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Presynaptic dysfunction in neurodevelopmental 

disorders: Insights from the synaptic vesicle life cycle 

 

Abstract 

The activity-dependent fusion, retrieval and recycling of synaptic vesicles is essential for the 

maintenance of neurotransmission. Until relatively recently it was believed that most mutations in 

genes that were essential for this process would be incompatible with life, due to this fundamental 

role.  However, an ever-expanding number of mutations in this very cohort of genes are being 

identified in individuals with neurodevelopmental disorders, including autism, intellectual disability 

and epilepsy.  This article will summarise the current state of knowledge linking mutations in 

presynaptic genes to neurodevelopmental disorders by sequentially covering the various stages of 

the synaptic vesicle life cycle. It will also discuss how perturbations of specific stages within this 

recycling process could translate into human disease. Finally, it will also provide perspectives on the 

potential for future therapy that are targeted to presynaptic function.    
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Introduction  

The evoked release of neurotransmitter in response to action potential invasion at the presynapse is 

an essential component of brain function. Neurotransmitter release is controlled by the recycling of 

synaptic vesicles (SVs), a process that comprises a series of intricate molecular events that are 

coupled to neuronal activity both temporally and spatially. Because of its critical importance in 

maintaining the fidelity of neurotransmission, the assumption was that individuals harbouring 

mutations within key SV recycling genes would not be identified. However strong evidence has 

emerged that, rather than being incompatible with life, mutations in the most essential of SV 

recycling genes precipitate a series of neurodevelopmental disorders (NDDs).  

 

NDDs are a series of heterogeneous disorders that can be grouped by the presentation of abnormal 

brain development (Moretto et al. 2017, Krol & Feng 2017). This dysfunction manifests early in 

childhood and can lead to a spectrum of deficits, from specific limitations to global impairments 

across different functions, including social and adaptive behaviour (American Psychiatric & American 

Psychiatric Association 2013). Various complex genetic factors and epigenetic modifications are 

associated with NDDs, some of which are yet to be determined or fully understood (van Loo & 

Martens 2007, Sontheimer 2015). Although these disorders are common (approximately 1 in 30 live 

births, (Sontheimer 2015)), very little is known regarding their pathophysiology and therefore 

therapeutic options. NDDs can be subcategorised further based on clinical presentation into various 

categories, including intellectual disability (ID), autism spectrum disorder (ASD) and/or epilepsy 

among others, including attention deficit disorder and ataxia (American Psychiatric & American 

Psychiatric Association 2013, Mefford et al. 2012, American Psychiatric & American Psychiatric 

Association. Task Force on 1994, Bozzi et al. 2012). However, a great deal of comorbidity exists 

between the various disorders. For example, ID is present in 50-70 % of individuals with ASD 

(Mefford et al. 2012) and epilepsy is present in 4-38 % of individuals with ASD (Thomas et al. 2017). 

 

Neurotransmitter release is stimulated by the activity-dependent influx of extracellular calcium into 

the presynapse via voltage-dependent calcium channels (VDCCs). This triggers the fusion of 

neurotransmitter-containing SVs (Sudhof 2012, Sudhof 2013, Jahn & Fasshauer 2012) (Figure 1). 

Prior to their fusion, SVs are filled with neurotransmitter via the action of specific transporters on 

their membrane. This filling is driven by a proton-motive force, generated by a vacuolar-type proton 

ATPase (v-type ATPase), rendering the interior of the SV acidic (Chanaday et al. 2019). After filling, 

SVs physically attach to a dense network of proteins at the active zone (Gundelfinger & Fejtova 

2012) and are then rendered fusogenic via a priming reaction (Rizo 2018, Brunger et al. 2018).  
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After activity-dependent fusion, SV cargo and membrane are deposited in the presynaptic plasma 

membrane. They are subsequently retrieved via a series of discrete endocytosis modes including 

ultrafast endocytosis, clathrin-mediated endocytosis and activity-dependent bulk endocytosis 

(ADBE) (Chanaday et al. 2019) (Figure 1). These endocytosis modes are triggered by different 

patterns of neuronal activity and are essential to sustain the supply of SVs for neurotransmission. 

Newly generated SVs populate a series of different pools within the nerve terminal (Cheung et al. 

2010, Granseth & Lagnado 2008, Watanabe et al. 2014). These are either the resting pool (which is 

refractory to action potential stimulation) or the recycling pool (which can be accessed by neuronal 

activity) (Chanaday et al. 2019, Kim & Ryan 2010). The recycling pool can be further subdivided into 

the readily releasable pool (RRP, SVs which are docked and primed at the active zone) and the 

reserve pool (which are only mobilised during intense periods of activity) (Chanaday et al. 2019) 

(Figure 1).   

In this review, we summarise the current state of knowledge with respect to the links between NDDs 

and specific stages of the SV life cycle described above. In addition, we will discuss how disturbances 

in SV recycling at various steps may result in dysfunctional circuit activity and brain function. Finally, 

we will examine whether possible convergence points may provide therapeutic potential for some 

disorders. 

 

Disruption of SV fusion events 

The principal role of the presynapse is to ensure the synchronous release of neurotransmitter in 

response to neuronal activity. Central to this event is SV fusion, which is driven by SNARE (soluble N-

ethylmaleimide sensitive factor attachment protein receptors) proteins via the assembly of the 

SNARE complex. A series of classical studies identified synaptobrevin-2 (also known as VAMP2 

(vesicle-associated membrane protein 2), and referred to as this herein), syntaxin-1 and SNAP-25 as 

the minimal machinery required to fuse a SV (Weber et al. 1998) (Figure 2). VAMP2 is referred to as 

a vesicle-SNARE since it is resident on the SV membrane, whereas syntaxin-1 and SNAP-25, which 

are located on the plasma membrane, are target-SNAREs.  All three proteins contain a SNARE motif 

(a short 65 amino acid coiled-coil structure) which allows them to interact progressively from their 

N-termini (Sorensen et al. 2006, Poirier et al. 1998, Sutton et al. 1998). This has the effect of bringing 

the SV and plasma membrane into close apposition and eventually mediating membrane fusion. 

Evidence is accumulating which links each component of the SNARE complex to NDDs. 

 

v-ATPase 
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For SV fusion events to be physiologically relevant, SVs must be filled with neurotransmitter. 

Interestingly, the amount of neurotransmitter inside SVs can determine their release probability, 

with incompletely filled SVs being less fusogenic (Rost et al. 2015, Bodzeta et al. 2017). As stated 

above, the v-ATPase pumps protons into SVs to produce an electrochemical gradient that is utilised 

by neurotransmitter transporters to fill SVs (Gowrisankaran & Milosevic 2020). 

  

The v-ATPase contains a V1 cytosolic domain and a V0 membrane-bound domain. The V1 domain is 

responsible for ATP hydrolysis, which causes a conformational change leading to the rotation of the 

V0 domain and proton translocation into the SV (Vasanthakumar & Rubinstein 2020). The pH 

gradient across the SV membrane determines the v-ATPase’s state of assembly. V1 and V0 domains 

are assembled on non-acidified SVs, however the V1 domain detaches from this complex when the 

SV is fully acidified and filled with neurotransmitter (Bodzeta et al. 2017). This process occurs 

upstream of SV docking and may act to facilitate the fusion of completely filled SVs (Bodzeta et al. 

2017). The synaptic protein DmX-like protein 2 (DMXL2, also known as rabconnectin-3a) is thought 

to regulate this v-ATPase assembly and thus SV acidification (Gowrisankaran & Milosevic 2020). 

 

Mutations in the various genes encoding both domains have been associated with multiple genetic 

congenital diseases that can present with neurological defects (Fischer et al. 2012, Kornak et al. 

2008, Kortüm et al. 2015, Van Damme et al. 2017). More recently, four de novo mutations in 

ATP6V1A (D27R, D100Y, D349N and D349G) have been associated with developmental 

encephalopathies and epilepsy (Fassio et al. 2018) (Figure 3). In silico modelling predicted each 

mutation to perturb v-ATPase function. For example, overexpression of the D100Y mutation in 

HEK293T cells resulted in a loss of function effect due to increased degradation. Conversely, the 

D349G mutation led to an increased acidification of intracellular organelles, suggesting a gain of 

function effect.  

 

DMXL2 is also a NDD risk gene, with copy number variations and de novo missense mutations 

observed in individuals with ASD (Iossifov et al. 2014, Krumm et al. 2015, Costain et al. 2019). 

Additionally, biallelic loss of function mutations in DMXL2 are associated with Ohtahara syndrome, 

which is characterised by severe epileptic encephalopathy (Esposito et al. 2019) (Figure 3). 

 

SNAP-25  

Mutations in the SNAP25 gene result in patients presenting with a combination of seizures, ID, 

severe speech delay, and cerebellar ataxia (Hamdan et al. 2017, Rohena et al. 2013, Shen et al. 2014, 
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Fukuda et al. 2018) (Figure 3). All identified mutations lie within the two SNARE motifs of SNAP-25, 

with four being missense and one nonsense (Hamdan et al. 2017). Two further missense mutations 

were found in exon 5 of SNAP-25b. These latter mutations are intriguing, since exon 5 can be 

alternatively spliced to generate either SNAP-25a or SNAP-25b (Bark 1993). These variants have 

different expression patterns during development, with SNAP-25a predominantly restricted to 

embryonic brain, and SNAP-25b expressed in adult (Bark et al. 1995). Furthermore, SNAP-25b-

deficient mice with protected SNAP-25a expression demonstrate neurological hyperactivity, anxiety, 

learning deficits, and spontaneous seizures (Johansson et al. 2008). This suggests that the adult form 

of SNAP-25 is important for the correct development of brain circuitry.   

 

SNAP-25 knockout mice die at birth due to respiratory failure; however heterozygotes are viable 

(Washbourne et al. 2002). Nevertheless, heterozygous mice display an abnormal 

electroencephalogram pattern and are more susceptible to kainate-induced seizures (Corradini et al. 

