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Abstract The critical solid fraction (𝜙!) which marks the transition between the solid and liquid phases in the 
jamming diagram is influenced by a number of factors. In this study, the dependency of 𝜙! on strain rate and 
boundary conditions is examined through Discrete Element Method (DEM) simulations considering a frictionless 
polydisperse granular system. Different approaches are employed to determine 𝜙!. The observed boundary effect 
is attributable to the nonuniformity of distribution of solid fraction induced by the clustering tendency of particles 
close to rigid-wall boundaries at high compression rates. The distribution of solid fraction within the sample in 
the rigid-wall simulations approaches that in the periodic-boundary simulations as the compression rate decreases. 
With increasing compression rate, the major force transmission network contains fewer mechanically stable 
particles and a less stable force transmission network. This causes jamming of the granular assembly at a lower 
solid fraction. These force transmission networks, however, are fragile and disintegrate quickly upon relaxation.  

Keywords: jamming transition; jamming density; strain rate dependency; boundary effects 

1 Introduction 

Jamming is a broad concept that is related to a variety of phenomena in our daily lives: traffic may become 
jammed on busy roads; powders may clog when transported through pipes; honey may jam in winter due to a 
drop of temperature [1]. Jamming is also an important physical concept within granular media that distinguishes 
the solid phase from the liquid phase: a concept which has been extensively investigated in the past few decades.  

A jammed particulate system can sustain external forces without deforming irreversibly. Conversely, an 
unjammed particulate system may flow if subjected to slight external disturbance [2]. The factors which influence 
the jamming transition of granular media can be classified into three categories: the structure, dynamical 
characteristics and thermodynamics [3]. Temperature was thought to be the only factor that influences the 
transition process until Liu and Nagel [1] pointed out that shear could also lead to a change of packing density, 
thereby causing a particulate system to jam. Based on this concept, they proposed a jamming diagram which 
defines jamming and unjamming zones in the temperature-shear stress-solid fraction space. Various extensions 
of the Liu-Nagel diagram have been proposed. For example, Ciamarra et al. [4] introduced friction as the third 
coordinate axis in the jamming diagram with zero temperature to incorporate the dependency of jamming 
transition on friction. Bi et al. [2] found a richer set of behaviors of granular media at zero temperature, based on 
which they further divided the Liu-Nagel diagram into an unjamming zone, a shear jamming zone, a fragile zone 
and a jammed zone.  

These interpretations share a common key concept: the critical solid fraction, or jamming density, 𝜙! . A 



granular system can jam without external disturbance when its solid fraction is above 𝜙!. In contrast, a granular 
system may unjam and flow when its solid fraction is below 𝜙!. Factors that may influence 𝜙! including loading 
rate, particle size distribution, particle shape, particle compressibility, friction and the stress path [4-9]. 
Controversial observations have been reported regarding the dependency of 𝜙! on loading rate. Hartley and 
Behringer [10] carried out a Couette shear experiment on assemblies of photoelastic disks and found a logarithmic 
correlation between the internal stresses and shearing rate. However, when they changed the loading mode from 
shearing to isotropic compression, they found no dependency of the internal stresses on loading rate. Zhang and 
Makse [11] used molecular dynamics simulations to show that different compression rates resulted in different 
values of 𝜙!. Mari et al. [12] compared jamming transition with glass transition and found that both showed a 
clear compression rate dependency, i.e., 𝜙! increases with decreasing compression rate. Similar observations 
were made by Donev et al. [13], Speedy [14] and Ogarko & Luding [15]. Vågberg et al. [16] found that isotropic 
compression can result in a large range of 𝜙! related to the compression rate and initial configuration. They 
showed that the influence of initial state persists even at an extremely slow compression rate. They also found 
that shearing can only yield a small range of 𝜙! compared with isotropic compression, and at infinitesimally 

slow shearing rates there exists a well-defined value of critical solid fraction 𝜙!
"# that is independent of initial 

configuration. Otsuki and Hayakawa [17] repeated the shearing and relaxation process in their numerical 
simulations and found that the hysteresis loops formed are independent of the shearing rate. However, to the best 
of our knowledge, no prior study has satisfactorily explained the fundamental mechanisms underlying the strain-
rate dependency of 𝜙!. In addition, the simulations mentioned above were all performed under periodic boundary 
conditions; however, in many physical experiments, the sample is bounded by walls that are much stiffer than 
particles. According to Marketos & Bolton [18] amongst others, rigid-wall boundaries can cause the 
inhomogeneity of both packing density and strain field. Therefore, it is also important to investigate how the 
boundary can influence the jamming transition. 

In this study, a series of DEM simulations are conducted under both periodic and rigid-wall boundary 
conditions at a variety of compression rates. Microscopic analyses enable investigation of the particle-scale 
mechanism underlying the influence of boundary conditions and strain rate on the critical solid fraction. 

