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Abstract. Totally asymmetric tracer particles in an environment of symmetric

hard-core particles on a ring are studied. Stationary state properties, including the

environment density profile and tracer velocity are derived explicitly for a single tracer.

Systems with more than one tracer are shown to factorise into single-tracer subsystems,

allowing the single tracer results to be extended to an arbitrary number of tracers. We

demonstrate the existence of a cooperative effect, where many tracers move with a

higher velocity than a single tracer in an environment of the same size and density.

Analytic calculations are verified by simulations. Results are compared to established

results in related systems.

1. Introduction

Active matter systems comprise particles which consume energy in order to perform

work or generate motion. Their study lies at the heart of intracellular biological physics

where, for example, ATP conversion provides energy to propel molecular motors and

also nonequilibrium statistical physics, where self-propulsion precludes equilibrium with

the environment [1, 2].

A simple scenario is a single active particle in a bath of otherwise equilibrium

particles. One seeks to understand whether close to equilibrium concepts such as

fluctuation-dissipation theorems will hold or whether the active particle can drive the

whole bath far from equilibrium. One signature of a system being out of equilibrium is

that it exhibits physical currents, such as flow of particles, as well as probability currents

in phase space, reflecting lack of detailed balance. Thus the question is whether the

active particle can generate a system-wide current.

A particularly simple model system for a bath of interacting particles is the

Symmetric Simple Exclusion Process (SEP). This comprises particles on a lattice moving

stochastically to neighbouring sites but with hard-core repulsion interaction. The

symmetry of the stochastic dynamics ensures that no current flows and detailed balance

holds. In contrast the Asymmetric Simple Exclusion Process (ASEP) has asymmetric
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stochastic dynamics which generate currents and is a paradigmatic nonequilibrium

system. The exclusion interaction in one dimension implies a no passing constraint

which generates long range correlations. For a detailed review of the SEP/ASEP and

its applications, see [3].

The problem of a single active ASEP particle—we will refer to it as the driven

tracer particle (DTP)—in a background of SEP particles has been studied extensively

by Oshanin and co-workers [4, 5, 6, 7, 8, 9, 10]. Initially a totally asymmetric DTP

hopping with infinite rate on an infinite system of SEP particles was considered and

it was shown that the displacement of the DTP grows as t1/2 with a prefactor given

by a transcendental equation [4]. The results were extended to a partially asymmetric

DTP hopping with finite asymmetric rates [5] and simple forms for the prefactor were

given in the weak and strong asymmetry regimes. The hydrodynamic limit and a law

of large numbers for the tracer particle were proven rigorously in [11]. In the limit

of a high density background (i.e. density of SEP particles approaching unity) all

cumulants of the DTP displacement have been computed and shown to to scale as t1/2

[8]. Also a DTP has been studied in a related model defined on continuous space, the

random average process, and its displacement also shown to have a t1/2 scaling [12].

Further generalisations to a background of particles with fluctuating density due to

desorption and absorption have been considered [6, 7]. Recently the problem of many

partially asymmetric DTP’s with different bias strengths has been considered and it has

been shown how entrainment occurs, for example if two DTP’s are biased in the same

direction, they move faster than when they are alone and if they are biased in different

directions, they eventually move in the direction of the stronger bias [10].

In this work, on the other hand, we will consider a finite periodic system of size

L and compute the stationary state which is attained as t → ∞ and the stationary

properties such as the DTP velocity. To our knowledge the problem was first considered

in a periodic one-dimensional system in [13]. It was shown that an Einstein relation

holds which relates the velocity of a weakly asymetric DTP to the equilibrium diffusion

constanst of a tagged SEP particle. Such an Einstein relation holds in all dimensions

[14] for a finite system when a perturbation generates a small current in an otherwise

equilibrium system. It is known [15] that the variance of the displacement of a tagged

SEP particle scales as t/L therefore the velocity of a weakly asymmetric DTP should

scale as 1/L. A DTP in a SEP background has also been considered in [16, 17] as a

simplification of a driven tracer in a narrow channel. It was found that if the DTP

is allowed to pass through the background particles at some rate, a nonequilibrium

phase transition occurs between a sub-diffusive “single file” phase with a vanishing DTP

velocity and a diffusive “ballistic” phase with a finite DTP velocity. We also mention

that fixed localised spatial defects that drive SEP particles have been studied in d > 2

in [18, 19].

