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Abstract 

Objective: Acute Pancreatitis (AP) is sudden onset pancreas inflammation that causes systemic 

injury with a wide and markedly heterogeneous range of clinical consequences. Here, we 

hypothesised that this observed clinical diversity corresponds to diversity in molecular subtypes 

that can be identified in clinical and multi-omics data.  

Summary Background data: Observational cohort study. n=57 for the discovery cohort (clinical, 

transcriptomics, proteomics and metabolomics data) and n=312 for the validation cohort (clinical 

and metabolomics data). 

Methods: We integrated co-incident transcriptomics, proteomics, and metabolomics data at serial 

time points between admission to hospital and up to 48 hours after recruitment from a cohort of 

patients presenting with acute pancreatitis. We systematically evaluated four different metrics for 

patient similarity using unbiased mathematical, biological and clinical measures of internal and 

external validity. 

We next compared the AP molecular endotypes with previous descriptions of endotypes in a 

critically ill population with acute respiratory distress syndrome (ARDS). 

Results: Our results identify four distinct and stable AP molecular endotypes. We validated our 

findings in a second independent cohort of patients with AP.  

We observed that two endotypes in AP recapitulate disease endotypes previously reported in 

ARDS.  

Conclusions: Our results show that molecular endotypes exist in AP and reflect biological patterns 

that are also present in ARDS, suggesting that generalisable patterns exist in diverse presentations 

of critical illness.  
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Introduction 

AP is defined as acute inflammation of the pancreas(1) and has a worldwide incidence of 

34 per 100,000 person-years(2). It is the commonest gastrointestinal cause for emergency hospital 

admission(3). Inflammatory damage to pancreatic acinar cells initiates an inflammatory cascade 

mediated by damage-associated molecular patterns, alarmins, inflammatory cytokines, metabolites 

and other soluble and cellular mediators of inflammation that propagate inflammation locally in 

the pancreas, and cause extrapancreatic organ dysfunction in the lungs, kidney, liver and other 

body systems, together resulting in multiple organ dysfunction syndrome (MODS)(4, 5). MODS 

occurs in 1 in 4 individuals who develop AP and is accompanied by deregulation of cardiovascular, 

autonomic nervous and immune system homeostasis(6), leading to death in one fifth of those with 

AP-MODS(7). Despite this currently accepted unifying disease model, clinical patterns of AP are 

markedly heterogeneous and severity is not directly proportional to the amount of pancreas damage 

on radiological imaging(8, 9). AP is caused by a wide range of precipitants, including 

choledocholithiasis, excess ingestion of alcohol, trauma, pancreatic manipulation at endoscopy, 

viral infections, certain venoms and specific prescription medicines(6). Currently, the 

clinicopathological paradigm in AP is convergent: diverse etiologies converge onto acinar cell 

damage, and the resulting systemic inflammatory response is stratified as mild, moderate or severe. 

In common with other types of systemic injury(10-16), we hypothesized the existence of molecular 

subtypes in AP, designated as endotypes(17). We predict that detailed knowledge of those 

endotypes will have clinical and therapeutic relevance(18). As new medicines for AP emerge, the 

existence of endotypes will become critical to directing treatment choices and understanding 

individualised responses to therapy. 
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The methodology to tackle this problem, particularly using time-series multi-omics data, 

is not settled. We designed a systematic, data-driven evaluation of four different metrics to 

quantify dissimilarity between patients and cluster them accordingly. 

 

Materials and Methods 

Data acquisition 

We used samples and data from the IMOFAP (Inflammation, Metabolism and Organ Failure in 

AP) cohort(19) (n=79 recruited participants) as our discovery set and samples and data from n=312 

patients from the KAPVAL (Kynurenine pathway in AP, VALidation) cohort, as the validation set 

(full details of the sampling and cohorts in Supplementary Materials and Methods).  

AP diagnosis was confirmed for 57 out of 79 recruited patients in IMOFAP according to 

the revised Atlanta criteria(20). Integrated multi-omics analysis excluded 3 patients who had a 

prolonged interval (>200 hours) after symptom onset and therefore were late in their disease 

trajectory to avoid bias (Figure 1a). The median time interval between symptom onset and 

recruitment was 21.3 hours (Q1-Q3 13.5-54.4 in hours). Multiple timed samples of peripheral 

venous blood were taken (Figure 1b). When analysing single time point data from time point 0, 

we selected 40 patients (22 mild, 14 moderate and 4 severe AP cases) based on whether they had 

a complete multi-omics dataset. When comparing time-series, we required at least two complete 

time points, therefore selecting 34 patients (16 mild, 13 moderate and 5 severe AP cases). The 

KAPVAL validation cohort included 312 participants (274 in ward care level, 7 admitted to a high-

dependency unit, and 31 to an intensive care unit) with confirmed AP and clinical data and serum 

metabolome at the time of initial presentation to hospital.  
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  Data pre-processing is summarised in Supplementary Figure 1 and Supplementary 

Materials and Methods for transcriptomics, proteomics and metabolomics data. 

Data Analysis 

We considered and evaluated four data analysis strategies. We tested single time point-

based strategy using Euclidean distances and three time-series-based methods: 1) Area Under the 

Curve and PCA, 2) PCA with Trajectory(21) and 3) Dynamic Time Warping(22) (described in 

more detail in Supplementary Materials and Methods). For all methods, we used pre-processed 

Z-scores for the concatenated dataset (metabolomics, proteomics and transcriptomics) to take full 

advantage of the breadth of available measurements.  

Single time point Euclidean distances 

The first considered strategy consisted of computing Euclidean between all pairs of patients 

at multiple time points. This was performed for time point 0, 24 and 48 hours individually and 

obtained measures were used to quantify dissimilarity between individuals. 

AUC and PCA 

For each variable and individual we computed area under the curve (AUC) values for the 

corresponding time series using the trapezoidal rule (Supplementary Materials and Methods) 

and projected this new dataset onto Principal Component (PCA) space where, using the first two 

components, we computed Euclidean distances between individuals (Supplementary Materials 

and Methods).  
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Trajectory through PCA space 

Trajectories of patients through PCA space were used to cluster patients(21), projecting all 

time points onto a two-dimensional PCA space, using the first two components. To map the 

trajectory evolution through PCA space we considered the direction between pairwise time points 

for each individual using integer values between 1 and 4 and the Hamming distance(21) to evaluate 

the dissimilarities between individuals.  

Dynamic time warping 

Dynamic time-warping (DTW) (22) is an algorithm that aligns and compare time series, 

by warping the time axis, finding the best alignment and the distance between two transformed 

curves. We compared patients using DTW, considering all pre-processed variables and estimated 

distances between pairs of individuals. 

Clustering 

We sought to discover AP endotypes within these data, specifically seeking disease 

trajectory groupings. To achieve this, we applied unsupervised clustering to patient-to-patient 

distance matrices(23), and devised a systematic, data-driven evaluation of the results from the 

different methods. 

Using the dissimilarity matrices previously obtained we clustered them using hierarchical 

clustering and Ward’s method (Supplementary Materials and Methods).  

The number of clusters was chosen according to stability, computed by generating 100 

bootstrapped sets, clustering them and assessing the overlap with the original solution. Robustness  

of these clusters and the potential to be generalisable to other cohorts was estimated 

(Supplementary Materials and Methods). 
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Validation 

To perform the validation, we selected time point 0 values to mimic a realistic situation in 

which individuals would be allocated to a subgroup as early as possible in their disease trajectory. 

As bootstrapping with cluster comparisons produced a measure of stability, we used it to 

filter solutions based on a Jaccard index (JI) threshold of 0.75(24).  

Compound set enrichment analyses were carried out to assess biological plausibility. Our 

working model was: each clustering method is intended to detect real biological similarities among 

a group of patients, rather than chance groupings due to random noise. We predicted that a method 

that detects real similarities between patients is more likely to recapitulate known biological 

groupings that drive the clustering. KEGG(25) data was used to perform the enrichment and test 

subsets of compounds. Generalised linear models were generated for each compound to test 

whether they identified groups. Results for all compounds of a set were summarised and significant 

items (using a p-value threshold of .05) used to quantify biological relevance (Supplementary 

Materials and Methods) 

Enrichment 

Partial Least Square Discriminant Analysis (PLS-DA) was used to highlight biomarkers 

within each subgroup, weighted and used to compute Variable Importance in Projection (VIP) 

scores. Applying a threshold of 1, top variables were retained for the enrichment using Reactome 

data and Fisher's exact test (Supplementary Materials and Methods). 

Validation in an independent dataset 

To validate the subgroups, we used the KAPVAL cohort clinical data and metabolomes, 

excluding drug metabolites,  normalised as done for IMOFAP. To detect data structural similarity, 
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we classified KAPVAL samples using PLS-DA models with 25 or less metabolite predictors 

(Supplementary Materials and Methods). Signals between IMOFAP and samples from the 

KAPVAL cohort allocated to these same groups were compared using metabolites not included in 

the models (369 metabolites). Additionally, we computed in-group proportions (IGP) and 

associated FDR-corrected p-values(28). Briefly, the IGP of an endotype is the proportion of 

samples allocated to that endotype having their nearest neighbour (determined using Pearson’s 

correlation coefficients) allocated to that same endotype. 

