higher than long (8,5 vs. 6cm). Its lateral surface is smooth and slightly concave.	Form
326	without marks or characteristics of note, giving the vertebra a straight appearance. The	Com
327	ventral surface is not very concave in lateral view, being smooth on the medial region and	rephra A: Doi
328	presenting a breach groove on the posterior region close to the articular face margin.	
329	The dorsal surface possesses a distinct longitudinal groove extending from one articular	
330	end to the other, and this groove can be identified as the neural canal. The anterior part of	
331	this groove is covered, but this covering is lost from the medial part further posteriorly,	
332	exposing the neural canal of this region in dorsal view.	
333	The articular faces have almost straight margins. The anterior face is somewhat concave,	
334	and the posterior is slightly convex and slightly oval in shape; both articular faces have	
335	the same general proportions (height longer than length). The anterior articular face	
336	presents a more expressive concavity, and is slightly larger in size than, the posterior face,	Com
337	which is very flat and without deep depressions.	A: Dor
338		
339		
340	UFRJ-DG532-R	
341	It is a fragment of a theropod <u>vertebral?</u> articular facet (Figure reference?). Its oval shape	Form
342	in the dorso-ventral direction, due to its height being longer than its length (8cm vs. 6cm),	
343	indicates a position in the most proximal region of the caudal vertebrae. The articular	
344	surface is slightly concave, presenting only a small depression, which indicates it is the	

Commented [42]: This character used for differentiate this morphotype is clearly related to the position of the vertebra inside the vertebral series.

Formatted: Indent: First line: 0"

Commented [43]: This character is used for differentiate this morphotype is also present in morphotype 1

Commented [44]: I suggest to look for other more specific characters to differentiate this morphotype

Formatted: Right: 0.02"

Formatted: Indent: First line: 0"

Commented [45]: This sentence seems wrong, please rephrase A: Done.

Commented [46]: The word "expressive" seems wrong in this context. A: Done.

Formatted: Indent: First line: 0"

	15		
345	posterior articular face of the centrum (Bonaparte, 1985; Sampson et al. 1998; Coria et al.		
346	2002, Méndez, 2014 year?). The articular surface is slightly damaged on its lower right		
347	part, missing a fragment that goes almost up to the medial part of the articular face.		
348			
349	THEROPODA Marsh, 1881		Formatted: English (United States)
350	TETANURAE Gauthier, 1986		
351	? SPINOSAUROIDEA Stromer, 1915		
352			
353	Referred material: UFRJ-DG 619-Rd.		
354	Description:	~	Formatted: Font: Not Bold, Italic
355			Formatted: Indent: First line: 0.49"
356	UFRJ-DG 619-Rd (Fig. 03) is a fragment of a larger isolated tooth crown,		
357	probably belonging to the middle to almost apical portion of the tooth. The specimen		
358	lacks any form of enamel, havingas it has all its dentine exposed, what prevents the		
359	possibility todescription of -describe any kind of external ornamentation assuch as		
360	transversal undulations, and flutes and denticulation. The crown is almost completely		
361	straight with only a subtle curvature in its lingual surface, while the labial surface remains		
362	slightly convex.		
363	The crown fragment has an overall cone-like shape with an almost ovoid cross		
364	section. In the basal view, it'sit is possible to see concentrically deposited rings of dentine		
365	surrounding a small depression, which probably represents the apical-most portion of the		
366	dental pulp cavity.		
367	<u>Comparisons:</u>		Formatted: Font: Italic
368	UFRJ-DG 619-Rd have some characteristics that it shares with the highly specialized		Formatted: Font: Italic
369	teeth seen inof spinosauroid theropods. The most salient of these is the aalmost straight		

370	conical shaped crown, with an ovoid cross section shape, a feature usually often seen in		Commented [BS47]: Which shape? Cross sectional?
371	piscivorous animals (CITE Mateus, 2011; Hendrickx & and Mateus, 2014) being the most		
372	remarkable of those		
572			
373			
374	The lack of denticulation inon any of its carina is a characteristic seen in spinosaurines		
375	such as Irritator challengeri and Spinosaurus aegyptiacus (citeStromer, 1915; Martill et		
376	al., 1996) while the highly denticulated carina is characteristic of baryonychines as		
377	Baryonyx walkeri (Charig & Milner, 1986; Mateus et al., 2011). However, due to the lack		
378	of enamel in this material it is not possible to distinguish between Baryonychinae and		
270	Spinosouringe por its possible		
575	Sphosadimac nor his possible.		because you cannot assess the denticulation. So, just delete
380	•		A: Done
381			Formatted: Indent: First line: 0", Right: 0.02"
382	Morphotype 3:		
383			
204	THEDODODA March 1991		
564	THEROFODA Maisii, 1881		Formatted: Portuguese (Brazil)
385	TETANURAE Gauthier, 1986		
386	MANIRAPTORA Gauthier, 1986		
387			
388			
389	•		Formatted: Centered
200			
390	A		Formatted: Portuguese (Brazil)
391	Referred material: UFRJ-DG 521-R	<	Formatted: English (United States)
392	Description: and comparisons:		Formatted: Left
			Formatted: Font: Italic
393	Morphotype 3 (Fig. 03, <u>E?</u> F G) consists of one vertebra whose ratio betweenheight		Formatted: Left, Indent: First line: 0.49"
394	and its length somewhat greater than six and dorsally positioned prezygaponhyses.		Formatted: Left, Indent: First line: 0"

395	length is more than twice its height, and which lacks any processes, indicating to be a	
396	distal caudal vertebra.	
397	4	
398	UFRJ-DG_521-R	
399	Specimen UFRJ-DG 521-R (Fig. 04) is an almost complete distal caudal vertebrae	
400	of a paravianmaniraptoran theropod. It is amphicoelous with a length to height ratio of	
401	almost 2.5, making it a least twice longer than tall. The dorsal surface of the centrum is	
402	almost complete with half of a dorsal midline ridge reminiscent of reduced neural spine,	
403	a well preserved and more dorsally positioned pre-zygapophysis, and a lost post-	
404	zygapophysis. The pre-zygapophysis articular surface is ellipsoid and is reclined 45°	
405	laterally. The neural canal is almost completely preserved, -having lost only its posterior	
406	<u>half .</u>	
407	The lateral surfaces of the centrum are mostly smooth, marked only with a midline	
408	ridge reminiscent from of the a reduced transverse processes of the vertebrae. The ventral	
409	surface of the centrum has an shallow groove that goesextends from one articular facet to	
410	the other. In the lateral view the ventral surface is slightly concave.	
411	The articular facets of the centrum are both concave, with the anterior facet being	
412	more excavated than the posterior facet, and have a semi-circular shape. The articular	
413	margins are almost straight, with the anterior margin being larger than the posterior	
414	margin.	
415	Specimen 521-R is a distal caudal vertebra of a theropod. It is almost complete, damaged	
416	only in the postzygapophysis region. It is a <mark>biconcave, amphicoelous</mark> vertebrae with a	
417	centrum slightly shorter anteroposteriorly than twice the height near the neural spine	
418	remnant and diapophysis, which confirms its more distal position within the caudal series	
419	(but not so distant from a medial position).	

Commented [49]: Again, usingcharactersrelatedtothe vertebral position in the caudal series is Formatted: Left, Indent: First line: 0.49", Right: 0.02"

Formatted: English (United States)
Formatted: English (United States)

Formatted: English (United States)
Formatted: English (United States)

here.

Commented [BS50]: A paravian? Can you be this specific? If so, this should go in the Systematic Palaeontology section. If not, then just call it a maniraptoran

Formatted: Indent: First line: 0"
Formatted: Subscript
Commented [51]: I thinkboth are synonyms A: Done.
420

421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444

Commented [52]: Thissentenceisconfusing.

Formatted: Highlight

18

I: Font: Italic ed [53]: I think the authors should specify ition point are referring here (I suppose that Russel (1972), but this is my guess) : Font: Italic I: Font: Italic : Font: Italic : Font: Italic I: Font: Italic I: Font: Italic : Font: Italic I: Font: Italic I: Font: Italic I: Font: Italic ed [BS54]: I don't agree with this taxonomy. and Buitreraptor are dromaeosaurids, at least logenetic analyses. Rahonavis probably too. nay ontid. The Agnolin and Novas phylogeny has ge results and is not widely accepted.

So instead, just say that:

'The presence of a transverse process after the transition point is seen in some paravians, such as Microraptor, Rahonavis, Buitreraptor, and Archeaopteryx.'

Don't use the term Averaptor.

Formatted: Font: Italic, English (United States)

Formatted: English (United States)

Formatted: Font: Italic, English (United States)

Formatted: English (United States)

Formatted: Font: Italic, English (United States)

Formatted: English (United States)

445			
446	The presence of the transverse processes after the transition point of the tail is not.		Formatted: Indent: First line: 0.49"
447	observed in more based personian groups of like dromeaosauride and troodontide that have		
447	observed in more basar paravian groups of the dromaeosautius and troodontids that have		
448	smooth lateral surfaces in their centra (Ostrom, 1969; Norell & Makovicky, 1999; Currie		
449	& Dong, 2001; Xu et al., 2012), but it is seen in specimens of Microraptor, Rahonavis,		
450	Buitreraptor, Anchiornis and Archaeopteryx (Hwang et al., 2002; Hu et al., 2009; Han et		
451	al., 2014; Novas et al., 2017), all belonging to the group Averaptora.		Commented [BS55]: I don't agree with this taxonomy.
452	In addition, the 521-R specimen also has the dorsally positioned pre-		Microraptor and Buitreraptor are dromaeosaurids, at least in most phylogenetic analyses. Rahonavis probably too. Anchiornis may be a troodontid. The Agnolin and Novas
453	zygapophyses more dorsally positioned in the same way as in Buitreraptor, Rahonavis		phylogeny has many strange results and is not widely accepted.
454	and Anchiornis (fig. 059) (Motta et al., 20188). The vertebral centrum has a length-to-		So instead, just say that:
455	height ratio between its height and its length is close to 2.5, a ratio usually seen in		'The presence of a transverse process after the transition point is seen in some paravians, such as Microraptor, Rahonavis. Buitreraptor, and Archeaoptervx.'
456	dromaeosaurids with exception to <i>Buitreraptor</i> but not seen in other maniraptorans as		Don't use the term Averaptor.
457	troodontide and microraptorians whose ratio can reach up to 5.0 to 6.0 a ratio seen in		Formatted: Font: Italic
437	toodonnus and interoraționans whose ratio can reach up to 5.0 to 0.0. a ratio seen in		Formatted: Font: Italic
458	more basal paravians such as dromaeosaurids, in contrast to troodontids and more derived		
459	averaptorans whose ratio can be as much as 6.0.	_	Commented [BS56]: Again, don't use averaptorans. Instead, just say that long vertebrae like these are seen in some, but not all, paravians.
460			Formatted: Highlight
461	4-		Formatted: Indent: First line: 0.49", Right: 0"
462	Figure 03 <mark>: Caudal vertebrae attributed to Morphotype 02 (A-D) and Morphotype*</mark>		Commented [57]: I think the aspect of the figure is not proper: it shows different fonts, the letters are unaligned,
463	03 (E-G). UFRJ-DG 528-R: A, ventral view; B, Lateral view; C, anterior articular facet.		and shows two scalebars. The same applies for Figure 4
464	UFRJ-DG 532-R: D, anterior articular facet. UFRJ-DG 521-R: E, Lateral view; F, ventral		Tormatted, Justined, Indent, First line, 0.45
465	view; G, anterior articular facet. Prz, prezygophysis; Nc, neural canalhannel. Scale: 1cm.		
466	4		Formatted: Indent: First line: 0.49", Right: 0"
467	Morphotype 4:		
407			
468			
469	THEROPODA Marsh, 1881		

470	TETANURAE Gauthier, 1986	
471	ALLOSAUROIDEA Marsh, 1878	
472	CARCHARODONTOSAURIA Benson, Brusatte and Carrano, 2010	
473		
474	Referred material: UFRJ-DG 523-R and 524-R.	
475	Description: and comparisons:	Formatted: Font: Italic
		Formatted: Indent: First line: 0.49"
476	Morphotype 4 (Fig. 04) is formed by two vertebrae with low length/height ratio,	Commented [58]: Again, this character varies with the
477	close to morphotype 1, and oval articular facet with strongly waisted centra withlateral	position inside the caudal series.
478	depressions in the dorsal half of the lateral surface, a double keel cut by a longitudinal	Commented [59]: The shape of the articular face of caudal vertebrae is so variable, it show differences inside the same taxonomic group. For example inside
479	groove and offset articular facets	Abelisauridae, Carnotaurus shows semicircular articular surface, and Majungasaurus show oval articular surface, as the authors clearly show in the figure 8. This makes this
480		character not useful for separating morphotypes.
481	Figure 04: Caudal vertebrae attributed to Morphotype 4. UFRJ-DG 524 R: A, ventral	Formatted: Font. Not Boid, Fattern. Clear (White)
482	view; B, lateral view; C, anterior articular facet. UFRJ-DG 523-R: D, ventral view; E,	
483	lateral view; F, anterior articular facet. Nc, neural canalhannel. Scale: 1cm.	
484	+	Formatted: Indent: First line: 0.49", Right: 0.02"
485	UFRJ-DG523-R	
486	Specimen 523-R (Fig. 064, D-F) is a theropod vertebral centrum, with the	
487	following characteristics: it is amphicoelous, and slightly longer than high (8,9 cm vs.	
488	6,5cm). Its lateral surface is very concave and smooth on both sides, with the shape of an	
489	hourglass in dorsal view. The ventral surface is mostly smooth on the anterior part, with	
490	breaches and marks that possibly indicate the articulation fusion of with the hemal arch	
491	on the posterior part.	
492	The dorsal surface is marked by a long and expressive deep_longitudinal canal	Formatted: Highlight
493	from one articular face to the other, which widense on the extremities and tapersed in the	

Commented [60]: The articular surfaces shown in the figure 4 has ovoidal articular faces. A: Done.

Formatted: English (United States)

Formatted: Highlight

Commented [61]: hourglass-shaped A: Done.

middle. This canal was possibly the space of the neural canal of the vertebra, given the
marks of fusion with the neural arch that meet on its borders.
The articular faces are <u>ovoidal_semi-circular_in shape and <u>withhave_slightly</u>
forward-protruding margins-of the articular faces, the anterior facet being higher in
</u>

comparison to the posterior facet. The anterior articular face has a concavity deeper than

the posterior one, being also slightly larger in its proportions.

500

498

501 UFRJ-DG524-R

502 Specimen 524-R (Fig. 0<u>6</u>4, A-C) is a centrum of a theropod caudal vertebra. It is 503 amphicoelous and is slightly longer than high (7,5 cm vs. 8,5 cm), which indicates a more 504 proximal position between the<u>in the</u> caudal vertebrae<u>series</u>. The lateral surface is smooth 505 and marked by two<u>deep</u> correspondence concavities on both lateral faces, <u>giving to-it ean</u> 506 <u>hourglass-like shape</u>, with a shape like an hourglass. Additionally, on the most dorsal 507 region of the lateral surface it is possible to notice<u>there is</u> a small and shallow longitudinal 508 depression on each side.

The ventral surface is a double keel marked by a very superficial groove extending from the anterior part up to the posterior part. The dorsal surface is marked by the neural canal of the vertebrae. Above the anterior part of this canal the entire <u>cover_upper</u> <u>portionart</u> of the <u>neural</u> tube is preserved, forming a small arch filled by sediment positioned slightly above of the anterior articular face.

The articular faces are semi-circular and somewhat oval, with the anterior one being slightly larger than the posterior, and their margins slightly protrude forward. The anterior articular face has a concavity slightly deeper than the posterior, which is more superficial.

518

Comparisons:

Formatted: Font: Italic

519	Both vertebrae of morphotype 4UFRJ-DG 523 and AND 524 present	Commented [BS62]: I thought you were not using the morphotype terminology any more?
520	characteristics commonly found in carcharodontosaurids (Fig. 0710). For instance,	
521	depressions in the most dorsal part of theirthe lateral surface are found in	
522	Giganotosaurus, Mapusaurus and Tyrannotitan and in the mid-caudal vertebrae Vb-870	
523	found in the Wadi Milk Formation (Coria & and Salgado, 1995; Coria & and Currie, 2006;	
524	Novas <u>et al.</u> , 2005a; Canale <u>et al.</u> , 2015; Rauhut, 1999) , which This condition is different	Formatted: Font: Italic
525	from that in Carcharodontosaurus, that which has pleurocoels in their its anterior caudal	Formatted: Font: Italic
526	vertebrae (Stromer, 1931). Furthermore, the strongly waisted centrum morphology, a	
527	double keel cut by a longitudinal groove and offset articular facets (although it is a	
528	plesiomorphic feature found in Allosaurus Gilmore, 1920; Madsen, 1976) are also found	
529	in specimens such as the carcharodontosaurid material from Sudan (Rauhut, 1999) and	
530	in Tyrannotitan, Mapusaurus and Acrocanthosaurus (Canale et al., 2015; Harris, 1998;	Formatted: Font: Italic
531	Coria & and Currie, 2006; Currie & and Carpenter, 2000).	
532		
533		
534	A	Formatted: English (United States)
535	Morphotype 5:	
536		
537	THEROPODA Marsh, 1881	Formatted: English (United States)
538	NEOVENATORIDAE Benson, Carrano ∧ Brusatte, 2010	
539	MEGARAPTORA Benson, Carrano & Brusatte, 2010	Formatted: English (United States)
540		
541	Referred material: UFRJ-DG 558-R e 634-R	
542	Description: and comparisons:	Formatted: Font: Italic
		Formatted: Indent: First line: 0.49"

543	Morphotype 5 (Fig. 05) includes two amphicoelous caudal vertebrae with	
544	pleurocoels and high pneumaticity.	
545	4-	Formatted: Indent: First line: 0.49"
546		
547		
548	Figure 05: Caudal vertebrae attributed to Morphotype 05. UFRJ-DG 634-R: A, 4	Formatted: Indent: First line: 0.49", Right: 0.02"
549	posterior articular facet; B, lateral view; C, ventral view. UFRJ DG 558-R: D, anterior	
550	articular facet; E, lateral view; F, ventral view. Pfr, Pneumatic foramen. Scale bar: 1cm.	
551	4-	Formatted: Indent: First line: 0.49"
552	UFRJ-DG_558-R	
553	Specimen 558-R is a centrum of a theropod caudal vertebra, damaged by various	
554	cracks (Fig. 085, D-F). It is amphicoelous, and slightly longer than high (6em vs. 7em),	Formatted: English (United States)
555	indicating a somewhat proximal position within the caudal series. Its ventral surface is	
556	very smooth and convex in lateral view, but is very damaged in the region where the base	
557	of the posterior articular face would be.	
558	The dorsal surface is marked by a great depression extending longitudinally from	
559	one articular face to the other, wider in the extremities, denoting the neural canal. The	
560	lateral surfaces are marked by a longitudinal elliptic depression on their medial parts,	
561	where there is a pleurocoel on each side. The left lateral pleurocoel is deeper and better	
562	defined than the right lateral one. The presence of pleurocoels in the caudal vertebrae is	
563	characteristic of megaraptoran neovenatorids the Megaraptora group of the	
564	Neovenatoridae family (Benson et al., 2011).	Commented [BS63]: This shouldn't be here, but in the
565	Its articular faces are semi-circular and have very straight margins. The anterior	comparisons section, below.
566	articular face possesses a more distinctive depression of a slightly greater size than the	
567	posterior face and is also in a better state of preservation. The posterior articular face	