2 Numerical model  

The rigid-wall simulations were run using the well-known commercial software PFC 3D [19]. The periodic-
boundary simulations were conducted using the open-source LAMMPS code [20]. A uniform strain rate field 
(affine transformation) is imposed on the particles in a periodic cell, whereas the displacement of rigid walls only 
directly affects particles in contact with the walls. 20000 non-contacting frictionless spherical particles were 
generated within a cubic box bounded by rigid walls at an initial solid fraction (𝜙$) of 0.05, while 20186 non-
contacting particles were placed within a cubic periodic cell with 𝜙$=0.5. We verified that the simulation results 
using periodic boundaries are insensitive to 𝜙$. Therefore, a higher 𝜙$ was adopted for PB simulations than 
for RW simulations in order to reduce the simulation time. The polydisperse particle size distribution follows that 
of Toyoura sand (Figure 1) which has a size ratio between the largest and the smallest particles of 3.55. The 
particle density was 2650 kg/m3 without consideration of gravity. A linear elastic model was adopted with a 
normal contact stiffness (kn) of  N/m and a tangential contact stiffness (ks) of  N/m. A global 
(background) damping ratio of 0.1 was adopted in order to reduce the kinetic energy. For both boundary 
conditions, the sample was isotropically compressed at eight different compression rates (v), i.e., 0.025, 0.25, 2.5, 
5, 10, 15, 20 or 25 m/s, until a jammed state was reached. Simulations with periodic boundaries were labelled 
with initials of PB, while rigid-wall boundaries were labelled with initials of RW. Following [8,9], a 
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dimensionless compression rate 𝑣% = 𝑣/𝑣%&' is defined to describe the relative loading rate between different 
simulations, where vref is the slowest compression rate 0.025 m/s. Hence vr ranges from 1-1000. In the PB 
simulations, the sample was firstly compressed until the solid fraction 𝜙=0.63; in the RW simulations, the sample 
was compressed until 𝜙=0.6. These pre-relaxation solid fractions differed because the critical range following 
this protocol was 0.6-0.62 in the RW simulations but was larger than 0.63 in the PB simulations. Although the 
𝜙! value can be influenced by the initial state of the sample [13], the major concern of the current study is the 
variation of 𝜙! with compression rate which will not be influenced by initial 𝜙 values for different boundary 
conditions. The samples were then relaxed until a nearly non-contacting condition was reached, after which the 
samples were compressed again at the selected compression rates until the jamming state was reached. Finally, 
in order to remove the dynamic influence, the jammed samples were then decompressed to the unjammed state. 

 

Figure 1 Comparing the particle size distributions of DEM samples and real Toyoura sand 

3 Results  
3.1 Determination of critical solid fraction 
3.1.1 Energy-based criterion 

Following Göncü et al. [8], we calculated the energy ratio, e = Ek/Ep, to quantify the dynamic effect during 
both compression and decompression, in which Ek is the kinetic energy and Ep is the potential energy. The 
evolution of e for two representative simulations is given in Figure 2 for the PB and RW samples, respectively. 
We also used the energy-based approach proposed by Göncü et al. [8] to determine the critical solid fraction, i.e., 
jamming transition occurs when the compression e-ϕ curve crosses the decompression e-ϕ curve. It can be seen 
from Table 1 that for PB simulations, the kinetic energy is small in comparison to the potential energy for all 
loading rates, which indicates that the dynamic effect is insignificant. The identified 𝜙! decreases consistently 
with increasing loading rate, which is in accordance with Ogarko and Luding [15] amongst others. However, for 
RW simulations, e could only remain at a small level when vr is below 10. In particular, the kinetic energy exceeds 
the potential energy when vr is higher than 400, after which the dynamic influence plays a significant role. 
Therefore, 𝜙! oscillates with vr without showing a consistent variation trend. 



   
(a) PB (vr =10)                                       (b) RW (vr =10) 

Figure 2 Ratio of kinetic to potential energy as a function of solid fraction 
 

Table 1 Critical solid fraction determined using the energy-based criterion 
Boundary condition vr e 𝜙! 