Comparison with another disease 

We compared our endotypes with ARDS endotypes described in another study(11). From 

ARDS endotypes we extracted variables rankings and compared it to rankings in each one of our 

endotypes. For each one of the two ARDS cohorts (ALVEOLI and ARMA), we compared the lists 

of ranked variables to each one of our endotypes using Spearman’s correlation coefficients and 

FDR-corrected p-values (Supplementary Materials and Methods).  

Comparison with an independent tool 

MOFA(29) highlights variables explaining variation between samples, using factor 

analysis. Model factors explaining less than 1% of the variance in all omics were dropped. We 

clustered individuals into a 4-cluster solution using two latent factors and compared MOFA to 

previously generated outputs.  

Results 

An overview of time-series analysis-based results is presented in Figure 1c. 
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Clustering 

The biology of inflammation in AP is complex and, when the entire AP cohort is taken as 

a whole, is seemingly heterogeneous. In order to uncover otherwise hidden groupings within the 

overall patient group with AP, seeking similarity between individuals who are part of an apparently 

dissimilar larger group, we integrated transcriptomics, proteomics and metabolomics data to have 

a comprehensive view of the biological processes across these different systems layers(30). 

Because the majority of patients who develop AP-MODS are admitted to critical care within 48 

hours after presentation to hospital(7), we included time points between 0 and 48 hours after 

presentation (Figure 2b). We took an unsupervised approach to the statistical analysis, i.e. without 

preconceived notions of expected dominance of certain molecular mechanisms, and we initially 

included all variables that were available to us to avoid bias due to previous findings or hypotheses. 

After data pre-processing (Supplementary Figure 1), we created a combined dataset consisting 

of 651 metabolites, 371 proteins and 19766 genes that was used as input. The area under the curve 

combined with PCA, trajectory through PCA space and dynamic time warping methods required 

more than a time point per sample and thus 20 were discarded, resulting in 34 samples being 

analysed (5 severe, 13 moderate and 16 mild AP). Demographics are presented in Supplementary 

Table 1. 

To highlight subgroups of patients of potential interest, once dissimilarity matrices were 

obtained, hierarchical clustering with the agglomerative Ward’s method(31-33) was applied 

(Figure 1c).  
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Internal validity 

Next, to ensure that the groupings that we had discovered were robust and stable, in other 

words would not be drastically altered if one or two individuals or variables changed, we used the 

Jaccard Index (JI). The stability criterion (JI>0.75) was met by the AUC in PCA space method 

(JI=0.79) and state-space trajectories in PCA space (JI=0.76), demonstrating internally robust 

groups (Figure 1c and Supplementary Figure 2, Supplementary Tables 2 and 3) whose 

structure would be expected to be recovered using a different input set. 

Biological validity, or the number of known biological processes that were discretely 

identified by the clusterings, was strongest for the AUC in PCA space clustering method over 

alternatives, based on number of FANTOM5 and KEGG gene-based and KEGG metabolite-based 

hits (Figure 1c, Supplementary Table 4). We therefore took forward AUC in PCA space as the 

solution for external validation. 

Endotype characterisation 

 In order to explore the biological relevance of the discovered endotypes, and, also if 

maximum clinical utility is to be obtained from endotype assignation in AP, the endotype should 

be identifiable as close as possible to the time the affected individual seeks medical help.  

We identified each one of our four endotypes using capital letters, A (n=13), B (n=10), C 

(n=5) and D (n=6). Each identified top variable (Figure 2a), here either gene or metabolite, was 

cross-referenced with publicly available resources (Supplementary Table 5). More specifically, 

for endotype A, prominent features consisted of: N-acetyl-3-methylhistidine and N-acetyl-1-

methylhistidine – increased after muscle myofibrillar proteolysis and in renal failure(34); XIRP1 

– encoding Xin, a muscle-specific actin binding protein upregulated within 12 hours of injury(35); 
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and MAP3K6 – a mitogen-activated protein kinase kinase involved in apoptosis signalling(36). 

Endotype B defining features were: complement factor H-related protein; HOXD3 – upregulation 

of which increases immune cell adherence by upregulating glycoprotein IIb/IIIa(37); TRIM48 – 

integral to interferon-g signaling and oxidative stress-responsive cell death via apoptosis signal-

regulating kinase 1(38); PPP1R3A(39); and REG3A – which encodes a bactericidal C-type lectin 

known commonly as pancreatitis-associated protein that, among multiple actions, alters the gut 

microbiome and regulates gastrointestinal inflammation(40) (Fig 2a). Discernable features for 

endotype C include GGT2 (g-glutamyl transferase 2) – glutathione homeostasis; dopamine 

sulphate – a marker of increased gastrointestinal metabolism of endogenous dopamine(42); 

citrulline – integral to the tricarboxylic acid cycle; and SPTSSB – the rate-limiting enzyme for 

sphingolipid biosynthesis(43). For endotype D, the thematic features were CELA2A – pancreatic 

elastase 2; UDP-glucuronosyltransferase – which is associated with Gilbert-type 

hyperbilirubinemia(44, 45); and SLCO1B7 – a liver-specific organic anion transporter involved in 

bile secretion. 

The link of biological function to endotype was achieved by using baseline data and computing 

the variable importance in projection (VIP) scores using a PLS-DA applied to the AUC+PCA 4-

cluster grouping, as shown in Figure 2a, Supplementary Figures 3 and 4. Critically, although 

the PLS-DA model was built using data solely from baseline, the clusterings obtained using time=0 

data produced inferior results, with Jaccard indexes never exceeding 0.75 (Supplementary Figure 

5). This shows that a dynamic dimension is beneficial for training an illness trajectory model.  

To add further to the biological relevance of the endotypes, we also performed a compound 

set enrichment analysis for each endotype which highlighted processes of potential interest for 

each one of the endotypes (Supplementary Figure 7).  
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 All participants with severe AP clustered in endotype A, despite data on clinical outcome 

being withheld from the model (Figure 2b), and this finding was statistically significant (severe 

vs. non-severe, Fisher’s exact test, P=.038). Furthermore, in-hospital death was reported for two 

patients, and both were allocated to endotype A, confirming endotype A to be associated to 

individuals at higher-risk of severe illness and/or death, although this association is not proven 

statistically, and will require further external validation.  Modified MODS score distributions for 

cardiovascular, renal and respiratory systems were represented and are available as 

Supplementary Figure 8. However, the etiology of AP was distributed evenly across endotypes 

(Fisher’s exact test, P=1) (Figure 2c). Gender (Fisher’s exact test, P= .67) or time of onset of 

symptoms (ANOVA, P=.97) were not statistically significantly associated with endotype 

(Supplementary Results). Independence between endotypes and systemic inflammatory response 

syndrome (SIRS) was tested for and was not rejected (SIRS vs no SIRS, Fisher’s exact test, 

P=.097) (Supplementary Figure 9).  

External validity 

 Having identified four endotypes in the discovery dataset, we wanted to see if that was 

reproducible in an independent dataset. Therefore, to externally validate the generalisability of our 

findings and confirm that the identified endotypes could also be detected in a distinct non-

overlapping cohort, we applied our analytical methods and our results in an independent dataset 

of AP patients, the KAPVAL cohort (Figure 3a and Supplementary Figures 10, Supplementary 

Tables 6 and 7). Independence between reported deaths and group allocation was not rejected 

(Fisher’s exact test, P=.39, Figure 3b). However, admission to critical care (ICU/HDU vs. ward 

stay only) was dependent of group allocation (Fisher’s exact test, P<.001, Figure 3c).  
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We computed Spearman’s correlation (comparison of ranks, validated using a t-

distribution) for each pairwise comparison of groups from both cohorts, using metabolites that 

were not used to predict the group allocations (Supplementary Figure 11, Figure 3d). We 

obtained significant results when comparing groups from IMOFAP cohort to their corresponding 

groups in KAPVAL cohort (correlation coefficients ranged from 0.38 to 0.65, corresponding 

adjusted p-values <.001 for each endotype). This demonstrated underlying biological similarity 

between corresponding endotypes and was unlikely to be observed by chance.  

We computed IGP for all endotypes, using the recruitment time point, and obtained values 

of 0.73, 0.51, 0.64 and 0.63 respectively for endotypes A, B, C and D. Associated FDR-corrected 

p-values (using permuted centroids and 10 000 iterations) were <.001 for endotypes A and D and 

0.01 for endotypes B and C. This confirmed that endotypes identified in our IMOFAP cohort were 

also present in KAPVAL and could be identified using an early time point. 

Generalisability in ARDS 

We noticed an unexpected similarity between our endotypes and disease endotypes 

reported in a related but distinct condition, ARDS(11). Severe AP can cause ARDS, but there are 

multiple other causes of ARDS including sepsis, trauma, and major surgery(46). Importantly, only 

6 out 56 AP-confirmed patients (no measured value available for n=1) in our discovery cohort met 

the Berlin definition of ARDS(47) at recruitment. Specifically, 5 of them were included in our 

clustering analysis, 4 (P:F ratios 130.3, 223, 273 and 286 mmHg) of which were allocated to 

endotype A and 1 to endotype B (P:F ration 290 mmHg). We hypothesised that the AP endotype 

C reflects the disease phenotype 1 ARDS endotype reported by Calfee et al(11).  We found 19 

variables that matched the 31 variables in the ARDS study (8 physiological, 9 clinical biochemical, 

and 2 cytokine variables that were not used to produce the clusterings and are described, at 
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recruitment, in Supplementary Table 8). There was a significant negative correlation between 

endotype A with phenotype 1 in the two ARDS cohorts reported elsewhere (FDR-corrected p-

values, P=.046 for ALVEOLI and ARMA), when considering the variables in common. 