2014).  This suggests that at least some mutations may result in loss of function. However, some 

SNAP-25 mutations may be dominant. For example, the I67N mutation in the SNARE motif greatly 

reduced evoked release when expressed in secretory cells and interfered with in an in vitro liposome 

fusion assay (Shen et al. 2014).  Supporting a dominant effect, a similar phenotype was observed in 

blind-drunk mice, which harbour a heterozygous SNAP-25 mutation (I67T, (Jeans et al. 2007)). These 

mice exhibit ataxia and impaired gait, and display profound defects in both mEPSC frequency and 

evoked release. This mutant has a two-fold increased affinity for syntaxin-1, suggesting its dominant 

phenotype is due to the formation of more stable SNAP-25/syntaxin-1 complexes (Jeans et al. 2007). 

 

Syntaxin-1 

Syntaxin-1 has two highly conserved isoforms, syntaxin-1A and syntaxin-1B. In agreement with this 

high degree of conservation, either can fully rescue function when the endogenous protein is 

depleted in neuronal culture (Zhou et al. 2013).  Syntaxin-1 has two key domains, a Habc domain, 

which controls its “closed” or “open” conformation (more information below) and its SNARE motif. 

Syntaxin-1A knockout mice are viable, whereas expression of the “open” form of 1B in the 1A 

knockout background results in seizure activity within 2 weeks and premature death within 1-2 

months (Gerber et al. 2008).  Recent studies examining the genetic basis of fever-associated 

epilepsies have identified a wide range of nonsense and missense mutations in the STX1B gene 

(Schubert et al. 2014, Wolking et al. 2019, Epi et al. 2013, Vlaskamp et al. 2016) (Figure 3).  The 

missense mutations were mainly in the Habc and SNARE motif, suggesting a deleterious effect on 
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syntaxin-1B function. However, no molecular interrogation of these mutations at the level of the 

SNARE complex or neurotransmitter release has yet been performed.    

 

VAMP2 

The cytoplasmic domain of VAMP2 consists of a short N-terminus and SNARE motif (Elferink et al. 

1989, Archer et al. 1990). Loss of the Vamp2 gene in mice results in an almost complete cessation of 

evoked release (Schoch et al. 2001), highlighting its essential role in neurotransmission. Homozygous 

Vamp2 knockout mice die immediately after birth, whereas heterozygote mice are viable. However, 

these mice display delayed postnatal development, reduced anxiety-related behaviour and 

decreased baseline neurotransmission (Koo et al. 2015).  

 

Mutations in the VAMP2 gene have been reported in five unrelated individuals with ID and 

hypotonia (Salpietro et al. 2019) (Figure 3).  All mutations were located within the SNARE motif and 

were either missense or nonsense.  In vitro liposome fusion assays revealed that a S75P variant 

displayed reduced rate and extent of fusion compared to wild-type (Salpietro et al. 2019). 

Interestingly, the effect of this mutant was much more profound during munc-18-triggered fusion, 

which is closer to the biological context (see below) (Salpietro et al. 2019).  This phenotype was 

retained when S75P was mixed in equal amounts with wild-type VAMP2 (to mimic the heterozygous 

condition), suggesting it acted in a dominant manner. In contrast, another mutant (E78A) had no 

effect on fusion, suggesting it may interfere with another aspect of VAMP2 function.  

 

Disruption of calcium-triggered SV fusion 

Synaptotagmin-1 

The rates of SV fusion driven by the SNARE proteins alone in vitro are orders of magnitude too slow 

to mediate fast synaptic transmission (Weber et al. 1998).  To ensure a high degree of synchrony, a 

series of molecules prepare the SNAREs to accelerate the process by coupling SV fusion to neuronal 

activity (Figure 2). Central to this is the calcium sensor synaptotagmin-1 (Syt-1). Syt-1 is an integral 

SV protein that binds calcium with low affinity via two C2 domains (C2A and C2B) (Perin et al. 1990). 

Homozygous deletion of the Syt1 gene in mice results in death within 48 hours, however 

heterozygotes are viable (Geppert et al. 1994). Primary neuronal cultures from Syt1 knockout mice 

display a profound reduction in synchronous release and a large increase in mEPSC frequency, 

suggesting that Syt-1 acts to limit SV fusion events in the absence of calcium, before triggering 

neurotransmitter release on calcium binding (Shao et al. 1997).  
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Subsequent studies revealed the molecular mechanism of Syt-1-mediated SV fusion.  Firstly, calcium 

binding by negatively charged amino acid residues on both C2 domains neutralises their charge. This 

allows insertion of these loops into the plasma membrane (Chapman & Davis 1998) to aid fusion by 

deforming this membrane (Martens et al. 2007).  Modulation of the calcium affinity of these loops 

has parallel effects on neurotransmitter release, indicating that Syt-1 is the major calcium sensor for 

SV fusion (Fernandez-Chacon et al. 2001, Rhee et al. 2005). Syt-1 also forms a direct association with 

the SNARE complex and a small protein called complexin in the absence of calcium, potentially 

explaining why Syt-1 can restrict spontaneous fusion events (Rizo 2018, Brunger et al. 2018). 

 

A series of heterozygous mutations in the SYT1 gene are responsible for Baker-Gordon syndrome, a 

NDD that includes ID and hypotonia (Baker et al. 2015, Baker et al. 2018, Cafiero et al. 2015) (Figure 

3). All mutations clustered within the Syt-1 C2B domain, with calcium- and lipid-binding residues 

disproportionately represented. When these mutants were overexpressed in wild-type neuronal 

cultures (to reflect the heterozygous condition), all displayed reduced SV fusion kinetics, as expected 

for mutations in these residues (Baker et al. 2015, Baker et al. 2018). Interestingly, these defects 

could be ameliorated by elevating extracellular calcium (Baker et al. 2018), suggesting these 

dominant mutations were inefficient in coupling calcium influx to neurotransmitter release.       

 

PRRT2 

Mutations in the gene PRRT2, which encodes the protein proline-rich transmembrane protein 2 

(PRRT2) is responsible for a number of NDDs (Valtorta et al. 2016, Chen et al. 2011) (Figure 3).  

PRRT2 is enriched at the presynapse (Valente et al. 2016, Lee et al. 2012, Liu et al. 2016), with its C-

terminus forming an anchor that spans the plasma membrane (Rossi et al. 2016). Depletion of 

endogenous PRRT2 via shRNA or via constitutive knockout in mice results in a reduction in both 

synchronous neurotransmitter release and mEPSC frequency in autaptic neuronal cultures. This 

phenotype was suggested to be due to decreased release probability and calcium sensitivity (Valente 

et al. 2016, Valente et al. 2019). This does not appear to be a generalised defect however, since this 

phenotype was not observed in mice when Prrt2 was conditionally deleted in cerebellar granule 

neurons (Tan et al. 2018).  However, both mouse models displayed an increase in cerebellar short-

term plasticity (STP), and a recapitulation of many of the symptoms seen in humans with these 

disorders, including paroxysmal dyskinesia and higher seizure propensity (Tan et al. 2018, Michetti et 

al. 2017, Valente et al. 2019).     
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PRRT2 mutations are distributed throughout the gene, with many giving rise to premature stop 

codons (Valtorta et al. 2016). This suggests that dysfunction is due to PRRT2 haploinsufficiency, a 

hypothesis supported by the face validity of the mouse models. How could reduced PRRT2 function 

result in this varied phenotype? An increase in SNARE complex formation and docked SVs was 

observed in the conditional Prrt2 knockout mouse (Tan et al. 2018) with the latter phenotype also 

observed in both knockdown neurons (Valente et al. 2016) and the constitutive Prrt2 knockout 

mouse (Valente et al. 2019). This increase in docked SVs most likely reflects impaired release 

probability (Valente et al. 2016) and suggests that PRRT2 acts at the level of the SNARE complex, 

possibly inhibiting its formation. Affinity purification assays revealed that PRRT2 interacts with Syt-1, 

with interactions also observed for SNAP-25 and VAMP2 (Valente et al. 2016). These interactions are 

reportedly weak, however the resulting stearic hindrance of PRRT2 interacting will all SNARE 

components may be sufficient to impede efficient SNARE complex assembly. Indeed, liposome 

fusion assays revealed PRRT2 was a key factor in limiting the density of primed SVs at the active zone 

by regulating trans-SNARE complex formation (Coleman et al. 2018).  This agrees with the observed 

phenotypes of increased SV docking (Valente et al. 2019, Valente et al. 2016, Tan et al. 2018) and 

accelerated replenishment of the RRP resulting in synaptic facilitation (Tan et al. 2018, Michetti et al. 

2017, Valente et al. 2019). In addition, increased intrinsic excitability contributes to network 

hyperactivity and instability in PRRT2 knockout brain slices (Fruscione et al. 2018, Valente et al. 

2019). 

 

Voltage-dependent calcium channels 

An essential step in neurotransmitter release is the activity-dependent influx of calcium via voltage-

dependent calcium channels (VDCCs). The Cav2 group of VDCCs comprise the Cav2.1, Cav2.2 and 

Cav2.3 channels that contain the pore-forming α1 subunit, auxiliary β subunits and α2δ subunits 

(Mochida 2019). The β subunit modifies channel kinetics and activation, whereas α2δ subunits 

promote trafficking of the channel complex and control release probability (Hoppa et al. 2012). 

Cav2.1 and Cav2.2 are highly expressed at the presynaptic active zone (Gundelfinger & Fejtova 

2012), and perform a key role coupling neuronal activity to SV fusion (Takahashi & Momiyama 1993, 

Wheeler et al. 1994). 

 

Loss of function mutations in CACNA1A and CACNA1B (the genes encoding Cav2.1 and Cav2.2 

respectively) result in developmental and epileptic encephalopathy (Gorman et al. 2019, Jiang et al. 