PB 

1 0.0001186 0.6548 
10 0.007462 0.6538 
100 0.0798 0.6519 
200 0.1483 0.6522 
400 0.2316 0.6514 
600 0.3209 0.6506 
800 0.3744 0.6505 
1000 0.3367 0.6506 

RW 

1 0.02793 0.6359 
10 0.08074 0.6367 
100 0.6848 0.6371 
200 0.7296 0.647 
400 1.165 0.6468 
600 3.369 0.6085 
800 2.699 0.6149 
1000 3.219 0.6151 

 
 
3.1.2 Pressure-based criterion 

For a DEM simulation, the global average stress tensor 𝜎& can be calculated as:  
 

 (1) 

in which V and 𝑉( are the sample volume and particle volume, respectively, 𝜎)*
(  is the stress component of an 

individual particle, 𝑚( is the mass of a particle with velocity 𝑣(. The two terms on the right of Eq. 1 are the 
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Cauchy and Reynolds stress tensors, respectively. Although the compression rate is relatively large in some 
simulations, the contribution of Reynolds stress to the overall mean stress is small (for RW samples, the largest 
contribution is 1.5% for RW-8 while for PB samples, the largest contribution is 0.65% for PB-8). The isotropic 
mean stress P is: 

 
 (2) 

Following [7], P is normalized by 2<r>/kn to get a dimensionless pressure p. <r> is the mean particle radius 
of 0.125 mm. 

The development of p during isotropic compression and decompression is shown in Figure 3. For the 
compression process, as vr increases from 1 to 1000, p becomes larger at the same solid fraction. However, the 
curves of RW samples begin at a smaller solid fraction and increase more slowly than those of PB samples. Here, 
the solid fraction corresponding to the first observation of non-zero p cannot be treated as a jamming transition 
point, as it has been noted both experimentally [21] and numerically [7] that this point does not exactly match the 
one determined from coordination number. Furthermore, for the RW samples, when vr exceeds 10, the 𝜙-p 
relationship no longer follows a power-law trend after jamming transition (closer to a straight line), whereas a 
power-law correlation holds consistently for the PB simulations. The former is probably due to the increasing 
dynamic effect. For the decompression process, for both boundary conditions a slower vr leads to a larger 𝜙 at 
which p firstly reaches 0. Furthermore, for RW samples, the stress in the samples with vr≥ 400 cannot be fully 
relaxed even after it has been decompressed to its original state with 𝜙=0.6. 

 

(a) Compression under PB conditions 

( ) / 3P tr= s



 

(b) Compression under RW conditions 

(c) Decompression under PB conditions 



 

(d) Decompression under RW conditions 

Figure 3 Variation of dimensionless p and C* against 𝜙 for different boundary conditions 

3.1.3 Coordination number-based criterion 
The coordination number Cr (Eq. 3) is commonly used to quantitatively describe the contact condition between 

particles.  
 

𝐶" =	
𝑀
𝑁  (3) 

in which M is twice the total number of contacts, N is the total number of particles. However, Cr includes the 
rattlers that make no contribution to major force transmission. The corrected coordination number C* was 
proposed by Imole [22] to quantify the mechanically stable contacts. 

 𝐶∗ =	
𝑀$

𝑁$
 (4) 

M4 is the total number of contacts owned by the N4 mechanically stable particles which have at least 4 contacts. 
Note that the contacts between rigid walls and particles are eliminated when calculating (3) and (4). Following 
Kumar & Luding [7], we use C* herein to neglect the influence of rattlers (particles with fewer than 4 contacts). 
The bottom subfigure of Figure 3 shows C* against 𝜙 at different vr during both compression and decompression 
processes. In the compression process, C* is initially smallest for simulations with high vr (close to the minimum 
theoretical value of 4 for 3D problems). However, these simulations have the fastest rate of increase of C* with 
increasing solid fraction. Nonetheless, in the decompression process, the faster the vr is, the earlier C* drops to 4. 
Theoretically, the isostatic threshold of C* is 6 for frictionless particles. We adopt this as one criterion to analyze 
whether or not the sample reaches the isostatic (jamming) state. As pointed out by [8], the pressure-based criterion 
is more appropriate for the analysis of strain rate dependency, while the coordination number-based method is 
suitable for a decompression process under PB conditions in which pressure drops to zero when the particle 
system changes from the jammed state to the unjamming state. The relationship between p, C* and 𝜙 can be 
fitted using 



 
𝑝
𝐶∗𝜙 = 𝑝"%&log	(

𝜙
𝜙!
) (5) 

where 𝜙! and pref are fitting parameters. 
The value of 𝜙!  is extracted from Figure 3, which corresponds to the jamming state (C*=6) at different 
compression rates. During the decompression process, 𝜙! can be also calculated using Eq. 5 for PB conditions. 
Although Eq. 5 is originally derived for PB simulations, the RW data also follow Eq. 5. 𝜙! values for RW 
simulations are also given in Figure 4(b) for comparison. However, it should be noted that some of these 𝜙! 
values are smaller than 𝜙$=0.6 when vr exceeds 600. As is shown in Figure 4(a), for the RW samples, there is 
no consistent trend in the evolution of 𝜙! with vr. For the PB condition, a clear strain rate dependency can be 
observed, i.e., 𝜙! decreases with the increasing vr. Figure 4(b) shows that under decompression conditions, 𝜙! 
still increases with decreasing vr for PB simulations. The 𝜙!  values identified using different criteria are 
approximately the same, especially under low loading rates. However, for the RW samples, the 𝜙!  values 
identified from the coordination number-based approach are obviously larger than those determined from the 
pressure-based criterion. These differences reduce as vr decreases. Figure 4 indicates that for RW conditions, Eq. 
5 can be used only when the compression rate is slow enough, which is associated with a more homogeneous 
structure and deformation field. 