Here we will consider totally asymmetric DTP’s with hopping rate p. By using

a Matrix product formulation of the stationary state [20, 21] and a mapping to an

inhomogeneous zero-range process [22, 23] we show how the stationary state factorises
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about the DTP’s. This allows the density profiles of the background SEP particles about

the DTP’s to be computed. We compute exactly the velocity of the tracer particles (for

stationarity under exclusion all DTP’s and background particles necessarily have equal

velocity) and show that it has the expected 1/L scaling with a prefactor which depends

on the background density. We demonstrate how for several tracers the entrainment

effect enhances the velocity.

The paper is organised as follows. In Section 1.1 we define the model in the case

of a single DTP. In Section 2 we use the matrix product formalism and a mapping

to a zero-range process to obtain expressions for the partition function of the steady

state of the single DTP system. In Section 3 we calculate the generating function of

this partition function, which allows us to evaluate it explicitly. In Section 4 we use

these results to calculate the density profile of the bath and stationary velocity of the

DTP. In Section 5 we examine systems with many DTP’s and show that their partition

functions can be factorised into single DTP subsystems. This allows us to extend the

results from Section 4 to many DTP systems and we conclude by examining the effects

of the presence of multiple DTP’s on the stationary velocity of the system.

1.1. Definition of single DTP model

We consider a one-dimensional periodic lattice with L sites. On it we place M particles

which interact by simple exclusion. M − 1 of these are “bath” particles, which hop to

the left and to the right at rate 1/2, and the last particle is the DTP, which hops only

to the right at rate p. Then we have N = L−M empty sites and an average density of

ρ = M/L.

We are interested in how the presence of the DTP will affect the distribution of

particles in the system. From translational symmetry, it follows that in the stationary

state, the density of particles will be uniform. A more illuminating perspective is to

move to the reference frame of the DTP. There the system settles into a nonequilibrium

stationary state with a non-uniform density profile. In this reference frame, the DTP

will always be at site 0 and the rest of the system will consist of M − 1 symmetrically

hopping particles and N empty sites. The hops of the DTP (to the right) instead become

simultaneous hops of the bath particles to the left.

Figure 1. Simple exclusion process with symmetrically hopping bath particles

(unfilled) and asymmetrically hopping tracer (filled)
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2. Zero-range process

In order to find the steady state it is helpful to use the well known mapping in one

dimension from exclusion process onto a zero-range process [23]. The mapping in the

case of a single driven particle has previously been used in [16] where the velocity and

density profile were calculated in the weakly asymmetric limit.

The mapping is as follows. We associate to our original lattice (SEP) with M

particles and L sites a different lattice (ZRP) with M sites and N particles. We assign

each site in the ZRP lattice to one particle in the SEP lattice. Then we place particles on

each ZRP site equal to the number of empty sites in front of the corresponding particle

in the SEP lattice. Thus if there are n1 empty sites in front of the DTP, then there are

n1 particles on the first ZRP site; if there are n2 empty sites in front of the first bath

particle in the SEP, there are n2 particles on the second ZRP site etc.

The name zero-range process comes from the condition that the rate at which

particles hop out of a site depends only on the departure site. In the present case, this

is trivially true as the rate of hopping in the ZRP picture depends only on the location

of the departure site: p + 1/2 for the first site, 1/2 for the last site and 1 for all other

sites. As these rates vary by location, we refer to it as an inhomogeneous ZRP.