Interestingly, endotype C correlated positively with the ALVEOLI (P=.046) and ARMA cohorts 

(P=.046). (Figures 4a and 4b) using the same variables. This suggests that the endotypes of AP 

that we report here are generalisable to another type of critical illness. 

MOFA results 

Finally, we highlighted a substantial overlap (Jaccard index 0.88, Supplementary Figure 

12) between our proposed endotypes and groups highlighted using a multi-omics data integration 

framework, MOFA(29), when using AUC values.  
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Discussion 

Disease endotyping 

Disease endotypes have been commonly described using one data type, in sepsis for 

example(12, 13, 15). However, there are advantages to using multi-omics datasets for 

endotyping(48, 49). Indeed, multi-omics-based analyses have the potential to uncover biomarkers 

and/or processes of interest that could not be highlighted using solely one omic layer(30). It is also 

possible to identify commonalities and discrepancies between different data types and explore new 

avenues for disease study. One limitation lies in the fact that adding more layers will increase the 

data dimensionality. Thus, dimensionality reduction and/or variable selection are worth 

considering when doing endotype discovery(30). It should also be noted that some data types might 

not be directly comparable and should be either homogenised or analysed separately using 

specialised frameworks taking into account these differences. 

 

Limitations 

In this study, we have clustered AP individuals using multi-omics profiles. Four clusters 

were identified using AUC values projected onto a 2D-PCA space. The clusters consisted of 13, 

10, 5 and 6 individuals, respectively for endotypes A, B, C and D. It should be noted that the 

presented solution might beneficiate from refinement using a larger cohort. Indeed, it is possible 

that some of the clusters could be further split into new clusters and/or new clusters identified, but 

not enough samples were available to do so. The identification of discriminating variables, which 

could ultimately be used to classify new AP patients into one of the four identified endotypes, 
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would also benefit from a larger cohort size. This would help in reducing the minimum number of 

variables required to confidently assign AP-affected individuals to one of the four clusters. 

When validating our endotypes, we used the KAPVAL cohort. One time point and 

metabolomics measurement were available. However, we identified similar signal within the 

KAPVAL cohort data, when compared to our four endotypes, highlighted using time-series multi-

omics data. This demonstrated that this common signal was not only driven by transcriptomics 

data, as it could have been expected due to the high number of gene variables. 

Conclusions 

Our data confirm the existence of pathobiological molecular-based endotypes in AP that 

do not clearly align with current clinical measures of severity or etiology. Using a novel serial 

evaluation approach with high-resolution multi-omics data, we systematically identify four 

endotypes that passed stability and biological relevance validation. These AP endotypes were 

validated in a second independent cohort. While it is premature to expect that identification of 

these specific endotypes will directly influence treatment decisions in AP today, in general, the 

discovery and identification of endotypes is likely to become important for future treatment choice 

and response to therapy in AP. Defining AP endotypes has permitted the identification of 

mechanisms and biomarkers of interest that could be targeted for the development of novel 

therapeutic strategies, and increase our understanding of AP. Allocating AP individuals to one of 

the endotypes could move the current paradigm towards a more personalised approach. Moreover, 

patients at higher risk, notably those allocated to endotype A, could be identified early in their 

disease trajectory, maximising their chance of a better outcome.  

Moreover, we observed a statistically significant similarity with endotypes previously 

discovered using only clinical and cytokine measurements, at a single timepoint in two large 
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(n=549 and n=473) cohorts of patients with a distinct clinical syndrome, ARDS. Despite the wide 

differences in methodology, our approach found the same signals (Figure 5).  

Our unsupervised, systematic analysis re-discovered these two ARDS endotypes in an 

almost completely non-overlapping clinical syndrome. We conclude that these patterns may reflect 

generalisable components of the host response to systemic injury. Future attempts to classify 

subtypes within critical illness syndromes, including sepsis, trauma, AP and ARDS should 

recognise the generalisability of subgrouping signals.   
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Figure legends 

Figure 1.  

a. Flow diagram for the IMOFAP cohort. Study flow chart for patient samples and data from 

the IMOFAP study included in the analysis showing filtering process and reasons for exclusion. 

After filtering, remaining samples (n=54) could be used for further analyses, however, some 

presented a single time point (n=20) and thus were not included in analyses requiring several 

samples over a time course. 

b. Sample and data time points. Samples used to generate data types and corresponding time 

points are represented. Time point 0 corresponds to recruitment time point (some clinical data was 

collected when a patient was admitted to the hospital and is represented at t=-5 hours on the figure). 

Dashed lines show the median time from admission to hospital to intensive care admission in those 

who required it (12 hours) and median time from admission to hospital to death for AP fatalities 

(82 hours)(7). 

c. AP endotypes discovery process. Data analysis overview using the 34 pre-selected IMOFAP 

individuals (individuals with less than 2 time points for one type of omics were not included in the 

analysis, n=20). Each row represents results for one of the three time-series-based method. Within 

the clustering section, hierarchical trees for each time series-based clustering method are presented 

along with the optimal solution (the optimal number of clusters and respective sample allocations 

being represented by branches colour), patient identifiers are reported on the x axis and distances 

are presented on the y axis. Stability measures are reported for all displayed solution (average 

Jaccard index) and a summary of the number of compound sets significantly enriched is shown for 

each category (respectively FANTOM5 results, gene-based results and metabolic compound 



 

  

results) in the evaluation section. Results based on a single time point (using Euclidean distances) 

were not presented here as the clusters obtained using these presented poor structure (generally a 

main group in which the majority of individuals clustered and a number of single-patient groups). 

For the selected solution (Area-under-the-curve combined with PCA), findings were reproduced 

using one AP cohort and compared to previously defined ARDS endotypes, as illustrated in the 

reproducibility section. 

 

Figure 2.   

a. AP endotypes. Heatmap of normalised and scaled variable values of the top 10 variables, 

averaged for all patients belonging to each endotype, for all four subgroups. Compound names, on 

the y axis, are reported in grey italic when corresponding to genes. Other compounds refer to 

metabolites. Group labels are reported on the bottom x and on the left y axis to highlight which 

variables correspond to which group. For visualisation purposes row values were scaled between 

0 and 1. Colours are representative of the range of values observed.  

b. Clinical severity distribution. For comparison purposes, distribution of clinical severity 

categorised by mMODS score within each endotype. For each one of the four endotypes, the 

number of patients in each severity category (mild, moderate or severe) is shown using a colour 

code. The x axis was used to represent the identified endotypes and the y axis to show the number 

of patients, per endotype, falling in each one of the severity categories.  

c. Etiology distribution.  Distribution of etiology within each endotype. For each endotype, the 

number of patients per unique etiology is shown. The x axis was used to represent the identified 

endotypes and the y axis to show the number of patients, per endotype, falling in each one of the 

etiology categories. 



 

  

 

Figure 3.  

a. Allocation of KAPVAL samples to IMOFAP-based endotypes.  Schematics representing the 

process to assign KAPVAL individuals to endotypes identified in IMOFAP cohort. This is for 

illustrative purposes only, variables and values represented do not correspond to the models 

created or the data used to build them. After identifying metabolites in common between the 

IMOFAP and KAPVAL cohorts, one PLS-DA model per endotype is built, choosing a number of 

metabolites to include to maximise the prediction accuracy. The four obtained models are then 

used to predict allocations for all KAPVAL samples, returning a value for each. A sample will be 

allocated to a group given the model for which the largest PLS-DA predicted value was obtained 

(corresponding to the closest match for a given sample). 

b. In-hospital mortality for the KAPVAL cohort. Using predicted allocations for KAPVAL 

samples, distribution of in-hospital mortality within each endotype. 1 refers to death and 0 to no 

death. The x axis represents the allocation endotypes for KAPVAL samples and the y axis the 

number of patients, per allocation endotype, falling in each one of the mortality categories. 

c. Care level for the KAPVAL cohort.  Distribution of care level for KAPVAL individuals given 

endotype allocation. Three categories of care level were used (ward, HDU for high-dependency 

unit and ICU for intensive care unit) and correspond to the three represented colours. The x axis 

shows the allocation endotypes for KAPVAL samples and the y axis the number of patients, per 

allocation endotype, falling in each one of the care level categories. 

d. Internal validation of AP endotypes. Correlation matrix representing Spearman’s correlation 

results for pairwise comparisons between training (IMOFAP) and testing (KAPVAL) data. 

Spearman's correlation coefficients were computed using average values per variable per endotype 



 

  

for AUC-PCA-based four clusters in IMOFAP (x axis) and corresponding predicted KAPVAL 

endotypes (with allocated samples, on the y axis). Correlation coefficients are represented using a 

colour code, as described by the colour bar on the figure's right-hand side. FDR-adjusted p-values 

are reported for each cell. 