   

(a) Compression                                    (b) Decompression 

Figure 4 Variation of critical solid fraction with compression rate 

After the jamming transition point, C* follows a power-law distribution, i.e., ,𝐶∗ − 𝐶!∗/ ∝ ,𝜙 − 𝜙!/
, with 

𝐶!∗=6 (Figure 5). Under the decompression condition (Figure 5(a)), 0.5443 ≤ 𝛽 ≤ 0.6611 for the PB samples, 
which is similar to literature results [8,9,21], while for the RW samples 𝛽 has a larger range with 0.6985 ≤
𝛽 ≤ 1.12. The smallest 𝛽 value corresponds to the slowest compression rate and is close to the β values obtained 
in PB simulations, which indicates that the boundary effect is reduced as the compression rate decreases (Figure 
5(b)). The compression data also follow power-law correlations but with comparatively larger 𝛽 values, e.g., for 
the PB simulations 0.8185≤ 𝛽 ≤0.9947, while for the RW simulations 0.8067≤ 𝛽 ≤1.154. The larger 𝛽 values 
correspond to higher dynamic effects under compression than under decompression. 



 

(a) PB decompression  

 

(b) RW decompression 



 

(c) PB compression 

 

(d) RW compression 

Figure 5 Correlations between 𝐶∗ − 𝐶!∗ and 𝜙 − 𝜙! 



To eliminate the influence of different starting points of solid fraction, p is plotted against C* (Figure 6). As 
the compression rate decreases, the RW curves approach the PB curves, indicating that the boundary condition 
has a smaller influence at slower compression rates. 

(a) Compression 

 



(b) Decompression 

Figure 6 Dimensionless p vs C* for different boundary conditions 

3.2 Percolation analysis 
Apart from the aforementioned three criteria, Bi et al. [2] also proposed using percolation analysis as a more 

practical approach. The jammed state is reached when x, y, z directions all come to a percolated state, i.e.,	-'
.'
= 1, 

-(
.(
= 1,	-)

.)
= 1, where 𝜉) is the length of the largest force transmission network and Li is the sample dimension 

in the i direction. Following [2], only clusters comprised of strong contacts, i.e., those contacts bearing contact 
forces 𝑓 ≥ 𝑘𝑓/01 , are considered in percolation analysis as the contribution of the weak force transmission 
network with 𝑓 < 𝑘𝑓/01 to the overall force transmission is negligible [17]. It was shown that, different from k 
= 1 for 2D frictionless disks [2], k equals 2.2 for 3D frictionless spheres [24-25].  

Figure 7 gives an example of percolation analysis with k = 2.0, 2.1 or 2.2 for the PB simulation with vr=1 
during compression. Percolation analyses on other samples under the PB condition during compression are 
similar and are not given for conciseness. When k=2.0, 𝜉)/𝐿)  fluctuates when 𝜙 is smaller than 0.64, after 

which -*
.*
= 1 in all three directions. The major difference between the current study without shearing and Bi et 

al. [2] is that during shearing, the force transmission network tends to fully percolate firstly along the deviatoric 

loading direction and then propagates to the lateral boundaries, while theoretically in isotropic compression -*
.*
=

1 should be reached simultaneously in all three directions. The threshold value for the -*
.*
= 1 state with k=2.1 

is slightly larger than that with k=2.0. However, when k=2.2 there is no stable state of percolation and the 𝜉)/𝐿) 
values continue to fluctuate. Percolation analysis on the same sample during decompression is shown in Figure 
8. In contrast to that during compression, during decompression 𝜙 at the transition point is nearly the same for 
k=1.0 and k=2.2 with little fluctuation. 

 

Figure 7 Percolation analysis with different k at vr=1 during compression for PB conditions 

 



 

Figure 8 Percolation analysis with different k at vr=1 during decompression for PB simulations 

𝜙! values under compression loading determined by percolation analysis with different k and different vr are 
shown in Figure 9(a). 𝜙!  values calculated using the C*=6 criterion are smaller than these values from 
percolation analysis when k ≥ 2 and vr ≥ 100. However, when vr < 100, the critical solid fractions from both 
methods are close with k = 2.1. To further confirm this observation, some additional simulations were conducted 
with vr < 3 as shown in Figure 9(b). When the compression rate is slow enough, 𝜙! determined using the C*=6 
criterion is similar to that calculated using percolation analysis of the k = 2.1 cluster. Figure 9 also shows that 𝜙! 
from percolation analysis increases with increasing vr apart from an approximately constant regime when vr < 3. 
Conversely, 𝜙! determined from the C*=6 criterion decreases consistently as vr increases. This may be because 
as the strain rate increases stresses tend to be concentrated in fewer particles. The particles that are not part of the 
k=2.1 cluster are eliminated from the percolation analysis but may be considered when calculating C*. Figure 9 
indicates that percolation analysis is not a robust method for determining jamming transition under compression 
loading. 

