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Abstract  Software code, algorithms, data analytics and infrastructures have become 

inseparable from policy processes and modes of governance. This article 

introduces ‘digital policy sociology’ as a way of studying the role and influence of 

digital technologies in education policy. Building on existing ‘policy sociology’ 

approaches combined with emerging insights rom ‘digital sociology’, digital policy 

sociology extends the analytical gaze to new technical actors—nonhuman 

software and hardware, as well as human experts, technology companies, and 

promotional organizations. As a case study exemplar, the analysis focuses on an 

emerging domain of data-intensive science and technology with significant 

implications for education policy in the future. ‘Precision education’ is an 

emerging combination of psychological, neuroscientific and genetic expertise, 

with a particular emphasis on using advanced computational technologies to 

produce ‘intimate data’ about students’ bodies and biological associations with 

learning. These intimate data have potential to become new sources of biological 

policy knowledge, raising significant methodological and analytical challenges for 

policy sociology.  

Keywords  biology, data, genetics, neuroscience, precision education, psychology 

 

Computer software and data are increasingly integral to many areas of social and 

public policy. This article presents an approach to ‘policy sociology’ that focuses 

on the role of digital software in education policy specifically. The term ‘digital 

policy sociology’ signifies emerging attention to how policy processes have become 

entangled with digitally coded software, databases, algorithms, infrastructures, and 

analytics. In this sense, it combines ‘policy sociology’ with ‘digital sociology’ and 

cognate social scientific approaches to the analysis of digital technologies. In order 

to highlight policy sociology approaches to digital technologies in emerging policy 

approaches, the article presents a case study of the capture and analysis of ‘intimate 

data’ from students as an exemplar of a ‘data-intensive’ and ‘life-sensitive’ form of 

educational governance. A new interdisciplinary educational science focused on the 

quantification of students’ affects, bodies and brains, captured in the term 

‘precision education’, has emerged as a priority among scientists, foundation 
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funders, philanthropic donors, and commercial entities. Set in the context of 

intensive scientific advances in the biological sciences, including psychophysiology 

and biometrics, neuroscience and genomics, precision education raises fresh 

questions about the intersections of biology with society, politics and governance. 

The aims of this paper are, specifically, to interrogate how data-intensive digital 

technologies participate in the production of policy-relevant knowledge, and, more 

generally, to contribute to emerging research foregrounding the role of digital 

technologies in educational governance. 

The shift to capturing ‘intimate data’ from students’ bodies represents a step-

change in the quantification of education. International large-scale assessment data 

such as those generated by the OECD (Organization of Economic Cooperation 

and Development), and their subsequent impact on education policies globally, 

have become a core concern of education policy sociology over the last decade 

(Grek, 2009; Sellar & Lingard, 2014), reflecting the social, organizational and 

political effects of the use of numbers in transnational governance (Hansen & 

Porter 2012). Digital technologies, infrastructures, ‘big data’, analytics, and 

algorithms have become significant in such analyses as they introduce new 

capacities for production of policy-relevant knowledge and insights for governing 

education (Williamson, 2017). However, mining ‘intimate data’ from students 

enhances the optical powers of digital data systems considerably, bringing ‘life 

itself’ into the purview of education policy through the digitally-filtered lenses of 

the biological sciences (Gulson & Webb, 2018). 

Specific precision education initiatives are part of a rising uptake of new scientific 

knowledge in education policy twinned with growing enthusiasm and advocacy for 

data-led policymaking (Webb & Gulson, 2015; Gulson & Webb, 2017). The 

OECD’s Andreas Schleicher (2018) claims effective use of educational data brings 

‘the rigours of scientific research to education policy,’ and allows ‘digital exhaust’ 

to be transformed into ‘digital fuel,’ ‘using data as a catalyst for educational 

practice’. A subsequent OECD report on the ‘science of learning’ explores ‘the 

interplay of the biological, physiological, cognitive and behavioural processes 

supporting the learner’, and advocates: 

large-scale, convergent and interdisciplinary efforts that integrate across levels of analysis 

and disciplinary perspectives—from molecular/cellular mechanisms of circuits and brain 

systems that underlie cognitive and behavioural processes, to social/cultural influences that 

affect learning—in individuals and in groups … taking advantage of technological 

advances, particularly in neuroscience, engineering, and computer and information 

sciences. (Kuhl et al, 2019, p.16).  