568	possesses a very slight concavity, making it almost straight, and is in a much more	
569	damaged state, presenting cracks and breaches on the ventral base of the face.	
570	4-	Formatted: Indent: First line: 0.49", Right: 0"
571	UFRJ-DG_634-R	Formatted: Indent: First line: 0"
572		
573	This material is in a worse state of preservation than UFRJ-DG 558-R(Fig. 085,	Formatted: English (United States)
574	A-C). The ventral centrum portion and anterior articular face are fragmented. On its	Formatted: Indent: First line: 0"
575	lateral surface, there is what appears to be the border of the pleurocoel in the same position	
576	seen in specimen 558-R, leading to the attribution of this vertebra to this morphotype.	
577	Differently from the other vertebrae of this morphotypegroup, part of the neural	
578	arch and the transverse process areis preserved on the right side of the specimen. The	
579	transverse process is positioned upwards at an angle of approximately 45° degrees.	
580	Comparisons	Commented [BS64]: This shouldn't be here, but
581	The presence of pleurocoels in the caudal vertebrae is characteristic of	Formatted: Font: Italic
582	megaraptoran neovenatids (Benson et al., 2010). Pneumaticity in the caudal vertebrae is	Formatted: Font: Italic
583	rare in Theropoda, present only in some groups: Megaraptora, Oviraptorosauria,	
584	Therizinosauria, and Carcharodontosauridae (Benson et al., 2012+). As far as is known,	Formatted: Font: Italic
585	no fossils of therizinosaurs have been found in South America and South American fossils	
586	attributed to oviraptorosaurs have been reassigned to other taxa, including to Maniraptora	
587	(e.gsee Agnolín & and Martinelli, 2007, Aranciaga-Rolando et al., 2018). In addition, the	Formatted: Font: Italic
588	caudal vertebrae of Oviraptorosauria have, on the ventral surface, a medial groove	Formatted: Font: Italic
589	delimited by two longitudinal elevations (e.g., Sues, 1997; Xu et al., 2007). Specimen	Formatted: Font: Italic
590	UFRJ-DG 558-R does not have this feature (Fig. 09).	Formatted: Not Highlight
591	South American carcharodontosaurids (e.g., Giganotosaurus, Mapusaurus,	

Tyrannotitan) show a slightly concave lateral sides in the caudal vertebrae, whilebut do 592

BS64]: This shouldn't be here, but in the ction, below. ont: Italic

Formatted: Font: Italic	
Formatted: Font: Italic	
Formatted: Font: Italic	

593	not beingbear actual pneumatic foramina. Stromer (1931) described an anterior caudal	
594	vertebra from northern Africa, which he identified as Carcharodontosaurus, which had	
595	pneumatic characteristics, including a pleurocoel. However, that vertebra has a different	
596	general morphology and proportions when compared with morphotype the megaraptorid	
597	vertebrace from the Potiguar Basin (length-height ratio is 1 in Carcharodontosaurus and	Commented [BS65]: Again, I thought you were not using
598	approximately 1.48 in UFRJ DG 558-R) and other members of Megaraptora.	the morphotype descriptions any more.
599	Among the Megaraptora group, only Aerosteon, Aoniraptor, Orkoraptor and	
600	Megaraptor have preserved caudal vertebrae (Fig.ure 1007) (Sereno et al., 2008; Benson	Formatted: Font: Italic
601	et al., 2010; Motta et al., 2016). The height/length ratio of UFRJ DG 558-R is 1.4,	Formatted: Font: Italic
602	consistent with a median tail position, compared to the ratios of 1.2 and 1.3, respectively,	
603	of the medial caudal vertebrae of Aerosteon and Orkoraptor (Novas et al., al., 2008). The	Formatted: Font: Italic
604	Potiguar Basin specimens resemble those of Aoniraptor (Fig. 07, F) due to the absence	
605	of a keel in the ventral region, but isare distinguished by the presence of a pair of	
606	pneumatic septal-troughs in the lateral region, separated by a septum. Only the first caudal	
607	vertebra of Aoniraptor presents such fossae, a characteristic present in the other	
608	megaraptorans (e.g., Novas <u>et al., 2008; Sereno et al., 2008).</u>	Formatted: Font: Italic
609	Comparing the morphology of pneumatic foramina, UFRJ DG 558-R (Figure	Formatted: Font: Italic
610	<u>10</u> 07, A) is very similar to Aerosteon (Figure <u>10</u> 07, C), Megaraptor (Figure <u>0710</u> , H) and	
611	Orkoraptor (Figure 1007, G) byin the presence of a large elliptic foramen and a second	
612	smaller circular shaped foramen. In addition, morphotype 6-UFRJ-DG 558-R and 634-R	Commented [BS66]: Same comment as above.
613	has its cavities located on the lateral surface of the vertebral centrum near the base of the	
614	neural arch, which does not occur in the other species analyzedobserved.	
615	UFRJ-DG 558-R and 634-R The morphotype 06 vertebrae-also presents extensive	Commented [BS67]: Same comment
616	pneumatization in the vertebral centrum, composed of a camerate internal microstructure	
1		

618	<u>Aerosteon, Megaraptor; Martinelli <u>et al., 2013).</u></u>	
619		
620	Discussion	
621	4-	(
622	The Açu Formation material and your <u>its</u> importance	
623	The fossil potential of Açu Formation was poorly known, with only a few	
624	fossils recovered (Duarte and Santos, 1962; Silva-Santos, 1963; Mussa et al., 1984), until	
625	the discovery of vertebrae and teeth identified as belonging to Theropoda indet. and	
626	Titanosauria (Santos et al., 2005).	
627	No further work was conducted until 2018, when the materials described here	
628	were studied in more detail. Thus far, the dinosaur fauna of the Potiguar Basin includes	
629	two groups of Sauropoda (Diplodocoidea: Rebbachisauridae, Pereira et al., in press;	
630	Titanosauriformes, Barbosa et al., 2018; Titanosauria, Pereira et al., 2018) and four	
631	groups of Theropoda (Spinosauroidea, Carcharodontosauridae, Megaraptora and	
632	Maniraptora, present work). The fossil potential of Acu Formation was poorly known,	
633	with only a few fossils recovered (Duarte & Santos, 1962; Silva Santos, 1963; Mussa et	
634	al, 1984), until the discovery of vertebrae and teeth identified as belonging to Theropoda	
635	indet. and Titanosauria (Santos et al., 2005).	
636		
637	The occurrence of these groups (except Megaraptora) in the Potiguar Basin is yet	
638	another similarity between the faunas of northeastern Brazil and multiple North Africa	
639	Cretaceous units (e.g. Medeiros and Schultz, 2001a, 2002; Sereno and Brusatte, 2008;	
640	Contessi, 2009; Candeiro et al., 2011; Candeiro, 2015). Except for the Elrhaz (Niger);	

(Britt, 1993), with several small chambers, similar to other megaraptorans (e.g.,

617

641 Douiret and Ain El Guettar (both in Tunisia) and Chicla (Libya) formations, which were

Formatted: Font: Italic

Formatted: Indent: First line: 0"

 Formatted: Not Highlight

 Formatted: Font: Italic, Not Highlight

 Formatted: Not Highlight

 Formatted: Not Highlight

 Formatted: Font: Italic, Not Highlight

 Formatted: Not Highlight

 Formatted: Not Highlight

642	dated to the Early Cretaceous, all other Cretaceous formations from Northern Africa are
643	Albian-Cenomanian in age, roughly equivalent to the Acu Formation (Werner, 1994;
644	Rossetti, 1997; Rossetti and Truckenbrodt, 1997; Smith et al., 2001; Anderson et al.,
645	2007; Sereno and Brusatte, 2008; Cavin et al., 2010). Among the formations, the
646	Alcântara Formation (Brazil), Bahariya Formation (Egypt), Echkar Formation (Niger)
647	and the Waldi Milk Formation (Sudan) have similarities with the Açu Formation's
648	dinosaur fauna.
649	According to paleobiogeographic models, South America and Africa started
650	separating from each other in the Valanginian (Early Cretaceous), leading to the
651	formation of the South Atlantic Ocean (Viramonte et al., 1999; Jokat et al. 2003;
652	Macdonald et al., 2003). Although the ocean turned into one of the most important
653	continental barriers of the southern hemisphere, faunal interchange among the terrestrial
654	landmasses of western of Gondwana definitely occurred up to the Albian, and possibly
655	until the Cenomanian (e.g. Petri, 1987; Reyment and Dingle, 1987; Pletsch et al., 2001,
656	Tello Saenz et al., 2003, Guedes et al., 2005, Bodin et al., 2010).
657	Based on the proposed age and geographic position, the fossil vertebrates of the
658	Acu Formation may have lived during some of the last intervals of continental connection
659	between South America and Western Africa, before the complete formation of the South
660	Atlantic Ocean (Arai, 2009; Castro et al., 2012). This makes them exceedingly important
661	for understanding biogeography and faunal evolution.
662	More extensive comparisons are still limited by the lack of completeness of the
663	Açu material and the absence of formally described taxa. The continuation of studies on
664	previously collected material (like that described in this paper) and prospecting for new
665	fossils is important in this basin which, while still the subject of only recent research,
666	already exhibits among the greatest diversity of dinosaur groups in Brazil.
I	

1 ----

667	No further work was conducted until 2018, wherewhen the materials described
668	here began to be describedwere studied in more detail. For nowThus far, the Ddinosaur
669	fauna of the Potiguar Basin has so far includes two groups of Sauropoda (Diplodocoidea:
670	Rebbachisauridae, Pereira <u>et al. in press; Titanosauriformes, Barbosa et al.</u> , 2018;
671	Titanosauria, Pereira et al., 2018) and four groups of Theropoda (Spinosauroidea,
672	Carcharodontosauridae, Megaraptora and Paraves, present work),
673	The occurrence of these groups (except Megaraptora) in the Potiguar Basin is
674	oneyet another of the numerous similaritiessimilarity between the faunas of northeastern
675	Brazil and multiple North Africa Cretaceous units (e.g. Medeiros & Schultz, 2001a, 2002;
676	Sereno & Brusatte, 2008; Contessi, 2009; Candeiro et al., 2011; Candeiro, 2015). Except
677	for the Elrhaz (Niger) formations; Douiret and Ain El Guettar (both in Tunisia) and Chicla
678	(Libya) formations, which were dated to belong to the Early Cretaceous, all other
679	Cretaceous formations from Northern Africa are Albian Cenomanian in age, roughly
680	equivalent to the Açu Formation (Werner, 1994; Rossetti, 1997; Rossetti & Truckenbrodt,
681	1997; Smith <u>et al., 2001; Anderson et al., 2007; Sereno & Brusatte, 2008; Cavin et al.</u>
682	2010). Among the formations,, the Alcântara Formation (Brazil), Bahariya Formation
683	(Egypt), Echkar Formation (Niger) and the Waldi Milk Formation (Sudan) may have
684	special attention due thehave similarities with the Açu Formation's dinosaur fauna.
685	According to paleobiogeographic models, South America and Africa started
686	separating from each other in the Valanginian (Early Cretaceous), leading to the
687	formation of the South Atlantic Ocean (Viramonte et al., 1999; Jokat et al., 2003;
688	Macdonald <u>et al.</u> , 2003). Although the ocean turned into one of the most important
689	continental barriers of the southern hemisphere, faunal interchange among the terrestrial
690	landmasses of western of Gondwana definitely occurred up to the Albian, and possibly

-	Formatted: Font: Italic
	Formatted: Not Highlight
	Formatted: Font: Italic, Not Highlight
	Formatted: Not Highlight
	Formatted: Not Highlight
	Formatted: Font: Italic, Not Highlight
	Formatted: Not Highlight
	Commented [BS68]: I am not convinced this is a paravian bone. It might be, but what are the clear diagnostic characters that say it must be a dromaeosaurid/troodontid/bird and not a member of another maniraptoran group?
	Formatted: Not Highlight
	Formatted: Not Highlight
	Formatted: Font: Italic, Not Highlight
	Formatted: Not Highlight
-	Commented [BS69]: The Albian is Early Cretaceous
-	Formatted: Not Highlight
-	Formatted: Font: Italic, Not Highlight
	Formatted: Not Highlight
	Formatted: Font: Italic, Not Highlight
Y	Formatted: Not Highlight
	Formatted: Font: Italic, Not Highlight
1	Formatted: Not Highlight

	Formatted: Not Highlight
	Formatted: Font: Italic, Not Highlight
	Formatted: Not Highlight
	Formatted: Font: Italic, Not Highlight
	Formatted: Not Highlight
	Formatted: Font: Italic, Not Highlight
1	Formatted: Not Highlight

691	until the Cenomanian (e.g. Petri, 1987; Reyment & Dingle, 1987; Pletsch et al., 2001,	
692	Tello Saenz <u>et al., 2003, Guedes et al., 2005, Bodin et al., 2010).</u>	
693	Based on the proposed age and geographic position, the fossil vertebrates of the	
694	Acu Formation may have lived during some of the last moments intervals of continental)
695	connection between South America and Western Africa, before the complete formation	
696	of the South Atlantic Ocean (Arai, 2009; Castro et al., 2012). This makes them	
697	exceedingly important for understanding biogeography and faunal evolution.	
698	More extensive comparisons are still limited by the lack of completeness of the	
699	Acu material and the absence of formally described taxa. The continuation of the studies	
700	on the alreadypreviously collected material (like that described in this paper) and the	
701	prospecting offor new fossils is important in this basin which, while the research still the	
702	subject of only recent research, it is already a formation that shows one of exhibits among	
703	the greatest diversity of dinosaur groups in Brazil.	
704		
704 705	The first described megaraptoran was <i>Megaraptor_namunhuaiquii</i> from the Turonian of	
704 705 706	The first described megaraptoran was <i>Megaraptor_namunhuaiquii</i> from the Turonian of Patagonia/Argentina (Novas, 1998). Recently, new findings have increased our	
704 705 706 707	The first described megaraptoran was <i>Megaraptor_namunhuaiquii</i> from the Turonian of Patagonia/Argentina (Novas, 1998). Recently, new findings have increased our knowledge about the anatomy and taxonomic diversity of these animals (Calvo et al.,	
704 705 706 707 708	The first described megaraptoran was <i>Megaraptor_namunhuaiquii</i> from the Turonian of Patagonia/Argentina (Novas, 1998). Recently, new findings have increased our knowledge about the anatomy and taxonomic diversity of these animals (Calvo et al., 2004; Novas et al., 2008; Hocknull et al., 2009; Novas, 2009).	
704 705 706 707 708 709	The first described megaraptoran was <i>Megaraptor_namunhuaiquii</i> from the Turonian of Patagonia/Argentina (Novas, 1998). Recently, new findings have increased our knowledge about the anatomy and taxonomic diversity of these animals (Calvo et al., 2004; Novas et al., 2008; Hocknull et al., 2009; Novas, 2009). In 2010, Benson et al. created the name Megaraptora for a newly recognized clade of	
704 705 706 707 708 709 710	The first described megaraptoran was <i>Megaraptor_namunhuaiquii</i> from the Turonian of Patagonia/Argentina (Novas, 1998). Recently, new findings have increased our knowledge about the anatomy and taxonomic diversity of these animals (Calvo et al., 2004; Novas et al., 2008; Hocknull et al., 2009; Novas, 2009). In 2010, Benson et al. created the name Megaraptora for a newly recognized clade of theropods including taxa found in Argentina (<i>Aerosteon,Megaraptor,Aoniraptor</i> and	
704 705 706 707 708 709 710 711	The first described megaraptoran was <i>Megaraptor_namunhuaiquii</i> from the Turonian of Patagonia/Argentina (Novas, 1998). Recently, new findings have increased our knowledge about the anatomy and taxonomic diversity of these animals (Calvo et al., 2004; Novas et al., 2008; Hocknull et al., 2009; Novas, 2009). In 2010, Benson et al. created the name Megaraptora for a newly recognized clade of theropods including taxa found in Argentina (<i>Aerosteon,Megaraptor,Aoniraptor</i> and <i>Orkoraptor</i>), Australia (<i>Australovenator</i>) and Japan (<i>Fukuiraptor</i>). One of the most	
704 705 706 707 708 709 710 711 712	The first described megaraptoran was <i>Megaraptor_namunhuaiquii</i> from the Turonian of Patagonia/Argentina (Novas, 1998). Recently, new findings have increased our knowledge about the anatomy and taxonomic diversity of these animals (Calvo et al., 2004; Novas et al., 2008; Hocknull et al., 2009; Novas, 2009). In 2010, Benson et al. created the name Megaraptora for a newly recognized clade of theropods including taxa found in Argentina (<i>Acrosteon,Megaraptor,Aoniraptor</i> and <i>Orkoraptor</i>), Australia (<i>Australovenator</i>) and Japan (<i>Fukuiraptor</i>). One of the most striking features of the group is the presence of pneumatic anterior caudal vertebrae	
704 705 706 707 708 709 710 711 712 713	The first described megaraptoran was <i>Megaraptor_namunhuaiquii</i> from the Turonian of Patagonia/Argentina (Novas, 1998). Recently, new findings have increased our knowledge about the anatomy and taxonomic diversity of these animals (Calvo et al., 2004; Novas et al., 2008; Hocknull et al., 2009; Novas, 2009). In 2010, Benson et al. created the name Megaraptora for a newly recognized clade of theropods including taxa found in Argentina (<i>Acrosteon,Megaraptor,Aoniraptor</i> and <i>Orkoraptor</i>), Australia (<i>Australovenator</i>) and Japan (<i>Fukuiraptor</i>). One of the most striking features of the group is the presence of pneumatic anterior caudal vertebrae (Calvo et al., 2004).	