   

                         (a) Overall                                             (b) vr<3 



Figure 9 Comparing the critical solid fraction obtained from the C*=6 criterion with that determined from percolation analysis with 
different k values for the PB simulations during compression 

 
The percolation analysis was also conducted for the RW simulations. The variation of 𝜉)/𝐿)  against 𝜙 

during compression is similar to that of the PB simulations and thus is not shown for conciseness. Figure 10 is 
the analogue of Figure 9(a) for the RW simulations. Similar to the PB simulations, the critical solid fraction 
increases with increasing k and becomes saturated when k is close to 2.1. In general, the 𝜙! values determined 
from the C*=6 criterion are close to those obtained by percolation analysis on the k=1.8 cluster. Since calculation 
of C* only considers particles with more than four force-bearing contacts, the different 𝜙! values obtained using 
the C*=6 criterion and percolation analysis indicate that when the compression rate is high, the external forces 
are concentrated in a subset of the mechanically stable particles. Figures 9 and 10 also suggest that the percolation 
analysis may be reliable to determine the critical solid fraction only when the compression rate is slow enough. 

 

Figure 10 Percolation analysis with different k for the RW simulations during compression 

 

For the decompression process, 𝜙! values using percolation analysis are listed in Table 2 for both PB and 
RW simulations. The decompression process can effectively reduce the dynamic influence on the force 
transmission structure which makes the force-bearing structure more stable. As expected, the percolation analysis 
under decompression conditions is less dependent on k compared with the compression data. For PB simulations, 
the identified 𝜙! is almost invariant with the k values for all the loading rates. However, for RW samples, the 
identified 𝜙! is only insensitive to k at very low loading rates (vr below 10). This further indicates that the 
dynamic influence is more significant for RW samples than PB samples due to the high energy input at the rigid 
boundaries. 

The application of percolation analysis to the sample shows that this method is only applicable when the force 
transmission structure is stable enough and k has little influence on the results, i.e., slow enough compression 
rates and the decompression process in this study. 

Table 2 𝜙! under decompression calculated using percolation analysis for PB and RW conditions  

Boundary condition vr 𝜙! (k=1.0) 𝜙! (k=2.2) 𝜙! (p=0)/C*=6 
PB 1 0.6531 0.6531 0.6533 



10 0.6533 0.6533 0.6535 
100 0.6511 0.6511 0.6514 
200 0.6511 0.6512 0.6517 
400 0.6499 0.6502 0.6506 
600 0.6489 0.6494 0.6497 
800 0.6486 0.6489 0.6494 
1000 0.6479 0.6489 0.6489 

RW 

1 0.6353 0.6353 0.6372 
10 0.6336 0.6344 0.6373 
100 0.6283 / 0.6436 
200 0.6273 / 0.6469 
400 0.6154 / 0.6456 
600 0.6054 / 0.642 
800 <0.6 / 0.6374 
1000 <0.6 / 0.6331 

Note: In the RW condition, 𝜙!<0.6 means although the sample has already decompressed to the initial 𝜙 value, the largest force 
transmission network is still in a highly-percolated state with ξi/Li>0.97. 
 
3.3 Non-rattler fraction 

Göncü et al. [8] also proposed that the fractions of rattlers can be used to determine the jamming density 𝜙! 
during the decompression process. Here, the modified version of this method is adopted in which the non-rattler 
fraction fNR is used to determine 𝜙!. fNR can be calculated using:  

 
 (6) 

where definitions of N4 and N are consistent with Eqs. 3 and 4. As can be seen in Figure 11, when the sample is 
decompressed and gets close to the jamming transition point, fNR drops abruptly to zero. This indicates that the 
clusters having at least four contacts vanish and particles become isolated. This instant marks the occurrence of 
jamming transition. The 𝜙! values calculated using this method are listed in Table 3. For PB simulations, the 
results are nearly in accordance with those using the pressure-based method. However, when it comes to the RW 
condition, not all samples can get the transition point, i.e., those with vr larger than 10 do not show an abrupt 
change in fNR. Therefore, we cannot determine the transition point using this method for these simulations. 
However, for vr = 1 and 10, the results are close to those calculated using the C*=6 method. It can be concluded 
that, similar to percolation analysis, the fNR-based method can only be used for slow compression rates and the 
decompression process.  