The OECD identifies new scientific knowledge from psychology, neuroscience, 

and biomedicine, twinned with computer science, machine learning, and software 

engineering, as relevant sources for education policy, and supports ‘global 
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networking around a more integrative and interdisciplinary science of learning’ 

(p.14) plus ‘investment in socio-technical infrastructure to facilitate knowledge 

convergence and collaboration among research, educator and policymaker 

communities’ (p.19). Simultaneously, the Chan-Zuckerberg Initiative, the ‘for-

profit philanthropy’ of Facebook founder Mark Zuckerberg, has begun significant 

investment in ‘learning science’ as a way of rapidly intervening in school practices 

and shaping policy trajectories through psychological, neuroscientific and 

biomedical evidence and expertise 

(https://chanzuckerberg.com/education/learning-science/).  

These catalytic calls for new sciences of learning are important levers in efforts to 

embed scientific, data-driven and evidence-based approaches in education policy 

and practice, signifying the emergence of data-intensive and life-sensitive learning 

sciences as sites of policy-relevant knowledge production and potential sources of 

transnational governance. The term precision education is used in this article to 

capture the sociotechnical ensembles of scientific expertise, data-intensive 

technologies, research labs, business interests, philanthropic support and policy 

advocacy that constitute the new data-intensive learning sciences. 

As such, there is a pressing need for studies of how digital software and scientific 

expertise are mobilized together in the new sciences of learning, and their 

implications for educational practices and policies. As a way of opening up these 

issues, this article consists of a digital policy sociology analysis of precision 

education, examining the sociotechnical networks of organizations, technologies, 

and forms of scientific expertise and knowledge involved in data-intensive 

biological approaches to education. The task here is to interrogate how digital 

technologies and computational experts participate in the production of new kinds 

of educational knowledge that are rooted in biological conceptions of learning, and 

to query the emerging implications for knowledge-based policy and governance. 

The analysis reveals a persistent ontological commitment to scientific realism in 

these data-intensive and life-sensitive forms of precision education, based on 

objectively measured scientific knowledge of the biological substrates of student 

learning. Precision education raises the prospects of data-driven and biologically-

informed policy which recasts students as calculable objects composed from traces 

in datasets, whose ‘traceability’ makes them amenable to practices of ‘learning 

engineering’. 

Doing digital policy sociology 

‘Policy sociology’ grew out of frustration in the late 1980s and 90s with reductivist, 

deterministic and atheoretical accounts of straightforward, linear policy 

‘implementations’, and a rejection of positivist ‘policy science’ scholarship which 

sought to solve policy ‘delivery’ problems and contribute to policy formation and 
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improvement (Bowe, Ball & Gold, 1992). Instead, critical policy sociology 

approaches sought to engage with the complex and contested production of 

education policy, including the ‘macro’ politics in which it was embedded, and with 

the uneven, often unpredictable effects of policy in the micro-spaces and practices of 

educational institutions, by investigating ‘the source, scope and pattern of any 

education policy, the operation of the state apparatus, its internal contradictions 

and conflicts, the historical antecedents of policy structure, content and culture’ 

(Ozga, 1990, p.361). Policy sociology research would ‘trace through the 

development, formation and realization of those policies from the context of 

influence, through policy text production, to practices and outcomes’, and then 

follow ‘the ways in which policies evolve, change and decay through time and 

space and their incoherence’ (Ball, 1997, p.266). 