715	Megarantora	Ovirantorogauria	Therizinosauria	and Carcharod	ontocauridae	(Rencon et
/15	meguruptoru,	Ornuptorosuuriu,	Therizinosuuriu	und Curentitoe	ontosuuridue	(Denson et

Formatted: Not Highlight
Formatted: Font: Italic, Not Highlight
Formatted: Not Highlight
Formatted: Font: Italic, Not Highlight
Formatted: Not Highlight
Formatted: Font: Italic, Not Highlight
Formatted: Not Highlight
Formatted: Font: Italic, Not Highlight
Formatted: Not Highlight
Formatted: Not Highlight
Formatted: Font: Italic, Not Highlight
Formatted: Not Highlight

717	America and South American fossils attributed to oviraptorosaurs have been reassigned
718	to other taxa (see Agnolín& Martinelli, 2007). In addition, the caudal vertebrae of
719	Oviraptorosauria have, on the ventral surface, a medial groove delimited by two
720	longitudinal elevations (e.g., Sues, 1997; Xu et al., 2007). Specimen UFRJ-DG-558-R
721	does not have this feature.
722	South American carcharodontosaurids (e.g., Giganotosaurus, Mapusaurus, Tyrannotitan)
723	showavery deeplyconcave <u>lateral sides</u> in the caudal vertebrae, but not apneumatic
724	foramen. Stromer (1931) described an anterior caudal vertebra from northern Africa,
725	which he identified as Carcharodontosaurus, which had pneumatic characteristics,
726	including a pleurocoel. However, that vertebra has a different general morphology and
727	proportions when compared with morphotype 6 from the Portiguar Basin (length height
728	ratio is 1 in Carcharodontosaurus and approximately 1.48 in UFRJ DG 558-R) and other
729	members of Megaraptora.
729 730	members of Megaraptora. In Brazil, there are only two previous records (Fig. 06) attributed to Megaraptora, both in
729 730 731	members of Megaraptora. In Brazil, there are only two previous records (Fig. 06) attributed to Megaraptora, both in the Bauru Group, Méndez et al. (2012) described an isolated caudal vertebral centrum
729 730 731 732	members of Megaraptora. In Brazil, there are only two previous records (Fig. 06) attributed to Megaraptora, both in the Bauru Group. Méndez et al. (2012) described an isolated caudal vertebral centrum (MPMA 08 003 94), found in the municipality of Ibirá, São Paulo (Maastrichtian, Late
729 730 731 732 733	members of Megaraptora. In Brazil, there are only two previous records (Fig. 06) attributed to Megaraptora, both in the Bauru Group. Méndez et al. (2012) described an isolated caudal vertebral centrum (MPMA 08 003 94), found in the municipality of Ibirá, São Paulo (Maastrichtian, Late Cretaceous). The authors compared their specimen with the megaraptorids <i>Aerosteon</i> and
729 730 731 732 733 733	members of Megaraptora. In Brazil, there are only two previous records (Fig. 06) attributed to Megaraptora, both in the Bauru Group, Méndez et al. (2012) described an isolated caudal vertebral centrum (MPMA 08 003 94), found in the municipality of Ibirá, São Paulo (Maastrichtian, Late Cretaceous). The authors compared their specimen with the megaraptorids Aerosteon and Megaraptor, and found important differences, such as the absence of a median
729 730 731 732 733 734 735	members of Megaraptora. In Brazil, there are only two previous records (Fig. 06) attributed to Megaraptora, both in the Bauru Group, Méndez et al. (2012) described an isolated caudal vertebral centrum (MPMA 08 003 94), found in the municipality of Ibirá, São Paulo (Maastrichtian, Late Cretaceous). The authors compared their specimen with the megaraptorids Aerosteon and Megaraptor, and found important differences, such as the absence of a median Iongitudinal keel on the ventral surface and its more elongated proportions. Martinelli et
 729 730 731 732 733 734 735 736 	members of Megaraptora. In Brazil, there are only two previous records (Fig. 06) attributed to Megaraptora, both in the Bauru Group, Méndez et al. (2012) described an isolated caudal vertebral centrum (MPMA 08 003 94), found in the municipality of Ibirá, São Paulo (Maastrichtian, Late Cretaceous). The authors compared their specimen with the megaraptorids Aerosteon and Megaraptor, and found important differences, such as the absence of a median longitudinal keel on the ventral surface and its more clongated proportions. Martinelli et al. (2013) described another isolated caudal vertebra found in Uberaba (Campanian, Late
 729 730 731 732 733 734 735 736 737 	members of Megaraptora. In Brazil, there are only two previous records (Fig. 06) attributed to Megaraptora, both in In In Brazil, there are only two previous records (Fig. 06) attributed to Megaraptora, both in In the Bauru Group, Méndez et al. (2012) described an isolated caudal vertebral centrum In (MPMA 08 003 94), found in the municipality of Ibirá, São Paulo (Maastrichtian, Late In Cretaceous). The authors compared their specimen with the megaraptorids Acrosteon and In Megaraptor, and found important differences, such as the absence of a median In Iongitudinal keel on the ventral surface and its more clongated proportions. Martinelli et In I. (2013) described another isolated caudal vertebra found in Uberaba (Campanian, Late Cretaceous) as belonging to Megaraptora.
 729 730 731 732 733 734 735 736 737 738 	members of Megaraptora.In Brazil, there are only two previous records (Fig. 06) attributed to Megaraptora, both in the Bauru Group. Méndez et al. (2012) described an isolated caudal vertebral centrum (MPMA 08 003 94), found in the municipality of Ibirá, São Paulo (Maastrichtian, Late Cretaceous). The authors compared their specimen with the megaraptorids <i>Aerosteon</i> and <i>Megaraptor</i> , and found important differences, such as the absence of a median longitudinal keel on the ventral surface and its more clongated proportions. Martinelli et al. (2013) described another isolated caudal vertebra found in Uberaba (Campanian, Late Cretaceous) as belonging to Megaraptora.In a recent work, Motta et al. (2016) considered that both specimens are in fact sacral
 729 730 731 732 733 734 735 736 737 738 739 	members of Megaraptora.In Brazil, there are only two previous records (Fig. 06) attributed to Megaraptora, both in the Bauru Group. Méndez et al. (2012) described an isolated caudal vertebral centrum (MPMA 08-003-94), found in the municipality of Ibirá, São Paulo (Maastrichtian, Late Cretaceous). The authors compared their specimen with the megaraptorids <i>Acrosteon</i> and <i>Megaraptor</i> , and found important differences, such as the absence of a median longitudinal keel on the ventral surface and its more elongated proportions. Martinelli et al. (2013) described another isolated caudal vertebra found in Uberaba (Campanian, Late Cretaceous) as belonging to Megaraptora.In a recent work, Motta et al. (2016) considered that both specimens are in fact sacral vertebrae, due to their more elongated proportions, rough articular face and

al., 2011). As far as is known, no fossils of therizinosaurs have been found in South

716

Commented [70]: The lateral surfaces are slightly concave in these taxa, not very. A: Done

Commented [71]: Please see Aranciaga-Rolando et al (2018) A supposed Gondwanan oviraptorosaur from the Albian of Brazil represents the oldest South American megaraptoran. Cretaceous Research 84: 107-119.

741	material analyzed here becomes difficult, and the Potiguar vertebrae areis thus the first	
742	caudal vertebrae of megaraptorans from Brazil.	
743		
744		
745	Figure 06: BrazilianMegaraptoran Vertebrae findings. A and B, UFRJ DG 558-R; C and	
746	D, MPMA 08 003 94 (Méndez et al., 2012); E and F, CPPLIP 1324 (Martinelli et al.,	
747	2013). A, C e E, lateral view; B, D e F, ventral view. Pfr, Pneumatic foramen. Scale bar	Formatted: English (United States)
748	= 1cm.	
749		
750	Among the Megaraptora group, only Acrosteon, Aoniraptor, Orkoraptor and Megaraptor	
751	have preserved caudal vertebrae (Figure 07) (Sereno et al., 2008; Benson et al., 2010;	
752	Motta et al., 2016).	
753	The height/length ratio of UFRJ DG 558-R is 1.4, consistent with a median tail position,	
754	compared to the ratios of 1.2 and 1.3, respectively, of the medial caudal vertebrae of	
755	Aerosteon and Orkoraptor (Novas et al. al., 2008). The Potiguar Basin specimens	
756	resemble those of Aoniraptor (Fig. 07, F) due to the absence of a keel in the ventral region,	
757	but is distinguished by the presence of a pair of pneumatic septal troughs in the lateral	
758	region, separated by a septum. Only the first caudal vertebra of Aoniraptor presents such	
759	fossae, a characteristic present in the other megaraptorans (e.g., Novas et al., 2008; Sereno	
760	et al., 2008).	
761	Comparing the morphology of pneumatic foramina, UFRJ DG 558-R (Figure 07, A) is	
762	very similar to Aerosteon (Figure 07, C), Megaraptor (Figure 07, H) and Orkoraptor	
763	(Figure 07, G) by the presence of a large elliptic foramen and a second smaller circular	
764	shaped foramen. In addition, morphotype 6 has its cavities located on the lateral surface	

765	of the vertebral centrum near the base of the neural arch, which does not occur in the other	
766	species analyzed.	
767		
768	Figure 07: Megaraptorancaudals vertebras. A and B, UFRJ DG 558-R; C and D,	
769	Aerosteonm; E and F, Aoniraptor; G, Orkoraptor. H, Megaraptor. A, C, E, G e H, lateral	Formatted: English (United States)
770	view; B, D e F, ventral view. Pfr, pneumatic foramen. Scale bar = 5cm.	
771		
772	The morphotype 06 vertebrae also presents extensive pneumatization in the vertebral	
773	centrum, composed of a camerate internal microstructure (Britt, 1993), with several small	
774	chambers, similar to other megaraptorans (e.g., Aerosteon, Megaraptor; Martinelli et al.,	
775	2013). Based on the general morphology, the elements described herein possibly belong	
776	to a form closer to <i>Aerosteon</i> and <i>Megaraptor</i> than to <i>Aoniraptor</i> .	Commented [72]: Thisis a too risky statement given the scarcity of the recovered materials.
777	The Potiguar material is also one of the oldest records of the group in South America,	
778	together with Aoniraptor from the Early Cenomanian-mid-Turonian of Argentina (Motta	
779	et al., 2016).	Commented [73]: Please see Aranciaga-Rolando et al
780	The abelisauroid fossil record from Brazil is known from fragmentary specimens.	(2018) A supposed Gondwanan oviraptorosaur from the Albian of Brazil represents the oldest South American megaraptoran. Cretaceous Research 84: 107-119.
781	Recently, Silva (2013) and Santucci et al. (2018) described incomplete abelisaurid cranial	
782	and postcranial Abelisauria remains from Barremian-Aptian age of Quiricó Formation	
783	(São Francisco Basin) of northern Minas Gerais state.	
784	Brazillian noasaurids were known only by teethfrom Albian Cenomanian of Alcântra	
785	Formation, where Masiakasaurus like teeth were recorded. Howevber this changed when	Formatted: Font: Italic
786	Vespersaurus paranaensis, a desert-dwelling monodactyl noasaurid, was described in the	Formatted: Font: Italic
787	Late Cretaceous Rio Paraná Formation (Langer et al, 2019). From Albian-Cenomanian of	
788	Alcântara formation bed have produced one tooth reported as Masiakasaurus like	Commented [74]: You can add Vespersaurus. A: After revising the discussion, the comparison to
789	(Noasauridae) by Lindoso et al. (2012).	Masiakasaurus and other Noasaurids seemed to have no place anymore. In the end we restricted to the abelisaurid record only, not to the abelisauroid.

790	Thefirst abelisaurid speecies discovered in Brazil was Pyenonemosaurus.nevesiwas the		Form
701	first and unique specie of chalisaurid from Brazil (Kallner & Campos 2002). Itwas	\bigtriangledown	Form
791	described based on posteronicil remains from the Unner Cretescous of the		Form
792	described based on postcramal remains from the opper Cretaceous of the		
793	RibeirãoBoiadeiro Group and represents the most complete collection known to Brazil.		
794	Additionally, Bittencourt and Kellner (2002) described nine Abelisauria teeth from the		
795	same locality of <i>Pcy<u>c</u>nonemosaurus</i> . <u>The second abelisaurid descovered in Brazil was</u>		
796	Thanos simonattoi (Delcourt & Iori, 2018), whose description was based on an almost		Form
797	complete axis with an axial intercentrum.		
798	The first record of Abelisauridae known to Brazil was reported by Bertini (1996) and was		
799	discovered in the Adamantina Formation, western São Paulo State. Later, other authors		
800	reported isolated teeth from the Adamantina Formation from western São Paulo state		
801	(e.g., Candeiro et al., 2004; Azevedo et al., 2007) and from Minas Gerais state (e.g.,		
802	Candeiro et al., 2006; Oliveira et al., 2012). Also, there are some known postcranial		
803	records from the São José do Rio Preto and Marília formations (Méndez et al., 2014) were		
804	recently described by Méndez et al (2014) as well as other abelisaurid materials from the		
805	Adamantina Formation, São Paulo State (a partial femur, Brum et al., 2016).		
806	However, the most abundant materials of abelisaurid are from the Marília Formation that		
807	outcrops in the region of Peirópolis, municipality of Uberaba. Innumerous teeth		
808	(Candeiro et al. 2012) and posteranial materials (Novas et al. 2008, Machado et al. 2013)		
809	from this locality were already described.		
810	Even though most of the abelisaurid axial characteristics are mainly in their uniquely		
811	shaped transverse processes in the caudal vertebrae (e.g. Méndez, 2014), there are some		
812	characteristics that can be seen in their caudal centra.		
813	The mid-caudal vertebrae of Abelisauria have, as basic characteristics, an amphilcoelous		
814	condition with subcircular articular facets, a centrum twice as long as tall, well-marked		Com
			varie

Formatted: Font: Not Italic
Formatted: Font: Not Italic
Formatted: Font: Italic

Formatted: Font: Italic

Commented [75]: As was stated before, this character varies a lot inside Abelisauridae.

815	facets, and a ventral concavity in its lateral view as seen in Majungasaurus, Aucasaurus,	- (
816	and Ilokelesia (Coria & Salgado, 1998), however much these features are also seen in	
817	Abelisauroidea and even in basal ceratosaurs (Méndez, 2014). All these characteristics	
818	can be observed in the specimens of morphotype 2, with specimen 547-R standing out	(
819	from the others for the presence of two small depressions on its lateral surface, a	t
820	characteristic not very common within the group,	(
821	The anterior caudal vertebrae of Abelisauria present a set of striking features that can be	n
822	observed in specimens of morphotype 3 (Fig. 08). First is its oval, taller than wide, facet	(
823	that both the 528-R specimen and the 532-R have. In addition, there are features found in	
824	the centrumer of specimen 528 R, such as the slight centrum? central?er constriction	P a A
825	(Méndez, 2014) and a concave anterior margin while the posterior convex margin is seen	
826	in the first four caudal vertebrae of Aucasaurus, Carnotaurus, Majungasaurus,	A
827	Ekrixinatosaurus, Rajasaurus and Rahiolisaurus (Bonaparte, 1985; Sampson et al. 1998;	
828	Coria et al. 2002). Unlike Aucasaurus, Carnotaurus and Ekrixinatosaurus, specimen 528-	
829	R also does not exhibit any forms of depression or pneumaticity on its lateral surface.	
830	These are the oldest record of Abelisauria at Brazil.	(
831		A
832		
833	Figure 08: Comparison of morphotype 02 and other abelisaurids. A and B,	
834	Majungasaurus; C and D, Carnotaurus; E and F, Ekrixinatosaurus; G and H,	
835	Aucasaurus; I and J, morphotype 02. Scale bar: 5 cm.	
836		
837	The record of maniraptorans is rare in Brazil (see Delcourt& Grillo, 2014). It is based	
838	mostly on isolated teeth from several localities and postcranial elements, namely, a	
839	manual ungual and scapula from the Serra da Galga Member of Peirópolis, Uberaba,	
1		

Commented [76]: Which facets?

34

Commented [77]: None of the characters mentioned are exclusive of Ceratosauria, but they are present in other theropods. Moreover, the specimens described and figured for this morphotype are anterior caudals, not middle.

Commented [78]: Which is the specimen 547-R? It was not described or figured!

Commented [79]: Morphotype 3 was assigned to Maniraptora in the text, not Abelisauria.

Commented [80]: Again, this character is so variable. Please compare anterior articular surface of Carnotaurus and Majungasaurus in the figure 8. A: Done.

Commented [81]: It is not clear to which margins the authors refers. A: Done.

Commented [82]: I feel that the evidence given by the authors in the text is not enough to assign this material to Abelisauria, so this statement is too risky.

840	Minas Gerais state (Marília Formation, Maastrichtian), and an unenlagiuid dorsal vertebra
841	and fragmentary remains of an undetermined maniraptoran from the Adamantina
842	Formation (Late Cretaceous) of São Paulo state (Novas et al., 2005; Machado et al., 2008;
843	Candeiro et al., 2012; Delcourt& Grillo, 2014). The material here described is the first
844	post-cranial remain of a maniraptoran outside Bauru Basin and from the mid-Cretaceous,
845	shedding new light on the biogeography of this group in South America and western
846	Gondwana.
847	Specimen 521-R has characteristics of a vertebral centrum positioned after the transition
848	point, being longer than high possessing a large reduction in both its neural spine and
849	transverse processes (Senter et al., 2011). This way it is possible to deduce that it is at
850	least after the vertebra 11 of the caudal series as seen in Buitreraptor, Rahonavis,
851	Dromaeosauridae and Troodontidae (Ostrom, 1969; Forster et al., 1998; Senter et al.,
852	2012; Xu et al., 2017).
853	The maintenance of the transverse processes is not observed in more basal groups of
854	Paraves like dromaeosaurids and troodontids that have smooth lateral surfaces in their
855	centra (Ostrom, 1969; Norell&Malkovicky, 1999; Currie & Dong, 2001; Xu et al., 2012),
856	but is seen in specimens of Microraptora, Rahonavis, Builtreraptor, Anchiornis and
857	Archaeopterix(Hwang et al., 2002; Hu et al., 2009; Han et al., 2014; Novas et al., 2017),
858	all belonging to the group Averaptora. In addition, the 521 R specimen also presents the
859	prezygapophyses more dorsally positioned in the same way as in Buitreraptor, Rahonavis
860	and Anchiornis (fig. 09) (Motta et al., 2018). The vertebral centrum has a ratio between
861	its height and its length somewhat greater than six which is seen in almost all the groups
862	of Paraves except for Dromaeosauridae that displays a smaller ratio being the only 3 times
863	longer than high.
1	

Commented [83]: I think the authors should specify which transition point are referring here (I suppose that proposed by Russel (1972), but this is my guess) A: Done

35

865	Figure 09: Comparison of Morphotype 3 and other paravians. A, Potiguar's material; B,
866	Rahonavis; C,Buitreraptor; D, Anchiornis. Pr, prezygapophysise; lg, Longitudinal
867	groove. Modified from Motta et al., (2018).
868	
869	Carcharodontosaurid were amongst the largest and some of the most widespread
870	theropods during the Kimmeridgian Turonian (Candeiro, 2015; Delcourt& Grillo, 2017).
871	In Brazil, carcharodontosaurids were recorded based on isolated teeth and putative
872	remains from São Luís-Grajaú Basin (Cenomanian) and Bauru Group (Late Cretaceous)
873	(Vilas Bôas et al., 1999; Medeiros, 2001; Azevedo et al., 2013). The Potiguar Basin
874	materials lie within the age range of occurrence of carcharodontosaurids and, might be
875	related to the São Luís-Grajaú and western Africa fauna where these are common
876	findings.
877	Both vertebrae of morphotype 4 present characteristics commonly found in
878	carcharodontosaurids (Fig. 10). For instance, depressions in the most dorsal part of their
879	lateral surface <u>are</u> is found in Giganotosaurus, Mapusaurus and Tyrannotitan and in the
880	mid-caudal vertebrae Vb-870 found in the Wadi Milk Formation (Coria & Salgado, 1995;
881	Coria & Currie, 2006; Novas et al., 2005; Canale et al., 2015; Rauhut, 1999), which is
882	different from Carcharodontosaurus, which has pleurocoels in their anterior caudal
883	vertebrae (Stromer, 1931). Furthermore, the strongly waisted centrum morphology, a
884	double keel cut by a longitudinal groove and offset articular facets (although it is a
885	plesiomorphic feature found in Allosaurus Gilmore, 1920; Madsen, 1976) are also found
886	in specimens such as the carcharodontosaurid material from Sudan (Vb 870) and in
887	Tyrannotitan, Mapusaurus and Acrocanthosaurus (Canale et al., 2015; Harris, 1998;
888	Coria & Currie, 2006; Currie & Carpenter, 2000).
889	٠ (

Commented [84]: In the references the date of the publication is 2017

Commented [85]: Cite? A: Done.