4 /NRf N N=



   
(a) PB (vr=1)                                       (b) RW (vr=1) 

Figure 11 Evolution of fNR during decompression 

Table 3 𝜙! calculated using the fNR-based criterion for PB and RW conditions under decompression 

Boundary condition vr 𝜙! (fNR) 𝜙! (p=0)/C*=6 

PB 

1 0.6531 0.6533 
10 0.6533 0.6535 
100 0.6511 0.6514 
200 0.6512 0.6517 
400 0.6501 0.6506 
600 0.6491 0.6497 
800 0.6489 0.6494 
1000 0.6487 0.6489 

RW 

1 0.6353 0.6372 
10 0.6348 0.6373 
100 / 0.6436 
200 / 0.6469 
400 / 0.6456 
600 / 0.642 
800 / 0.6374 
1000 / 0.6331 

4 Discussion  
4.1 Origin of boundary effects 

As elucidated in Section 3, there exists clear differences between critical solid fractions obtained from the RW 
simulations and those from the PB simulations. p, C* and fNR can only give quantitative descriptions of stress and 
contact but cannot reflect the spatial characteristics which are directly linked to the local structure and stability 
of the force transmission network. In order to find the fundamental mechanism underlying these differences, the 
spatial characteristics of the contact and particle distributions need to be explored. 

Firstly, a new parameter, the boundary particle ratio 𝛾, is defined as the ratio between the number of particles 
in the major force transmission network which contact the rigid-wall boundaries (Nb) and the total number of 



particles in the major force transmission network (Nf). 

  (7) 

It is used to quantitatively assess the clustering degree of particles near the boundaries. Figure 12 shows the 
evolution of 𝛾 during the compressing process in the RW simulations. When v ≥ 0.25 m/s (RW-2 to RW-8), 𝛾 
decreases with increasing 𝜙  and reaches a steady value when 𝜙  approaches 𝜙! . 𝛾  is larger when the 
compressing rate becomes higher, which indicates that particles have a higher tendency to group and move 
together with the rigid walls before reaching the jammed state at higher compressing rates. In contrast, when v is 
0.025 m/s (RW-1), 𝛾 increases with the increase of 𝜙. 𝛾 becomes almost constant approaching the jamming 
state. Figure 13 shows that these steady 𝛾 values, corresponding to C*=6, increases with increasing v. The high 
degree of particle clustering close to the boundary makes the RW samples reach a nominal jammed state at a 
lower 𝜙 than the PB samples.   

 
Figure 12 Boundary particle ratio against solid fraction with RW boundary conditions 

 

Figure 13 Steady boundary particle ratio at different compressing rates 

To further analyze the non-uniformity of particle distribution induced by different boundary conditions, the 
sample is divided into ten regions according to the distance d of the external boundary with respect to the center, 
i.e., d/D = 0.1 to 1, as shown in Figure 14. Each region is the difference set of the inner and the outer cubic boxes. 

/b fN Ng =



The solid fraction of each region is calculated at an initial state (unjamming state) close to the jamming transition 
point (C*=0), the jamming transition point (C*=6/p=0) and a jammed state (C*=6.5) for all strain rates and 
boundary conditions (Figures 15 and 17 for compression and decompression, respectively). Statistical features of 
ϕ for different vr can be seen in Figures 16 and 18 for compression and decompression, respectively. The volume 
of a particle located between regions is partitioned appropriately to each region’s solid volume. Generally, the 
distribution of solid fraction in the PB simulations is nearly uniform at all instants and no compression rate 
dependency is observed for both compression and decompression. The distribution is more heterogeneous in the 
RW simulations.  

For the compression process, at the initial state the particles aggregate close to the boundaries and the solid 
fraction decreases gradually from the boundaries to the center. The differences in solid fraction between regions 
become more pronounced as compression rate decreases. Distributions at the jamming transition point and the 
jammed state are similar to those at the initial state except that the solid fractions at the boundary and center 
become more similar as the sample is more closely packed. This is different from Huang et al. [26] who observed 
that, subjected to shearing, the sample is more loosely packed close to the RW boundaries. The distributions of 
solid fraction for the RW-1 and RW-2 simulations at the jamming transition state and those for RW-1, RW-2 and 
RW-3 simulations at the jammed state become similar to the distribution of PB samples. Therefore, it is reasonable 
to expect that the distribution of solid fraction in the simulations with higher strain rates will also become similar 
to that of PB samples as the degree of jamming is increased, i.e., with a higher C*. When the solid fraction 
distributions at the initial and jammed states (Figure 15 (a) and (c)) are compared, a clear increase of the solid 
fraction can be seen in the central part. Furthermore, at the jammed state, when the compression rate is slow 
enough, the solid fraction in the central part is the largest compared with the other parts in the sample. This may 
indicate that the different observations between the current study at high compression rates and Huang et al. [26] 
is due to the different degrees of jamming as in Huang et al. [26] all the samples were in highly jammed states. 