Policy sociology analyses in education have advanced in the last decade to pay 

concerted attention to cross-border ‘network governance’ (Ozga et al, 2011), 

geographically dispersed and fast moving ‘policy mobilities’ (Ball, Junemann & 

Santori, 2017), and ‘policy assemblages’ that consist of nonhuman material objects 

and devices (Savage, 2019). As policy sociology has shown, contemporary 

education policy is the accomplishment of webs of government agencies, 

transnational governance organizations, private sector companies, think tanks, 

consultancies, material things and discourses (Fontdevila, Verger & Avelar, 2019). 

One important thrust of policy sociology and policy mobilities research has drawn 

attention to the ‘knowledge-based technologies’ used to make policy and enact 

governance over education systems, institutions and individuals, and to the 

technical and statistical experts who bring new skills to policy processes (Fenwick, 

Mangez & Ozga, 2014). This emphasis on new forms of ‘epistemic governance’  

highlights the importance of knowledge as a resource for governing, knowledge that is 

now available in mobile, global forms, produced and translated by experts, and collected 

and distributed through knowledge-based technologies. Adopting an epistemic governance 

perspective highlights the importance of policy actors’ values and beliefs, while also 

drawing attention to the networks of professional scientists and experts who claim policy-

relevant knowledge, but who often share a set of normative beliefs that guide their 

knowledge production activities. (Ozga, 2019, p.730) 

A crucial aspect of epistemic governance and ‘governing through knowledge’ is the 

historical rise and contemporary proliferation of systems of data collection, analysis 

and dissemination (Lawn, 2013), including the ‘data infrastructures’ of 

technologies, human actors, software companies and policies involved in enabling 

data to flow at national and international scales (Gulson & Sellar, 2018; Hartong, 

2018). Such studies interrogate the nonhuman hardware, software, code, 

algorithms and data analytics programs, as well as the human technical experts, 

data scientists, software developers, algorithm designers, analysts, visualization 
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artists and intermediaries involved in different aspects of policy work, and includes 

analyses of the databases, infrastructures, web portals, apps, platforms, companies 

and actors that participate in education policy processes, as well as the political, 

economic and social contexts that frame them. Instruments designed by 

informaticians, data scientists and software engineers have become integral to the 

formation, enactment and effects of education policy (Williamson, 2017; Landri, 

2018). Such studies indicate the emerging centrality of the ‘digital’ in policy 

sociology, and highlight the possibilities of ‘digital policy sociology’ analyses of 

contemporary and emerging practices and techniques of education policy and 

governance.   

Digital policy sociology expands the resources available to critical policy 

researchers by engaging with theory, concepts and methods from STS, the 

sociology of statistics, software studies, and critical data studies, recently brought 

together as ‘digital sociology’ (Lupton, 2015). ‘Digital sociology’ signifies a social 

scientific attention to ‘the relations between knowledge, technology and society’, 

highlighting the role of digital technologies in making it possible to ‘see’ the social 

world through ‘traceable’ data (Marres, 2017, p.3). As such, digital sociology and 

related research trains the analytical gaze on the very digital methods of knowledge 

production through which institutions, individuals, events, or patterns and trends 

may be traced, known and intervened on. Recent social scientific studies of data of 

a broadly digital sociology style have drawn attention to how digital infrastructures, 

algorithms, software and analytics participate in societies and forms of governance 

(Beer, 2016). In ‘an algorithmic age’ the practices of ‘mathematics and computer 

science are coming together in powerful ways to influence, shape and guide our 

behaviour and the governance of our societies’ (Danaher et al, 2017, p.1). Beer 

(2019) exemplifies a broadly conceived digital sociology approach, forensically 

unpacking the infrastructures and practices of the data analytics industry in order 

to understand how such companies generate data, produce knowledge, and 

influence societies through specific sociotechnical practices and methods of 

analysis. 