2019) (Figure 3). De novo missense mutations in CACNA1A result in decreased channel expression 

and reduced calcium current densities (Jiang et al. 2019). Conversely, gain of function de novo 
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missense mutations in CACNA1A result in increased channel opening (Jiang et al. 2019). Therefore, it 

is predicted that these mutations would affect the efficiency of neurotransmitter release, however 

these experiments have still to be performed. For a comprehensive review on calcium channel 

function and dysfunction in neurodevelopmental disorders please refer to Tagliatti et al (2020) in 

this issue.  

 

Disruption of SV priming 

Other proteins perform key roles in SNARE-dependent SV fusion in addition to Syt-1 and PRRT2. Two 

essential proteins are munc-18 and munc-13 (Figure 2).  Knockout of either of the genes encoding 

these proteins in mice results in the complete cessation of SV fusion (Augustin et al. 1999, Verhage 

et al. 2000, Varoqueaux et al. 2002), highlighting their central role.  

 

Munc-18 and munc-13 work together to coordinate and synchronise SNARE complex assembly.  The 

start point is the closed munc-18/syntaxin-1 complex, where munc-18 binds to the closed 

conformation of syntaxin-1, stabilising it and restricting its entry into the SNARE complex (Rizo & 

Sudhof 2012, Jahn 2000). Munc-18 also binds to VAMP2. This interaction is relatively weak, however 

it is important, since its disruption impairs liposome fusion in vitro (Sitarska et al. 2017, Parisotto et 

al. 2014). Additionally, munc-18 binds to the SNARE complex after its assembly via the syntaxin-1 N-

terminus, its Habc domain and the four-helix SNARE bundle (Deak et al. 2009, Rickman et al. 2007, 

Shen et al. 2007). Simultaneous to the action of munc-18, munc-13 opens syntaxin-1, while providing 

a stabilising link between the SV and plasma membrane (Lai et al. 2017). Critically, this arrangement 

allows the SNARE complex to become resistant to the action of NSF/-SNAP (NEM-sensitive factor / 

-soluble NSF-attachment protein, which can stochastically disassemble SNARE complexes), 

increasing the accuracy and synchronicity of assembly (Brunger et al. 2018, Rizo 2018). This latter 

step equates to the control of SV priming and thus the size and replenishment of the RRP (Yang et al. 

2015, Rosenmund et al. 2002, Junge et al. 2004). A further key molecule is the active zone 

scaffolding protein RIM1 (Rab3-interacting molecule 1), which interacts with munc-13, VDCCs, RIM-

binding protein and Rab3, among others, to facilitate SV exocytosis (Torres and Inestrosa, 2018). 

 

Munc-13 

Munc-13 is a large multi-domain protein, with three C2 domains, one C1 domain, a calmodulin-

binding domain and a MUN domain (Brose et al. 1995). The MUN domain in particular is essential for 

munc-13 function, since it works in concert with munc-18 to open syntaxin-1 (Ma et al. 2011).  A link 

between munc-13 dysfunction and NDDs came from a patient displaying microcephaly, cortical 
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hyperexcitability and myasthenia that was homozygous for a truncating mutation in the UNC13A 

gene (Figure 3). In vitro analysis of neuromuscular transmission revealed that excitatory postsynaptic 

potentials were almost absent, explaining why the patient died of respiratory failure (Engel et al. 

2016). In agreement with an essential role, Unc13a knockout mice die at birth, displaying a dramatic 

decrease in spontaneous and evoked glutamate release (Augustin et al. 1999).  A later study 

identified a patient harbouring a de novo missense mutation in munc13-1 located outside of any 

established functional domain (Lipstein et al. 2017). Expression of this mutant in knockout cultures 

revealed a gain of function phenotype, with increased probability of SV fusion and altered STP during 

low, but not high, frequency neurotransmission (Lipstein et al. 2017). The mechanism of this 

increase is not currently understood, but may reflect either enhanced calcium binding by the 

adjacent C2B domain (Shin et al. 2010) or direct regulation of calcium influx via interactions with 

VDCCs (Calloway et al. 2015).     

 

Munc-18 

Mutations in STXBP1 (the gene that encodes munc-18) were first identified in patients with 

Ohtahara Syndrome (Saitsu et al. 2008) and afterwards in individuals with West Syndrome, atypical 

Rett’s syndrome and Dravet’s syndrome (Stamberger et al. 2016) (Figure 3). In fact, de novo 

mutations in STXBP1 are among the most frequent causes of epilepsies and encephalopathies with 

most patients also having severe to profound intellectual disability and movement disorders 

(Stamberger et al. 2016). More than 85 pathological STXBP1 variants are reported, with little 

genotypic-phenotypic correlation (Lanoue et al. 2019).  This suggested that pathology primarily 

arises from a loss of function and STXBP1 haploinsufficiency (Yamamoto et al. 2016). In support, 

many missense mutations are located in the internal hydrophobic core of the protein, decreasing its 

stability leading to degradation (Suri et al. 2017, Kovačević et al. 2018, Martin et al. 2014, Saitsu et 

al. 2008).  

 

Human embryonic stem cells engineered to contain heterozygous STXBP1 mutants display a marked 

reduction in both spontaneous and evoked neurotransmitter release (Patzke et al. 2015). 

Furthermore, expression of human mutants in Stxbp1 heterozygous neurons results in greatly 

reduced total munc-18 levels, exceeding that expected from loss of mutant protein alone (Chai et al. 

2016, Patzke et al. 2015, Kovačević et al. 2018, Guiberson et al. 2018). This is proposed to reflect a 

gain of function pathology that is associated with an aggregation of STXBP1 mutants with remaining 

wild-type protein (Lanoue et al. 2019). When common pathological STXBP1 variants were expressed 

in either Stxbp1 knockout mouse neurons or were added to an in vitro fusion assay, impaired 
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neurotransmission or defective SNARE-dependent membrane fusion were respectively observed 

(Shen et al. 2015, Kovačević et al. 2018, Guiberson et al. 2018). Interestingly, when these mutants 

were expressed in the heterozygous context these parameters are normal (Kovačević et al. 2018). 

The recent identification of homozygous STXBP1 gain of function mutations have added to the 

complexity (Lammertse et al. 2020). Individuals with these mutations have almost identical clinical 

features to those with STXBP1 mutations that result in haploinsufficiency, even though they have 

opposite effects (increased release probability) at a cellular level.      

 

In summary, it appears that STXBP1 haploinsufficiency provides the best explanation of symptoms 

presented by patients, however more direct dominant effects of specific missense STXBP1 mutants 

that display either altered binding to, or functional properties with, SNARE proteins, may also play a 

role (Saitsu et al. 2008, Yamashita et al. 2016, Shen et al. 2015). In agreement, a series of different 

heterozygous Stxbp1 mouse models display impaired cognitive ability, anxiety-like behaviour and 

seizure phenotypes that can be controlled by widely used antiepileptic drugs (AEDs) (Kovačević et al. 

2018).    

 

RIM1 

In humans, de novo frameshift insertions and deletions in RIMS1 have been associated with autism 

spectrum disorder (Dong et al. 2014, Iossifov et al. 2012) (Figure 3). RIMS1 codes for the active zone 

scaffolding protein RIM1, which is required for SV docking and priming (Figure 2). RIM1 binds the 

C2A domain of munc-13 via a zinc finger domain, and this munc-13-RIM1 heterodimer acts as a 

switch to facilitate SV fusion, which is restricted when munc-13 is in its homodimerized state (Deng 

et al. 2011a, Camacho et al. 2017). This munc-13-RIM1 interaction also optimises the function of 

munc-13 in SV priming (Camacho et al. 2017). RIM1 also plays an important role in anchoring VDCCs 

to release sites to facilitate fast synchronous neurotransmitter release (Torres & Inestrosa 2018). In 

doing so, it ensures the proximity of VDCCs and SVs by binding VDCCs either directly through its PDZ 

domain or indirectly via RIM binding-proteins and binding SVs via Rab3 (Hibino et al. 2002, Kaeser et 

al. 2011). The conditional deletion of all RIM isoforms greatly reduced neurotransmitter release via a 

combination of disrupted priming and delocalisation of VDCCs (Kaeser et al. 2011). Interestingly, 

these two functions could be rescued independently by the expression of either the RIM1 N-

terminus or its PDZ domain respectively (Kaeser et al. 2011). Therefore, it is likely that the frameshift 

mutations identified in RIMS1 will result in reduced neurotransmission, most likely via reduced SV 

priming, delocalisation of VDCCs or both.  

 



14 
 

Disruption of SV cargo selection and clustering  

The accurate and efficient retrieval of SV cargo from the plasma membrane is essential for the 

maintenance of neurotransmission. One of the initial stages of this process is the directed clustering 

of SV cargo for retrieval by endocytosis (Figure 2). Key roles have been defined for the plasma 

membrane adaptor protein complex AP-2 (Jung & Haucke 2007) and also monomeric adaptor 

proteins, such as adaptor protein 180 (AP180) and stonin-2 which facilitate the retrieval of VAMP2 

and Syt-1 respectively (Kononenko et al. 2013, Koo et al. 2015). No mutations in the genes encoding 

AP180 or stonin-2 have been linked to NDDs, however the AP180 homolog PICALM is a risk gene for 

Alzheimer’s disease (Harold et al. 2009). An additional mechanism to select and cluster cargo is for 

SV proteins to interact with each other. SV cargo that perform this task are called intrinsic trafficking 

partners (iTRAPs) (Gordon & Cousin 2016). Two iTRAPs have been identified thus far, synaptophysin 

and synaptic vesicle protein 2A (SV2A), and dysfunction of both have been linked to NDDs.  

 

AP-2 

A heterozygous missense mutation in the 2 subunit of AP-2 has been reported in four individuals 

displaying developmental delay and epilepsy (Helbig et al. 2019) (Figure 3). This mutation is located 

in a region predicted to allow AP-2 to interact with SV cargo. In agreement, expression of this variant 

in 2 knockout astrocytes reduced transferrin uptake (Helbig et al. 2019).  Heterozygous 2 

knockout mice have no obvious phenotype, whereas homozygous knockouts display early embryonic 

lethality (Mitsunari et al. 2005), suggesting this mutation is a gain of function.  