Figure 2. Mapping of simple exclusion process to zero-range process. The ZRP

particles (striped) correspond to the number of empty sites in front of tracer (filled)

and bath particles (unfilled) in SEP

2.1. Factorisation of steady state

The advantage of working in the ZRP lattice is that the steady state of the system can

be written in a factorised form [22]. Let ni be the occupation of the i-th ZRP site. Then

we can write the probability of the state {n1, n2, . . . , nM} as:

P ({n1, n2, . . . , nM}) ∝ f1(n1)f2(n2) . . . fM(nM) (1)

for some functions f1, f2 . . . , fM . We can also write down a (canonical) partition

function:

ZM,N =
∑
{n}

M∏
i=1

fi(ni) (2)
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where {n} denotes that the sum is over all configurations {n1, . . . , nM} of N identical

particles on M sites.

To find an explicit form for the functions fi, we note the stationarity condition

which comes from equating the rate of leaving a configuration with the rate of entering

it, [
(p+

1

2
)θ(n1) +

M−1∑
i=2

θ(ni) +
1

2
θ(nM)

]
P ({n1, n2, . . . , nM})

=
1

2
θ(n1)P ({n1 − 1, n2 + 1, . . . , nM})

+
M−1∑
i=2

θ(ni)

2
[P ({. . . ni−1 + 1, ni − 1, . . .}) + P ({. . . ni − 1, ni+1 + 1, . . .})]

+ θ(nM)pP ({n1 + 1, . . . , nM−1, nM − 1}) (3)

where

θ(n) =

{
1 if n > 0

0 if n = 0 .
(4)

Now equating term prefixed by each θ(ni) and defining

gi ≡
fi(ni + 1)

fi(ni)
, (5)

yields the conditions

(p+ 1/2)g1 =
1

2
g2 (6a)

gi =
1

2
(gi−1 + gi+1) (6b)

1

2
gM =

1

2
gM−1 + pg1 . (6c)

We assume gi to be independent of ni, which implies

fi(ni) = gni
i . (7)

This allows us to solve the system of equations and obtain the result

gi = g1(1 + 2p(i− 1)) . (8)

Noting that g1 always appears exactly N times in the partition function, we can set it

to 1 without loss of generality. Then the partition function becomes

ZM,N =
∑
{n}

M∏
i=1

(1 + 2p(i− 1))ni . (9)

2.2. Matrix product state

The steady state can also be represented as a matrix product [21] as we now discuss.

This approach turns out to be more convenient for deriving the density profile in the

steady state.
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It was shown in [20] that the stationary probabilities of one dimensional periodic

exclusion process in which each particle µ has its own hopping rates pµ and qµ to the

right and left respectively can be written in Matrix product form. In the process we

consider here, which involves a single driven tracer particle, we write the stationary

weights as the trace of a product of matrices corresponding to the occupancy of each

site: the DTP corresponds to a matrix B, the bath particles to matrix D and the empty

sites to a matrix E.

Then the probability of the configuration {n1, . . . , nM} corresponds to the matrix

product

P ({n1, . . . , nM}) ∝ Tr[BEn1D . . .DEnM ] (10)

where the trace implies that there is translational invariance with respect to the position

of the DTP. For this matrix product to satisfy the stationary master equation we require

that these matrices satisfy the conditions:

BE = B (11a)

DE = ED + 2pD . (11b)

A general proof is given in [21] which we do not repeat here.

These conditions in turn generate reduction rules which allow the matrix product

to be reduced. As a check that we obtain the same result as through the mapping to

the zero-range process, we note first a consequence of (11b)

D(E + a) = (E + a+ 2p)D . (11c)

where a is a scalar. Then it is apparent using (11a,11c) that

Tr[BEn1DEn2 . . . DEnM ] = Tr[BEn1(E + 2p)n2 . . . (E + 2p(M − 1))nMDM ]

=
M∏
i=1

(1 + 2p(i− 1))ni Tr[BDM ] (12)

and Tr[BDM ] is just a constant factor that can be set to unity without loss of generality.