 

Figure 4.  

a. ALVEOLI/ARMA and IMOFAP cohorts comparison for endotypes A and C. Variable 

values available as part of the IMOFAP study that occur in common with those reported in the 

ARDS study of Calfee et al are compared. Ranks of normalised values (Z-scores) are represented 

for endotypes A and C against ranks from Calfee et al results for the ALVEOLI cohort (upper 

panel) and the ARMA cohort (lower panel). Linear trends are plotted along Spearman’s correlation 

coefficients (using reported variable ranks) and corresponding FDR-corrected p-values. 

b. Reproducibility of AP endotypes in two ARDS cohorts. Comparisons between ARDS cohorts 

(ALVEOLI and ARMA) and IMOFAP endotypes (A, B, C and D). Using matched variables, 

Spearman’s correlation coefficients between ranked variables from Calfee et al and average Z-

scores for the four AP endotypes were computed for all pairwise comparisons.  Colours represent 

correlation coefficients values and FDR-corrected p-values are reported within each cell for all 

pairwise comparisons. 

 

Figure 5.  

Endotype model. Systematic inflammatory endotypes model. Highlighted endotypes in AP 

patients are represented alongside their overlap with ARDS endotypes described in Calfee et al.  

The top part of the figure shows pancreas injury along with their potential initiators and 



 

  

corresponding endotypes. This is reproduced in the figure bottom part, for ARDS, representing 

lung injury and some of their initiators and inflammatory endotypes. 
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Supplementary Materials and Methods 

Cohorts 
IMOFAP study details 

In brief, consecutive emergency attendees to hospital with sudden onset abdominal pain 

with nausea and/or vomiting, and a serum amylase value greater than 100 iU/L were identified 

using an automated laboratory alert system with clinical verification, at all times of day or night 

for a period of three months. Confirmation of the diagnosis of AP according to the revised 

Atlanta criteria(1) was made after recruitment in 57 of 79 recruited patients, all of them having 

developed AP before recruitment. Samples were aliquoted into specific tubes containing 

appropriate preservation solution for subsequent DNA and RNA extraction, or serum and 

plasma extracts were prepared after centrifugation and snap frozen and the cold chain 

maintained until acquisition.  

Although every effort was made to capture all time points, this was not always possible, 

and on occasion (for example, at the request of the patient to omit a short interval repeat 

venepuncture), time points were omitted. 

 

KAPVAL study details 
The KAPVAL cohort is a fully-linked anonymised biosample cohort which is made up 

of samples and data from all patients presenting to the Royal Infirmary of Edinburgh with a 

serum amylase level > 300 iU/L (3-fold above the upper limit of the reference range for our 

laboratory), clinically annotated and coded ad compliant with the revised Atlanta criteria(1) for 

the diagnosis of AP. An aliquot of gel-clot activator serum is retained and stored at -80 °C for 

all patient samples that have an elevated serum amylase. Using a linked anonymisation code, 

to which the investigators are blinded, the diagnosis of acute pancreatitis was confirmed by 

trained members of a specialist data collection team, using clinical and laboratory data obtained 

from the individuals electronic health record. The variables used in the analysis include age, 

gender, date and time of admission and discharge, diagnostic codes (3 levels), standard clinical 

biochemistry and clinical haematology tests, level of critical care, duration of critical care and 

mortality. Serum samples were used as described. 



Data acquisition 
Transcriptomics data acquisition 

2.5 ml of peripheral venous blood was collected into the PAXgene Blood RNA Tube (BD 

Biosciences) following the manufacturer’s instructions and stored at -80 °C until used. Total 

RNA was extracted and purified using the PAXgene Blood miRNA Kit (QIAGEN). The RNA 

integrity of total RNA samples was assessed using the Agilent 2100 Bioanalyzer. The mRNA 

in a total RNA sample was converted into a library of template molecules of known strand 

origin using the reagents provided in an Illumina® TruSeq® Stranded mRNA library prep 

workflow. The subsequent sequence data was obtained using Illumina HiSeq 4000 75PE 

system. 

 

Proteomics data acquisition 
Serum was obtained from peripheral venous blood by centrifugation and stored at -80 °C 

until used. Sera were subjected to depletion of abundant serum proteins using Proteome Purify 

12 Human Serum Protein Immunodepletion Resin (R&D Systems). Denaturing was followed 

by alkylation with N-ethylmaleimide and acetone precipitation. Digestion used lysyl 

endopeptidase (LysC) and trypsin before labelling with 10plex TMT reagents (Thermo Fisher 

Scientific). TMT-labelled peptides were fractionated into 4 fractions each by High-pH Reverse 

Phase chromatography then each fraction analysed by RPLC-MS/MS/MS (70 min linear 

gradient) on a Fusion Tribrid Orbitrap operating in Data Dependent Acquisition mode 

(MultiNotch Simultaneous Precursor Selection method; MS1: profile mode, Orbitrap 

resolution 120k, 375-1550 m/z, AGC target 200,000, 50 ms max. injection time, RF lens 60%; 

MS2: centroid mode, IonTrap, 12 dependent scans, 1.2 Th isolation window, charge states 2-

7, 60 s dynamic exclusion, CID fragmentation (35%, activation Q 0.25), AGC target 10,000, 

70 ms max. injection time; MS3: profile mode, 5 precursors, 2 Th isolation window, Orbitrap 

resolution 50k, 100-500 m/z, AGC target 50,000, 105 ms max. injection time, HCD 

fragmentation (60%)). Control samples were used as internal cross-channel controls in 

different TMT samples and in different TMT channels to avoid any specific bias. Raw files 

were searched with MaxQuant (version 1.5.7.4) against a human proteome obtained from 

UniProt, with the match-between-runs option selected to allow for transfer of peptide 

identifications between files. 

 



Metabolomics data acquisition 
Serum was obtained from peripheral venous blood by centrifugation and stored at -80 

°C until used. Aliquots of sera were shipped on dry ice to Metabolon Inc., 617 Davis Drive, 

Suite 400, Durham, NC 27713 USA. Serum samples underwent automated protein depletion 

using methanol (MicroLab STAR® system) followed by four fraction analysis by UPLC-

MS/MS with positive ion mode electrospray ionization, UPLC-MS/MS with negative ion mode 

electrospray ionization, LC polar platform and, GC-MS. QA/QC steps included: a pooled 

matrix sample as a technical replicate throughout, extracted water samples as process blanks, 

and a bespoke cocktail of QC standards spiked into every sample for instrument performance 

monitoring and chromatographic alignment. Instrument variability was determined by 

calculating the median relative standard deviation (RSD) for the standards.  Overall process 

variability was determined by calculating the median RSD for all endogenous metabolites (i.e. 

non-instrument standards) present in 100% of the pooled matrix samples. Ultrahigh 

Performance Liquid Chromatography-Tandem Mass Spectroscopy (UPLC-MS/MS):  The 

LC/MS portion of the platform used a Waters ACQUITY ultra-performance liquid 

chromatography (UPLC) and a Thermo Scientific Q-Exactive high resolution/accurate mass 

spectrometer interfaced with a heated electrospray ionization (HESI-II) source and Orbitrap 

mass analyser operated at 35,000 mass resolution. Gas Chromatography-Mass Spectroscopy 

(GC-MS):  The samples for GC-MS was derivatized under dried nitrogen using bistrimethyl-

silyltrifluoroacetamide and separated on a 5% diphenyl / 95% dimethyl polysiloxane fused 

silica column (20 m x 0.18 mm ID; 0.18 um film thickness) with helium as carrier gas and a 

temperature ramp from 60° to 340°C in a 17.5 min period and analysed on a Thermo-Finnigan 

Trace DSQ fast-scanning single-quadrupole mass spectrometer using electron impact 

ionization (EI) and operated at unit mass resolving power. Data Extraction and Compound 

Identification:  Raw data were extracted, peak-identified and QC processed using Metabolon’s 

hardware and software and compounds were identified by comparison to library entries of 

purified standards or recurrent unknown entities. Metabolite Quantification and Data 

Normalization:  Peaks were quantified using area-under-the-curve.  Where runs spanned 

multiple days, a data normalization step was performed to correct variation resulting from 

instrument inter-day tuning differences. 

 



Data pre-processing 
Transcriptomics data pre-processing 

RNA-Seq data consisted of 75bp paired-end Illumina reads stored as FASTQ files. One 

batch was carried out using polyA selection and the other using rRNA depletion. Reads were 

filtered based on QC results (FASTQC v0.11.2) to trim low-quality ends using a phred 

threshold of 20 and discard resulting reads shorter than 25bp. Read alignment was performed 

against the genome assembly hg38 using  STAR(2) (v2.5.0a). Counts were generated as a 

proxy for gene expression by assigning previously aligned reads to exons using the tool 

featureCounts(3) (v1.5.2). hg38 genome was used as the reference genome. The difference in 

RNA sequencing (library preparation) was accounted for using a protein-coding only filter, a 

batch removal algorithm (using the ARSyNseq function from NOISeq R library(4)) and a 

normalisation step (FPKM). Finally, the normalised counts were transformed into Z-scores. 