Big data is already transforming the human sciences too, with sociologists of fields 

such as biomedicine increasingly turning their attention to the work of digital 

infrastructures and analytics in scientific knowledge production. Through 

infrastructural advances in ‘bioinformatics’ and ‘biodata’ storage, for example, 

research biologists and consumer companies can project the data gaze into human 

DNA (Parry & Greenhough, 2018). Neuroscientific practices of brain imaging 

have made neural structures, functions and processes legible under scientific lenses 

and amenable to being modelled and simulated computationally (Rose, 2016). 

Psychological and emotional life, too, has been rendered ‘machine-readable’ by 

emerging technologies of ‘algorithmic psychometrics’ and ‘emotional artificial 
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intelligence’ (Stark, 2018). Wearable biometrics and facial detection technologies 

that can ‘read’ autonomic biological signals from the surface of the human body—

as biophysiological proxies for psychological states—also open it up to being 

controlled, engineered and reshaped (McStay, 2018). The emerging data-intensive 

and life-sensitive sciences of the body rely on the data infrastructures that make 

biological, neural and psychological data available to the gaze of the analyst. In 

turn, those intimate data can then be made available for the inspection of those 

authorities that seek to govern human conduct. 

These approaches rely on an ontology of ‘metrological realism’, or ‘the dream of 

the statistician’, which assumes ‘reality is independent of the observation apparatus’ 

(Desrosieres, 2001, p.341). Metrological realism emerged from nineteenth century 

natural sciences and was developed through statisticians’ pursuit of large numbers, 

based on the assumption that ‘computed moments (averages, variances, 

correlations) have a substance that reflects an underlying macrosocial reality, revealed by 

those computations’ (p.348, original emphasis). This metrological realism of a 

computable macrosocial reality persists into positivist twenty-first century ‘social 

physics’ based on big data analytics (Marres, 2017). From a critical sociological 

perspective, however, biologically intimate data are rather the products of 

sociotechnical networks of actors and technologies that selected and shaped them 

(Leonelli, 2018). The objectivity and precision of data is always in fact a practical, 

situated and value-laden accomplishment, involving such processes as the 

standardization of working practices, the demarcation of categories for classifying 

and organizing data, the design of analytical instruments, and choices about which 

data to present and how (Beer, 2019).  

This point about the fabrication of objectivity is especially crucial in relation to the 

datafication of human subjects in contemporary scientific and commercial 

domains, as physical bodies have become technically augmented and digitally 

rendered as ‘data traces’ in ‘inexhaustible datasets’ (Pickersgill et al, 2019). Through 

combining data-intensive technologies and the life-sensitive gaze of the human 

sciences, the body is first constructed as data, and then integrated into systems that 

are designed to monitor, engineer and reshape embodied life processes (Stevens, 

2017). These ‘data bodies’ are not precise digital shadows or representational 

mirrors of embodied subjects, but, because data can be endlessly linked or taken 

apart, combined and recombined, analysed and reanalysed, data subjects are 

constantly composed and recomposed from their digital traces (Prainsack, 2017). 

The digital data body is only ever a temporarily stabilized accomplishment, and 

could always be remade in multiple different forms at different times, by different 

scientists working in different disciplinary conditions under different objectives, 

funding schemes and research questions (Parry & Greenhough, 2018). Moreover, 

computational metaphors of human bodies in biology—as genetic ‘codes’, neural 
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‘networks’ and psychological ‘software’ that may be decoded—means bodies have 

been rendered ‘machine-readable’ and data-minable as corporeal containers of 

biological information (Stevens, 2013). Making bodies machine readable as digital 

data means that biology has been translated into the language of computation, 

raising the prospect that bodies may then also become as ‘machine-writable’ as 

silicon, and de-bugged, optimized and engineered through software codes and 

algorithms (Rose, 2016).  