The partition function can then be written as a matrix product as:

ZM,N = {zN}Tr[BCL−1] (13)

where we have introduced the matrix C ≡ D + zE, z is an auxiliary variable (the

fugacity) and the notation {zN} signifies that we only take the coefficient of zN of the

expression that follows.

3. Calculation of the partition function

The partition function in the form given in (9) is impractical for calculations. To obtain

a more useful expression, we will first show how to express the partition function in

integral form using the generating function method and then we will proceed to calculate

the saddle point of the integral, which will be used in section 4 to derive the density

profile.
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3.1. Generating function method

First we define the generating function (or grand canonical partition function). Let z

be an auxiliary variable, then the generating function is defined as:

ZM(z) ≡
∞∑
n=0

znZM,n . (14)

In the case M = 1, ZM,N = 1 for any N since there is only one possible state. Hence

Z1(z) =
∞∑
n=0

zn =
1

1− z
. (15)

To calculate the generating function for all M , we proceed by induction. Consider the

system in the ZRP picture. The (canonical) partition function of the system with M

sites can be obtained by multiplying the partition function of a system with M −1 sites

by the weight of the M -th site, gM , as given by equation (8), and summing over all

possible number of particles (n = 0, 1, . . . , N) in the M -th site,

ZM,N =
N∑
n=0

ZM−1,N−ng
n
M . (16)

By substituting this into (14) and manipulating the sums, we obtain a recursion relation

for the generating function:

ZM(z) = ZM−1(z)
∞∑
n=0

(zgM)n , (17)

which combined with (15) yields the result

ZM(z) =
M∏
j=1

1

1− gjz
. (18)

Then the canonical partition function can be written using the Cauchy integration

formula as:

ZM,N =
1

2πi

∮
dz z−(N+1)

M∏
j=1

1

1− gjz
(19)

where the contour encloses the origin.

3.2. Saddle point calculation

The exact form of this integral is not very tractable but in the thermodynamic limit,

M,N → ∞, it can be approximated very well using the saddle point method. First

we rewrite the partition function in a form that is more convenient for a saddle point

calculation

ZM,N =
1

2πi

∮
dz

z
exp

(
−N log z −

M∑
j=1

log(1− gjz)

)
. (20)
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To turn this into a form amenable to standard saddle point approximation we change

variable to ζ ≡ 2pMz. Noting that gj ∼ j, the sum will be dominated by the terms

with j ≈ M . Then we can make the approximation gj = 1 + 2p(j − 1) ≈ 2pj. Finally,

we define y ≡ j/M and replace the sum with an integral, obtaining

ZM,N =
(2pM)N

2πi

∮
dζ

ζ
exp

−N log ζ −M
1∫

0

dy log(1− yζ)

 . (21)

Evaluating the y integral, we end up with

ZM,N =
(2pM)N

2πi

∮
dζ

ζ
exp

{
−M

[
1− ρ
ρ

log ζ +

(
1− 1

ζ

)
log(1− ζ) + 1

]}
.(22)

where we have used
N

M
=

1− ρ
ρ

. In this form, it is obvious that the integral will be

dominated by the saddle point, located at the turning point of the function inside the

exponential. Setting its derivative to zero, we find that the saddle point is located at

ζ0, which is implicitly defined as the positive solution of the transcendental equation

ζ0 = 1− e−ζ0/ρ . (23)

We specify “positive” as the equation always has the trivial solution of 0, but this is

irrelevant for the saddle point. ζ0 can be expressed in terms of special functions or

simply found numerically. Then evaluating the integral gives us the expression

ZM,N ' A(ρ) exp

{
−N log

(
ζ0

2pM

)
− M

ρ
(1− ζ0) +M

}
(24)

where

A(ρ) =

[
2π

(
1

1− ζ0

− 1

ρ

)]−1/2

(25)

and (24) has corrections that are diminished by a factor O(1/M).