It is now clear that the homogeneity of packing density for PB simulations does not depend on loading rate 
and jamming state. However, for RW simulations, the homogeneity of packing density depends on both loading 
rate and loading state. In an unjammed state in which the particles are sparsely distributed within a large domain, 
a higher loading rate leads to higher impact energy at the boundary which propagates further, i.e., the particle-
RW interaction is dominant. Therefore, the larger range of particles close to the boundaries will be compacted 
subject to higher compression rate, thereby inducing smaller discrepancies. With increasing closeness between 
particles (i.e., increasing degree of percolation) when the system evolves from unjamming to jamming states, the 
compression at the boundaries can be more easily ‘felt’ and propagated into the internal regions. A smaller loading 
rate will be beneficial for particle rearrangement, which leads to a more homogeneous packing. Therefore, at the 
jammed state with the same C* the solid fraction increases but its discrepancy decreases with decreasing loading 
rate. 



 

Figure 14 Division of the box 

 

(a) Distribution of solid fraction in different sample regions at the initial state (C*=0) 



 

(b) Distribution of solid fraction in different sample regions at the jamming point (C*=6) 

 

(c) Distribution of solid fraction in different sample regions at the jammed state (C*=6.5) 

Figure 15 Distribution of solid fraction within the sample during compression 



   

(a)PB                                                   (b)RW 

Figure 16 Mean value and standard deviation of solid fraction distribution within the sample during compression 

 

(a) Distribution of solid fraction in different sample regions at the unjamming state 



 

(b) Distribution of solid fraction in different sample regions at the jamming point  

 

(c) Distribution of solid fraction in different sample regions at the jammed state 



Figure 17 Distribution of solid fraction within the sample during decompression   

   
(a)PB                                                  (b)RW 

Figure 18 Mean value and standard deviation of solid fraction distribution within the sample during decompression 

The critical solid fractions determined using the pressure-based criterion are also calculated considering the cubic 
central part of the sample (d/D≤0.9) under RW conditions. As shown in Figure 19, when only the more 
homogeneous inner regions are considered to determine the ϕJ, the RW data get closer to those under PB 
conditions. 

 

 
Figure 19 Comparing ϕJ of RW simulations obtained considering homogeneous inner regions with those obtained for the entire 

RW samples and PB samples 
 
The distribution of the solid fraction has clearly shown that rigid-wall boundaries can have a strong influence 

on the distribution of the particles when the sample is not large enough. In order to better illustrate this system-
size dependent problem, further simulations were conducted with numbers of particles, N=40000,80000,120000 
under RW conditions with the fastest compression rate, which exhibits the strongest boundary effect. As shown 
in Table 4, the critical solid fraction obtained in unloading approaches that obtained in PB simulations. We can 



expect closer agreement if only the inner homogeneous regions were considered when calculating ϕJ. 
 

Table 4 Comparing the critical solid fraction of RW samples containing different numbers of particles with that of the PB sample 

 
RW  

N=20000 
RW  

N=40000 
RW  

N=80000 
RW 

N=120000 
PB 

N=20186 
𝜙! 0.5782 0.5869 0.5915 0.5925 0.6489 

 
4.2 Explanation for the strain rate dependency 

As observed in Section 3, the sample compressed at a higher strain rate reaches the jammed state earlier with 
a smaller critical solid fraction in both the RW and PB simulations. In order to explain this phenomenon, the 
stability and statistical features of the force transmission network are analyzed in this section. 

Figure 20 shows the distribution of particles’ connectivity. In general, the sample loaded at a slower 
compression rate has a higher proportion of particles with connectivity ≥ 4 (Figure 20(a)). It means that when the 
sample is isotropically compressed at a slower strain rate, the force transmission network contains more 
mechanically stable particles and should be more stable than that of samples isotropically compressed at a larger 
strain rate. Similar observations can be made for the PB samples, but the difference in the distribution of particles’ 
connectivity in the PB simulations is less pronounced than in the RW simulations (Figure 20(b)). This explains 
why the critical solid fraction determined from percolation analysis increases with increasing vr in Figure 9 and 
Figure 10. 

   
    (a) Periodic boundary                                    (b) Rigid-wall boundary  

Figure 20 Distribution of particle connectivity 

The contribution of the largest cluster to the normalized overall mean stress p is calculated for both boundary 
conditions at the jamming transition state (Figure 21). The largest cluster is determined by searching through the 
contact network of particles having at least 4 neighboring particles. For both boundary conditions, the largest 
cluster contributes less to p with increasing compression rate, which means that when the sample is isotropically 
compressed at a slower strain rate, the largest cluster contains more mechanically stable particles and thus sustains 
a larger proportion of external force, in line with Figure 20. 