 

Synaptophysin 

Synaptophysin is a four transmembrane domain SV protein and the second most abundant cargo on 

SVs (Takamori et al. 2006, Wilhelm et al. 2014).  It interacts with VAMP2, and this interaction is 

mutually exclusive to SNARE complex formation (Edelmann et al. 1995, Washbourne et al. 1995, 

Calakos & Scheller 1994). Synaptophysin performs an essential role in both clearing VAMP2 from 

release sites and facilitating VAMP2 retrieval by the endocytosis machinery (Gordon et al. 2011, 

Rajappa et al. 2016). Synaptophysin is encoded by the X-linked SYP gene, and a series of nonsense 

and missense mutations have been identified in individuals with X-linked ID and epilepsy (Tarpey et 

al. 2009, Harper et al. 2017) (Figure 3).  In all cases, these mutants display a loss of function in their 

ability to accurately retrieve VAMP2 during endocytosis (Harper et al. 2017, Gordon & Cousin 2013). 

Synaptophysin knockout mice are viable, but display defects in cognitive function (Schmitt et al. 

2009) in agreement with the individuals identified with mutations in the SYP gene.   
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SV2A 

SV2 is encoded by three independent genes SV2A, SV2B and SV2C.  SV2A interacts with Syt-1 in a 

phosphorylation-dependent manner (Pyle et al. 2000, Zhang et al. 2015), and coordinates Syt-1 

trafficking during neuronal activity (Zhang et al. 2015, Yao et al. 2010, Kaempf et al. 2015). Loss of 

SV2A function precipitates seizure activity, since Sv2a knockout animals display severe seizures and 

die after 3 weeks (Crowder et al. 1999, Janz et al. 1999). These knockout animals also display greatly 

reduced levels of Syt-1, in agreement with the iTRAP role of SV2A (Yao et al. 2010). Furthermore, 

rats harbouring a spontaneous missense mutation in SV2A display increased seizure susceptibility 

and reduced Syt-1 expression (Tokudome et al. 2016a, Tokudome et al. 2016b). Finally, homozygous 

and heterozygous missense mutations in SV2A have been identified in individuals with intractable 

epilepsy (Serajee & Huq 2015, Wang et al. 2019) (Figure 3). These mutations reside in large 

cytoplasmic or lumenal loops, with potential adenine binding or trafficking functions respectively 

(Ciruelas et al. 2019). Interestingly, the R383Q mutant fails to rescue both Syt-1 expression and 

trafficking in SV2A-depleted neurons (Harper et al. 2020), suggesting defective iTRAP function is 

central to this disorder.    

 

SCAMP5 

One other potential molecule required for cargo clustering and active zone clearance is secretory 

carrier associated membrane protein 5 (SCAMP5). Mutations in the SCAMP5 gene were recently 

identified in two unrelated individuals presenting with similar clinical phenotypes that included, ASD, 

ID and seizures (Hubert et al. 2020) (Figure 3). SCAMPs are integral SV membrane proteins with 4 

transmembrane domains, similar to synaptophysin (Fernández-Chacón & Südhof 2000). Depletion of 

SCAMP5 in primary neuronal culture resulted in inefficient SV endocytosis, an effect that was 

exacerbated after intense stimulation (Zhao et al. 2014). This frequency-dependence appears to 

result from defective clearance of SV cargo from the active zone, resulting in short-term depression 

of neurotransmitter release (Park et al. 2018). Recently, whole exome sequencing identified a 

homozygous SCAMP5 mutation (R91W) in a family with paediatric epilepsy and juvenile Parkinson’s 

disease. R91W knock-in mice displayed early-onset epilepsy, and a 100 % seizure susceptibility to 

audiogenic stimuli. Electrophysiological recordings in cultured neurons from these mice displayed a 

significant increase in mEPSC frequency and evoked EPSC amplitude (Zhang et al. 2020). Biochemical 

studies revealed that the R91W SCAMP5 mutant is less stable and has a weaker interaction with Syt-

1 than the wild-type protein. Interestingly, the R91W mutation falls within a conserved domain of 

SCAMP5 proposed to inhibit SV exocytosis (Guo et al. 2002), hinting to a second mechanism by 

which SCAMP5 dysfunction may contribute towards NDDs. 
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Disruption of SV endocytosis 

The rapid and efficient reformation of SVs after cargo clustering is key to sustaining presynaptic 

performance. Various modes of endocytosis are proposed to reform SVs, including ultrafast, clathrin-

mediated and ADBE (Chanaday et al. 2019).  A series of mutations in key endocytosis genes have 

suggested that dysfunctional SV retrieval may be another stage of the SV life cycle where NDDs 

originate (Figure 2).  

 

Dynamin-1 

Dynamin-1 is essential for all forms of SV endocytosis (Clayton et al. 2009, Kononenko et al. 2014, 

Watanabe et al. 2013, van der Bliek et al. 1993).  It is a large GTPase that is recruited to the neck of 

budding SVs to mediate membrane fission (Sweitzer & Hinshaw 1998, Takei et al. 1995). Critical to 

this essential role is the GTP-independent assembly of dynamin-1 into helical “collars” around the 

vesicle neck (Shnyrova et al. 2013). This assembly is mediated by the stalk domain (Ramachandran et 

al. 2007), which promotes the formation of dynamin-1 helices (Morlot & Roux 2013). Dynamin-1 

then exploits mechanical force generated via GTP hydrolysis to induce constriction of the neck of the 

nascent SV resulting in fission (Dar et al. 2015, Roux et al. 2006).  

 

Dnm1 knockout mice are viable and do not display obvious defects at birth; however, offspring die 

within 2 weeks (Ferguson et al. 2007). In contrast, heterozygous Dnm1 knockout mice are viable and 

fertile with no obvious defects. Dnm1 knockout neurons display greatly reduced endocytic capacity 

(Ferguson et al. 2007), with the remaining endocytosis provided via functional redundancy with the 

closely related dynamin-3. Importantly Dnm1,3 double knockout mice die within a few hours of birth 

and cultured neurons display a profound SV endocytosis impairment when compared to Dnm1 

knockout neurons (Raimondi et al. 2011).  

 

Large-scale exome sequencing studies revealed de novo mutations in the DNM1 gene to be an 

important risk factor for NDDs (Euro et al. 2014, von Spiczak et al. 2017). These mutations result in 

epileptic encephalopathies, including infantile spasms, frequently progressing to Lennox-Gastaut 

syndrome (Epi et al. 2013) (Figure 3). All identified de novo missense mutations in the DNM1 gene 

cluster either within the GTPase or middle domains (Euro et al. 2014, von Spiczak et al. 2017, Epi et 

al. 2013, Deciphering Developmental Disorders 2015, Deciphering Developmental Disorders 2017, 

Lazzara et al. 2018, Kolnikova et al. 2018). There is one exception that was found in identical twins 

who have a mutation in the lipid-binding pleckstrin homology domain (Brereton et al. 2018). 
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Interestingly, these twins displayed delayed development, ID and ASD, but not epileptic 

encephalopathy.  

 

Structural modelling suggests that the DNM1 mutations have dominant negative effects that impair 

either GTP binding, GTPase activity or self-assembly, leading to impaired SV endocytosis (Euro et al. 

2014, von Spiczak et al. 2017). In agreement, expression of three independent missense mutations in 

the GTPase or middle domain of dynamin-1 all disrupted clathrin-mediated endocytosis in non-

neuronal cells (Dhindsa et al. 2015). In addition, the middle domain mutant displayed defective self-

assembly. The correct self-assembly function of this domain is critical for both GTPase activity and 

membrane fission (Hinshaw & Schmid 1995, Warnock et al. 1996). Interestingly, a spontaneous 

mutation in the mouse Dnm1 gene also results in seizure activity. Mice with heterozygous 

expression of this mutant allele (Ftfl, A408T) displayed recurrent generalised tonic-clonic seizures, 

whereas those that were homozygous had lethal seizures by 3 weeks (Boumil et al. 2010). 

Mechanistically, this mutation results in defective self-assembly and impaired endocytosis when 

overexpressed in fibroblast cells (Boumil et al. 2010).  

 

Clathrin 

The coat protein clathrin is essential for all forms of SV reformation during endocytosis, whether it is 

at the plasma membrane or endosome (Kononenko et al. 2014, Watanabe et al. 2014, Granseth et 

al. 2006). The basic clathrin unit is a triskelion made up of three light and heavy chains which provide 

structure for SV formation and help to drive curvature (Robinson 2015).  Constitutive deletion of 

either the light or heavy chain is lethal in both invertebrates and vertebrates (Royle 2006). However, 

acute inactivation of either gene in Drosophila results in depletion of SVs and an accumulation of 

large endosome-like structures in nerve terminals, suggesting an arrest of SV generation at both the 

plasma membrane and endosomes (Heerssen et al. 2008, Kasprowicz et al. 2008). A number of 

missense, frameshift and nonsense mutations in the CLTC gene are present in individuals with ID and 

epilepsy (DeMari et al. 2016, Hamdan et al. 2017, Lelieveld et al. 2016) (Figure 3).  However, the 

impact these mutations on clathrin function has still to be determined.   

 

Disruption of ADBE 

ADBE is only triggered during intense neuronal activity (Clayton et al. 2008), and is a two-stage 

process. Firstly, large endosomes are formed direct from the plasma membrane, followed by the 

generation of SVs in an adaptor- and clathrin-dependent process (Cheung & Cousin 2012, 
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Kononenko et al. 2014) (Figure 2). The molecular mechanism of ADBE is still being determined, 

meaning few essential genes are known (Kokotos & Cousin 2015).   