4. Density profile

To calculate the density profile, we use the matrix product formalism. Using the

expression for the partition function (13), we can get the average occupancy of n-th

site, 〈τn〉M,N , by replacing the n-th C with a D (which, as a reminder, stands for a filled

site).

〈τn〉M,N =
1

ZM,N

{zN}Tr[BCn−1DCL−1−n] . (26)

From the relations (11a,11b) it follows that CD = D(C − 2pz). Then the single D can

be commuted with all Cs to its left to give

〈τn〉M,N =
1

ZM,N

{zN}Tr[BD(C − 2pz)n−1CL−1−n] . (27)
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Figure 3. Density profile from theory and simulations for a system with p = 1,

M = 20, L = 100 (ρ = 0.2). The slight discrepancy visible near n = 0 is due to

O(1/M) corrections.

Now, performing the binomial expansion, we will obtain a sum of terms of the form

(−2p)k{zN−k}Tr[BDCL−k−2], which are proportional to the average occupancy of the

first site in a lattice with M particles and N − k empty sites. Thus we obtain

〈τn〉M,N =
1

ZM,N

n−1∑
k=0

(
n− 1

k

)
(−2p)kZM,N−k〈τ1〉M,N−k . (28)

We show in section 4.1 that 〈τ1〉M,N−k = 1−O(1/M). To be exact, 〈τ1〉M,N−k should be

set to 0 for k > N . However, it can be shown that the final result is dominated by the

term with k ≈ ξ0/ρM � N , so the error introduced by ignoring this is negligible. We

can now use the integral form of the partition function (22) to rewrite this expression

as

〈τn〉M,N =
1

ZM,N

1

2πi

∮
dz

zN+1
(1− 2pz)n−1ZM(z) . (29)

A simple analysis shows that the extra factor (1−2pz)n−1 does not change the location of

the saddle point, for all values of n. Then the integral simply becomes (1−2pz0)n−1ZM,N ,

where z0 is the saddle point. Hence we get

〈τn〉M,N = exp

(
−ζ0

ρ

n− 1

L

)
. (30)

Thus we obtain an exponential profile with decay length ρ
ζ0
L, where L is the size of the

whole system. This is found to be in very good agreement with simulations (see Fig. 3).
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4.1. Occupation of the first site and DTP velocity

We now explicitly calculate 〈τ1〉M,N . We begin by noting that the probability that the

first site is empty, 1− 〈τ1〉M,N , can be simplified using the relation (11a) as follows:

1− 〈τ1〉M,N =
{zN−1}Tr[BECL−2]

ZM,N

=
ZM,N−1

ZM,N

. (31)

From (24, 20) we see that this ratio of partition functions will be given by the saddle

point value of z, which is the fugacity in the grand canonical ensemble. Thus, to leading

order in 1/M , we get the very simple expression

1− 〈τ1〉M,N =
ζ0

2pM
+O(M−2) (32)

which validates the approximation 〈τ1〉M,N = 1 +O(1/M) above. This also allows us to

find the stationary velocity of the tracer 〈vT 〉M,N (and therefore the whole system):

〈vT 〉M,N = p(1− 〈τ1〉M,N) =
ζ0

2M
=
ζ0

2ρ

1

L
. (33)

Thus we get the expected scaling 〈v〉 ∼ 1/L. We remark that this result does not

depend on p. The stationary velocity is controlled only by how quickly the symmetric

particles can diffuse away from the DTP.

5. Many DTP’s

We now turn to systems with more than one DTP. It turns out that in this case the

partition function can be factorised into partition functions of single DTP subsystems.

We cover the case with two DTP’s explicitly and then extend this argument to an

arbitrary number.