 

Figure 21 Contributions of largest clusters to the overall mean stress p 

The stability of the force transmission network can also be reflected from its temporal variation during 
relaxation. The samples are relaxed for 100000 timesteps without a change of the boundary positions. p is plotted 
against timestep during relaxation as shown in Figure 21. In the PB simulations, the faster the compression rate 
v is, the larger the initial p is and the more quickly p drops (Figure 22(a)). A similar tendency can be seen in the 
RW simulations in Figure 22(b). This tendency implies that although the faster compression rate results in a larger 
p at the jamming state, the force transmission network is less stable compared with that under the slower 
compression rate condition. However, some difference between the PB and RW simulations still can be observed. 
In the PB simulations, p can drop nearly to zero while in the RW simulations the residual p is still significant 
except for vr=400 (RW). This may be because the rigid-wall sample may not be at its exact point of jamming 
transition. Figure 23 shows the change in the proportion of persistent contacts which exist both at the beginning 
of relaxation and the recording timestep of interest, including the small fraction of contacts which are lost and re-
formed during that time interval. With the decrease of compression rate, there are more persistent contacts, 
implying that the force transmission network is more stable at a slower than at a faster compression rate. For 
vr=400-1000 (PB), almost all contacts are lost after relaxation for 40000 timesteps, whereas for RW samples 
except for vr=400 (RW), a large proportion of contacts survive after relaxation. This explains why the residual 
stress in RW samples is much larger than that in PB samples (Figure 22). 



   

       (a) periodic boundary condition                         (b)rigid-wall boundary condition 

Figure 22 Dimensionless p during relaxation at the jamming transition state 

   

        (a) PB condition                                      (b) RW condition  

Figure 23 Contact comparison during relaxation at the jamming transition state 

The stability and homogeneity of the force transmission network is the key to the strain rate dependency. A 
faster compression rate results in a smaller critical solid fraction with a less stable force transmission network. 
The resultant jamming state under high compression rates is a transient isostatic state compared with that resulting 
from a slower compression rate. 
4.3 Correlations between dynamics and homogeneity 

As aforementioned, although the decompression process has been adopted to reduce the dynamics when 
determining ϕJ, its influence cannot be fully eliminated, especially for the comparatively fast compression rate 
conditions. Moreover, the dynamic effect is more notable for the RW samples than for the more homogeneous 
PB samples. This implies that the system’s dynamics is correlated with the sample’s homogeneity, which is the 
origin of observed discrepancies between RW simulations and PB simulations. To further illustrate this, we 



compare the overall ϕJ values with those obtained within the interior regions for samples with different numbers 
of particles under the highest strain rate condition (Figure 24). It is clear that the dynamic effect decreases as the 
sample size increases. Therefore, the dynamic effects in jamming analyses can be reduced by either increasing 
the sample size or by using a compression rate much smaller than the ones used in the current study. A compromise 
compatible with the computation cost may be achieved by an appropriate combination of the two. 

 
Figure 24 Reduction of dynamic effects with increasing sample size (vr=1000) 

5 Conclusion  

The non-uniqueness of the critical solid fraction at the jamming state considering both rigid-wall (RW) and 
periodic (PB) boundary conditions and the strain rate effects have been systematically studied in this paper. The 
relationships between the dimensionless confining pressure p, the corrected coordination number C*, critical solid 
fraction 𝜙! and strain rate v were analyzed. Special attention was paid to temporal alterations in and the stability 
of the force transmission network, which are key to explain the strain rate dependency.  

Of all the existing methods, the pressure-based criterion is the most reliable one to determine the jamming 
transition density. Regardless of the approach used, the RW simulations give a range of critical solid fraction that 
is smaller than the PB simulations. Compression leads to more notable dynamic effects than decompression. The 
RW samples are more susceptible to dynamic effects due to the high input energy at the rigid boundaries. The 
strain-rate dependency of the critical solid fraction is more significant in the RW case than in the PB case. Particles 
tend to cluster close to the RW boundaries at high compression rates, leading to nonuniform distributions of solid 
fraction. This is the origin of the different critical solid fractions obtained from the RW and PB simulations. The 
nonuniformity becomes less pronounced and the solid fraction distribution in the interior regions of RW samples 
approaches that of PB samples as the compression rate decreases. In both RW and PB simulations, the external 
forces are more concentrated in strong contacts and the force transmission network is temporal and more variable 
as the compression rate increases. This leads to a less stable force transmission network which causes the sample 
to jam at a smaller critical solid fraction in simulations with higher compression rates. The effects of dynamics 
and inhomogeneity on the jamming behavior are coupled. A prudent examination of the critical solid fraction 
using DEM can be achieved only when the strain rate is low enough and a homogeneous sample is employed.  

Future efforts will be devoted to the accurate identification of the complete jamming diagram by adhering to 
the findings and observations noted in the current study, which will also provide valuable guidance for future 
studies on other aspects of jamming behavior using DEM. 
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