 

AP-1 

The adaptor complex AP-1 is essential for SV reformation at bulk endosomes (Cheung & Cousin 

2012) and mutations in the gene encoding the 1B subunit (AP1S2) are responsible for a specific 

type of X-linked ID, called Pettigrew Syndrome (Pettigrew et al. 1991) (Figure 3).  These mutations 

were either splice site, or nonsense mutations, and were all predicted to be highly pathogenic 

(Tarpey et al. 2006, Cacciagli et al. 2014, Huo et al. 2019). Deletion of the Ap1s2 gene in mice results 

in an activity-dependent accumulation of bulk endosomes, with a concomitant decrease in SV 

number and recycling pool replenishment, in agreement with its key role in SV generation via ADBE 

(Glyvuk et al. 2010).  The mice also display hypoactivity, impaired motor skills and reduced spatial 

memory (Glyvuk et al. 2010). 

 

Rab11 

The small GTPase Rab11 is a positive regulator of ADBE (Kokotos et al. 2018). Several missense 

mutations in the RAB11A gene were identified in individuals with either epilepsy or abnormal 

electroencephalogram activity (Hamdan et al. 2017) (Figure 3).  Interestingly, deletion of the Rab11A 

gene in mice results in embryonic lethality, whereas brain-specific deletion had no overt effects on 

survival or gross brain structure (Sobajima et al. 2014).   

 

TBC1D24 

A potential link between dysfunctional presynaptic endosome trafficking and NDDs was identified 

via mutations in the TBC1D24 gene (Falace et al. 2010, Corbett et al. 2010). TBC1D24 mutations 

were detected in individuals with epilepsy and DOORS syndrome, which displays five main 

features—deafness, onychodystrophy, osteodystrophy, ID, and seizures (Campeau et al. 2014) 

(Figure 3). In agreement with TBC1D24 playing a key role in disorder pathogenesis, mice that are 

homozygous for either a truncating or missense mutation associated with infantile epilepsy in 

Tbc1d24 display tonic-clonic or spontaneous seizures respectively, and early lethality (Tona et al. 

2019, Lin et al. 2020). Furthermore, neurons from mice haploinsufficient for Tbc1d24 display 

reduced mEPSC frequency, impaired SV endocytosis and an enlargement of presynaptic endosomes 

(Finelli et al. 2019). 

 

Clues to the mechanism underlying TBC1D24 dysfunction come from the Drosophila orthologue, 

skywalker. Skywalker, identified as a Rab GTPase activating protein (GAP), restricts SV cargo 
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trafficking through presynaptic endosomes by acting on Rab35 (Uytterhoeven et al. 2011). Rab35 

directs SV cargo for degradation via the ESCRT pathway (Sheehan et al. 2016), therefore skywalker 

loss of function mutants display increased SV protein degradation via the endosome-lysosome 

pathway (Fernandes et al. 2014). This increased endosome-lysosome flux positively affects 

presynaptic function, and skywalker mutants display enhanced neurotransmission and a larger RRP 

(Uytterhoeven et al. 2011). TBC1D24 also negatively regulates another small GTPase, Arf6, which 

controls RRP size via modulation of endocytosis modes (Tagliatti et al. 2016). The TBC1D24-Arf6 

interaction, which is also important for neurite growth (Falace et al. 2014, Aprile et al. 2019), has 

relevance for NDDs, since TBC1D24 patient mutations disrupt Arf6 binding (Falace et al. 2010). 

 

The Tre-2/Bub2/Cdc16 (TBC) domain usually has GAP activity, however both skywalker and human 

TBC1D24 lack key residues required for efficient GTP hydrolysis (Pan et al. 2006), suggesting GAP 

dysfunction is not responsible for this phenotype. The crystal structure of the skywalker TBC domain 

revealed a cationic pocket that directly binds to phosphoinositides phosphorylated at the (4,5) 

position (Fischer et al. 2016). Interestingly, prevalent patient mutations disrupt phosphoinositide-

binding to this pocket. Furthermore, skywalker deficient in PI(4,5)P2 binding could not fully rescue SV 

endocytosis defects and results in seizure-like activity when expressed in flies (Fischer et al. 2016).  

Therefore, rather than canonical GAP activity, the dysfunction in the lipid binding ability of the TBC 

domain of TBC1D24 appears to be central to the deficits in presynaptic function observed in models 

of the human disease. 

 

Disruption of SV pools  

Synapsins 

SV endocytosis modes replenish specific pools within the nerve terminal (Cheung et al. 2010, 

Granseth & Lagnado 2008, Watanabe et al. 2014). The reserve pool is maintained by the synapsins, 

via interactions with both SVs and the actin cytoskeleton (Benfenati et al. 1993, Benfenati et al. 

1989, Bahler et al. 1989, Krabben et al. 2011) (Figure 2). SVs are mobilised from the reserve pool via 

the activity-dependent phosphorylation and dephosphorylation of specific synapsin residues by 

kinases such as calmodulin-dependent kinase II (Torri Tarelli et al. 1992), PKA (Hosaka et al. 1999) 

and cyclin-dependent kinase 5 (Verstegen et al. 2014) and phosphatases such as calcineurin 

(Jovanovic et al. 2001). Synapsins also facilitate SV clustering via interactions with α-synuclein and 

VAMP2 (Atias et al. 2019, Sun et al. 2019) and through phase separation via intrinsically disordered 

C-terminal regions (Milovanovic et al. 2018).  
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The synapsin family is composed of 3 distinct genes SYN1, SYN2 and SYN3, which can be alternatively 

spliced (Giovedi et al. 2014). The synapsins are not essential for SV recycling, since 

neurotransmission is mostly unaltered in triple knockout mice (Gitler et al. 2004, Orenbuch et al. 

2012). However, they perform differential roles at either glutamatergic or GABAergic synapses. 

Synapsins have no role in excitatory basal transmission. Synapsin-2a does however control reserve 

pool size in addition to the number, distribution and mobility of SVs at glutamatergic synapses 

(Orenbuch et al. 2012, Gitler et al. 2008). In contrast, inhibitory nerve terminals of Syn triple 

knockout mice display altered basal neurotransmission and quantal content (Gitler et al. 2004). This 

defect was primarily due to the absence of synapsin-1, since Syn1 knockout neurons also displayed a 

decreased RRP at inhibitory synapses in addition to slowed SV recycling (Baldelli et al. 2007). 

Furthermore, synapsin-2 knockout neurons exhibit increased synchronous release and reduced 

asynchronous release at inhibitory synapses. The control of asynchronous GABA release by synapsin-

2 was mediated via interactions with Cav2.1 VDCCs (Medrihan et al. 2013). Interestingly, synapsin-1 

synchronises GABA release in parvalbumin interneurons (Forte et al. 2019), confirming that different 

synapsin isoforms can perform discrete roles at specific synapses.  

 

Deletion of either Syn1, Syn2 or all Syn genes in mice result in seizure activity and ASD-like 

behaviours (reviewed in (Cesca et al. 2010, Fassio et al. 2011b, Mirza & Zahid 2018)). In agreement, 

human mutations in either SYN1 or SYN2 lead to either ASD, epilepsy and/or ID, with no clustering 

around specific domains (Corradi et al. 2014, Nguyen et al. 2015, Peron et al. 2018) (Figure 3). SYN1 

mutations are X-linked and only affect males, suggesting they are loss of function mutations. The 

first mutation was identified in a family where almost all affected males displayed seizures (Garcia et 

al. 2004). This mutation resulted in nonsense mediated decay, indicating that these males were 

effectively SYN1 null (Giannandrea et al. 2013). Other missense mutations and nonsense mutations 

were subsequently identified with differentially segregating ASD and epilepsy. When these mutant 

proteins were expressed in Syn1 knockout neurons, some displayed defective or slowed targeting to 

nerve terminals and all failed to rescue SV reserve pool size (Fassio et al. 2011a, Tang et al. 2015b). 

Another missense mutation linked to X-linked ID displayed an enhanced ability to cluster SVs and 

increased mEPSC frequency (Guarnieri et al. 2017).  This may be a gain of function mutation, since it 

is localised within the amphipathic lipid packing sensor motif, which senses membrane curvature 

and aids the association of synapsins to SVs (Krabben et al. 2011). 

 

Neurodevelopmental risk genes and links to the SV life cycle 
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As outlined above, an ever-increasing number of genes with key roles in SV recycling are being linked 

to NDDs.  In addition to these genes are genes with established causal roles (Sahin & Sur 2015). 

Interestingly, the study of these mutations in their natural context is beginning to reveal a number of 

presynaptic phenotypes.  The genes with the most convincing evidence for this are described below.  

 

FMRP 

Fragile X Syndrome (FXS) is one of the most common monogenic causes of ID and ASD, accounting 

for 5 % of all cases (Mefford et al. 2012), with 10-20 % of cases co-morbid with epilepsy (Berry-Kravis 

2002) (Figure 3). FXS is caused by the loss of the FMR1 gene product, fragile X mental retardation 

protein (FMRP) (Pieretti et al. 1991). Most cases of FXS are caused by a CGG trinucleotide expansion 

in the 5’ untranslated region of the FMR1 gene, leading to repression of transcription (Bell et al. 

1991, Verkerk et al. 1991). The major role of FMRP is the repression of protein translation of a 

subset of mRNAs downstream of Group1 metabotropic glutamate receptors, via polyribosome 

stalling (Darnell et al. 2011). Loss of FMRP results in increased translation of several presynaptic and 

postsynaptic proteins (Dolen & Bear 2009, Darnell & Klann 2013, Osterweil et al. 2010).  

 

Evidence for a role of FMRP in SV recycling is emerging.  Fmr1 knockout neurons display a small 

acceleration in SV turnover and larger SV pools compared to wild-type littermate controls (Deng et 

al. 2011b). Furthermore, depletion of endogenous FMRP in dorsal root ganglion neurons enhanced 

SV exocytosis during high frequency stimulation (Ferron et al. 2014). Both defects are proposed to 

be due to non-canonical roles of FMRP. For example, FMRP controls action potential duration by 

directly binding to large conductance calcium-gated potassium channels (BK channels) and 

modulating their gating (Deng et al. 2013, Myrick et al. 2015). Therefore, FMRP loss results in 

excessive action potential broadening, culminating in increased calcium influx and synaptic 

transmission (Deng et al. 2013). FMRP is also proposed to control calcium influx by regulating the 

localization and density of Cav2.2 VDCCs via targeting them for proteosomal degradation (Ferron et 

al. 2014, Ferron et al. 2020).  