5.1. Two DTP’s

Let the number of empty sites in the system be N and let there be M1 + M2 particles

in the system. The particles with label 1 and M1 + 1 are DTP’s, both hopping with

rate p to the right and the rest are bath particles, as before. We can again perform the

mapping to the zero-range process and obtain an equation analogous to (3). We find

that the solutions for i ≤ M1 are the same as in the single DTP case. Then we get a

“reset”, with gM1+1 = 1, and the gi start increasing by 2p again:

gi = 1 + 2p(i− 1), 1 ≤ i ≤M1 (34a)

gM1+i = 1 + 2p(i− 1), 1 ≤ i ≤M2 . (34b)

This is readily seen in the matrix product formulation where, for example,

Tr[BEn1D . . .DEnM1BEnM1
+1D . . .DEnM1+M2B]

= Tr[BEn1 . . . (E + 2p(M1 − 1))nM1DM1BEn1 . . . (E + 2p(M2 − 1))nM2DM2 ]

=

M1∏
i=1

(1 + 2p(i− 1))ni

M2∏
j=1

(1 + 2p(j − 1))nM1+j Tr[BDM1BDM2 ] . (35)
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Writing down the partition function similarly to (9), we notice that due to the factorised

form of the steady state, it is simply a sum over products of two partition functions of

systems with one DTP:

ZM1,M2,N =
N∑
n=0

ZM1,nZM2,N−n . (36)

The sum runs over all possible way to divide N empty sites between the two subsystems:

term n corresponds to the configuration with n empty sites in subsystem 1 and N − n
empty sites in subsystem 2. In the large M1,M2 limit, we can substitute (24) for the

single DTP partition functions to obtain

ZM1,M2,N =
N∑
n=0

A(ρ1)A(ρ2) exp(−b(M1,M2, N, n)) (37)

where ρ1 = M1/(M1 + n), ρ2 = M2/(M2 + N − n) and b(M1,M2, N, n) is the function

obtained by adding the arguments of the exponential in (24) for two single DTP systems

with parameters M1, n and M2, N − n. Noting that b ∼M1,M2, we expect this sum to

be sharply peaked around a single term, which corresponds to the most likely division

of empty sites in the steady state. We check the validity of this approximation at

the end of this section, when we calculate the subleading term. Let the location of

the dominant term be n0, which we use to define the stationary densities of the two

subsystems ρ∗1 = M1/(M1 + n0) and ρ∗2 = M2/(M2 +N − n0). Setting ∂nb = 0, we find

that n0 is given implicitly by the equation

ζ1/M1 = ζ2/M2 . (38)

where ζ1,2 correspond to the solutions of (23) with densities ρ∗1,2. Using (33) we see that

this condition simply states that the densities are such that the two subsystems share

the same fugacity, which implies equal velocities for the two DTP’s. We now have a

system of four equations for the unknowns ρ∗1, ζ1, ρ
∗
2, ζ2, namely: equation (38); equation

(23), which is satisfied both by (ρ∗1, ζ1) and (ρ∗2, ζ2); and finally the condition that the

number of empty sites in the two subsystems always sums to N , which we can write as:

M1

ρ∗1
+
M2

ρ∗2
= L . (39)

We now denote the common stationary velocity as 〈vT 〉M1,M2,N = ζ1/2M1 = ζ2/2M2 and

define

Ξ0 ≡ 2(M1 +M2)〈vT 〉M1,M2,N . (40)

We can reduce the system of equations to an analogue of (23) for Ξ0:

(1−m1Ξ0)(1−m2Ξ0) = e−Ξ0/ρ (41)

where m1,2 = M1,2/(M1 + M2) are fractions of particles in the two subsystems, and

ρ = (M1 + M2)/L is the average density of the whole system. From (40) we have the

relation Ξ0 = ζ1,2/m1,2. Since ζ1,2 must satisfy (23), we have ζ1,2 < 1, so Ξ0 < 1/m1,2.