This allowed a comparison across samples. PCA plots of the counts before and after batch 

effect removal are available in Supplementary Figure A. 

Supplementary Figure A. Batch effect correction for RNA-Seq data. PCA plots before and 

after batch effect removal. RNA-Seq counts values obtained using featureCounts, for coding 

genes only, are represented in the left figure. The same counts, after batch effect correction and 

FPKM normalisation are represented in the right figure. We chose to represent the top two 

principal components (PC1 on the x axis and PC2 on the y axis) in terms of represented 

variance (as reported on the corresponding axes). Batches are represented using defined colours 

and shapes, as presented in the legend element. 

 

Proteomics data pre-processing 
After raw data acquisition and initial processing to generate intensity-based values, any 

protein species with 90% or more missing values was discarded. Scaling and linear imputation 

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●●

● ●●
●

●

●●

●

●

●

●●

●
● ●

●
●

●

●

●

●

●

●

●

●

●

●●

● ●
●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●
●
●

●

●

●

●

●●

●

●
●●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

−100 −50 0 50 100

−
10

0
0

50
10

0

Scores

PC 1 41 %

PC
 2

 2
8 

%

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●●

●

●
●●

●●

●

● ●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

2
3
1

●

●

●

●

●

●

●

●
●

●

● ●
●

●

●
●

●●
●

●

●
●
●

●●

●

●●

●●
●

●

●

●●

●
●

●

●
●● ●

●

●
●

●

●●

●
●

●

●

●
●

●

●
●

●

●● ●

●

●

●●

●

● ●

●

●

●●

●

●

●
●●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●
●

●●

●

●

●
●

●●

●

●

●

●●

●

●

●●
●

●

●● ●

●

●●

●

●
●

●
●

●

−100 −50 0 50 100

−
10

0
−

50
0

50
10

0

Scores

PC 1 48 %

PC
 2

 1
0 

%

●
●●

●

●
●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●●

●

●
●

●

●●

●

●

●

●●

●

●
●●

●

●
●● ●

●

●●

●

●
●

●
●

●

●

2
3
1



were applied using the minimum value for each compound, as any missing value would suggest 

a value below the detection limit. As samples from similar batches grouped together when 

performing the clustering step, we corrected for it with ComBat, using a parametric empirical 

Bayes framework, to remove the irrelevant variation between samples due to the different runs 

carried out.  Measurements were then transformed into Z-scores.  

 

Metabolomics data pre-processing 
Metabolomics data consisted of an abundance list (raw ion counts). Data were pre-

processed using a similar pipeline as the one used for the proteomics data but did not require a 

batch effect removal step. Data from the KAPVAL cohort was pre-processed in the same way. 

 

Data analysis 
Analyses were carried out using Python (version 3.5) and R (version 3.3.2). Libraries 

used include dtwclust in R and numpy, pandas, rpy2, scipy, sklearn, statsmodels in Python.  

The total starting data set consisted of the relative expression of a normalised set of 

19766 genes, integrated with 1383 protein and 686 metabolite abundances. After data pre-

processing, the dataset consisted of 651 metabolites, 371 proteins and 19766 genes. 

 

Distance metrics and clustering 
Area Under the Curve and PCA 

Each time series was summarised by computing its AUC value, a single value 

representing the cumulative magnitude of response over time and computed using the 

trapezoidal rule (based on linear interpolation by interval). Consequently, values obtained for 

each variable could be treated as independent from others. We normalized the values based on 

the time difference between the first and last included time points. Using this new dataset we 

projected the values in a principal component analysis space where, selecting the first two 

components, we computed Euclidean distances between the different individuals. The 

Euclidean distances were weighted according to the proportion of variance explained by each 

principal component. PCA is a method of choice when encountering high dimensionality data 

(because of its dimensionality reduction ability), as much for data visualization as for data 

analysis, and is hypothesis free(5). Indeed, PCA is only sensitive to the correlation structure in 

the data and does not make specific assumptions related to the stratification of the input data. 

 



Trajectory through PCA space 
As described in another study(6), trajectories of patients through selected components 

can be helpful when clustering patients. Here we projected all time points of each individual 

onto a two-dimensional PCA space and looked at their evolution through this newly defined 

space. To characterize the trajectory of an individual through this space we considered the 

direction taken between each pair of time points for these particular patients. We coded this 

direction with a value of 1, 2, 3 or 4 depending on the direction taken when dividing the space 

into four quadrants. This was repeated for all patients and eventually a vector of directions was 

obtained for each patient.  

The Hamming distance was used to compare the vectors. When taking two vectors of the same 

length, the Hamming distance is computed by counting, in an element-wise fashion, the number 

of different elements. The values were then used as dissimilarity measures between patients. 

This allowed to combine the advantages of PCA and trajectory analysis.  

 

Dynamic time warping 
Computation of distances between patients using dynamic time warping was carried 

out using the dtwclust package in R. The algorithm then considers each pair of samples. More 

specifically, for each variable, a matrix is generated and reports the difference in magnitude 

between all possible pairs of time points. One matrix of dimensions (time series 1 length*time 

series 2 length) is obtained for each variable. A summary matrix is generated for each patient 

by summing the individual matrices associated to each variable, element-by-element. The 

warping consists of finding a trajectory in that matrix that will minimize the distance between 

the two series. The process will start from the matrix element corresponding to the first points 

of the two series being compared (in other terms the first element of the summary matrix) and 

will end when reaching the last series points (corresponding to the last element of the matrix). 

As this is performed on a summarized matrix, the selected warping represents a consensus 

alignment minimizing the summed differences in magnitude between the two multivariate 

time-series. From this warping a final distance is calculated and can be used as a dissimilarity 

value. We performed linear imputation on time series when time points were not equally spaced 

or missing. It was preferred as it allowed a fairer comparison when dealing with time series of 

different lengths/sampling pattern. 

 



Clustering 
Clustering, allowing to group individuals from a cohort, was performed using hierarchical 

clustering and Ward’s method. Ward’s method is an agglomerative method and works by 

minimizing distances within each group. Although it is usually used for Euclidean related 

distances (which is not the case for all the presented methods) it has been used successfully for 

other types of distance(7-9) and produced the best results here when compared with others (in 

terms of validation results). The number of clusters was chosen according to the stability of 

each solution. For all number of clusters ranging from two to twenty we assessed this using 

bootstrapping combined with the Jaccard index. For a chosen number of clusters k we replaced 

individuals from the initial cohort to create a new input dataset. It was then used to re-perform 

the clustering 100 times. Each one of the new results obtained was compared to the initial 

solution given k clusters. Each cluster from the k generated clusters was compared to the most 

similar cluster of the initial solution. The Jaccard index computed the overlap between the two 

and this was averaged for all matched groups that were part of a solution. After 100 repetitions 

we obtained a value for each k number of clusters by taking the average of the averaged Jaccard 

indexes and the solution with the highest value was chosen as the best one. Twenty was chosen 

as the maximum number as any greater value would have resulted in many clusters composed 

of one or very few individuals. This was not desirable as very little information could have 

been drawn from it. Additionally, we chose not to select for further analyses any solution with 

one group or more presenting less than three individuals. 

 

Validation 
Number of clusters and stability 

For all number of clusters ranging from two to twenty we assessed stability using 

bootstrapping combined with the Jaccard index, as defined in the previous section.  

 
Biological plausibility 

Compound identifiers were converted when necessary using R package biomaRt. Data 

used consisted of KEGG(10) pathways extracted from R package GAGE(11) when analysing 

gene and protein data and from MetaboAnalystR(12) when analysing metabolites. As four 

groups were identified, the aim was to assess whether or not a subset of compounds 

(corresponding to a pathway) was associated with the group label. For each pathway this was 

tested using generalised linear models. A model was fitted to the data for each compound of a 

corresponding pathway with the group label being the fixed effect and the response variable 



being the values associated to this gene. To assess the effect of the group on the values, we 

performed a likelihood test to compare the newly created model to a null model, returning a 

single p-value. Using Stouffer’s method to combine p-values, we computed a single p-value 

per pathway. For elements of a pathway, individual p-values were given a weight 

corresponding to the inverse of the total number of pathways a gene was involved in. This, this 

prevented overlapping pathways from biasing our results. R function anova with test="LRT" 

was used to do the tests. As the gene sets tested for enrichment were the same for each one of 

the three methods tested to cluster individuals, p-values were used to quantify the biological 

relevance of a clustering. Each compound set with an associated value under the threshold of 

.05 was counted as differentially expressed and counts obtained for each method were 

compared to determine the most biologically relevant result. FANTOM5(13, 14)  co-

expression clusters were used to compare cell type gene signatures with our groups and thus 

allowing the discovery of closely involved cell types. The same strategy was applied to 

determine if a compound set was significantly enriched or not, using the same 5% cut-off. 

Results were used as a way to quantify the biological pertinence, have an overall look at the 

results and select clustering solutions. 

 
Enrichment analysis 

Partial Least Square Discriminant Analysis (PLS-DA) is a classification algorithm. 