Formatted: Indent: First line: 0"

890	Figure 10: Comparison of Morphotype 4 and Carcharodontosauriaindet. A and B, UFRJ
891	DG 523-R; C and D, UFRJ DG 524-R; E and F, Kem Kem beds material (from Rauhut,
892	1999) <u>. G? H? I?</u> . Scale bar = 5 cm.

055	
894	The record of maniraptorans is rare in Brazil (see Delcourt& Grillo, 2014). It is based
895	mostly on isolated teeth from several localities and postcranial elements, namely, a
896	manual ungual and scapula from the Serra da Galga Member of Peirópolis, Uberaba,
897	Minas Gerais state (Marília Formation, Maastrichtian), and an unenlagiuid dorsal vertebra
898	and fragmentary remains of an undetermined maniraptoran from the Adamantina
899	Formation (Late Cretaceous) of São Paulo state (Novas et al., 2005; Machado et al., 2008;
900	Candeiro et al., 2012; Delcourt& Grillo, 2014). The material here described is the first
901	post cranial remain of a maniraptoran outside Bauru Basin and from the mid-Cretaceous,
902	shedding new light on the biogeography of this group in South America and western
903	Gondwana.
904	Specimen 521-R has characteristics of a vertebral centrum positioned after the transition
905	point, being longer than high possessing a large reduction in both its neural spine and
906	transverse processes (Senter et al., 2011). This way it is possible to deduce that it is at
907	least after the vertebra 11 of the caudal series as seen in <i>Buitreraptor, Rahonavis</i> ,
908	Dromaeosauridae and Troodontidae (Ostrom, 1969; Forster et al., 1998; Senter et al.,
909	2012; Xu et al., 2017).
910	The maintenance of the transverse processes is not observed in more basal groups of
911	Paraves like dromaeosaurids and troodontids that have smooth lateral surfaces in their
912	centra (Ostrom, 1969; Norell&Malkovicky, 1999; Currie & Dong, 2001; Xu et al., 2012),
913	but is seen in specimens of Microraptora, Rahonavis, Builtreraptor, Anchiornis and
914	Archaeopterix (Hwang et al., 2002; Hu et al., 2009; Han et al., 2014; Novas et al., 2017),

Commented [86]: The item G of the figure has a very poor resolution. Also G, H, I were taken from the literature, and the figure caption lack the proper cite.

Formatted: Indent: First line: 0"

915	all belonging to the group Averaptora. In addition, the 521 R specimen also presents the	
916	prezygapophyses more dorsally positioned in the same way as in <i>Buitreraptor, Rahonavis</i>	
917	and Anchiornis(fig. 10) (Motta et al., 2018). The vertebral centrum has a ratio between	
918	its height and its length somewhat greater than six which is seen in almost all the groups	
919	of Paraves except for Dromaeosauridae that displays a smaller ratio being the only 3 times	
920	longer than high.	 Commented [87]: This text is repeatead to that of the lines 539-569
921	The spinosaurid record of Brazil is known by two species: Oxalaia quilombensis (CITE)	A: Done.
022	and Irritator challengeri (CITE), both spinosaurines from the "mid" Cretaceous strate	Formatted: Font: Italic
922	and manor chancenger (CITE), both spinosaumes from the find -Cretaceous strata	Formatted: Font: Italic
923	from the Cenomanian Alcantra Formation and from the Aptian-Albian Santana Formation	
924	respectively. Other than those two species, there are many unidentified isolated	
925	spinosaurid post cranial elements and teeth that range from Berriasian Valanginian Feliz	Formatted: English (United States)
926	Deserto Formation (CITE) to the "mid"-Cretaceous Santana and Alcantra Formations	
927	<u>(CITE).</u>	
928	*	 Formatted: Indent: First line: 0"
929	There is no discussion about the recovered tooth, and the traits that allow assigning it to	
020	Spinosauridae	
930	opnosauroae.	
931		
932	Conclusion REVISARRRRR	Formatted: Highlight
933	In the present work we assigned the material from Açu Formation, Potiguar Basin,	
934	to four groups: Spinosauroidea, Carcharodontosauria, Maniraptora and Megaraptora (Fig.	
935	11), the two last groups being relatively rare in Brazil. All this groups have already been	
936	found in isochronous formations in both Northeastern Brazil and Northern Africa, leading	
937	further support for faunal similarities in the "mid"-Cretaceous western Gondwana. These	
938	fossils provide the first theropod record from Potiguar Basin and an important opportunity	
939	to increase the knowledge on the diversity of this still poorly known basin. We describe	

941 discovered and described from the Acu Formation (Potiguar Ebasin), Northeast region of 942 Brazil. The vortebrae were are classified into five morpholypes based on morphological 943 form and/or diagnostic characters and comprised at this moment byen be assigned to 944 five four groups: Abeliauria, Carcharodontosauria, Spinosauridae, Megaraptora, and 945 Maniroptora, While the teeth was recovered as a SpinosauridFurthermore, a single tooth 946 is attributed to Spinosauridae Besides (These groups werehave already been found on in 947 isochronous basins of the Northeast region of Brazil and Africa, lending further support 948 for funal similarities between these regions: 949 or funal similarities between these regions: 949 nexpected disosaur richness fauna at from the Potiguar Basin (fig. 11) and opens up 950 the presence of these theropod groups at Açu FormationThe new fossils reveals an 951 unexpected disosaur richness fauna at from the Potiguar Basin (fig. 11) and opens up 952 angrowide an important opportunity to increase the knowledge about on the diversity and 953 palaeobiogeography of this important vertebrate groupsdescribed in this present study to the 954 Gondwanar fragmentation; 955 Figure 11: Reconstruction of the theropods groupsde	940	several newly discovered dinosaur fossils, which constitute A <u>a</u> new dinosaur fauna was	
942 Brazil, The vertebrae were are classified into five morphotypes based on morphological 943 form and/or-diagnostic characters and comprised at this moment by <u>can be assigned to</u> 944 five four groups: Abelisauria, Carcharodontosauria, Spinosauridae, Megaraptora, and 945 Maniraptora, While the teeth was recovered as a SpinosauridFurthermore, a single tooth 946 is attributed to Spinosauridae Besides (These groups werehave already been found on in 947 isochronous basins of the Northeast region of Brazil and Africa, lending further support 948 for faunal similarities between these regions: 949 unexpected dinosaur richness fauna at from the Potiguar Basin (fig. 11) and opens up 951 unexpected dinosaur richness fauna at from the Potiguar Basin (fig. 11) and opens up 952 angrewide an important opportunity to increase the knowledge about on the diversity and 953 palaeobiogeography of this important vertebrate grouphese animals during a time of 954 Condwanan fragmentation; 955 Figure 11: Reconstruction of the theropods groups described in this present study to the 955 Açu Formation, Potiguar Basin, In the water, a Spinosauridae. On the ground, on the left 955 attanosaurTitanosauriagauropod_while to the right, a Carcharodontosauridae awakens 956 from it	941	discovered and described from the Açu Formation (Potiguar Bbasin), Northeast region of	
943 form and/or diagnostic characters and comprised at this moment byean be assigned to 944 five four_groups: Abelisauria, Carcharodontosauria, Epinosauridae, Megaraptora, and 945 Maniraptora, While the teeth was recovered as a Spinosauridae, Megaraptora, and 946 ir attributed to Spinosauridae, Besides (These groups werehave already been found on in 947 isochronous basins of the Northeast region of Brazil and Africa, lending further support 948 for faunal similarities between these regions: 949 sochronous basins of the Northeast region of Brazil and Africa, lending further support 948 for faunal similarities between these regions: 949 unexpected dinosaur richness fauna at from the Potiguar_Basin (fig. 11) and opens up 951 unexpected dinosaur richness fauna at from the Potiguar_Basin (fig. 11) and opens up 952 anprovide an important opportunity to increase the knowledge about on the diversity and 953 palaeobiogeography of this important vertebrate groupthese animals during a time of 954 Gondwanan fragmentation: 955 Figure 11: Reconstruction of the theropods groupsdescribed in this present study to the 955 Açu Formation, Potiguar Basin. In the water, a Spinosauridae. On the ground, on the left 955 an Abelisauridae; in the center, a Paraves just wa	942	Brazil. The vertebrae were are classified into five morphotypes based on morphological	
944 five four_groups: Abelisauria, Carcharodontosauria, Spinosauridae, Megaraptora, and Commented [88]: This groverselves and the second	943	form and/or diagnostic characters and comprised at this moment bycan be assigned to	
945 Maniraptora, While the teeth was recovered as a SpinosauridFurthermore, a single tooth At Done. 946 is attributed to Spinosauridae Besides (These groups werehave already been found on in is orightermore, a single tooth 947 isochronous basins of the Northeast region of Brazil and Africa, lending further support for faunal similarities between these regions; 948 for faunal similarities between these regions; 949 950 the presence of these theropod groups at Açu FormationThe new fossils reveals an 951 unexpected dinosaur richness fauna at from the Potiguer_Basin (fig. 11) and opens up 952 anprovide an important opportunity to increase the knowledge about on the diversity and 953 palaeobiogeography of this important vertebrate groupsdescribed in this present study to the 954 Gondwanan fragmentation: 955 Figure 11: Reconstruction of the theropods groupsdescribed in this present study to the 956 Figure 21: Reconstruction of the theropods group of megaraptorang Megaraptora and a slaughtered 959 attanosauridae; in the conter, a group of megaraptorang Megaraptora and a slaughtered 959 attanosaurifitanosauriagauropod_while to the right, a Carcharodontosauridae awakens 950 from its sleep; in the top center, a Paraves just watches. Drawing of Luciano da Silva <t< td=""><td>944</td><td>five <u>four</u>groups: Abelisauria, Carcharodontosauria, <mark>Spinosauridae</mark>, Megaraptora, and</td><td>Commented [88]: This group was no</td></t<>	944	five <u>four</u> groups: Abelisauria, Carcharodontosauria, <mark>Spinosauridae</mark> , Megaraptora, and	Commented [88]: This group was no
946 is attributed to Spinosauridae Besides (These groups werehave already been found on in 947 isoehronous basins of the Northeast region of Brazil and Africa, lending further support 948 for faunal similarities between these regions; 949 950 the presence of these theropod groups at Acu FormationThe new fossils reveals an 951 unexpected dinosaur richness fauna at from the Potiguar_Basin (fig. 11) and opens up 952 angrovide an important opportunity to increase the knowledge about on the diversity and 953 palaeobiogeography of this important vertebrate groupthese animals during a time of 954 Gondwanan fragmentation; 955 Figure 11: Reconstruction of the theropods groups described in this present study to the 955 Acu Formation, Potiguar Basin. In the water, a Spinosauridae. On the ground, on the left 959 atitanosauridae; in the center, a group of megaraptorans/Megaraptora and a slaughtered 959 atitanosauriasauriopod_while to the right, a Carcharodontosauridae awakens 950 Yidal. 951 vidal.	945	Maniraptora. While the teeth was recovered as a SpinosauridFurthermore, a single tooth	A: Done.
 947 isochronous basins of the Northeast region of Brazil and Africa, <u>lending further support</u> 948 <u>for faunal similarities between these regions</u>. 949 950 the presence of these theropod groups at Acu Formation<u>The new fossils</u> reveals an 951 unexpected dinosaur richness fauna at <u>from the Potiguar_Basin (fig. 11)</u> and opens up 952 an<u>provide an</u> important opportunity to increase the knowledge about <u>on</u> the diversity and 953 palaeobiogeography of this important vertebrate group<u>these animals during a time of</u> 954 <u>Gondwanan fragmentation</u>. 955 956 Figure 11: Reconstruction of the theropods groupsdescribed in this present study to the 957 Acu Formation, Potiguar Basin. In <u>the</u> water, a Spinosauridae. On the ground, on the left 958 an Abelisauridae; in the center, a group of <u>megaraptorans</u>Megaraptora and a slaughtered 959 atianosauriTitanosauriaguropod_while to the right, a Carcharodontosauridae awakens 960 from its sleep; in the top center, a Paraves just watches. Drawing of Luciano da Silva 961 Vidal. 962 <u>Acue Formatted: English (Unit</u> 	946	is attributed to Spinosauridae Besides tThese groups werehave already been found on in	
948 for faunal similarities between these regions: 949 interpretence of these theropod groups at Açu FormationThe new fossils reveals an 950 the presence of these theropod groups at Açu FormationThe new fossils reveals an 951 unexpected dinosaur richness fauna at from the Potiguar_Basin (fig. 11) and opens up 952 amprovide an important opportunity to increase the knowledge about on the diversity and 953 palaeobiogeography of this important vertebrate groupthese animals during a time of 954 Gondwanan fragmentation- 955 Figure 11: Reconstruction of the theropods groups described in this present study to the 958 Açu Formation, Potiguar Basin. In the water, a Spinosauridae. On the ground, on the left 959 atitanosaurTitanosauriasauropod_while to the right, a Carcharodontosauridae awakens 960 from its sleep; in the top center, a Paraves just watches. Drawing of Luciano da Silva 961 Vidal. 962	947	isochronous basins of the Northeast region of Brazil and Africa, lending further support	
949 950 the presence of these theropod groups at Açu Formation <u>The new fossils</u> reveals an 951 unexpected dinosaur richness fauna at from the Potiguar_Basin (fig. 11) and opens up 952 anprovide an important opportunity to increase the knowledge about on the diversity and 953 palaeobiogeography of this important vertebrate groupthese animals during a time of 954 Gondwanan fragmentation; 955 Figure 11: Reconstruction of the theropods groupsdescribed in this present study to the 957 Açu Formation, Potiguar Basin. In the water, a Spinosauridae. On the ground, on the left 958 an Abelisauridae; in the center, a group of megaraptoransMegaraptora and a slaughtered 959 atitanosaurTitanosauriasauropod_while to the right, a Carcharodontosauridae awakens 960 from its sleep; in the top center, a Paraves just watches. Drawing of Luciano da Silva 961 Vidal. 962	948	for faunal similarities between these regions.	
950 the presence of these theropod groups at Açu Formation <u>The new fossils</u> reveals an 951 unexpected dinosaur richness fauna at from the_Potiguar_Basin (fig. 11) and opens up 952 anprovide an important opportunity to increase the knowledge about on the diversity and 953 palaeobiogeography of this important vertebrate groupthese animals during a time of 954 Gondwanan fragmentation; 955 Figure 11: Reconstruction of the theropods groupsdescribed in this present study to the 957 Açu Formation, Potiguar Basin. In the water, a Spinosauridae. On the ground, on the left 958 an Abelisauridae; in the center, a group of megaraptorans/Megaraptora and a slaughtered 959 atitanosaurTitanosauriasauropod_while to the right, a Carcharodontosauridae awakens 960 from its sleep; in the top center, a Paraves just watches. Drawing of Luciano da Silva 961 Vidal. 962 Formatted: English (Unite	949		
 951 unexpected dinosaur richness fauna at from the Potiguar Basin (fig. 11) and opens up 952 anprovide an important opportunity to increase the knowledge about on the diversity and 953 palaeobiogeography of this important vertebrate groupthese animals during a time of 954 Gondwanan fragmentation. 955 956 Figure 11: Reconstruction of the theropods groupsdescribed in this present study to the 957 Açu Formation, Potiguar Basin. In the water, a Spinosauridae. On the ground, on the left 958 an Abelisauridae; in the center, a group of megaraptorans Megaraptora and a slaughtered 959 atitanosaur Titanosauria sauropod while to the right, a Carcharodontosauridae awakens 960 from its sleep; in the top center, a Paraves just watches. Drawing of Luciano da Silva 961 Vidal. 962 	950	the presence of these theropod groups at Açu Formation <u>The new fossils</u> reveals an	
 an<u>provide an</u> important opportunity to increase the knowledge about <u>on</u> the diversity and palaeobiogeography of this important vertebrate groupthese animals during a time of Gondwanan fragmentation. Figure 11: Reconstruction of the theropods groupsdescribed in this present study to the Açu Formation, Potiguar Basin. In <u>the</u> water, a Spinosauridae. On the ground, on the left an Abelisauridae; in the center, a group of <u>megaraptorans</u>Megaraptora <u>and a</u> slaughtered atitanosaurTitanosauria<u>sauropod</u>_while to the right, a Carcharodontosauridae awakens from its sleep; in the top center, a Paraves just watches. Drawing of Luciano da Silva Vidal. 	951	unexpected dinosaur richness fauna at from the Potiguar Basin (fig. 11) and opens up	
 palaeobiogeography of this important vertebrate group<u>these animals during a time of</u> Gondwanan fragmentation. Figure 11: Reconstruction of the theropods groupsdescribed in this present study to the Açu Formation, Potiguar Basin. In <u>the</u> water, a Spinosauridae. On the ground, on the left an Abelisauridae; in the center, a group of <u>megaraptorans</u>Megaraptora <u>and a</u> slaughtered atitanosaurTitanosauria<u>sauropod</u> while to the right, a Carcharodontosauridae awakens from its sleep; in the top center, a Paraves just watches. Drawing of Luciano da Silva Vidal. Moreatted: English (Unite 	952	an <u>provide an</u> important opportunity to increase the knowledge about <u>on</u> the diversity and	
954 Gondwanan fragmentation. 955 956 956 Figure 11: Reconstruction of the theropods groupsdescribed in this present study to the 957 Açu Formation, Potiguar Basin. In the water, a Spinosauridae. On the ground, on the left 958 an Abelisauridae; in the center, a group of megaraptoransMegaraptora and a slaughtered 959 atitanosaurTitanosauriasauropod_while to the right, a Carcharodontosauridae awakens 960 from its sleep; in the top center, a Paraves just watches. Drawing of Luciano da Silva 961 Vidal. 962	953	palaeobiogeography of this important vertebrate groupthese animals during a time of	
 955 956 Figure 11: Reconstruction of the theropods groupsdescribed in this present study to the 957 Açu Formation, Potiguar Basin. In the water, a Spinosauridae. On the ground, on the left 958 an Abelisauridae; in the center, a group of megaraptoransMegaraptora and a slaughtered 959 atitanosauriTitanosauriasauropod_while to the right, a Carcharodontosauridae awakens 960 from its sleep; in the top center, a Paraves just watches. Drawing of Luciano da Silva 961 Vidal. 962 	954	Gondwanan fragmentation.	
 Figure 11: Reconstruction of the theropods groupsdescribed in this present study to the Açu Formation, Potiguar Basin. In the water, a Spinosauridae. On the ground, on the left an Abelisauridae; in the center, a group of megaraptorans Megaraptora and a slaughtered atitanosaur Titanosauria sauropod while to the right, a Carcharodontosauridae awakens from its sleep; in the top center, a Paraves just watches. Drawing of Luciano da Silva Vidal. Yidal. 	955		
 957 Açu Formation, Potiguar Basin. In <u>the</u> water, a Spinosauridae. On the ground, on the left 958 an Abelisauridae; in the center, a group of <u>megaraptorans</u>Megaraptora<u>and a</u> slaughtered 959 a<u>titanosaur</u>Titanosauria<u>sauropod</u>while to the right, a Carcharodontosauridae awakens 960 from its sleep; in the top center, a Paraves just watches. Drawing of Luciano da Silva 961 Vidal. 962 963 	956	Figure 11: Reconstruction of the theropods groupsdescribed in this present study to the	
 an Abelisauridae; in the center, a group of <u>megaraptorans</u>Megaraptora<u>and a</u> slaughtered a<u>titanosaur</u>Titanosauria<u>sauropod_</u>while_to_the_right, a_Carcharodontosauridae_awakens from_its_sleep; in the top_center, a Paraves just_watches. Drawing of Luciano da Silva Vidal. Vidal. Formatted: English (Unite 	957	Açu Formation, Potiguar Basin. In the water, a Spinosauridae. On the ground, on the left	
 959 a<u>titanosaur</u>Titanosauria<u>sauropod_while to the right, a Carcharodontosauridae awakens</u> 960 from its sleep; in the top center, a Paraves just watches. Drawing of Luciano da Silva 961 Vidal. 962 Formatted: English (United States) 	958	an Abelisauridae; in the center, a group of megaraptoransMegaraptora and a slaughtered	
 960 from its sleep; in the top center, a Paraves just watches. Drawing of Luciano da Silva 961 Vidal. 962 Formatted: English (United Science) 	959	a <u>titanosaur</u> Titanosauria <u>sauropod</u> while to the right, a Carcharodontosauridae awakens	
961 Vidal. 962 Formatted: English (Unite	960	from its sleep; in the top center, a Paraves just watches. Drawing of Luciano da Silva	
962 Formatted: English (Unite	961	Vidal.	
963	962	A	 Formatted: English (United States)
	963		
964 Acknowledgements Formatted: No underline	964	Acknowledgements	Formatted: No underline