 

CYFIP1  

Copy number variations in the CYFIP1 (cytoplasmic FMRP-interacting protein) gene have been 

strongly associated with ASD, ID and epilepsy in numerous studies (Doornbos et al. 2009, Picinelli et 

al. 2016, Pinto et al. 2014, Vanlerberghe et al. 2015, Oguro-Ando et al. 2014, Davenport et al. 2019) 

(Figure 3). In support, heterozygous Cyfip1 rodents display autism-associated altered synaptic 
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structure and function and behavioural deficits (Bozdagi et al. 2012, Domínguez-Iturza et al. 2019, 

Silva et al. 2019, Pathania et al. 2014). 

 

CYFIP1 has two highly conserved and distinct mechanisms of action. First, it represses cap-

dependent translation of FMRP target mRNAs when complexed with FMRP (Napoli et al. 2008). 

Second, it is as a critical component of the Wave Regulatory Complex (WRC), which promotes actin 

polymerisation and branching (Chen et al. 2010).  This second function appears to regulate 

presynaptic function, since an increase in the size of the recycling SV pool in either Cyfip1+/- or 

CYFIP1 knockdown primary neuronal cultures could be rescued by wild-type CYFIP1, but not by a 

mutant with ablated binding to the WRC (Hsiao et al. 2016). In a more recent study, ex vivo slice 

recordings in the somatosensory cortex revealed a lack of short-term synaptic depression in Cyfip1+/- 

mice compared to wild-type controls further indicating altered presynaptic function (Domínguez-

Iturza et al., 2019). 

 

BK channels 

BK channels play an important role in maintaining the cell membrane resting potential by opening in 

response to calcium influx and membrane depolarization. This opening results in a rapid 

afterhyperpolarization following an action potential, which arrests calcium influx and 

neurotransmission by deactivating VDCCs (Griguoli et al. 2016). Thus, BK channels can modulate 

neurotransmitter release by controlling action potential shape through their opening and closing.  

The pore of the channel is formed by four α subunits, encoded by KCNMA1, and additional 

modulatory β and γ subunits control channel gating and pharmaceutical sensitivity (Griguoli et al. 

2016, N'Gouemo 2011, Yan & Aldrich 2012). Perhaps unsurprisingly, due to its role, the BK channel 

and its activity has been linked to several forms of epilepsy. Interestingly, both gain of function 

mutations (Du et al. 2005, Moldenhauer et al. 2020) and mutations leading to haploinsufficiency 

(Laumonnier et al. 2006) result in NDDs and epilepsy (Figure 3), further highlighting the importance 

of this channel’s bidirectional regulatory role in neurotransmitter release.  

 

DYRK1A 

DYRK1A (dual-specificity tyrosine phosphorylation-regulated kinase 1A) is a serine/threonine kinase 

implicated in the regulation of cellular processes involved in brain development and function. The 

gene encoding DYRK1A is located in the Down syndrome critical region of chromosome 21. DYRK1A 

is classed as a high-risk gene for ASD/ID with loss of function mutations leading to DYRK1A-related ID 

syndrome (van Bon et al. 1993, Wright et al. 2015, Deciphering Developmental Disorders 2015, 
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Deciphering Developmental Disorders 2017) (Figure 3). Gene dosage appears to be important, since 

DYRK1A triplication also leads to ID, microcephaly and distinct craniofacial features (Ahmed et al., 

2005).  Several de novo recurrent mutations in DYRK1A have been identified including nonsense, 

frameshift and splice site mutations (Deciphering Developmental Disorders 2017). Many missense 

mutations cluster in the protein kinase domain, which are predicted to disrupt catalytic activity, 

whereas mutations elsewhere are predicted to disrupt protein stability (Evers et al. 2017, Widowati 

et al. 2018). While homozygous deletion of the gene in mice is lethal, Dyrk1a haploinsufficient mice 

display small but correctly formed brains (Fotaki et al. 2002). These mice recapitulate other human 

phenotypes, including deficits in hippocampal-based learning, impaired sociability and increased 

susceptibility to hyperthermia-induced seizures (Fotaki et al. 2002, Arque et al. 2008, Raveau et al. 

2018).  

 

In vitro experiments identified key endocytic proteins as DYRK1A substrates, including dynamin-1, 

amphiphysin-1, AP180, α-adaptins, β-adaptins and synaptojanin. Phosphorylation of these 

substrates resulted in decreased interactions with their binding partners and was proposed to 

dissociate the endocytic protein complex on clathrin-coated SVs (Adayev et al. 2006, Chen-Hwang et 

al. 2002, Huang et al. 2004, Murakami et al. 2006, Murakami et al. 2009, Murakami et al. 2012). 

Interestingly, studies in Drosophila revealed that synaptojanin was the only in vivo substrate for the 

DYRK1A orthologue, Mnb. Mnb phosphorylation of synaptojanin on residue Ser-1029 inhibited its 

interaction with endophilin and increased its lipid phosphatase activity (Chen et al. 2014, Geng et al. 

2016). Hypomorphic Mnb flies displayed an exacerbated rundown in synaptic transmission during 

high frequency stimulation and reduced uptake of lipophilic dyes, both indicative of reduced SV 

endocytosis. Overexpression of synaptojanin rescued these defects, suggesting the principal role of 

Mnb is the control of SV endocytosis via synaptojanin phosphorylation (Chen et al. 2014). Further 

studies using phospho-mutants revealed that Ser-1029 phosphorylation controls different modes of 

SV endocytosis, potentially via the reciprocal control of its interactions and phosphatase activity 

(Geng et al. 2016). In mammalian neurons that overexpress the human DYRK1A gene, SV 

endocytosis is significantly slowed during mild stimulation (Kim et al. 2010). However, the 

mechanism for this slowing has still to be determined.   

 

Neurexins  

Neurexins are presynaptic cell adhesion molecules that stabilise synapses via trans-synaptic 

interactions with postsynaptic partners. They are encoded by three genes (NRXN1-3), which can 

undergo extensive alternative splicing (Ushkaryov et al. 1992, Ushkaryov & Südhof 1993, Ushkaryov 
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et al. 1994, Missler & Südhof 1998). Initial studies identified an association between copy number 

variations and single nucleotide polymorphisms in NRXN1 and ASD (Feng et al. 2006, Kim et al. 2008, 

Consortium et al. 2007, Sanders et al. 2011). After this, a genetic risk of all NRXN genes was 

established, albeit with NRXN1 being most prevalent (Gauthier et al. 2011, Glessner et al. 2009, 

Stessman et al. 2017, Vaags et al. 2012) (Figure 3).  

    

Deletion of all three Nrxn genes in mice result in lethality within the first day of life. Using 

neocortical slice culture and acute brainstem slices, triple knockout Nrxn mice displayed greatly 

reduced spontaneous and evoked neurotransmission due to reduced VDCC-mediated calcium influx 

(Missler et al. 2003). These functions were restored by expression of the Nrxn1 gene product -

neurexin (Zhang et al. 2005). However more recent studies using conditional knockout Nrxn mice 

demonstrated that the complete loss of all neurexins produced pleiotropic effects dependent on 

synapse type (Chen et al. 2017). This suggests that neurexins perform distinct roles at specific 

synapses, rather than a uniform role across different synapses (Chen et al., 2017). However, at the 

calyx of Held synapse neurexins are essential for evoked neurotransmission, since their conditional 

deletion decoupled calcium influx from neurotransmitter release, due to loss of active zone VDCC 

clustering (Luo et al. 2020). 

 

From dysregulated SV recycling to neurodevelopmental disorders  

The breadth and depth of mutations in SV recycling genes identified in NDDs over the past 15 years 

suggest presynaptic dysfunction is one of the principal drivers for these conditions. However, a key 

question remains – how do defects in genes that are fundamental for accurate and efficient 

neurotransmitter release result in a spectrum of NDDs?  Furthermore, is there convergence of 

dysfunction around specific aspects of the SV life cycle that would allow researchers to predict 

potential outcomes? It is clear from the range of SV recycling genes affected that there is not one 

specific event that when dysregulated culminates in NDDs. Therefore, how could dysfunctional SV 

recycling lead to altered neurotransmission, circuit activity and ultimately these disorders?  We 

propose a series of different scenarios below (Figure 4).  

 

Altered short-term plasticity  

STP (depression or facilitation of neurotransmission during an action potential train), is essential for 

a series of higher brain functions such as working memory, network oscillations and the 

computation of motor, somatosensory and auditory inputs (Nadim et al. 1999, Nadim & Manor 

2000, Abbott et al. 1997, Mongillo et al. 2008).  Its transient nature provides a highly flexible and 
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dynamic code to prolong, modulate or create instability within specific circuits (Mongillo et al. 2008, 

Abbott & Regehr 2004).  Perturbation of clathrin-mediated endocytosis or ADBE can modulate STP, 

by interfering with cargo clearance from the active zone (Hua et al. 2013, Park et al. 2018) diverting 

SV cargo via a slower endocytosis mode (Smillie et al. 2013, Clayton et al. 2010) or disrupting the 

replenishment of specific SV pools (Granseth & Lagnado 2008, Cheung et al. 2010, Watanabe et al. 

2014, Junge et al. 2004). Since mutations in genes that control all of these processes have been 

identified in NDDs, this is a potentially attractive mechanism via which circuit dysregulation could 

occur.   