PLS-DA models were used to select variables for the enrichment analysis. Given group labels 

it will project the data onto a new space, given a number of components selected by the user, 

and then rotate the components to maximize the separation between samples of different 

groups. Finally, weights can be extracted and a correlation with each variable computed.  This 

is called Variable Importance in Projection and the higher the value the more the variable will 

have contributed to the classifier model.  We filtered variables deemed significant for the 

classification task  using a VIP threshold value of 1(15) for each one of the models. The lists 

were then used to perform compound set enrichment analysis.  

To analyse the list produced for each group we first generated a Reactome database 

using files freely available from the Reactome website (https://reactome.org/download-data, 

lowest level pathway files). As our variables were of different type (transcriptomics, 

proteomics and metabolomics) we generated a merged pathway list using different Reactome 

files. Pathways were then selected for analysis if they had 10 or more compounds and no more 

than 500 as they were deemed neither robust nor informative. We then used Fisher’s exact test 

to obtain a p-value per pathway based on the number of matches present in our list and the total 



number of compounds considered initially to be included in the list of interest. For each list p-

values obtained from this test were then corrected using an FDR based strategy and represented 

applying a threshold of .001. Following the same strategy, time points 24 and 48 were also 

analysed and results added alongside the ones obtained for time point 0. 

 

Validation in an independent dataset 
PLS-DA models with 3 components were created for each one of the IMOFAP group 

but using solely metabolites that were available for the KAPVAL cohort as well. VIP scores 

were computed and a threshold of 25 variables was set as a maximum of features to be included 

in each model. An optimal number of variables between 3 and 25 was selected based on 

maximum accuracy values.  

To determine allocations for the KAPVAL cohort we applied each one of the PLS-DA 

models to all KAPVAL individual and allocated them to the group from which they were the 

closest to.  

To compare the biology between the groups of the two cohorts we computed average 

values per variable per group and compared them between the cohorts as inspired by Sweeney 

and al.(16). We only compared metabolites that were not included in the PLS-DA models used 

to classify KAPVAL individuals (369 metabolites). To perform the comparison between 

average values we computed Spearman’s correlation (comparison of ranks, p-values computed 

using a t-distribution) for each pairwise comparison of groups from both cohorts. Z-score 

values for the IMOFAP cohort and for KAPVAL allocated samples can be visualised at 

http://baillielab.net/pancreatitis/validation (username: pancreas and password: review). 

 
Comparison with an external dataset 
 To compare obtained endotypes with external data, ARDS endotypes definitions(17) 

were selected. Matched variables between the IMOFAP and chosen ARDS datasets were 

compared using variable ranks and Spearman’s correlation coefficients.  

When computing Spearman’s correlation coefficients and associated p-values for, we used the 

statsmodels and scipy modules in Python.  



Supplementary Results 

Clustering results 
For the AUC+PCA method, the total percentage of variance explained by the first two 

components used was 51.5%, comprising 40.2% for PC1 and 11.3% for PC2. For this four-

group solution, the silhouette score(18) based on the distance matrix was 0.39 (range 0.23 to 

0.57). 

Moreover, we generated a clustering for the AUC combined with PCA method using 

the residuals from a linear model which included gender, age and time of onset. The 4-cluster 

solution obtained using the corrected data was compared to the chosen partition and showed a 

high level of similarity (JI = 0.82 and distance matrices correlation, using a Mantel test, showed 

a correlation of 0.91 with an associated p-value of .01). 

Based on PLS-DA results, for all compounds with a VIP associated value greater or 

equal to 2 averaged time profiles and AUC values can be obtained via an online page that can 

be accessed through the following address: http://baillielab.net/pancreatitis/, username: 

pancreas and password: review) along with some clinical and cytokine measures (filtered 

variables based on ANOVA results and a threshold of .05).   

It is interesting to note that correlation between distance matrices obtained using only 

one type of omics and the complete distance matrix (as used to highlight the presented clusters), 

using Mantel test, suggest that most of the signal can be attributed to transcriptomics data 

(correlation value equal to 1, FDR-corrected p-value <.001). Moreover, the correlation 

coefficient between the metabolomics-based distance matrix and the complete distance matrix 

shows a value of 0.22 (FDR-corrected p-value 0.03), suggesting some contribution. 

Length of stay varied between the groups with the reported values of endotype A 

globally higher when compared to others (median values were 5.9, 5.1, 4.5 and 5.3 days 

respectively, for each group with corresponding Q1-Q3 3.2-12.8, 2.8-10.8, 2.5-9.7 and 3.3-7.8, 

in days Supplementary Figure B). 



 

Supplementary figure B. Length of stay for the KAPVAL cohort. Box plot of length of 

hospital stay (in days) per identified endotype for KAPVAL allocated samples. The bars 

represent 95% confidence intervals and the central bar depicts the median value. The x axis 

shows endotypes to which KAPVAL samples were allocated (A, B, C and D) and the y axis, 

the length of stay for each one of the allocated samples, in days. 

 

External validity 
We also noticed a great difference in structure between our endotypes and the ones 

highlighted using MOFA when applied to baseline KAPVAL data (Jaccard index 0.22, 

Supplementary Figure C), confirming that baseline data alone cannot be used directly to 

highlight the structure of AP endotypes and that previous knowledge of patient trajectories is 

required to generate the endotype models. However, once established the models could be 

applied to presentation data without the further need to collect several time points. 



 
Supplementary figure C. MOFA tools results compared to highlighted clusters with 

KAPVAL cohort data. Using KAPVAL metabolite data and selecting a 4-cluster solution, 

comparison of results. KAPVAL samples were allocated to the four endotypes identified (using 

AUC combined with PCA) and as illustrated in Figure 3a. Colours indicate the results of the 

allocation obtained using PLS-DA models and shapes show MOFAtools results when choosing 

four clusters and two latent factors. Values of KAPVAL samples on the latent factors are 

plotted on the figure. 
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Supplementary Figures 
 

 

 
Supplementary Figure 1. Pre-processing summary. For metabolomics (panel a), proteomics 

(panel b) and transcriptomics (panel c), an overview of the pre-processing steps presented in 

the Materials and Methods section is shown. Metabolomics and proteomics data were pre-
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processed in a very similar way. A filtering was applied to discard variables with 90% or more 

missing values. This was followed by an imputation step using variables minimum value, as a 

missing value indicates a value below the detection limit. To remove the batch effect present 

in the proteomics data, ComBat was used. For both metabolomics and proteomics, a Z-score 

scaling was applied and was followed by linear interpolation. Quality control was done for raw 

transcriptomics data (using FASTQC results to trim reads with low ends using a phred 

threshold of 20 and discard reads shorter than 25 bp). Alignment and quantification using 

respectively STAR and featureCounts was performed and was followed by FPKM-

normalisation. As with metabolomics and proteomics data, Z-score scaling and linear 

interpolation were applied. 
 

 

 
 

 

 
 

 
 

 

 
 

 
 

 

 
 
 
 

 

 

 



 

 

 

 

Supplementary figure 2. Overlap between the different clustering solutions. For the 

optimum clustering (AUC+PCA-based, consisting of 4 clusters), comparison with other four-



group solutions obtained using the two other main methods (Trajectory and DTW). Average 

Jaccard Index (JI) values (one value is computed for each of the four groups) are reported for 

each comparison to assess the overlap. Numbers within the circles correspond to numbers of 

individuals.  Group matching (to determine which group of the first method should be 

compared to a group of the second method) between two methods was performed by trying all 

possible pairwise combinations and choosing the one producing the highest average Jaccard 

index. For any A vs B comparison, blue sections correspond to the number of cluster elements 

in common between solutions A and B. Orange and white sections refer to cluster elements not 

in common but respectively part of solution A and B. DTW refers to dynamic time warping, 

AUC+PCA to area-under-the-curve combined to principal component analysis and trajectory 

to trajectory in principal component analysis space. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



 

 

 



 
Supplementary figure 3. PLS-DA top variables for each identified endotype. The top 10 

variables from the four PLS-DA models (for clusters A, B, C and D) are presented. Top 

variables were extracted based on VIP (Variable Importance in Projection) values. Names on 

the y axis refer to gene (in grey italic) or metabolite compounds. Values reported on the x axis 

are VIP values and are computed using correlation values between PLS-DA components and 

group labels. A high VIP value represents a high contribution of the variable to the model. 

 

 

 

 

 

 



Supplementary figure 4. AP endotypes overview for VIP-selected variables. Heatmap of 

normalised and scaled variable values of the top 10 variables (as reported in Supplementary 

figure 3), for each identified group. Compound names, on the y axis, are reported in grey italic 

when corresponding to genes, all others refer to metabolites. Patient identifiers are reported on 

the bottom x axis and colours represent endotype allocations on the top x axis. For visualisation 



purposes row values were scaled between 0 and 1. Colours are representative of the range of 

values observed. A star indicates a patient who did not survive. 