ted [88]: This group was not recognized by any ut a tooth.

965	The authors thank Prof. Dr. Valdeci dos Santos Júnior Santos for discovering the	
966	site where the material were found, and for the support given to the fieldwork. We thank	
967	the students Luciano Vidal for assistance with the figures. PVLGCP was funded by a	
968	grant from the Jurassic Foundation and pos doctoral grant by Coordenação de	
969	Aperfeiçoamento de Pessoal de Nível Superior (CAPES, number 88882.463232/2019-	Formatted: English (United States)
970	01). LPB and CRAC were financially supported by Conselho Nacional de	
971	Desenvolvimento Científico e Tecnológico (CNPq)/Bolsista de Produtividade em	
972	Pesquisa. IMMGB and LPB were also supported by Conselho Nacional de	
973	Desenvolvimento Científico e Tecnológico [grant 459086/2014-6]. LPB also	
974	acknowledge Fundação de Amparo a Pesquisa do Estado do Rio de Janeiro [grants #E-	
975	26/202.829/2018]. This_research_was_funded_partially_by Fundação de Amparo à Pesquisa	
976	do Estado do Rio de Janeiro (FAPERJ) and Conselho Nacional de Desenvolvimento	
977	Científico e Tecnológico (CNPq)Our collaborative project was funded also by a grant	
978	from the Fundação de Amparo a Pesquisa e Goiás and the Newton Fund, which supported	Formatted: English (United States)
979	SLB's visit to Brazil to work with PVGCP and CRAC in June–July 2016,	Formatted: English (United States)
980		Formatted: English (United States)
981	References	Formatted: Font: 14 pt, Bold, No ur (United States)
982	Agnolín, F. L., Martinelli, A.G. 2007. Did oviraptorosaurs (Dinosauria; Theropoda)	
983	inhabit Argentina. Cretaceous Research 28, 785–790.	
984	Anderson, P.E., Benton, M.J., Trueman, C.N., Paterson, B.A., Cuny, G., 2007.	
985	Palaeoenvironment of vertebrates on the southern shore of Tethys: the nonmarine	
986	Early Cretaceous of Tunisia. Palaeogeography, Palaeoclimatology, Palaeoecology	
987	<u>243 (1–2), 118–131.</u>	
1		

nglish (United States)

ont: 14 pt, Bold, No underline, English

988	Arai, M. 2011. Paleogeografia do Atlântico Sul no Aptiano: um novo modelo a partir de	
989	dados micropaleontológicos recentes. Boletim de Geociências da Petrobras, 17(2):	
990	<u>331-351.</u>	
991	Aranciaga-Rolando, A. M., Egli, F. B., Sales, M. A., Martinelli, A. G., Canale, J. I.,	
992	Ezcurra, M. D. 2018. A supposed Gondwanan oviraptorosaur from the Albian of	
993	Brazil represents the oldest South American megaraptoran. Cretaceous Research 84,	Fc
994	<u>107-119.</u>	
995	Araripe, P. T., Feijó, F. J. 1994. Bacia Potiguar. Boletim de Geociências da Petrobras 8:	
996	<u>27-141.</u>	
997	Barbosa, F.H.S., Ribeiro, I.C., Pereira, P.V.L.G.C., Bergqvist, L.P. 2018. Vertebral	
998	lesions in a titanosaurian dinosaur from the Lower-Upper Cretaceous of Brazil.	
999	<u>Geobios 51: 385–389.</u>	
1000	Benson, R. B., Carrano, M. T., Brusatte, S. L. 2010. A new clade of archaic large-bodied	
1001	predatory dinosaurs (Theropoda: Allosauroidea) that survived to the latest Mesozoic.	
1002	Naturwissenschaften, 97(1), 71-78.	
1003	Benson, R. B., Butler, R. J., Carrano, M. T., and O'Connor, P. M. 2012. Air- filled	
1004	postcranial bones in theropod dinosaurs: physiological implications and the	
1005	'reptile'-bird transition. Biological Reviews, 87(1), 168-193.	
1006	Bodin, S., Petitpierre, L., Wood, J., Elkanouni, I., Redfern, J. 2010. Timing of Early to	
1007	mid-Cretaceous tectonic phases along North Africa: new insights from the Jeffara	
1008	escarpment (Libya–Tunisia). Journal of African Earth Sciences 58 (3), 489–506.	
1009	Britt, B. B. 1993. Pneumatic postcranial bones in dinosaurs and other archosaurs.	
1010	Geology and Geophysics, University of Calgary.	

Formatted: Portuguese (Brazil)

Brusatte, S. L., Candeiro C. R. A., Simbras, F. M. 2017. The last dinosaurs of Brazil: The			
Bauru Group and its implications for the end-Cretaceous mass extinction. Annals of			
the Brazilian Academy of Sciences 89: 1465-1485.			
Canale, J. I., Novas, F. E., Pol, D. 2015. Osteology and phylogenetic relationships of			
Tyrannotitan chubutensis Novas, de Valais, Vickers-Rich and Rich, 2005			
(Theropoda: Carcharodontosauridae) from the Lower Cretaceous of Patagonia,			
Argentina. Historical Biology 27, 1e32. http://dx.doi.org/10.1080/			
<u>08912963.2013.861830.</u>			
Candeiro, C. R. A.; Fanti, F.; Therrien, F.; Lamanna, M. C. 2011. Continental fossil			
vertebrates from the mid-Cretaceous (Albian-Cenomanian) Alcântara Formation,			
Brazil, and their relationship with contemporaneous faunas from North Africa.			
Journal of African Earth Sciences 60, 79-92.			
Candeiro, C. R. A. 2015. Middle Cretaceous dinosaur assemblages from northern Brazil			
and northern Africa and their implications for northern Gondwanan composition.			
Journal of South American Earth Sciences 61, 147-153.			
Carrano, M. T. and Sampson, S. D. 2008. The phylogeny of ceratosauria (Dinosauria:			
Theropoda). Journal of Systematic Palaeontology, 6(2), 183-236.			
Carvalho, I. S., Salgado, L., Lindoso, R. M., Araújo-Júnior, H. I., Nogueira, F. C. C.,			
Soares, J. A. 2017. A new basal titanosaur (Dinosauria, Sauropoda) from the Lower			
Cretaceous of Brazil. Journal of South American Earth Sciences 75, 74-84.			
Cassab, R. C. T. 2003. Paleontologia da Formação Jandaíra, Cretáceo Superior da Bacia			
Potiguar, com ênfase na paleobiologia dos gastrópodos. Thesis Doctoral, Instituto de			
Geociências, Universidade Federal do Rio de janeiro, Rio de Janeiro, 186 p.			
Unpublished.			

Formatted: English (United States)

1035	Cavin, L., Tong, H., Boudad, L., Meister, C., Piuz, A., Tabouelle, J., Aarab, M., Amiot,	
1036	R., Buffetaut, E., Dyke, G., Hua, S., Leloeuff, J. 2010. Vertebrate assemblages from	
1037	the early Late Cretaceous of southeastern Morocco: an overview. Journal of African	
1038	Earth Sciences 57, 391–412.	
1039	Contessi, M., 2009. Vertebrate remains from the Barremian-Cenomanian (Early	
1040	Cretaceous) coastal deposits of South Tunisia. In: Fanti, F., Spalletta, C. (Eds.),	
1041	International Conference on Vertebrate Palaeobiogeography and Continental	
1042	Bridges across Tethys, Mesogea, and Mediterranean Sea – Abstracts Book. Museo	
1043	Geologico Giovanni Capellini, Dipartimento di Scienze della Terra e Geologico-	
1044	Ambientali, Bologna, Italy, pp. 31–32.	
1045	Coria, R. A., Currie, P. J. 2006. A new carcharodontosaurid (Dinosauria, Theropoda)	
1046	from the Upper Cretaceous of Argentina. Geodiversitas 28, 71–118.	
1047	Coria, R. A., Salgado, L. 1995. A new giant carnivorous dinosaur from the Cretaceous of	Formatted: English (United States)
1048	Patagonia. Nature 377, 224–226.	
1049	Costa, A. B. C., Córdoba, V. C., Netto, R. G., Lima Filho, F. P. 2014. Registro faciológico	
1050	<u>e paleoambiental da transgressão que marca a passagem do Cenomaniano para o</u>	
1051	Turoniano na Bacia Potiguar, NE do Brasil. Comunicações Geológicas, 101(I), 415-	
1052	<u>420.</u>	
1053	Currie, P.J., Carpenter K. 2000. A new specimen of Acrocanthosaurus atokensis	
1054	(Theropoda, Dinosauria) from the Lower Cretaceous Antlers Formation (Lower	
1055	Cretaceous, Aptian) of Oklahoma, USA.Geodiversitas. 22: 207 – 246.	
1056	Derby, A. O. 1890. Nota sobre a geologia e paleontologia de Mato Grosso. Arquivos do	
1057	Museu Nacional. 9, 59-88.	
1058	Duarte, L. and Santos, R. 1962. Fósseis do Arenito Açu. Anais da Academia Brasileira	
1059	<u>de Ciências 34(1), 57-68.</u>	
1		

1060	Duarte, L., Santos, R.S. 1961. Novas ocorrências fossilíferas nos estados do Rio Grande
1061	do Norte e Ceará. Coleção Mossoroense, 56: 11 p.
1062	Franco-Rosas A. C., Salgado L, Rosas C. F., Carvalho I. S. 2004. Nuevos materiales de
1063	titanosaurios (Sauropoda) em el Cretácico Superior de Mato Grosso, Brasil. Rev
1064	Bras Paleont 7, 329–336.
1065	Frey E., Martill D. M. 1995. A possible oviraptorosaurid theropod from the Santa
1066	Formation (Lower Cretaceous, Albian) of Brazil. N Jahrb GeolPal.ont M 7: 397–412.
1067	Forster, C. A., Sampson, S. D., Chiappe, L.M., Krause, D.W. 1998. The Theropod:
1068	Ancestry of Birds: New Evidence from the Late Cretaceous of Madagascar. Science
1069	<u>16 (5358), 1915-1919.</u>
1070	Gauthier, J. A. 1986. Saurischian monophyly and the origin of birds; pp. 1-55 in K.
1071	Padian (ed.), The Origin of Birds and the Evolution of Flight. Memoirs of the
1072	California Academy of Sciences, 8.
1073	Gilmore, C. W. 1920. Osteology of the carnivorous Dinosauria in the United States
1074	National Museum, with special reference to the genera Antrodemus (Allosaurus) and
1075	Ceratosaurus. Bulletin U. S. National Museum. 110,1-154.
1076	Guedes, E., Heilbron, M., Vasconcelos, P. M., De Morisson Valeriano, C., Horta De
1077	Almeida, J. C., Teixeira, W., Filho, A. T. 2005. K-Ar and 40Ar/39Ar ages of dikes
1078	emplaced in the onshore basement of the Santos Basin, Resende area, SE Brazil:
1079	implications for the south Atlantic opening and Tertiary reactivation. Journal of
1080	South American Earth Sciences 18 (3-4), 371-382.
1081	Harris, J. D. 1998. Are analysis of Acrocanthosaurus atokensis, its phylogenetic status
1082	and paleobiogeographic implications, based on a new specimen from Texas. Bulletin
1083	of New Mexico Museum of Natural History and Science 13, 1-75.
1	

1084	1. Hendrickx, C., Mateus, O. 2014. Abelisauridae (Dinosauria: Theropoda) from the	Formatted: Font: (Default) Time
1085	Late Jurassic of Portugal and dentition-based phylogeny as a contribution for the	Formatted: List Paragraph, Nur Numbering Style: 1, 2, 3, + St
1086	identification of isolated theropod teetAbelisauridae (Dinosauria: Theropoda)	Left + Aligned at: 0.25 + Inder
1087	from the Late Jurassic of Portugal and dentition based phylogeny as a contribution	
1088	for the identification of isolated theropod teeth. Zootaxa, 3759.	
1089	Hendrickx, C., Mateus, O., Araújo, R. 2015. A proposed terminology of theropod teeth	Formatted: Portuguese (Brazil)
1090	(Dinosauria, Saurischia). Journal of Vertebrate Paleontology, 35(5), e982797.	
1091	Kellner, A. W. A. 1996a. Fossilized theropod soft tissue. Nature 379, 32-32.	
1092	Kellner, A. W. A.1996b. Remarks on Brazilian dinosaurs. Memoirs of Queensland	
1093	<u>Museum 39, 611–626.</u>	
1094	Kellner, A. W. A. 1999. Short note on a new dinosaur (Theropoda, Coelurosauria) from	
1095	the Santana Formation (Romualdo Member, Albian), North-eastern Brazil. Boletim	
1096	do Museu Nacional 49, 01-08.	
1097	Kellner, A. W. A., Azevedo, S. A. K., Carvalho, L. B., Henriques, D. D. R., Costa, T.,	
1098	Campos, D. A. 2004. Bones out of the jungle: on a dinosaur locality from Mato	
1099	Grosso, Brazil. Journal of Vertebrate Paleontogy 124 (Suppl3): 78a.	
1100	Kellner, A. W. A., Azevedo, S. A., Machado, E. B., Carvalho, L. B. D. Henriques, D. D.	
1101	2011. A new dinosaur (Theropoda, Spinosauridae) from the Cretaceous	
1102	(Cenomanian) Alcântara Formation, Cajual Island, Brazil. Anais da Academia	
1103	Brasileira de Ciências, 83(1), 99-108.	
1104	Jokat, W., Boebel, T., König, M., Meyer, U. 2003. Timing and geometry of early	Formatted: Portuguese (Brazil)
1105	Gondwana breakup. Journal of Geophysical Research 108 (B9, 2428), 1–15.	

Langer, M. C., Ribeiro, A. M., Schultz, C.L. Ferigolo, J. 2007a. The continental tetrapod-

bearing Triassic of south Brazil. Bull NMMNHS 41, 201-218.

1106

1107

ed: Font: (Default) Times New Roman, 12 pt d: List Paragraph, Numbered + Level: 1 + ng Style: 1, 2, 3, ... + Start at: 1 + Alignment: gned at: 0.25" + Indent at: 0.5"

Formatted: English (United States)

1108	Macdonald, D., Gomez-Perez, I., Franzese, J., Spalletti, L., Lawver, L., Gahagan, L.,
1109	Dalziel, I., Thomas, C., Trewin, N., Hole, M., Paton, D. 2003. Mesozoic break-up of
1110	SW Gondwana: implications for regional hydrocarbon potential of the southern
1111	South Atlantic. Marine and Petroleum Geology 20 (3-4), 287-308.
1112	Madsen, J. H. 1976. Allosaurus fragilis, a revised osteology. Utah geological and
1113	mineralogical Survey Bulletin 109, 1-163.
1114	Marsh, O. C. 1869. Notice of some new reptilian remains from the Cretaceous of Brazil.
1115	American Journal of Science 47, 390–392.
1116	Marsh, O. C. 1878. Principal characters of American Jurassic dinosaurs. American
1117	Journal of Science 95, 411-416.
1118	Marsh, O. C. 1881. Principal characters of American Jurassic dinosaurs, part V. American
1119	Journal of Science 125, 417-423.
1120	Martill, D. M., Cruickshank, A. R. I., Frey, E., Small, P. G., Clarke, M. 1996. A new
1121	crested maniraptoran dinosaur from the Santana Formation (Lower Cretaceous) of
1122	Brazil. Journal of the Geological Society 153(1), 5-8.
1123	Martinelli, A.G., Ribeiro, L.C.B., Neto, F.M., Méndez, A.H., Cavellani, C.L., Felix, E.,
1124	Ferraz, M.L.F., Teixeira, V.P.A., 2013. Insight on the theropod fauna from the
1125	Uberaba Formation (Bauru Group), Minas Gerais State: new megaraptoran specimen
1126	from the Late Cretaceous of Brazil. Rivista Italiana di Paleontologia e Stratigrafia
1127	<u>119, 205–214,</u>
1128	Mateus, O., Araújo, R., Natário, C., Castanhinha, R. 2011. A new specimen of the

- 1129 theropod dinosaur *Baryonyx* from the early Cretaceous of Portugal and taxonomic
- 1130validity of Suchosaurus. Zootaxa 2827, 54–68.