 

Alterations in the synchrony of neurotransmitter release may also result in altered STP, since 

interventions that either increase or decrease this parameter affect information processing (Atluri & 

Regehr 1998, Manseau et al. 2010). In agreement, a number of key gene products required for 

synchronous release are mutated in NDDs, such as Syt-1 and VAMP2 (Baker et al. 2018, Salpietro et 

al. 2019). Furthermore, close links are emerging between ADBE and asynchronous release (Raingo et 

al. 2012, Evstratova et al. 2014, Li et al. 2017). Since asynchronous release is also a key element in 

information processing (Evstratova et al. 2014, Manseau et al. 2010, Rozov et al. 2019) any 

disruption in ADBE may result in altered STP. Therefore, dysfunctional STP may be a major 

convergence point for presynaptic dysfunction in NDDs.  

 

Cell-specific dysfunction 

Another convergence point may be disrupted “excitatory / inhibitory balance”. This relatively 

general term has been widely used in the context of NDDs (Gao & Penzes 2015, Nelson & Valakh 

2015), however, it does not directly address how, why or where any potential imbalance originates.  

This is particularly pertinent for presynaptic dysfunction, since previous studies have revealed no 

quantitative differences in the type, or expression, of SV proteins between glutamatergic and 

GABAergic neurons (Boyken et al. 2013, Gronborg et al. 2010). Nevertheless, some differences in the 

release of glutamate and GABA have been identified. For example, microdialysis studies in the 

amygdala and hippocampus demonstrated decreased GABA, but not glutamate release, in rats with 

a mutation in SV2A that results in increased seizure vulnerability (Tokudome et al. 2016b, Tokudome 

et al. 2016a). Furthermore, divergent effects on excitatory and inhibitory neurotransmission were 

observed in autaptic cultures from Prrt2 knockout mice in response to either single action potentials 

or trains (Valente et al. 2019). One family of genes that do have differential effects on excitatory and 

inhibitory transmission are the synapsins (Fassio et al. 2011b). For example, overexpression of a 

truncating mutation of SYN1 in Syn1 knockout mouse neurons resulted in relatively similar effects on 
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baseline neurotransmission in glutamatergic and GABAergic neurons, but resulted in divergent 

effects in STP (Lignani et al. 2013). Furthermore, mEPSC, but not mIPSC, frequency was increased on 

expression of a SYN missense mutation linked to X-linked ID in Syn1 knockout mouse neurons 

(Guarnieri et al. 2017). Finally, circuit destabilisation may result from SYN1 or SYN2 mutations, since 

synapsin-1 and synapsin-2 reciprocally control synchronous and asynchronous release in GABAergic 

neurons (Medrihan et al. 2013, Forte et al. 2019). Therefore, while differential effects on excitatory 

and inhibitory neurotransmission may explain altered circuit and brain function in specific cases, this 

does not appear to be widespread.  

 

The specific synaptic partner of the presynapse may also contribute to dysfunction. For example, 

loss of presynaptic FMRP results in a decreased probability of neurotransmitter release with 

inhibitory synaptic partners, but not excitatory (Patel et al. 2013). Altered presynaptic function may 

differ across specific brain regions, potentially resulting in long-range connectivity deficits. For 

example, presynaptic neurexin-3 is selectively required to maintain AMPA receptor levels and 

postsynaptic integrity in the hippocampus, while at GABAergic synapses in the olfactory bulb it 

controls presynaptic release probability (Aoto et al. 2015). Therefore, disease-associated presynaptic 

proteins may form distinct functions across different cell types or brain regions, providing a potential 

explanation for circuit deficits observed in NDDs. 

 

Different activity patterns 

If no obvious alteration in either the expression or functional effect of genes mutated in NDDs is 

observed between excitatory and inhibitory neurons, how else could an imbalance be generated? 

One potential explanation is the firing patterns of individual neurons within a specific circuit. In this 

scenario, most neurons that carry a specific mutation do not display altered neurotransmitter 

release, with a phenotype only revealed by a particular pattern of neuronal activity. For example, if 

neurons carry a mutation that results in dysfunctional ADBE, only neurons that fire at high frequency 

would have their function impacted. Interestingly, a proteomic study that examined the composition 

of bulk endosomes revealed a number of proteins encoded by genes linked to ID and ASDs (such as 

FMRP, CYFIP2 and NUFIP2 (Kokotos et al. 2018)). This links these genes to ADBE and consequently 

implicates this endocytosis mode in potential circuit dysfunction.     

 

An underlying defect revealed by specific patterns of activity is not the only potential mechanism via 

which activity-dependent deficits can occur. For example, since inhibitory interneurons tend to fire 

at higher frequencies (Bartos et al. 2007), dysfunctional SV retrieval may disproportionately impact 
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these neurons.  For example, one might predict that DNM1 mutations may result in exaggerated 

effects in GABAergic neurons, since the demand for SV endocytosis to sustain neurotransmission will 

be greater. This agrees with studies in primary cultures from Dnm1 knockout mice, with more severe 

endocytosis phenotypes observed in GABAergic neurons when compared to glutamatergic (Hayashi 

et al. 2008).  Furthermore, neurons that display elevated patterns of activity may be susceptible to 

iTRAP dysfunction, since their SV composition will be altered. As an illustration, repeated action 

potential trains in Syp knockout neurons resulted in depletion of VAMP2 from SVs and reduced 

neurotransmitter release (Kokotos et al. 2019).  

 

Different developmental trajectory 

A series of plastic changes occur early in development of the mammalian brain, resulting in the 

establishment of synapses and circuits (Harlow et al. 2010). This “critical period” is driven by specific 

patterns of neuronal activity; therefore dysregulated neurotransmission could result in altered 

neuronal circuits and brain function (Krol & Feng 2017). Mutations in presynaptic adhesion 

molecules may result in the establishment of different circuitry. For example, the neurexin family 

has greater than 1000 different variants that interact with a range of different postsynaptic adhesion 

molecules (Missler & Südhof 1998). This has the potential to generate a huge amount of synaptic 

diversity, which may underlie a molecular code for synapse and circuit development (Südhof, 2017).  

Disruption of this intricate coding could very conceivably result in altered brain function.  

 

Rather than altering, “hardwired” neuronal circuitry, presynaptic dysfunction may also contribute to 

an altered developmental trajectory, resulting in a shift in the “critical period” (Harlow et al. 2010).  

The presynapse has a stereotypical developmental pattern. This includes the appearance of specific 

SV pools (Mozhayeva et al. 2002, Rose et al. 2013), a transition from spontaneous to evoked release 

(Andreae et al. 2012), the coupling of activity-dependent calcium influx to SV exocytosis and 

endocytosis (Smillie et al. 2005, Yamashita et al. 2010, Midorikawa et al. 2014), and the speed and 

mode of endocytosis used to retrieve SVs (Shetty et al. 2013, Rose et al. 2013). Therefore, a small 

shift in the expression of key presynaptic proteins may be sufficient to alter circuit activity during 

this period. In support, hippocampal nerve terminals in the Fmr1 knockout mouse display an 

“immature” phenotype when examined by electron microscopy, with altered expression of a subset 

of presynaptic proteins (Klemmer et al. 2011). Additionally, FMRP expression peaks in brain within 

the first postnatal week (Till et al. 2015, Gholizadeh et al. 2015), and Fmr1 knockout mice display 

differentially expressed synaptic proteins compared to wild-type during peak synaptogenesis, 

including increases in all three SNARE proteins (Tang et al. 2015a). This increase is due to enhanced 
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protein translation, and interestingly this divergence in synaptic protein expression is absent in 

adulthood.  

 

One other possibility for the delay or acceleration of the critical period by specific mutations is an 

age-dependent requirement for a specific gene within this time window. For example, hippocampal 

slices from Cyfip1+/- mice display increased release probability at P10, however this effect is absent 

by P21 (Hsiao et al. 2016).  Therefore, efficient SV recycling may be required during a period where 

synapses and circuits are being established and, if this process is disrupted, it may lead to NDDs.  

 

Altered proteostasis  

In contrast to dysfunctional SV recycling being the primary cause of NDDs, it may also occur as a 

secondary consequence of a more global deficit. For example, defects in local synaptic protein 

synthesis have been identified in monogenic models of NDDs such as FXS, Angelman syndrome and 

Tuberous Sclerosis (Louros & Osterweil 2016). Indeed, altered function of key postsynaptic protein 

synthesis regulatory pathways such as mammalian target of rapamycin and mGluR signalling are 

considered to be a point of pathogenic convergence for many NDDs (Costa-Mattioli & Monteggia 

2013). Dysregulation of protein translation at the presynapse may also occur in NDDs, since nerve 

terminals were recently demonstrated to contain both ribosomes and mRNA (Hafner et al. 2019). 

This study revealed that a high level of translation occurs at the presynapse (including many SV 

recycling proteins), which can be regulated in a cell-specific manner by distinct signalling cascades. 

Furthermore, approximately one third of the presynaptic transcriptome are targets of FMRP (Darnell 

et al. 2011). Therefore, dysfunctional SV recycling may be a secondary consequence of disrupted 

proteostasis, which may either exacerbate or compensate for the initial insult.  

 

Therapeutic intervention at the presynapse: current treatments and potential for the future 

Current therapeutic strategies 

The paucity of current therapeutic interventions to either control or correct NDDs is widely 

acknowledged. This may partly be related to both the targets chosen (Gurkan & Hagerman 2012, 

Wetmore & Garner 2010) and the design of clinical trials (Berry-Kravis et al. 2018). To date, the 

postsynapse has been the principal focus for these interventions, however many of the drugs tested 

also display presynaptic efficacy in preclinical models, suggesting their effect on neurotransmitter 

release may be central to their therapeutic potential.  
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The GABAB receptor agonist arbaclofen rescues synaptic abnormalities such as increased spine 

density and dysregulated protein synthesis (Henderson et al. 2012), in addition to a number of 

behavioural deficits (Silverman et al. 2015, Sinclair et al. 2017) in mouse models of FXS. GABAB 

receptor activation limits calcium influx via NMDA receptors at the postsynapse, by activating 

potassium channels to restrict depolarization (Chalifoux & Carter 2011). Presynaptic GABAB 

receptors, when activated, reduce calcium influx to limit neurotransmitter release via two different 

mechanisms. Firstly, via activation of potassium channels, which results in action potential shunting, 

and secondly, via direct effects on VDCCs (Chalifoux & Carter 2011). Therefore, arbaclofen has 

potential to control both pre- and postsynaptic function. However, when translated to clinical trials, 

it was unsuccessful in improving primary outcomes (Veenstra-VanderWeele et al. 2017, Berry-Kravis 

et al. 2017).  