 

  



 
Supplementary figure 5. Hierarchical clustering result for time point 0 data. Using only 

time 0 data and choosing two as an arbitrary number of clusters, dendrogram based on 

Euclidean distances and Ward’s algorithm. Patient identifiers are reported on the x axis and 

distances on the y axis. 
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Supplementary figure 6. Time profiles per group for selected variables. Time series 

generated from average Z-score value per time point per group identified using our AUC-PCA 

strategy. Imputed values (using linear imputation and 3-hour intervals) were used to generate 

the plots.  The top 2 variables per group were selected from PLS-DA results using VIP scores 

and consisted of 5 genes and 3 metabolites. The average Z-score values per time point are 

represented using the y axis. Points represent sampling times. The x axis shows time in hours 

and curves were obtained using Cardinal splines. Graphs were produced with 

http://baillielab.net/pancreatitis/ (username: pancreas and password: review, graphs generated 

by clicking on variable names) using D3.js. 
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Supplementary figure 7. Enrichment results. Significant pathway terms (filtered using an 

adjusted p-value threshold of 0.01%) from enrichment results for each identified group based 

on variables lists selected using VIP scores. For the enrichment analysis we selected variables 

with a VIP score value equal to or greater than 1, based on PLS-DA models. Pathway data was 

fetched from the Reactome pathway database. Time point 0 was selected for assessment and 

all data types were included (metabolites, proteins and genes). Results for time points 24 and 

48 hours are reported as well.  Fisher’s test was used to generate p-values. Pathway full names 

are reported in the figure. Columns represent results for one endotype at a selected time point. 

A coloured cell represents a significant value and a white cell a non-significant value (based 

on FDR-adjusted p-values). 
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Supplementary figure 8. Modified MODS distribution per endotype. For each one of the 

four endotypes, the number of patients in each modified MODS category (respectively 

cardiovascular, renal and respiratory) is shown using a colour code. Patients were categorised 

in two classes, as described in the figure’s legend. A value of 1 was given to any patient having 

a modified MODS greater than one at time point 0. A value of 0 was given otherwise. nan 

represents a missing value. The x axis was used to represent the identified endotypes and the y 

axis to show the number of patients, per endotype, falling in each one of the described modified 

MODS categories.



 

 

 
Supplementary figure 9. SIRS distribution per endotype. For each one of the four 

endotypes, the number of patients in each SIRS (Systemic Inflammatory Response Syndrome) 

category is shown using a colour code. Patients were categorised in three classes, as described 

in the figure’s legend, corresponding respectively to SIRS persisting for 48 or less consecutive 

hours, SIRS persisting for more than 48 hours and no reported SIRS. The x axis was used to 

represent the identified endotypes and the y axis to show the number of patients, per endotype, 

falling in each one of the described SIRS categories. 

 

 

 

 

 



 
Supplementary figure 10. Flow diagram for the KAPVAL cohort.  Study flow chart for 

patient samples and data from the KAPVAL study included in the analysis showing cohort 

structure. Individuals were-prefiltered for hyperamylasemia and thus all 312 individuals were 

kept for the analysis. As opposed to the IMOFAP cohort, symptoms onset time was not 

recorded and thus no filtering could be performed in that regard. 
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Supplementary figure 11. PLS-DA predicted values for each identified endotype. PLS-

DA predicted values distribution plots for all four identified endotype. When building the 

models, a value of 1 is assigned to the current endotype and a value of -1 to all others. For each 

endotype, distribution of predicted values, as returned by the PLS-DA procedure, for assigned 

(represented in blue, assignment to the best matching group) and unassigned KAPVAL 

individuals (depicted in pink) are represented. Kernel density estimates are fitted for both 

unassigned and assigned samples in each endotype graphs. 

 

 

 



 
 

 

 

 

  
Supplementary figure 12. MOFA tools results compared to highlighted clusters with 

IMOFAP cohort data.  Comparison of MOFAtools results with AUC+PCA-derived clusters. 

AUC values were used as input (to be consistent with the AUC+PCA strategy) and a 4-cluster 

solution was extracted from MOFA results using the first two latent features (LF1 and LF2). 

Colours are representative of clusters described in this paper and shapes of MOFAtools 

predicted allocations. LF1 and LF2 axes represent latent factors as defined by the MOFA 

algorithm. Values for the two latent factors are plotted.  
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Supplementary Tables 
Supplementary Table 1. Demographics. Summary clinical data for clustered participants 

(n=34) of the IMOFAP cohort. The cohort is fully described in Skouras et al (for n=57 AP 

patients, including n=3 patients with a symptoms onset at recruitment equal to or greater than 

200 hours and 20 individuals with data available only for one time point). 

  



Number of patients  34 
    Gender   
     Male     55.88% (n=19) 
    Age (years)   
     Median     58.30 
     IQR     23.05 (49.60-72.65) 
    BMI   
     Median     27 
     IQR     7.75 (23-30.75) 
    Source of recruitment   
     A&E     94.12% (n=32) 
     Other     5.88% (n=2) 
    Length of hospital stay (days)   
     Median     5 
     IQR     3 (4-7) 
    Aetiology   
     Gallstones     50.00% (n=17) 
     Alcohol     29.41% (n=10) 
     Other     20.59% (n=7) 
    Charlson index (time point 0)   
     Median     2 
     IQR     3 (1-4) 
    Inhospital mortality (binary)   
     1     5.88% (n=2) 
    Time onset recruitment (hours)   
     Median     22.23 
     IQR     40.86 (11.96-52.81) 
    Alcohol use   
     Current     47.06% (n=16) 
     Previous     8.82% (n=3) 
     None     44.12% (n=15) 
    Smoking   
     Current     29.41% (n=10) 
     Previous     14.71% (n=5) 
     None     55.88% (n=19) 
    Critical care admission (binary)   
     1     8.82% (n=3) 
    APACHE II day 1   
     Median     10 
     IQR     5 (8-13) 
    Previous AP   
     0     61.76% (n=21) 
     1     29.41% (n=10) 
     2     5.88% (n=2) 
     3 or more     2.94% (n=1) 
    CRP (mg/L) (time point 0)   
     Mean     76.21 
     SD     98.86 

 

  



Supplementary table 2. Clustering similarities for 3-cluster solutions. For each time-series-

based method (AUC combined with PCA, Trajectory within PCA-space and dynamic time 

warping), based on 3-cluster solutions, pairwise comparisons were made. Average Jaccard 

index values (averaged over the 3 clusters being compared) are reported in the following table. 

As described for Supplementary figure 2, for a given pairwise comparison, clusters between 

two solutions were matched by maximising the average Jaccard index value. Values are 

displayed for each pairwise comparison and give an idea of the similarity between clustering 

obtained with different methods. Network graphs allowing to compare the different solutions 

can be generated using http://baillielab.net/pancreatitis/networks (username: pancreas and 

password: review). 

 

Average Jaccard 

index 

AUC+PCA PCA+Trajectory Dynamic time warping 

AUC+PCA / / / 

PCA+Trajectory 0.31 / / 

Dynamic time warping 0.63 0.27 / 

 

Supplementary table 3. Clustering similarities for 5-cluster solutions.  For each time-series 

method (AUC combined with PCA, Trajectory within PCA-space and dynamic time warping), 

based on 5-cluster solutions, comparisons were run using Jaccard index values (computed as 

described in Supplementary table 2). Reported values are averaged Jaccard indexes. Values are 

displayed for each pairwise comparison and gives an idea of overlap between the different 

clustering solutions. Network graphs are available at http://baillielab.net/pancreatitis/networks 

(username: pancreas and password: review). 

 

Average Jaccard 

index 

AUC+PCA PCA+Trajectory Dynamic time warping 

AUC+PCA / / / 

PCA+Trajectory 0.24 / / 

Dynamic time warping 0.46 0.21 / 

 
  



Supplementary table 4. Top compound sets. Using glm in R, top 20 pathways (using KEGG 

data for gene, protein and metabolite data and FANTOM5 data for gene and protein data) for 

clusters obtained using the AUC combined with PCA method. FDR-corrected p-values 

obtained are reported along with pathway identifiers and complete names. Input data 

corresponds to time point 0. 

 
Pathway FDR-corrected p-value 

hsa00190 Oxidative phosphorylation <.001 

hsa00230 Purine metabolism <.001 

hsa00240 Pyrimidine metabolism <.001 

hsa00510 N-Glycan biosynthesis <.001 

hsa00970 Aminoacyl-tRNA biosynthesis <.001 

hsa03008 Ribosome biogenesis in eukaryotes <.001 

hsa03010 Ribosome <.001 

hsa03013 RNA transport <.001 

hsa03015 mRNA surveillance pathway <.001 

hsa03018 RNA degradation <.001 

hsa03040 Spliceosome <.001 

hsa04010 MAPK signaling pathway <.001 

hsa04110 Cell cycle <.001 

hsa04120 Ubiquitin mediated proteolysis <.001 

hsa04141 Protein processing in endoplasmic reticulum <.001 

hsa04142 Lysosome <.001 

hsa04144 Endocytosis <.001 

hsa04146 Peroxisome <.001 

hsa04660 T cell receptor signaling pathway <.001 

hsa00280 Valine, leucine and isoleucine degradation <.001 

 

  



Supplementary table 5. Heatmap compounds characteristics. Compounds detailed table for 

heatmap presented in figure 2a. As ordered in figure 2a. Complete gene names were fetched 

using the GeneCards resource and additional information using online resources such as 

HUGO Gene Nomenclature Committee, NCBI EntrezGene, UniProtKB, Ensembl, NCBI 

PubChem, NCBI PubMed and Google Search. Compounds reported in grey italic correspond 

to genes and others to metabolites. 
Heatmap compound Complete name Additional information 