Formatted: Portuguese (Brazil)

1131	Mawson, J., Woodward, A. S. 1907. On the Cretaceous Formation of Bahia (Brazil), and	
1132	on the vertebrate fossils contained therein. Journal of the Geological Society 63,	Formatted: English (United States)
1133	<u>128–139.</u>	
1134	Medeiros, M. A., Schultz, C. L., 2002. A fauna dinossauriana da Laje do Coringa,	
1135	Cretáceo médio do Nordeste do Brasil. Arquivos do Museu Nacional 60 (3), 155-	
1136	<u>162.</u>	
1137	Medeiros, M. A., Freire, P. C., Pereira, A. A., Santos, R. A. B., Lindoso, R. M., Coelho,	
1138	A. F. A., Passos, E. B., Sousa, E. 2007. Another African dinosaur recorded in the	
1139	Eocenomanian of Brazil and a revision on the paleofauna of the Laje do Coringa site.	
1140	In: CARVALHO I.S., CASSAB R. C. T., SCHWANKE C., CARVALHO M.A.,	
1141	Fernandes A. C. S., Rodrigues M. A. C., Carvalho M. S. S., Arai M. And Oliveira	
1142	M. E. Q. (Eds), Paleontologia: Cenários de Vida. Rio de Janeiro, Interciência 1, 413-	
1143	<u>423.</u>	
1144	Motta, M. J., Aranciaga Rolando, A. M., Rozadilla, S., Agnolín, F. E., Chimento, N. R.,	
1145	Egli, F. B., Novas, F. E. 2016. New theropod fauna from the upper cretaceous	
1146	(Huincul Formation) of Northwestern Patagonia, Argentina. New Mexico Museum	
1147	of Natural History and Science Bulletin, 71, 231-253.	
1148	Motta, M. J., Egli, F. B., Novas, F. E. 2018. Tail anatomy of Buitreraptor gonzalezorum	Formatted: English (United States)
1149	(Theropoda, Unenlagiidae) and comparisons with other basal paravians. Cretaceous	
1150	Research, 83, 168-181.	
1151	Mussa, D.; Oliveira, L.D.D., Barcia-Andrade, A. 1984. Fragmentos estélicos de Palmae	
1152	procedentes da Formação Açu (?), Bacia Potiguar, Brasil. Boletim do IGC-USP,	
1153	Instituto de Geociências 15, 129-141.	

1154	Naish, D.; Martill, D. M., Frey, E. 2004. Ecology, systematics and biogeographical	
1155	relationships of dinosaurs, including a new theropod from the Santana Formation	
1156	(Albian, Early Cretaceous) of Brazil. <u>Historical Biology 18, 01-14.</u>	
1157	Novas, F.E., Ribeiro, L.C.B., Carvalho, I.S., 2005a. Maniraptoran theropod ungual from	
1158	the Marília Formation (Upper Cretaceous), Brazil. Revista Museo Argentino	
1159	Ciencias Naturales 7, 31-36.	
1160	Novas, F. E., Ezcurra, M. D., Lecuona, A. 2008. Orkoraptor burkei nov.gen. et sp., a	
1161	large theropod from the Maastrichtian Pari Aike Formation, Southern Patagonia,	
1162	Argentina. Cretaceous Research, 29(3), 468-480.	
1163	Novas, F. E., Brissón Egli, F., Agnolin, F. L., Gianechini, F. A., and Cerda, I., 2017.	
1164	Postcranial osteology of a new specimen of Buitreraptor gonzalezorum (Theropoda,	
1165	Coelurosauria). Cretaceous Research.	
1166	Ostrom, J. H. 1969. Osteology of Deinonychus antirrhopus, an Unusual Theropod from	
1167	the Lower Cretaceous of Montana (Vol. 30) Peabody Museum of Natural History,	
1168	Yale University.	
1169	Pereira, P. V. L. G. C., Marinho, T. S., Candeiro, C. R. A., Bergqvist, L. P. 2018. A new	
1170	titanosaurian (Sauropoda, Dinosauria) osteoderm from the Cretaceous of Brazil and	
1171	its significance. Ameghiniana 55(6), 644-650. (71).	
1172	Pereira, P. V. L. G. C., Veiga, I. M. M. G., Ribeiro, T. B., Cardozo, R. H. B., Candeiro,	
1173	C. R. A., Bergqvist, L.P. 2020. The Path of Giants: A new occurrence of	
1174	Rebbachisauridae (Dinosauria, Diplodocoidea) in the Açu Formation, NE Brazil, and	
1175	its paleobiogeographic implications., Journal of South American Earth Sciences,	
1176	https://doi.org/10.1016/j.jsames.2020.102515.	
1177	Pessoa Neto, O. D. C., Soares, U. M., Silva, J. D., Roesner, E. H., Florencio, C. P. and	
1178	Souza, C. D. 2007. Bacia Potiguar. Boletim de Geociências da Petrobras 15:357-369.	
1		

Formatted: Portuguese (Brazil)

Formatted: Portuguese (Brazil)

179	Petri, S. 1987. Cretaceous paleogeographic maps of Brazil. Palaeogeography	
180	Palaeoclimatology and Palaeoecology 59,117–168.	
181	Pletsch, T., Erbacher, J., Holbourn, A., Kuhnt, W., Moullade, M., Oboh-Ikuenobede, F.,	
182	Soding, E., Wagner, T. 2001. Cretaceous separation of Africa and South America:	
183	the view from the West African margin (ODP Leg 159). Journal of South American	
184	Earth Sciences 14, 147–174.	
185	Price, L. I. 1960. Dentes de Theropoda num testemunho de sonda no estado do Amazonas.	
186	Na Academia Brasileira de Ciências 32, 79–84.	
187	Price, L. I. 1961. Sobre os dinossáurios do Brasil. Na Academia Brasileira de Ciência	
188	<u>33(3–4), 28-29.</u>	
189	Rauhut, O. W. M. 1999. A dinosaur fauna from the Late Cretaceous (Cenomanian) of	
190	northern Sudan. Palaeontologia Africana 35, 61–84.	
191	Reyment, R., Dingle, R. 1987. Palaeogeography of Africa during the Cretaceous period.	
192	Palaeogeography Palaeoclimatology Palaeoecology 59, 93-116.	Formatted: Eng
193	Rossetti, D. F., 1997. Internal architecture of mixed tide- and storm-influenced deposits:	
194	an example from the Alcântara Formation, northern Brazil. Sedimentary Geology	
195	<u>114 (1–4), 163–169. 115</u>	
L96	Rossetti, D. F., Truckenbrodt, W. 1997. Revisão estratigráfica para os depósitos do	
197	Albiano-Terciario Inferior (?) na Bacia de São Luís (MA), norte do Brasil. Boletim	
198	do Museu Paraense Emílio Goeldi, Série Ciências da Terra 9, 29-41.	
199	Russell D. A., 1972 - Ostrich dinosaurs from the Late Cretaceous of western Canada.	
200	Canadian Journal of Earth Sciences 9, 375-402.	
201	Santos, M. F. C. F.; Florêncio, C. P.; Reyes-Pérez, Y. A.; Bergqvist, L. P.; Porpino, K.	
202	O.; Uchoa, A. F. and Lima-Filho, F. P. 2005. Dinossauros na Bacia Potiguar: o	

ormatted: English (United States)

1203	registro da primeira ocorrência. Boletim de Resumos Expandidos do XXI Simpósio	
1204	de Geologia do Nordeste, Recife, 19, 325-328.	
1205	Senter, P., 2011. Using creation science to demonstrate evolution: morphological	
1206	continuity within Dinosauria. Journal of evolutionary biology 24(10): 2197-2216. 15.	
1207	Senter, P., Kirkland, J. I., DeBlieux, D. D., Madsen, S., Toth, N., 2012. New	
1208	dromaeosaurids (Dinosauria: Theropoda) from the Lower Cretaceous of Utah, and	
1209	the evolution of the dromaeosaurid tail. PLoSOne, 7(5), e36790.	
1210	Sereno, P. C., Martínez, R. N., Wilson, J. A., Varricchio, D. J., Alcober, O. A. 2008.	
1211	Evidence for Avian Intrathoracic Air Sacs in a New Predatory Dinosaur from	
1212	Argentina. PLoS One 3, e3303.	
1213	Sereno, P. C., Brusatte, S. L. 2008. Basal abelisaurid and carcharodontosaurid theropods	
1214	from the lower Cretaceous Elrhaz Formation of Niger. Acta Palaeontologica	
1215	<u>Polonica 53 (1), 15-6.</u>	
1216	Silva-Santos, R. 1963. Peixes do Cretácico do Rio Grande do Norte. Anais da Academia	
1217	Brasileira de Ciências 35, 67-74.	
1218	Smith, J., Lamanna, M., Lacoara, K., Dodson, P., Smith, J., Poole, J., Giegengack, R.,	Formatted: Portuguese (Brazil)
1219	Attia, Y. 2001. A giant sauropod from an Upper Cretaceous mangrove deposit in	
1220	Egypt. Science 292, 1704–1706.	
1221	Stromer, E. 1915. Ergebnisse der Forschungsreisen Prof. E. Stromers in den Wüsten	
1222	Ägyptens. II. Wirbeltier-Reste der Baharije-Stufe (unterstes Cenoman). 3. Das	
1223	Original des Theropoden Spinosaurus aegyptiacus nov. gen., nov. spec.	
1224	Abhandlungen der Königlich Bayerischen Akademie der Wissenschaften,	
1225	Mathematisch-physikalische Classe, 28(3) Abhandlung, 1–32.	
1226	Stromer, E., 1931. Wirbeltierreste der Baharije-Stufe (unterstes Cenoman). 10. Ein	
1227	Skelett-Rest von Carcharodontosaurus nov. gen: Abhandlungen Bayerische	

E	n
Э	υ
_	

1228	Akademie Wissenchafte Atheilung-naturwissenchaften Abteilung Neue Folge, 9, 1–	
1229	<u>23.</u>	
1230	Sues, H. D. 1997. On Chirostenotes, a Late Cretaceous oviraptorosaur (Dinosauria:	
1231	Theropoda) from western North America. Journal of Vertebrate Paleontology 17,	
1232	<u>698–716.</u>	
1233	Tello Saenz, C., Hackspacher, P., Hadler Neto, J., Iunes, P., Guedes, S., Ribeiro, L., Paulo,	Formatted: En
1234	S. 2003. Recognition of Cretaceous, Paleocene, and Neogene tectonic reactivation	
1235	through apatite fission-track analysis in Precambrian areas of southeast Brazil:	
1236	association with the opening of south Atlantic Ocean. J South Am Earth Sci 15,765-	
1237	<u>774.</u>	
1238	Tykoski R. S., 2005 – Anatomy, Ontogeny, and Phylogeny of Coelophysoid Theropods.	
1239	Unpublished PhD Thesis, The University of Texas at Austin, 1-553.	
1240	Vasconcelos, E. P., Lima Neto, F. F., Roos, S. 1990. Unidades de correlação da Formação	
1241	Açu. 36º Congresso Brasileiro de Geologia (Natal), Actas, 227-240.	
1242	Viramonte, J., Kay, S., Becchio, R., Escayola, M., Novitski, I. 1999. Cretaceous rift	
1243	related magmatism in central-western South America. Journal of South American	
1244	Earth Sciences 12, 109–121.	
1245	Werner, C., 1994. Die kontinentale Wirbeltierfauna aus der unteren Oberkreide des Sudan	
1246	(Wadi Milk Formation). Berliner Geowissenschafliche Abhandlungen Reihe E 13,	
1247	<u>221–249.</u>	
1248	Xu X., Tan Q., Wang J., Zhao XJ., Tan L. 2007. Gigantic bird-like dinosaur from the	
1249	Late Cretaceous of China. Nature, 447, 844-847.	
1250	Xu, X., Qin, Z. C. 2017. A new tiny dromaeosaurid dinosaur from the Lower Cretaceous	Formatted: Ju
1251	Jehol Group of western Liaoning and niche differentiation among the Jehol	Alignment: Bas
1		

Formatted: English (United States)

prmatted: Justified, Indent: Left: 0", Hanging: 0.32", pace After: 0 pt, Line spacing: Double, Font ignment: Baseline

dromaeosaurids. Vertebrata PalAsiatica, 55(2), 129-144 & h & & s	_
<u>& & & & &</u>	
Agnolín, F. L. & Martinelli, A.G. 2007. Didoviraptorosaurs (Dinosauria; Theropoda)*	
inhabit Argentina? Cretaceous Res. 28, 785–790.	
Araripe, P. T. & Feijó, F. J. 1994. Bacia Potiguar. Boletim de Geociências da Petrobras	
8: 27-141.	
Azevedo, R. P., Vasconcellos, P. L., Candeiro, C. R. A. & Bergqvist, L.P. 2007. Restos	
microscópicos de vertebrados fósseis do Grupo Bauru (Neocretáceo), no oeste do Estado	
de São Paulo, Brasil. In: Carvalho, I.S.; Cassab, R.C.; Schwanke, C.; Cavalho, M.A.;	
Fernandes, A.C.; Rodrigues, M.A.C.; Carvalho, M.S.; Arai, M.; Oliveira, M.E.Q (Org.).	
Paleontologia: Cenários da Vida. 1ed.Rio de Janeiro: Interciências, v. 2, p. 541-549.	
Azevedo, R. P. F., Simbras, F. M., Furtado, M. R., Candeiro, C. R. A. &Bergqvist, L. P.	
2013. First Brazilian carcharodontosaurid and other new theropod dinosaur fossils from	
the Campanian-Maastrichtian Presidente Prudente Formation, São 423 Paulo State,	
southeastern Brazil. Cretaceous Research, 40, 131-142.	
Benson, R. B., Carrano, M. T. & Brusatte, S. L. 2010. A new clade of archaic large bodied	
predatory dinosaurs (Theropoda: Allosauroidea) that survived to the latest Mesozoic.	
Naturwissenschaften, 97(1), 71-78.	
Benson, R. B. J., Butler, R. J., Carrano, M. T. &O'connor, P. M. 2011. Air-filled	
posteranial bones in theropod dinosaurs: physiological implications and the "reptile" bird	
transition. Biol. Rev. <u>number?</u>	
Bertini, R. J.: Evidências de Abelisauridae (Carnosauria: Saurischia) do Neocretáceo da	
bacia do Paraná. In: IV Simpósio sobre o Cretáceo do Brasil, 1996, Aguas de São Pedro.	
Boletim IV Simpósio sobre o Cretáceo do Brasil. Aguas de São Pedro, 1996. p. 267-271.	
	 dromaeosaurids. Vertebrata PalAsiatica, 55(2), 129-144. <u>*& h & *</u> <u>*</u> <u>*</u><li< th=""></li<>

Formatted: Portuguese (Brazil)
Formatted: Portuguese (Brazil)
Formatted: Font: (Default) Times New Roman, 12 pt, (Asian) Japanese
Formatted: Indent: Left: 0", First line: 0"
Formatted: Portuguese (Brazil)

Formatted: German (Germany)

Formatted: Portuguese (Brazil)

-	2
D	3
	-

1276	Bonaparte, J. F. 1985. A horned Cretaceous carnosaur from Patagonia. National	 Formatted: Portuguese (Brazil)
1277	Geographic Research 1: 140–151.		
1278	Bonaparte, J. F. & Novas, F. E., 1985, Abelisauruscomahuenensis, n. gen., n. sp.		
1279	CarnosauriadelCretácio tardio de Patagonia: Ameghiniana, v. 21, p. 259-265. Owen, R.	Formatted: Portuguese (Brazil)
1280	1842. Report on British fossil reptiles, Pt. II. Reptiles. Report of the British Association		
1281	for the Advancement of Science, 1841:60–204.		
1282	Bonaparte, J. F.; Ferigolo, J. & Ribeiro, A. M. 1999. <u>A new Early Late Triassic</u>	Formatted: Portuguese (Brazil)
1283	saurischian dinosaur from Rio Grande do Sul State, Brazil. Procedings of the Gondwana,		
1284	v.15, p.01–10.		
1285	Britt, B. B. 1993. Pneumatic postcranial bones in dinosaurs and other archosaurs. Geology		
1286	and Geophysics, University of Calgary.		
1287	Brum, A. S., Machado, E. B., Campos, D. A. & Kellner, A. W. A. 2016. Morphology and	Formatted: Portuguese (Brazil)
1288	internal structure of two new abelisaurid remains (Theropoda, Dinosauria) from the	Formatted: Portuguese (Brazil)
1289	Adamantina Formation (Turonian Maastrichtian), Bauru Group, Paraná Basin, Brazil.		
1290	Cretaceous Research, v. 60, p. 287-296.		
1291	Brum, A. S., Machado, E. B., Campos, D. A. & Kellner, A. W. A. 2018. Description of		
1292	uncommon pneumatic structures of a noasaurid (Theropoda, Dinosauria) cervical		
1293	vertebra to the Bauru Group (Upper Cretaceous), Brazil. Cretaceous Research, v. 85, p.		
1294	193-206.		
1295	Brusatte, S. L., C.R.A. Candeiro, and F.M. Simbras. 2017. The last dinosaurs of Brazil:		
1296	The Bauru Group and its implications for the end Cretaceous mass extinction. Annals of		
1297	the Brazilian Academy of Sciences 89: 1465-1485.		
1298	Calvo, J. O., Porfiri, J. D., Veralli, C., Novas, F. E. & Poblete, F. 2004. Phylogenetic		
1299	status of Megaraptornamunhuaiquii based on a new specimen from Neuquén, Patagonia,		
1300	Argentina. Ameghiniana 41, 565e575.		
1301	Canale, J. I., Novas, F. E. & Pol, D. 2015. Osteology and phylogenetic relationships of	Formatted: Portuguese (Brazil)	
------	---	--------------------------------	
1302	TyrannotitanchubutensisNovas, de Valais, Vickers Rich and Rich, 2005 (Theropoda:		
1303	Carcharodontosauridae) from the Lower Cretaceous of Patagonia, Argentina.		
1304	HistoricalBiology 27, 1e32. http://dx.doi.org/10.1080/ 08912963.2013.861830.		
1305	Candeiro, C. R. A., Santos, A.R., Rich, T., Marinho, T.S. & Oliveira, E.C. 2006.		
1306	Vertebratefossilsfrom the Adamantina Formation (Late Cretaceous), Prata		
1307	paleontologicaldistrict, Minas Gerais State, Brazil. GEOBIOS, v. 39, p. 319-327.		
1308	Candeiro, C. R. 2007. Padrões morfológicos dos dentes de Abelisauroidea e		
1309	Carcharodontosauridae (Theropoda, Dinosauria) do Cretáceo da América do Sul. Tese de		
1310	Doutorado, Departamento de Geologia, Universidade Federal do Rio de Janeiro, 180 pp.		
1311	Candeiro, C.R.A., Cau, A., Fanti, F., Nava, W., Novas, F.E., 2012a. First evidence of an	Formatted: Portuguese (Brazil)	
1312	unenlagiid (Dinosauria, Theropoda, Maniraptora) from the Bauru Group, Brazil.		
1313	CretaceousResearch 37, 223e226.		
1314	Carvalho, I. S., Salgado, L., Lindoso, R. M., Araújo-Júnior, H. I., Nogueira, F. C. C., &		
1315	Soares, J. A. 2017. A new basal titanosaur (Dinosauria, Sauropoda) from the Lower	Formatted: Portuguese (Brazil)	
1316	Cretaceous of Brazil. Journal of South American Earth Sciences, 75, 74-84.		
1317	Carvalho, J. C. & Santucci, R. M. 2018. New dinosaur remains from the Quiricó		
1318	Formation, Sanfranciscana Basin (Lower Cretaceous), Southwestern Brazil.		
1319	CRETACEOUS RESEARCH, v. 85, p. 20-27.		
1320	Cassab, R. C. T. 2003. [Paleontologia da Formação Jandaíra, Cretáceo Superior da Bacia		
1321	Potiguar, com ênfase na paleobiologia dos gastrópodos. TesisDoctoral, Instituto de		
1322	Geociências, Universidade Federal do Rio de janeiro, Rio de Janeiro, 186 p. Unpublished.		
1323	Colbert, E. H. 1970.A saurischian dinosaur from the Triassic of Brazil. American	Formatted: Portuguese (Brazil)	
1324	Museum Novitates, v.2.405, p.01-39.		