These points alert us to the potential consequences of ‘metrological realist’ 

approaches which seek to precisely and objectively measure and monitor the 

intimate corporeality of the human body. Biological machine-readability implies 

multiple translations of fleshly, material bodies into standardized, stabilized data 

formats that are intelligible to computers, and focuses the biological data gaze on 

measurable data bodies. As such, the research challenge is to unpack how these 

intimate data are produced, the forms of expert scientific knowledge and software 

techniques employed to do so, and to inquire into the ways such knowledge, 

software and data may then be promoted as resources for policymaking and 

governance. ‘Digital policy sociology’ is a tentative category for studies combining 

policy sociology analysis of the production of policy-relevant knowledge with 

digital sociology studies on the role of digital methods in producing new forms of 

knowledge. It highlights the changing conditions of knowledge production made 

possible by advanced digital technologies, especially as education policy and 

governance become increasingly data-intensive and life-sensitive. 

Precision education 

‘Personalized learning’ has become a key contemporary imaginary of data-driven 

education. Emergent ideas and practices of ‘precision education’ build on 

techniques of personalized learning, such as learning analytics and adaptive 

learning software, but also encompass ideals associated with ‘precision medicine’ 

and ‘personalized healthcare’, the biomedical ‘effort to collect, integrate, and 

analyze multiple sources of genetic and nongenetic data, harnessing methods of big 

data analysis and machine learning, in order to develop insights about health and 

disease that are tailored to the individual’ (Ferryman & Pitcan, 2018, p.3). Precision 

medicine is a major site of biomedical innovation uniting high-tech Silicon Valley 

businesses, healthcare providers, bioscientists, and venture capital (Reardon, 2017). 

It has been criticized for promoting a neoliberal imaginary of the ‘empowered,’ 

self-responsible individual; shifting attention from social determinants of health to 

technological fixes for health problems; privileging computable evidence over 

subjective experience; and treating ‘patients as continuous data transmitters’ who 

accept digital surveillance as the price of personalized healthcare (Prainsack, 2017, 

p.12).  
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Discursively symmetrical with precision medicine, precision education research 

asks ‘What intervention worked for whom and how did it work?’ in order to ‘tailor 

interventions’ to individual needs’ (Cook, Kilgus & Burns, 2018, p.5). While 

precision education does not (yet) have the massive infrastructural capacity of 

precision medicine, it is similarly based on scientific practices of collecting multiple 

sources of data about psychological states, genetic identities and brain activity 

through advanced scientific methods and digital data-processing technologies, led 

and promoted by researchers in educational psychology, genomics and 

neuroscience. The OECD ‘science of learning’ agenda highlights how ‘significant 

insights have been achieved into the complex, dynamic processes and mechanisms 

that underlie how people learn’ from disciplinary experts including ‘neuroscientists, 

social, behavioural and cognitive scientists, mathematicians, computer scientists, 

engineers and education researchers’ (Kuhl et al, 2019, p.13). It further advocates 

‘the use of Big Data, Artificial Intelligence algorithms, education data mining and 

learning analytics … to improve learning and education’, and proposes ‘science-

based actions’ to enhance ‘real-world education practice and policy’ (p.14). As this 

OECD emphasis on learning sciences and data-driven personalized education 

indicates, ‘life-sensitive’ and ‘data-intensive’ digital technologies are enabling the 

production of novel policy-relevant scientific knowledge about the ‘intimate’ 

details of students’ behaviours, bodies and brains.  

Some programmes bearing the term precision education or precision learning are 

emerging already. One is the Precision Learning Center (PLC) at the University of 

California (http://www.precisionlearningcenter.org/). The PLC approaches 

education as an applied science, and suggests that ‘learning engineering’ can be 

made possible through better scientific understanding of the psychological, 

neurological and genetic substrates involved in learning. In Europe, the 

philanthropic Jacobs Foundation is promoting precision education too. It focuses 

on the science of learning and supports research and advocacy on educational 

psychology, neuroscience and genetics, drawing attention especially to its 

multidisciplinarity and large-scale computational requirements, and by funding 

international ‘interdisciplinary work on individual development and learning’ that 

combines ‘genetic, epigenetic, neurobiological, behavioral and social levels of 

analysis’ (https://jacobsfoundation.org/en/activity/jacobs-foundation-research-

fellowship-program/). These specific precision education programmes are actively 

seeking policy influence through the digital generation of new scientific data and 

knowledge, though their aspirations are shared by other stakeholders in the data-

intensive psychological, neuroscientific and genomic fields. The following sections 

identify key actors, technologies and activities in each of these fields, revealing how 

new kinds of policy-relevant knowledge are being produced through data-intensive 

and life-sensitive scientific methods and practices. 
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Psychodata 