GNAl1 G Protein Subunit Alpha I1 N-acetyl transferase activity 

SPTSSB Serine Palmitoyltransferase 
Small Subunit B 

Tricarboxylic acid cycle(19) 

Citrulline / Sphingolipid biosynthesis 

Dopamine sulfate (2) / Gastrointestinal dopamine 
metabolism(20) 

Testosterone sulfate /  

5-acetylamino-6-amino-3-

methyluracil 

/ 

Caffeine metabolism(21) 
5-acetylamino-6-
formylamino-3-methyluracil 

/ 

GGT2 Gamma-Glutamyltransferase 2 g-glutamyl transferase; 
Glutathione homeostasis 

URGCP-MRPS24 URGCP-MRPS24 Readthrough  

ENSG00000262526 / Protein coding 

OR5D16 Olfactory Receptor Family 5 
Subfamily D Member 16 

 

CTAG1A Cancer/Testis Antigen 1A  

MYADML2 Myeloid Associated 
Differentiation Marker Like 2 

 

Ribose /  

CELA2A Chymotrypsin Like Elastase 
Family Member 2A 

Pancreatic elastase-2 

HOXD9 Homeobox D9  

OR6C6 Olfactory Receptor Family 6 
Subfamily C Member 6 

 

UGT1A3 UDP Glucuronosyltransferase 
Family 1 Member A3 

Associated with Gilbert-type 
hyperbilirubinemia(22, 23) 

SLCO1B7 Solute Carrier Organic Anion 
Transporter Family Member 
1B7 (Putative) 

Cysteine-type endopeptidase 

USP17L18 Ubiquitin Specific Peptidase 17-
Like Family Member 18 

Liver-specific organic anion 
transporter; Bile secretion 

DMRTC1 DMRT Like Family C1  

CGB3 Chorionic Gonadotropin Subunit 
Beta 3 

 

N-acetyl-1-methylhistidine* / Amino acid metabolism; 
Rhabdomyolysis; Renal 
failure(24)  

N-acetyl-3-methylhistidine* / 

PPP1R42 Protein Phosphatase 1 
Regulatory Subunit 42 

 



SLC16A8 Solute Carrier Family 16 
Member 8 

Lactate transporter; Ketone 
body transporter 

KRTAP6-3 Keratin Associated Protein 6-3  

XIRP1 Xin Actin Binding Repeat 
Containing 1 

Muscle-specific actin binding 
protein upregulated during 
muscle injury(25) 

MAP3K6 Mitogen-Activated Protein 
Kinase Kinase Kinase 6 

Apoptosis signaling(26) 

BICDL2 BICD Family Like Cargo 
Adaptor 2 

 

ZBBX Zinc Finger B-Box Domain 
Containing 

 

CFHR3 Complement Factor H Related 3 Heparin-binding; Complement 
regulation 

Inositol 1-phosphate (I1P) / Inositol biosynthesis 

HOXD3 Homeobox D3 Increases immune cell 
adherence; Overexpression 
upregulates glycoprotein 
IIb/IIIa(27) 

SPEM1 Spermatid Maturation 1  

C6orf15 Chromosome 6 Open Reading 
Frame 15 

Putative heparin/fibronectin 
binding 

TRIM48 Tripartite Motif Containing 48 Interferon-g signalling 
(oxidative stress/apoptosis 
signal-reducting kinase 1)(28) 

REG3A Regenerating Family Member 3 
Alpha 

Bactericidal C-type lectin; 
Known as pancreatitis-
associated protein(29) 

PPP1R3A Protein Phosphatase 1 
Regulatory Subunit 3A 

Genetic association with type 2 
DM and familial partial 
lipodystrophy 3(30) 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary Table 6. Demographics. Summary clinical data for included participants of 

the KAPVAL cohort (n=312). For a selected number of clinical data and blood measurements, 

summary values for the 312 KAPVAL samples included in the analysis, are reported in the 

table below. 

Number of patients  312 
   
    Gender   
     Male     46.79% (n=146) 
    Age (years)   
     Median     56.00 
     IQR     30.25 (40.75-71.00) 
    Inhospital mortality (binary)   
     1     5.13% (n=16) 
    Critical care admission (binary)   
     1     12.18% (n=38) 
    CRP (mg/L)   
     Mean     47.62 
     SD     79.85 

 

  



Supplementary Table 7. PLS-DA models predictors. List of predictors for each one the four 

PLS-DA models used to allocate KAPVAL individuals to IMOFAP-derived endotypes. 

Metabolomics data was used to build the predictors, hence, all reported variables correspond 

to metabolites. 

Endotype Included predictors 
Endotype A N2,N2-dimethylguanosine  

N6-carbamoylthreonyladenosine 
Pregnenolone sulfate 
N-acetylserine 
N6-succinyladenosine 
5-methylthioadenosine (MTA) 
Isoleucine 
Kynurenate 
4-acetamidobutanoate 
Deoxycholate 
Xanthosine 
2-hydroxypalmitate 
Gamma-CEHC glucuronide* 
12-HETE 

Endotype B Palmitoyl ethanolamide 
Isovalerate 
1-methylimidazoleacetate 
3-hydroxy-2-ethylpropionate 
N-stearoyltaurine eicosapentaenoate (EPA;20:5n3) 
2-hydroxypalmitate 
Stearate (18:0) docosadienoate (22:2n6) 
choline 
12-HETE 
Docosapentaenoate (n6DPA;22:5n6) 
1,3-dimethylurate 
palmitate(16:0) 

Endotype C Prolylglycine 
beta-alanine 
trigonelline (N-methylnicotinate) 
paraxanthine 
testosterone sulfate 
4-ethylphenylsulfate oxalate (ethanedioate) 

Endotype D Dodecanedioate 
Laurate (12:0) 
lysine 
gamma-glutamyltyrosine 
methionine 
dimethyl sulfone 
7-methylurate 
Caprate (10:0) 
orotidine 
guanidinoacetate 
glycohyocholate 

 



 

Supplementary Table 8. Subgroups details. Summary clinical data for clustered participants 

of the IMOFAP cohort (n=34), per cluster, at recruitment. Variables correspond to the ones 

selected for the comparison with ARDS (ordered as in figure 4a), summary values (mean and 

standard deviation) for the 34 IMOFAP samples included in the analysis, at time point 0 

(recruitment), stratified by group, are reported in the table below.  

Number of patients  A (n=13) B (n=10) C (n=5) D (n=6) 
      
    Bicarbonate (mmol/L)      
     Mean 23.85 24.10 24.40 23.50 
     SD 4.39 2.23 0.89 1.64 
    Systolic blood pressure (mmHg)      
     Mean 136.92 133.50 152.20 122.67 
     SD 26.55 22.72 21.46 14.67 
    Platelet count (109/L)      
     Mean 195.25 198.78 314.00 227.33 
     SD 88.27 47.63 74.28 86.06 
    Albumin (g/L)      
     Mean 31.38 35.50 33.80 33.5 
     SD 6.81 4.25 4.32 3.27 
    FiO2 (portion of 1)      
     Mean 0.26 0.21 0.22 0.22 
     SD 0.11 0.01 0.02 0.02 
    Glucose (mg/dL)      
     Mean 8.25 5.99 5.40 7.76 
     SD 5.82 0.65 1.37 3.67 
    BMI (kg/m2)      
     Mean 30.31 25.90 22.4 27.83 
     SD 6.58 6.23 4.45 5.56 
    Age (years)      
     Mean 63.41 57.84 52.86 69.28 
     SD 18.19 13.67 5.14 18.51 
    Sodium (mmol/L)      
     Mean 140.00 137.3 138.20 136.5 
     SD 4.02 2.31 2.05 3.33 
    White cell count (109/L)      
     Mean 11.24 11.32 10.40 14.42 
     SD 5.76 3.93 2.35 6.12 
    Haematocrit (portion of 1)      
     Mean 0.38 0.39 0.36 0.39 
     SD 0.05 0.06 0.07 0.06 
    Temperature (°C)      
     Mean 37.27 37.15 36.22 37.02 
     SD 0.75 0.45 0.75 0.70 
    Bilirubin (umol/L)      
     Mean 30.69 27.10 7.40 39.33 
     SD 20.97 17.80 2.19 35.99 
    Respiratory rate (/min)      
     Mean 21.92 18.00 16.80 16.67 
     SD 6.40 2.05 1.79 1.75 



    Creatinine (umol/L)      
     Mean 99.92 69.80 64.40 70.17 
     SD 47.05 17.23 7.73 15.80 
    Mean arterial pressure (mmHg)      
     Mean 99.67 99.00 113.40 87.17 
     SD 21.10 18.09 12.66 13.38 
    Heart rate (/min)      
     Mean 91.00 78.70 68.00 70.00 
     SD 27.31 10.56 12.41 19.31 
    IL 8 CXCL8 (pg/mL)      
     Mean 129.59 9.47 8.58 11.63 
     SD 244.38 8.41 4.05 9.03 
    IL 6 (pg/mL)      
     Mean 1645.72 126.18 35.07 55.52 
     SD 2704.55 168.66 51.11 69.48 
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