1325	Coria, R. A., Chiappe, L. M., and Dingus L. 2002. A new close relative of
1326	Carnotaurussastrei Bonaparte 1985 (Theropoda: Abelisauridae) from the Late
1327	Cretaceous of Patagonia. Journal of Vertebrate Paleontology 22: 460-465.
1328	Coria, R. A. & Currie, P. J. 2006. A new carcharodontosaurid (Dinosauria, Theropoda)
1329	from the Upper Cretaceous of Argentina. Geodiversitas 28: 71-118.
1330	Coria, R. A. & Salgado, L. 1995. A new giant carnivorous dinosaur from the Cretaceous
1331	of Patagonia.Nature 377: 224–226.
1332	Coria, R. A. & Salgado, L. 1998. A basal Abelisauria Novas, 1992 (Theropoda-
1333	Ceratosauria) fromtheCretaceousofPatagonia, Argentina. Gaia 15: 89-102.
1334	Costa, A. B. C., Córdoba, V. C., Netto, R. G., & Lima Filho, F. P. 2014. Registro
1335	faciológico e paleoambiental da transgressão que marca a passagem do Cenomaniano
1336	para o Turoniano na Bacia Potiguar, NE do Brasil. <u>ComunicaçõesGeológicas, 101(I):</u>
1337	4 15-420.
1338	Currie, P.J. & Carpenter K. 2000.A new specimen of Acrocanthosaurusatokensis
1339	(Theropoda, Dinosauria) from the Lower Cretaceous Antlers Formation (Lower
1340	Cretaceous, Aptian) of Oklahoma, USA.Geodiversitas.22:207–246.
1341	Currie, P. J., Dong, Z., 2001.New information on Cretaceous troodontids (Dinosauria, 12
1342	Theropoda) from the People's Republic of China. Canadian Journal of Earth 13 Sciences,
1343	38(12), 1753-1766.

- 1344 Currie, P. J.; Rigby, J. K. Jr. & Sloan, R. E. 1990.Theropod teeth from the Judith River
- 1345 Formation of southern Alberta, Canada. // Dinosaur systematics approaches and
- 1346 perspectives. London: Cambridge University Press: 108 -125.
- 1347 Delcourt, R. & Grillo, O. N. 2014. Onmaniraptoran material (Dinosauria: Theropoda)
- 1348 from Vale do Rio do Peixe formation, baurugroup, brazil. Revista Brasileira de
- 1349 Paleontologia. 17(3):307-316.

Formatted: Portuguese (Brazil)

1250	Derby A	\mathbf{O}	1800	Nota	cohre	a geologia	0	naleontologia	do	Mato	Grosso	Arquivos	do
1220	Derby, H.	0.	1090.	Hota	30010	a geologia	C	parcontologia	ue	mato	010350.	Tiquivos	uo

- 1351 <u>Museu Nacional. 9, 59-88.</u>
- 1352 Duarte, L. & Santos, R.S. 1961. Novas ocorrências fossilíferas nos estados do Rio Grande
- 1353 do Norte e Ceará. Coleção Mossoroense, 56, 11 p.
- 1354 Franco-Rosas A. C., Salgado L, Rosas C. f. & Carvalho I. S. 2004. Nuevosmateriales de
- 1355 titanosaurios (Sauropoda) em elCretácico Superior de Mato Grosso, Brasil. <u>Rev Bras</u>
- 1356 Paleont 7: 329-336.
- 1357 Frey E. & Martill D. M. 1995. A possible oviraptorosaurid theropod from the Santa
- 1358 Formation (Lower Cretaceous, Albian) of Brazil.N JahrbGeolPal.ont M 7: 397–412.
- 1359 Forster, C. A., Sampson, S. D., Chiappe, L.M., & Krause, D.W. 1998. The Theropod:
- 1360 Ancestry of Birds: New Evidence from the Late Cretaceous of Madagascar. Science 16
- 1361 (5358): pp. 1915-1919.
- 1362 Gauthier, J. A. 1986. Saurischian monophyly and the origin of birds; pp. 1 55 in K.
- 1363 Padian (ed.), The Origin of Birds and the Evolution of Flight.Memoirs of the California
- 1364 Academy of Sciences, 8.
- 1365 Gilmore, C. W. 1920. Osteology of the carnivorous Dinosauria in the United States
- 1366 National Museum, with special reference to the genera Antrodemus (Allosaurus) and
- 1367 *Ceratosaurus*. Bull. U. S. Natl Mus. 110,1-154.
- 1368 Han, G., Chiappe, L. M., Ji, S. A., Habib, M., Turner, A. H., Chinsamy, A., & Han, L.
- 1369 2014. A new raptorial dinosaur with exceptionally long feathering provides insights into
- 1370 dromaeosaurid flight performance. Nature Communications, 5, 4382.
- 1371 Harris, J. D. 1998. Areanalysis of Acrocanthosaurusatokensis, its phylogenetic status and
- 1372 paleobiogeographic implications, based on a new specimen from Texas. Bull New
- 1373 MexicoMus Nat Hist Sci. 13: 1-75.

Formatted: Portuguese (Brazil)

Formatted: German (Germany)

Formatted: Portuguese (Brazil)

1374	Hocknull, S. A., White, M. A., Tischler, T. R., Cook, A. G. & Calleja, N. D. 2009. New		
1375	Mid-Cretaceous (Latest Albian) Dinosaurs from Winton, Queensland, Australia.PLoS		
1376	ONE 4(7).		
1377	Hu, D., Hou, L., Zhang, L., & Xu, X., 2009. A pre-Archaeopteryx troodontid theropod		
1378	from China with long feathers on the metatarsus.Nature 461: 640-643.		
1379	Hwang, S. H., Norell, M. A., Qiang, J. I., &Keqin, G. A. O., 2002. New specimens of	Formatted: Germ	nan (Germany)
1380	Microraptorzhaoianus (Theropoda: Dromaeosauridae) from northeastern China.	Formatted: Portu	uguese (Brazil)
1381	American Museum Novitates, 1-44.		
1382	Kellner, A. W. A. 1996a. Fossilized theropod soft tissue. Nature 379:32–32.	Formatted: Germ	nan (Germany)
1383	Kellner, A. W. A.1996b. Remarks on Brazilian dinosaurs. Mem Queens Mus39:611-626.	Formatted: Portu	uguese (Brazil)
1384	Kellner, A. W. A. 1999. Short note on a new dinosaur (Theropoda, Coelurosauria) from		
1385	the Santana Formation (Romualdo Member, Albian), North eastern Brazil.Boletim do		
1386	Museu Nacional, v.49, p.01-08.		
1387	Kellner, A. W. A. & Azevedo, S. A. K. 1999. <u>A new sauropod dinosaur (Titanosauria)</u>	Formatted: Portu	ıguese (Brazil)
1388	from the Late Cretaceous of Brazil. National Science Museum Monographs, v.15, p.111-		
1389	142.		
1390	Kellner, A. W.A. & Campos, D. A. 1996. First Early Cretaceous theropod dinosaur from		
1391	Brazil with comments on Spinosauridae.NeuesJahrbuch fur Geologie und		
1392	PalaontologieAbhandlungen, 199, 151-166.		
1393	Kellner, A. W. A. & Campos, D. A. 2002. On a theropod dinosaur (Abelisauria) from the		
1394	continental Cretaceous of Brazil. Arquivo do Museu Nacional, v.60 (3), p.163-170.		
1395	Kellner, A. W. A., Azevedo, S. A. K., Carvalho, L. B., Henriques, D. D. R., Costa, T., &		
1396	Campos, D. A. 2004. Bones ouf of the jungle: on a dinosaur locality from Mato Grosso,	Formatted: Portu	uguese (Brazil)
1397	Brazil. J VertebrPaleonto 124 (Supp13): 78a.		

natted: German (Germany) natted: Portuguese (Brazil)

Formatted: German (Germany)	
Formatted: Portuguese (Brazil)	

- 1398 Kellner, A. W. A., Azevedo, S. A., Machado, E. B., Carvalho, L. B. D.& Henriques, D.
- 1399 D. 2011. A new dinosaur (Theropoda, Spinosauridae) from the Cretaceous (Cenomanian)
- 1400 Alcântara Formation, Cajual Island, Brazil.Anais da Academia Brasileira de Ciências,
- 1401 83(1), 99-108.
- 1402 Langer, M. C., Ribeiro, A. M., Schultz, C.L. &Ferigolo, J. 2007a, The continental
- 1403 tetrapod bearing Triassic of south Brazil. Bull NMMNHS 41: 201–218.
- 1404 Machado, E. B.; Campos, D. A. &Kellner, A.W.A. 2008. On a Theropoda scapula (Upper
- 1405 Cretaceous) from the Marília Formation, Bauru Group,
- 1406 Brazil.PaläontologischeZeitischrift, 82:308-313. doi:10.1007/BF02988897.
- 1407 Madsen, J. H. 1976. Allosaurus fragilis, a revised osteology. Utah geol. min. Surv. Bull.
- 1408 109, 1-163.
- 1409 Marsh, O. C. 1869. Notice of some new reptilian remains from the Cretaceous of Brazil.
- 1410 American Journal of Science, 47: 390–392.
- 1411 Marsh, O. C. 1881. Principal characters of American Jurassic dinosaurs, part V. American
- 1412 Journal of Science, (125), 417-423.
- 1413 Marsh, D. C. 1884. Principal characters of American Jurassic dinosaurs. Am. J. Sci.,
- 1414 27(3): 329-340.
- 1415 Martinelli, A. G., Ribeiro, L. C. B., Neto, F. M., Méndez, A. H., Cavellani, C. L., Felix,
- 1416 E., Ferraz, M. L. F. & Teixeira, V. P. A. 2013, Insight on the theropod fauna from the
- 1417 Uberaba Formation (Bauru Group), Minas Gerais State: New megaraptoran specimen
- 1418 from the Late Cretaceous of Brazil: RevistaItaliana di Paleontologia e Stratigrafia, v. 119,
- 1419 p. 205–214.
- 1420 Sues, H. D., Frey, E., Martill, D. M., & Scott, D. M. 2002. Irritator challengeri, a
- 1421 spinosaurid (Dinosauria: Theropoda) from the Lower Cretaceous of Brazil.
- 1422 JournalofVertebratePaleontology, 22(3), 535-547.

Formatted: Portuguese (Brazil)

Formatted: Portuguese (Brazil)

Formatted: Portuguese (Brazil)

Formatted: Portuguese (Brazil)

Commented [89]: Thisreferenceiswronglyplaced A: Done

Formatted: Portuguese (Brazil)

1423	Mateus O., Araújo R., Natário C. & Castanhinha R. 2011. A new specimen of the theropod	Formatted: Portuguese (Brazil)
1424	dinosaur Baryonyx from the early Cretaceous of Portugal and taxonomic validity of	
1425	Suchosaurus. Zootaxa 2827: 54–68.	
1426	Mawson, J. & Woodward, A.S. 1907. On the Cretaceous Formation of Bahia (Brazil),	
1427	and on the vertebrate fossils contained therein. Q J GeolSoc 63:128-139.	
1428	Medeiros, M.A., 2001. A Laje do Coringa (Ilha do Cajual, Bacia de São Luís, Baía de	
1429	São Marcos, MA): conteúdo fossilífero, bioestratinomia, diagênese e implicações na	
1430	paleobiogeografia do Mesocretáceo do Nordeste Brasileiro. Instituto de Geociências da	
1431	Universidade Federal do Rio Grande do Sul, Porto Alegre, Doctoratedissertation, 107 pp.	
1432	Medeiros, M.A., Freire, P.C., Pereira, A. A., Santos, R.A.B., Lindoso, R.M., Coelho, A.	
1433	F. A., Passos, E. B. & Sousa, E. 2007. Another African dinosaur recorded in the	Formatted: Portuguese (Brazil)
1434	Eccenomanian of Brazil and a revision on the paleofauna of the Laje do Coringa site. In:	
1435	CARVALHO I.S., CASSAB R. C. T., SCHWANKE C., CARVALHO M.A.,	
1436	FERNANDES A. C. S., RODRIGUES M. A. C., CARVALHO M. S. S., ARAI M. &	
1437	OLIVEIRA M. E. Q. (Eds), Paleontologia: Cenários de Vida. Rio de Janeiro, Interciência	
1438	1:413_423.	
1439	Méndez, A.H., Novas, F.E. &Iori, F.V., 2012. First record of Megaraptora (Theropoda,	Formatted: Portuguese (Brazil)
1440	Neovenatoridae) from Brazil.ComptesRendusPalevol 11, 251e256.	
1441	Méndez, A. H., Novas, F. E. & Iori, F. V. 2014. New record of abelisauroid theropods	Formatted: Portuguese (Brazil)
1442	from the Bauru Group (Upper Cretaceous), São Paulo State, Brazil.Revista Brasileira de	
1443	Paleontologia, v. 17, p. 23-32,	
1444	Motta, M., Rolando, A., Rozadilla, S., Agnolin, F., Chimento, N., Brissón, E., F., &	
1445	Novas, F. 2016. New theropod fauna from the upper cretaceous (Huincul formation) of	Formatted: Portuguese (Brazil)
1446	northwestern patagonia, Argentina. New Mexico Museum of Natural History and Science	
1447	Bulletin.number?	
1		

1448	Motta, M. J., Egli, F. B., & Novas, F. E. 2017. Tail anatomy of <i>Buitreraptorgonzalezorum</i>			
1449	(Theropoda, Unenlagiidae) and comparisons with other basal paravians. Cretaceous			
1450	Research. <u>Number?</u>			
1451	Naish, D.; Martill, D. M. & Frey, E. 2004. Ecology, systematics and biogeographical			
1452	relationships of dinosaurs, including a new theropod from the Santana Formation (Albian,			
1453	Early Cretaceous) of Brazil. Historical Biology, v. 18, p.01-14.			
1454	Norell, M. A., & Makovicky, P. J, 1999. Important features of the dromaeosaurid skeleton			
1455	H: information from newly collected specimens of Velociraptor mongoliensis. American			
1456	MuseumNovitates, no. 3282.			
1457	Novas, F. E. 1989. Los DinosauriosCarnivoros de la Argentina. Ph.D. Thesis. Univ.	Form	atted: Portu	ıguese (Brazil)
1458	Nac.La Plata, Fac. CienciasNaturales, 510 pp. (unpublished).			
1459	Novas, F. E. 1992. La Evolucion de losDinosauriosCarnivoros, in SANZo J.L. &			
1460	BUSCALIONI, A.D. (Eds.), Los Dinosaurios y suentomo biótico, Actas II Curso de			
1461	Paleontologia de Cuenca, Instituto "Juan de Valdes", Ayuntamento de Cuenca, Spain,			
1462	pp.125–163.			
1463	Novas, F.E., Ribeiro, L.C.B. & Carvalho, I.S., 2005a. Maniraptoran theropod ungual from	Form	atted: Portu	ıguese (Brazil)
1464	the Marília Formation (Upper Cretaceous), Brazil.Revista Museo ArgentinoCiencias			
1465	Naturales 7, 31e36.			
1466	Novas, F. E., de Valais S., Vickers Rich P. & Rich T. 2005b. A large Cretaceous	Form	atted: Portu	ıguese (Brazil)
1467	theropod from Patagonia, Argentina, and the evolution of carcharodontosaurids.			
1468	Naturwissenschaften, 92 (5): 226-230.			
1469	Novas, F. E., Ezcurra, M. D., &Lecuona, A. 2008. Orkoraptorburkeinov.gen. et sp., a			
1470	large theropod from the Maastrichtian Pari Aike Formation, Southern Patagonia,			
1471	Argentina. Cretaceous Research, 29(3), 468-480.			
I I				