It can be shown that (41) has a unique solution for 0 < Ξ0 < min(1/m1, 1/m2).
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We now have a recipe for calculating the stationary velocity and the densities of

the subsystems, ρ∗1, ρ
∗
2. Given the parameters M1,M2, N , we can solve (41) numerically

for Ξ0. This immediately gives us the stationary velocity through (40). The stationary

velocity of two DTP’s, scaled to that of one DTP, is plotted in Fig. 4 as a function

of m1 at various densities. This illustrates that the velocity of more than one DTP is

always higher than that of a single DTP. We will discuss this cooperative effect further

in Section 5.3. Knowing 〈vT 〉M1,M2,N , we can get ζ1,2, which we can then substitute into

(23) to find the densities ρ1,2. Thus we can approximate the combined partition function

as

ZM1,M2,N ≈ ZM1,M1(1−ρ∗1)/ρ∗1
ZM2,M2(1−ρ∗2)/ρ∗2

(42)

where ρ∗1,2 are calculated with the prescribed recipe. Since the partition functions of the

subsystems are those of one DTP systems, the density profiles in front of the DTP’s are

exponential. Then (38) means that the two profiles have the same characteristic lengths

(but the total lengths of the two subsystems are generally different).

We now check the validity of the leading order approximation by calculating the

subleading term in n−n0 (where n is the number of empty sites in the first subsystem).

Close to n0, we have b(n) ≈ b(n0) + 1
2
(n−n0)2b′′(n0), where b is as in (37) and ′ denotes

a derivative with respect to n. We find

b′′(n0) =
∑
i=1,2

1

Mi

ρ∗i (1− ζi)
ρ∗i + ζi − 1

. (43)

Note that the probability of observing a configuration with a particular value n is

P (n) =
ZM1,nZM2,N−n

ZM1,M2,N

. (44)

We can approximate this as a Gaussian in n with variance

σ2
n = [b′′(n0)]−1 ∼Mi . (45)

So the relative fluctuations of n scale as M
−1/2
i and vanish in the thermodynamic limit.

The variance of n has also been estimated through simulations, by tracking the relative

positions of the two DTP’s, and was found to be in excellent agreement with (43).

5.2. k ≥ 2 DTP’s

The calculations from section 5.1 are straightforward to extend to a case of k ≥ 2 DTP’s.

We now divide the system into k subsystems, with M1,M2, . . . ,Mk particles (the first

particle in each being a DTP) and N empty sites. We consider the limit where all Mi

are large but k is fixed. As before, the partition function can be written as a sum of

products of single DTP partition functions. Then if there are n1, n2, . . . , nk empty sites

in the subsystems (with n1 + n2 + . . .+ nk = N), finding the largest term with respect

to n1, n2, . . ., we get the equal fugacity condition

ζi/Mi = ζj/Mj, ∀i, j (46)
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which can be reduced to
k∏
i=1

(1−miΞ0) = e−Ξ0/ρ (47)

where mi,Ξ0 are the obvious generalisations of the definitions in 5.1. Then to leading

order we can factorise the partition function into single DTP partition functions (with

subsystem densities ρ∗i calculated using the same procedure as before):

ZM1,M2,...,Mk,N ≈
k∏
i=1

ZMi,Mi(1−ρ∗i )/ρ∗i
. (48)

We get a series of subsystems with equal stationary velocities and exponential density

profiles with equal decay rates.

5.3. Effect of many DTP’s on stationary velocity

We now examine how the stationary velocity is affected by the presence of many DTP’s

and specifically how it compares to the single DTP case. Although it is difficult

to analyse (47) directly, we can look at extremal cases. First we investigate the

following question: given a fixed system size N,M , which partition into k subsystems

{M1,M2, . . . ,Mk} (where Mi is the number of particles in subsystem i) gives the highest

stationary velocity? Noting that Ξ0 is proportional to the stationary velocity, we

maximise Ξ0 with respect to all mi subject to the constraint
∑k

i=1 mi = 1. This gives

us the following condition for the maximum:

m∗1 = m∗2 = . . . = m∗k = 1/k . (49)

So the fastest partition is when the DTP’s divide the system into equal parts. Putting

these values into (47), we get

Ξ∗0(ρ) = kζ0(ρ) (50)

where ζ0(ρ) is the solution of (23). This means that in the optimal scenario, the k DTP

system moves at k times the velocity of a one DTP system of the same size and density.