 

Direct opening of potassium channels by agonists have also shown potential as therapeutic 

intervention. For example, the BK channel opener BMS-204352 rescued abnormal spine morphology 

and seizure behaviour in Fmr1 knockout mice (Hebert et al. 2014). While the therapeutic effect of 

this drug was assigned to its postsynaptic role, BK channels also limit neurotransmitter release via 

the control of action potential width (see above) (Griguoli et al. 2016). In support of a therapeutic 

presynaptic role, loss of FMRP limits BK channel activity, resulting in action potential broadening and 

increased neurotransmission (Deng et al. 2013).  A different potassium channel, the Kv7 channel, 

controls action potential initiation and propagation, thus controlling downstream neurotransmitter 

release (Greene & Hoshi 2017). The Kv7 channel agonist retigabine/ezogabine has been employed as 

an effective antiepileptic treatment in humans, but was discontinued due to undesirable side effects 

(Brickel et al. 2019).  Finally, many current AEDs inhibit either voltage-dependent sodium channels 

or VDCCs to prevent repetitive firing, reduce calcium influx and limit neurotransmitter release 

(Abou-Khalil 2019). Thus, it is likely that there is a presynaptic component to most of these 

successful interventions.   

 

A number of signalling cascades are being trialled as targets for NDD therapy. For example, the 

endocannabinoid system is disrupted in a number of genetic and environmental models (Zamberletti 

et al. 2017).  Endocannabinoids are retrograde neurotransmitters that act presynaptically by 

activating CB1 receptors, which inhibit VDCCs and thus neurotransmitter release (Katona & Freund 

2008). Furthermore, studies in conditional -neurexin knockout mice revealed that postsynaptic 

generation of endocannabinoids is tonically inhibited by this neurexin isoform (Anderson et al. 
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2015). Therefore the current interest in the use of cannabinol in NDDs (Cross & Cock 2019) may have 

a molecular locus at the presynapse.  

 

Future potential 

Aside from the current therapies being trialled, the revelation that dysfunction in SV recycling 

underlies a series of NDDs has initiated a focus on the presynapse as a target for intervention. With 

many of these disorders it is unclear how much can be potentially corrected and how much is 

already “hardwired”.  In other words, do NDDs result from a dysfunction in neuronal development or 

neuronal maintenance or both?  These are key questions that are critical to address, especially if the 

most direct route of correction – gene therapy is to be successful.  Progress in this field is 

accelerating at a tremendous rate and will be covered in detail by another review in this issue 

(Turner et al.  2020).  However, approaches to either replace the mutant gene with a wild-type copy 

either via re-expression (Mendell et al. 2017), base / prime editing (Anzalone et al. 2019, Komor et 

al. 2016) or, for X-linked disorders, reactivation of the wild-type allele (Bhatnagar et al. 2014) offer 

highly promising scope for future therapy. The rescue of a lethal phenotype in a mouse model of 

Rett syndrome (Guy et al. 2007), suggests that in some instances, there is therapeutic potential in 

delivering virus after neuronal development is complete.     

 

As stated above, gene therapy is the most direct therapy for NDDs with a genetic cause. However, in 

many cases, it may not be appropriate, such as when circuits are already established or when 

overexpression of a specific gene may reproduce a similar effect to haploinsufficiency, such as with 

DYRK1A.  Therefore, could the presynapse be an indirect target for therapy? One approach would be 

to reverse the immediate consequence of the original mutation. For example, increasing the levels 

of the PI(4,5)P2 within the presynapse rescued SV endocytosis defects and seizure activity in 

Drosophila expressing skywalker mutations, suggesting that pharmacologically increasing 

phosphoinositide production is a therapeutic strategy for TBC1D24-related disorders (Fischer et al., 

2016). Similarly, enhancing calcium influx at the presynapse by elevation of extracellular calcium 

reversed the reduced rate of SV fusion caused by the expression of SYT1 patient mutations in 

neurons (Baker et al. 2018). Finding a mechanism to increase calcium influx in brain may be 

problematic; however a similar approach via increased neuronal excitability has been used to 

successfully treat peripheral disorders caused by SYT2 mutations (Herrmann et al. 2014, Whittaker 

et al. 2015).  
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Many presynaptic molecules and SV recycling events are tightly controlled by protein 

phosphorylation. Therefore, the regulation of presynaptic signalling events and specifically protein 

kinases may provide an excellent target for future drug development (Chico et al. 2009). One 

example of this are neurotrophic factors such as brain-derived neurotrophic factor (BDNF), which 

has been targeted for treatment potential (Reim & Schmeisser 2017). BDNF levels are reduced in 

newborns who later develop ASDs (Skogstrand et al. 2019), whereas they are raised overall in 

individuals with ASD/ID compared to typically developing controls (Saghazadeh & Rezaei 2017). 

BDNF has a number of presynaptic roles, mostly mediated via signalling through TrkB receptors. For 

example, BDNF facilitates neurotransmission via either MAP kinase-dependent phosphorylation of 

synapsin-1 (Valente et al. 2012, Jovanovic et al. 2000), or via inhibition of glycogen synthase kinase 

3-dependent dynamin-1 phosphorylation, resulting in reduced ADBE (Smillie et al. 2013). Therefore, 

targeting the phosphorylation status of presynaptic molecules is a promising approach for drug 

development, however the challenge will be ensuring specificity of action.  

 

Finally, rather than addressing the outcomes of a mutation at a molecular level, or where there is no 

obvious genetic cause, NDDs could be treated via compensatory effects at the level of presynaptic 

processes. For example, in disorders of elevated excitability, targeting specific neurons or circuits in 

a use-dependent manner may be fruitful. One example is the leading AED levetiracetam, which 

binds SV2A (Lynch et al. 2004). A number of studies have suggested that the interaction with SV2A 

provides a use-dependent entry route for the drug, since levetiracetam interaction sites are located 

on the lumenal face of SV2A (Lee et al. 2015, Correa-Basurto et al. 2015). In agreement, the ability of 

levetiracetam to modulate neurotransmission is accelerated when SV recycling is triggered during its 

initial application (Meehan et al. 2011, Meehan et al. 2012).  This provides the conceptually 

appealing prospect of targeting drugs to the lumenal domains of different SV proteins as a 

mechanism to deliver a payload in a use-dependent manner.  

 

Conclusions  

It is now established that in specific cases and circumstances, presynaptic dysfunction is central to a 

number of NDDs. The types of dysfunction, and number of NDDs that this dysfunction contributes to 

will continue to grow over time. From reviewing the literature, it is apparent that disruption of most 

aspects of SV recycling can result in NDDs, which makes the task of predicting where future 

mutations in NDD genes may occur more problematic. However, this also offers hope, since 

interventions that facilitate efficient SV recycling may have wider therapeutic potential. Therefore, 

the challenge for the future is not to simply continue to collect new mutations and link them to 
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specific disorders, but to focus efforts into determining where dysfunction occurs, whether this can 

be corrected, and/or whether these interventions can be translated across a wider spectrum of 

NDDs. This approach should be enabled by the fact that most nonsense and missense mutations 

result in a loss of function (however, notable gain of function mutations do exist, as found for 

MUNC13, STXBP1 and DNM1). A positive outcome of this approach will provide a key validation for 

fundamental research in translational studies and most importantly, a generation of novel therapies 

for a series of debilitating disorders.  
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Figure 1: The SV life cycle. Synaptic vesicles (SVs) are mobilised from the reserve pool by action 

potential stimulation. SV docking and priming at the active zone defines the readily releasable pool 

(RRP) which is triggered to fuse during action potential stimulation (exocytosis) resulting in 

neurotransmitter release. SVs are then reformed by one of several methods of endocytosis. Ultrafast 

endocytosis occurs at the periactive zone and retrieves vesicles that rapidly fuse with synaptic 

endosomes from which SVs form in a clathrin-dependent manner. Clathrin-mediated endocytosis 

(CME) generates SVs direct from the plasma membrane. At high levels of neuronal activity, activity-

dependent bulk endocytosis (ADBE) is triggered, which retrieves large areas of membrane 

generating bulk endosomes, from which SVs regenerate in a clathrin-dependent process. SVs are 

then recycled back to their respective SV pools ready for further rounds of neuronal activity. 
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Figure 2: Proteins associated with NDDs and the SV life cycle. This more detailed view of the SV cycle 

summarises the presynaptic proteins associated with NDDs discussed in this review and at what 

stage of the cycle they are most likely to be involved. 
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Figure 3: SV life cycle genes categorized by NDD. The mutations in the SV life cycle genes discussed in 

this review can be categorized based on their clinical presentation into three disorders: autism 

spectrum disorder, epilepsy and developmental delay/intellectual disability. As observed in the 

overlapping portions of the diagram, different mutations in the same gene can lead to either single 

or multiple disorders highlighting the comorbidity between autism spectrum disorder, epilepsy and 

intellectual disability. Asterisks (*) indicate that mutations in these genes can be associated with 

seizures without clinically diagnosed epilepsy. 
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Figure 4: Putative mechanisms of altered circuit activity due to presynaptic dysfunction. A schematic 

representation of five proposed scenarios whereby presynaptic dysfunction may result in altered 

neurotransmission, circuit activity and ultimately NDDs. In each scheme a wild-type (WT) and a 

neurodevelopmental disorder (NDD) condition are depicted. 

 