1472	Novas, F. E. 2009. The Age of Dinosaurs in South America. Indiana University Press,	
1473	Bloomington, p. 452.	
1474	Novas, F. E., BrissónEgli, F., Agnolin, F. L., Gianechini, F. A., & Cerda, I., 2017.	
1475	Postcranial osteology of a new specimen of Buitreraptorgonzalezorum (Theropoda,	Formatted: Portuguese (Brazil)
1476	Coelurosauria).CretaceousResearch.	
1477	Oliveira, E. C., Candeiro, C. R. A, & Faria, A. M. 2012. Técnica para desagregação de	
1478	rochas sedimentares para recuperar restos de vertebrados das formações Adamantina e	
1479	Marília (Grupo Bauru, Cretáceo Superior). Revista do Instituto Geológico, v. 33, p. 49-	Formatted: Portuguese (Brazil)
1480	55.	
1481	Ostrom, J. H. 1969. Osteology of Deinonychusantirrhopus, an Unusual Theropod from	
1482	the Lower Cretaceous of Montana (Vol. 30) Peabody Museum of Natural History, Yale	
1483	University.	
1484	Pessoa Neto, O. D. C., Soares, U. M., Silva, J. D., Roesner, E. H., Florencio, C. P. &	
1485	Souza, C. D. 2007. Bacia Potiguar. Boletim de Geociências da Petrobras 15:357-369.	
1486	Peyer, B. 1988. Comparativeodontology. Chicago, University of Chicago Press, ltd, 347	Formatted: Portuguese (Brazil)
1487	p.	
1488	Price, L. I. 1960. Dentes de Theropoda num testemunho de sonda no estado do Amazonas.	
1489	Na AcadBrasCienc 32: 79–84.	
1490	Price, L. I. 1961. Sobre os dinossáurios do Brasil. Na AcadBrasCiene 33(3-4): xxviii-	
1491	xxix.	
1492	Rauhut, O. W. M. 1999. A dinosaur fauna from the Late Cretaceous (Cenomanian) of	Formatted: Portuguese (Brazil)
1493	northern Sudan. Palacontologia Africana, 35, 61–84.	Formatted: Portuguese (Brazil)
1494	Russell D. A., 1972 Ostrich dinosaurs from the Late Cretaceous of western Canada.	
1495	Canadian Journal of Earth Sciences, 9: 375-402.	Formatted: Portuguese (Brazil)

1496	Sampson, S. D., Witmer, L. M., Forster, C. A., Krause, D. W., O'Connor, P. M., Dodson,	
1497	P., &Ravoavy, F. 1998. Predatory dinosaur remains from Madagascar: implications for	
1498	the Cretaceous biogeography of Gondwana. Science 280: 1048-1051.	
1499	Sankey, J. T., Brinkman, D. B., Guenther & P.J. Currie. 2002. Small theropod and bird	
1500	teeth from the Judith River Group (late Campanian), Alberta. JournalofPaleontology	
1501	7 6(4):751-763.	
1502	Santos, M. F. C. F.; Florêncio, C. P.; Reyes Pérez, Y. A.; Bergqvist, L. P.; Porpino, K.	
1503	O.; Uchoa, A. F. & Lima Filho, F. P. 2005. Dinossauros na Bacia Potiguar: o registro da	
1504	primeira ocorrência. Boletim de Resumos Expandidos do XXI Simpósio de Geologia do	
1505	Nordeste, Recife, 19: 325-328.	
1506	Seeley, H. G. 1888. On the classification of the fossil animals commonly named	Formatted: Portuguese (Brazil)
1507	Dinosauria. Proceedings of the Royal Society of London, 43:165–171.	
1508	Senter, P., 2011.Using creation science to demonstrate evolution: morphological	
1509	continuity within Dinosauria.Journal of evolutionary biology, 24(10), 2197-2216. 15.	Formatted: German (Germany)
1510	Senter, P., Kirkland, J. I., DeBlieux, D. D., Madsen, S., & Toth, N., 2012. New	Formatted: Portuguese (Brazil)
1511	dromaeosaurids (Dinosauria: Theropoda) from the Lower Cretaceous of Utah, and the	
1512	evolution of the dromaeosaurid tail. PLoSOne, 7(5), e36790.	
1513	Sereno, P. C., Martínez, R. N., Wilson, J. A., Varricchio, D. J. &Alcober, O. A. 2008.	
1514	Evidence for Avian Intrathoracic Air Sacs in a New Predatory Dinosaur from Argentina.	Formatted: Portuguese (Brazil)
1515	PLoS One 3: e3303.	
1516	Smith, J. & Dodson, P. 2003. A proposal for standard terminology of anatomical notation	
1517	and orientation in fossil vertebrate dentitions.Journal of Vertebrate Paleontology, v.23,	
1518	n.1 p. 1-12.	
I		

1519	Smith, J. B., Vann, D. R. & Dodson, P. 2005. Dental morphology and variation in	
1520	theropod dinosaurs: implications for the taxonomic identification of isolated teeth. The	For
1521	Anatomical Record, 285(2), 699-736.	
1522	Stromer, E. 1915. Ergebnisse der Forschungsreisen Prof. E. Stromers in den	
1523	WüstenÄgyptens. II. Wirbeltier Reste der Baharije Stufe (unterstesCenoman). 3. Das	
1524	Original des Theropoden Spinosaurus acgyptiacusnov. gen., nov. spec. Abhandlungen der	
1525	KöniglichBayerischen Akademie der Wissenschaften, Mathematisch-	
1526	physikalischeClasse, 28(3) Abhandlung:1-32.	
1527	Stromer, E., 1931. Wirbeltierreste der Baharije Stufe (unterstesCenoman). 10. Ein	
1528	Skelett Rest von Carcharodontosaurusnov. gen: AbhandlungenBayerische Akademie	
1529	WissenchafteAtheilung naturwissenchaftenAbteilung Neue Folge, v. 9, p. 1-23.	
1530		
1531	Sues, H. D. 1997. On Chirostenotes, a Late Cretaceous oviraptorosaur (Dinosauria:	For
1532	Theropoda) from western North America. JournalofVertebratePaleontology 17:698-716.	
1533	Sues, H. D., Frey, E., Martill, D. M., & Scott, D. M. 2002.Irritator challengeri, a	Con
1534	spinosaurid (Dinosauria: Theropoda) from the Lower Cretaceous of Brazil.	For
1535	JournalofVertebratePaleontology, 22(3), 535–547.	
1536		
1537	Tykoski R. S., 2005 Anatomy, Ontogeny, and Phylogeny of Coelophysoid Theropods.	
1538	Unpublished PhD Thesis, The University of Texas at Austin: 1-553.	
1539	Vasconcelos, E. P., Lima Neto, F. F., &Roos, S. 1990. Unidades de correlação da	
1540	Formação Açu. 36º Congresso Brasileiro de Geologia (Natal), Actas: 227-240.	
1541	Vilas-Bôas, I., Carvalho, I.S., Medeiros, M.A. & Pontes, H., 1999. Dentes de	
1542	Carcharodontosaurus (Dinosauria, Tyranosauridae) do Cenomaniano, Bacia de São Luis	
1543	(Norte do Brasil). Anais da Academia Brasileira de Ciências 71 (4-I), 846e847.	

Formatted: German (Germany)

Formatted: Portuguese (Brazil)

Commented [90]: Thisreferenceiswronglyplaced Formatted: Portuguese (Brazil) Formatted: Portuguese (Brazil)

1544	Xu, X., Norell, M. A., Wang, X. L., Makovicky, P. J., & Wu, X. C., 2002. A basal	Formatted: Portuguese (Brazil)
1545	troodontid from the Early Cretaceous of China. Nature, 415(6873), 780-784.	
1546	Xu X., Tan Q., Wang J., Zhao X. J. & Tan L. 2007, Gigantic bird-like dinosaur from the	Formatted: German (Germany)
1547	Late Cretaceous of China. Nature, 447: 844-847.	Formatted: Portuguese (Brazil)
1548	Xu, X., & Qin, Z. C., 2017.A new tiny dromaeosaurid dinosaur from the Lower	
1549	Cretaceous Jehol Group of western Liaoning and niche differentiation among the Jehol	
1550	dromacosaurids. Vertebrata PalAsiatica, 55(2), 129-144.	
1551		
1552	Figure captions	
1553		
1554	Figure 01: Geological map of the continental part of the Potiguar Basin with the region	Formatted: Portuguese (Brazil)
1555	near the Limoeiro do Norte municipality (Ceará state) where the material were discovered	
1556	(dark star). CE, Ceará state; RN, Rio Grande do Norte state and its capital, Natal.	
1557	Modified from Cassab (2003).	
1558		
1559	Figure 02: The avirostrantheropod vertebrae UFRJ-DG 52875-R (A-CB) and UFRJ-DG	
1560	57528-R (DC-E). UFRJ-DG 575-R: A, lateral view; B, the anterior articular facet. UFRJ-	
1561	DG 528-R: C, the lateral view; D, the ventral view; E, anterior articular facet. Note the	
1562	large pneumatic foramen on the side of the anterior fragment of UFRJ-DG 575-R. pfr =	
1563	pneumatic foramen. Scale bar: 2 cm.	
1564		
1565	Figure 03: Spinosauroid tooth (UFRJ-DG 619-R): A, the labial view; B, the lingual view;	
1566	and C, the cross section. Scale: 1 cm	
1567		
1		

1568	Figure 04: Maniraptoran caudal vertebrae (UFRJ-DG 521-R): A, Lateral view; B,	Commented [91]: I think the aspect of the figure is not
1569	ventral view; C, anterior articular facet. Prz, prezygophysis; Nc, neural canal. Scale:	and shows two scale bars. The same applies for Figure 4 A: Done.
1570	<u>1cm.</u>	
1571		
1572	Figure 05: Comparison of UFRJ-DG 521-R and other maniraptorans. A, Potiguar's	
1573	material; B, Rahonavis; C, Buitreraptor; D, Anchiornis. Pr, prezygapophysis; lg,	
1574	Longitudinal groove. Modified from Motta et al., (2018).	Commented [92]: In the references the date of the publication is 2017
1575		A: Done.
1576	Figure 06: Carcharodontosaurid caudal vertebrae UFRJ-DG 5234-(A-C) and UFRJ-DG	
1577	5243-R (D-F). UFRJ-DG 524-R: A, ventral view; B, lateral view; C, anterior articular	
1578	facet. UFRJ-DG 523-R: D, ventral view; E, lateral view; F, anterior articular facet. Nc,	
1579	neural canal. Scale: 1cm.	
1580		
1581	Figure 07: Comparison of UFRJ-DG 523-R and 524-R and other carcharodontosaurids.	Commented [93]: The item G of the figure has a very
1582	A and B, UFRJ DG 523-R; C and D, UFRJ DG 524-R; E and F, Kem Kem beds material	and the figure caption lack the proper cite.
1583	(from Rauhut, 1999); G, Tyrannotitan chubutensis MPEF-PV 1156 (Modified from	
1584	Canale et al., 2015); H, Mapusaurus roseae MCF-PVPH-108.81 (Modified from Coria	
1585	& Currie, 2006) ; I, Acrocanthosaurus atokensis NCSM 14345 (Modified from Currie	
1586	$\frac{\text{\&}}{\text{and Carpenter, 2000). Scale bar} = 5 \text{ cm.}$	
1587		
1588	Figure 08: Caudal vertebrae UFRJ-DG. UFRJ-DG 558-R-634-R: A, posterior articular	
1589	facet; B, lateral view; C, ventral view. UFRJ-DG 634-R558-R: D, anterior articular facet;	
1590	E, lateral view; F, ventral view. Pfr, Pneumatic foramen. Scale bar: 1cm.	
1591		

Figure 09: Brazilian megaraptoran vertebrae findings. A and B, UFRJ DG 558-R; C and	
D, MPMA 08-003-94 (Méndez et al., 2012); E and F, CPPLIP 1324 (Martinelli et al.,	
2013).A, C e E, lateral view; B, D e F, ventral view. Pfr, Pneumatic foramen. Scale bar =	
<u>1cm.</u>	
•	Formatted: Highlight
Figure 10: Megaraptoran caudals vertebrae. A and B, UFRJ DG 558-R; C and D,	Formatted: Portuguese (Brazil)
Aerosteon; E and F, Aoniraptor; G, Orkoraptor. H, Megaraptor. A, C, E, G e H, lateral	
view; B, D e F, ventral view. Pfr, pneumatic foramen. Scale bar = 5cm.	
Figure 11: Reconstruction of the theropods groups from Açu Formation, Potiguar Basin.	
In the center, a group of megaraptorans slaughtering a titanosaur; on the right a	
carcharodontosaurid awakens from its sleep; in the top center, a maniraptoran just	
watches. DrawingArt by Luciano da Silva Vidal.	
Figure captions	
Figure 01: Geological map of the continental part of the Potiguar Basin with the region	
near the Limoeiro do Norte municipality (Ceará state) where the material were discovered	
(dark star). CE, Ceará state; RN, Rio Grande do Norte state. Modified from Cassab	Formatted: English (United States)
<u>(2003).</u>	
Figure 02: The avirostran vertebrae UFRJ DG 575-R (A-B) and UFRJ DG 528-R (C-E).	
UFRJ DG 575-R: A, lateral view; B, the anterior articular facet. UFRJ DG 528-R: C, the	
lateral view; D, the ventral view; E, anterior articular facet. Note the large pneumatic	
foramen on the side of the anterior fragment of UFRJ-DG 575-R. pfr = pneumatic	
	 Figure 09: Brazilian megaraptoran vertebrae findings. A and B, UFRJ DG 558-R; C and D, MPMA 08-003-94 (Méndez et al., 2012); E and F, CPPLIP 1324 (Martinelli et al., 2013).A, C e E, lateral view; B, D e F, ventral view. Pfr, Pneumatic foramen. Scale bar = lcm. Figure 10: Megaraptoran caudals vertebrae. A and B, UFRJ DG 558-R; C and D, <i>Aerosteon</i>; E and F, <i>Aoniraptor</i>; G, <i>Orkoraptor</i>. H, <i>Megaraptor</i>. A, C, E, G e H, lateral view; B, D e F, ventral view. Pfr, pneumatic foramen. Scale bar = 5cm. Figure 11: Reconstruction of the theropods groups from Açu Formation, Potiguar Basin. In the center, a group of megaraptorans slaughtering a titanosaur; on the right a carcharodontosaurid awakens from its sleep; in the top center, a maniraptoran just watches. DrawingArt by Luciano da Silva Vidal. Figure 01: Geological map of the continental part of the Potiguar Basin with the region near the Limociro do Norte municipality (Ceará state) where the material were discovered (dark star), CE, Ceará state; RN, Rio Grande do Norte state. Modified from Cassab (2003). Figure 02: The avirostran vertebrae UFRJ DG 575 R (A B) and UFRJ DG 528 R (C E); UFRJ DG 575 R; A, lateral view; B, the anterior articular facet. UFRJ DG 528 R; C, the lateral view; D, the ventral view; E, anterior articular facet. Note the large pneumatic foramen on the side of the anterior fragment of UFRJ DG 575 R, pfr = pneumatic

1617		
1618	Figure 03: Spinosauroid tooth (UFRJ-DG 619-R): A, the labial view; B, the lingual view;	
1619	and C, the cross section. Scale: 1 cm	
1620		
1621	Figure 04: Maniraptoran caudal vertebrae (UFRJ-DG 521-R): A, Lateral view; B,	Commented [94]: I think the aspect of the figure is not proper: it shows different fonts, the letters are unaligned.
1622	ventral view; C, anterior articular facet. Prz, prezygophysis; Nc, neural canal. Scale:	and shows two scale bars. The same applies for Figure 4 A: Done.
1623	1-cm.	Formatted: English (United States)
1624		
1625	Figure 05: Carcharodontosaurid caudal vertebrae UFRJ-DG-524 (A-C) and UFRJ-DG	
1626	523 R (D-F). UFRJ-DG 524 R: A, ventral view; B, lateral view; C, anterior articular	
1627	facet. UFRJ-DG 523-R: D, ventral view; E, lateral view; F, anterior articular facet. Nc,	
1628	neural canal. Scale: 1cm.	
1629		
1630	Figure 06: Caudal vertebrae UFRJ-DG. UFRJ-DG 634-R: A, posterior articular facet; B,	
1631	lateral view; C, ventral view. UFRJ-DG 558-R: D, anterior articular facet; E, lateral view;	
1632	F, ventral view. Pfr, Pneumatic foramen. Scale bar: 1cm.	
1633		
1634	Figure 07: Brazilian megaraptoran vertebrae findings. A and B, UFRJ DG 558-R; C and	
1635	D, MPMA 08 003-94 (Méndez et al., 2012); E and F, CPPLIP 1324 (Martinelli et al.,	
1636	2013). A, C e E, lateral view; B, D e F, ventral view. Pfr, Pneumaticforamen. Scale bar =	Formatted: English (United States)
1637	<u>1cm.</u>	
1638		
1639	Figure 08: Megaraptoran caudals vertebrae. A and B, UFRJ DG 558 R; C and D,	
1640	Aerosteon; E and F, Aoniraptor; G, Orkoraptor. H, Megaraptor. A, C, E, G e H, lateral	
1641	view; B, D e F, ventral view. Pfr, pneumatic foramen. Scale bar = 5cm.	
I		

1642		
1643	Figure 09: Comparison of Morphotype 3 and other paravians. A, Potiguar's material; B,	
1644	Rahonavis; C, Buitreraptor; D, Anchiornis. Pr, prezygapophysis; lg, Longitudinal	
1645	groove.Modified from Motta et al., (2018).	Commented [95]: In the references the date of the publication is 2017
1646		A. Done.
1647	Figure 10: Comparison of UFRJ-DG-523-R and 524-R and other carcharodontosaurids.	Commented [96]: The item G of the figure has a very poor resolution. Also G, H, I were taken from the literature,
1648	A and B, UFRJ DG 523-R; C and D, UFRJ DG 524-R; E and F, Kem Kem beds material	and the figure caption lack the proper cite.
16.10	(from D. 1.) (1000). C. T	
1649	(Ifom Kaunut, 1999); G, Tyrannotitan chubutensis MPEF-PV-1136 (Modified Ifom	Formatted: Font: Italic
1650	Canale et al., 2015); H, Mapusaurus roseae MCF PVPH 108.81 (Modified from Coria	Formatted: Font: Italic
		Formatted: Font: Not Bold, English (United States)
1651	<u>& Currie, 2006) ; I. Acrocanthosaurus atokensis NCSM 14345 (Modified from Currie &</u>	Formatted: Font: Italic
1652	Carpenter, 2000). Scale bar = 5 cm.	Formatted: Font: Italic
		Formatted: English (United States)
1653		Formatted: Font: Italic
1654	Figure 11: Deconstruction of the thereneds arouns from Acy Formation Detiquer Resin	Formatted: Font: Italic
1034	<u>Figure 11. Reconstruction of the theropolds groups from Act Formation, Fouguar Dasm.</u>	Formatted: English (United States)
1655	On in the left there is an abelisaurid dinosaur; in the center, a group of megaraptorans	Formatted: English (United States)
1656	slaughtering a titanosaur; on the right a carcharodontosaurid awakens from its sleep; in	
1657	the top center, a maniraptoran just watches. Drawing by Luciano da Silva Vidal.	
1658		
1659		
1660		
4664		
1661		
1662		
1663		