In the opposite extreme, if (without loss of generality) m1 = 1 and mi = 0 for i 6= 1,

we find that equation (47) reduces exactly to (23) and the stationary velocity of the k

DTP system is the same as that of a one DTP system of the same size and density.

Thus the effectiveness of the cooperation depends on how the system is partitioned by

the DTP’s. The ratio of the velocity of a k = 2 DTP system to that of a single DTP

system is plotted in Fig. 4. The predicted extremal values can be seen and also that a

system of many DTP’s always moves at least as fast as a single DTP system.

6. Conclusions

We have used a mapping to a zero-range process and the matrix product formalism to

perform exact calculations for a hard-core lattice gas with driven tracer particles (DTP)

in a periodic one-dimensional system. We found that the density profiles in front of the
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Figure 4. Ratio of stationary velocity of two DTP’s to that of one DTP at various

densities. There is a clear peak when M1 = M2 = M/2 and the minimum of 1 is

achieved when M1 or M2 is 0.

DTP’s are exponential with characteristic lengths typically on the scale of the system

size, which shows that a single driven particle can in fact create a system wide current

in a finite system. We also found that the stationary velocity of the system scales as

1/L, where L is the size of the system.

For the case of many DTP’s, we showed that the steady state can be factorised into

single DTP subsystems. In each subsystem, the density profile decays exponentially.

We also found that many DTP’s can cooperate and achieve a velocity greater than that

of a single DTP, though the extent of this effect depends on how the DTP’s are placed

in the system. These results for the one and many DTP cases were found to be in very

good agreement with simulations.

Our system-sized exponential density profile is similar to the result obtained in

the weakly asymmetric tracer case [16]. In related infinite models, in particular models

with desoprtion [6], models in higher dimensions [24] and quasi one dimensional “narrow

channels” [9], exponential density profiles were also observed in front of the tracer but

with a finite decay length. Those models also exhibit a depletion zone behind the tracer,

which was not present in the periodic systems studied in this work.

The effect of cooperation between many DTP’s was also observed in infinite systems

[10], where it was found that in the high density limit, many DTP’s move as one and the

effective force on the centre of mass is simply the sum of the forces on the individuals.

One could generalise our approach to the case of partially asymmetric tracers

in which case the matrix product approach still holds but with each DTP (labelled
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µ) represented by its own matrix Bµ [20]. In the general case one still has a

factorised stationary state (1) with single site weights given by (7) but now the gi
become interdependent. It would be of interest to investigate further how these

interdependencies affect the stationary velocity.

Finally, one way of connecting the large time displacement in the infinite system

and the finite L systems we have studied here is through the scaling ansatz

〈X(t)〉 = t1/2h(t/Lz) (51)

where here z is the dynamic exponent, X is the displacement of the DTP and h(y) is

a scaling function which approaches a constant as y → 0 to yield the infinite system

scaling. In the opposite limit of y →∞ (t→∞ on a large but finite system) we expect

h(y) ∼ y1/2 so that we obtain a stationary velocity. Then we find that the velocity

vT ∼ L−z/2 implying dynamic exponent z = 2, which is the usual SEP behaviour. It

would be of interest to calculate dynamical properties exactly.

Note added

After completion of this work, we became aware of a preprint by Ayyer [25] which also

derives the density profile induced by a driven tracer in a periodic hard-core lattice

gas. The results regarding the density profile agree with ours but instead of using the

mapping to zero-range process and matrix product formalism, he exploits combinatorial

identities involving Stirling numbers. Ayyer also generalises this model to a partially

asymmetric tracer but does not consider the case of more than one tracer.
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