Psychology and psychometrics played a large part in transposing human bodies, 

characteristics and mental life into atomistic data points as long ago as the late 

nineteenth and early twentieth centuries, though the availability of digital big data 

in the twenty-first century has made it possible to capture, quantify and calculate 

about the human condition with unprecedented fidelity, granularity and precision, 

as the human sciences have become increasingly data-intensive (Armstrong, 2019). 

Across the commercial social media sector, companies have adopted new 

psychological techniques of ‘algorithmic psychometrics’ and ‘digital phenotyping’ 

(Stark, 2018). Techniques such as ‘emotion AI’—wearable biometric sensors, facial 

recognition, voice tone analysis, and natural language processing—constitute a new 

mode of ‘automated industrial psychology’ which views human subjects as ‘leaky 

bodies’ emitting autonomic biological signals that indicate an emotional state 

(McStay, 2018). As a consequence, human psychological states have become 

‘machine readable’ as the biological materiality of the human body has become 

‘traceable’ as digital data.  

Students’ psychological traits are increasingly being enumerated as objective data 

and made machine readable in the emerging field of ‘social-emotional learning’ 

(SEL), with educational psychologists beginning to argue for ‘precision education’ 

initiatives ‘mirroring precision medicine’ (Cook et al, 2018). With the emergence of 

algorithmic psychometrics, emotion AI and SEL policy agendas as context, 

organizations including transnational governance institutions, startup technology 

companies, and psychology labs alike have begun to pursue the production of 

policy-relevant ‘psychodata’ through advanced digital infrastructures and devices. 

For example, the OECD has positioned itself as a key site of SEL measurement 

and development as part of its long-term Education 2030 programme to reimagine 

the future of education (Schleicher, 2018) and its turn to new ‘sciences of learning’ 

(Kuhl et al, 2019). It has established the Study on Social and Emotional Skills 

(SSES) as an international assessment instrument to measure and compare the 

noncognitive dimensions of learning across different countries, combining an 

online test and keyboard biometrics with a personality profiling index and 

econometric methods of ‘human capital’ calculation (Williamson, 2019). Likewise, 

the World Economic Forum exemplifies the move toward automated industrial 

psychology in SEL by promoting facial recognition and wearable biometric 

emotion sensors (WEF 2016). Across both the OECD and WEF is evidence of 

advocacy for the assessment of students’ social-emotional skills through a mixture 

of facial action coding, personality profiling and biometric arousal sensing, in ways 

that indicate the potential for new biological big data methods to become integral 

to the production of policy knowledge.  
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Emotion detection is a form of ‘psychometric realism’ which assumes subjective 

emotional experiences, psychological traits and personalities can be captured 

accurately and quantitatively (Michell, 2008), and that these measures can be read 

precisely from biological signals that are traceable in skin, facial expression, and 

bodily comportment (McStay, 2018). The data gaze of automated psychology 

concentrates on autonomic biological processes rather than subjectively embodied 

and articulated experiences, as enumerated and known through webs of 

standardized classifications, technologies, and scientific knowledge. The student-

subject of SEL is a data body constituted by the psychological categories in-built to 

personality profiling models, the biometrics of wearable devices, and the affect 

categories and scales of facial action coding systems. Stark (2018) argues that 

‘scalable subjects’ are formed from the constant collation of psychometric and 

behavioural data traces—not stable data bodies or ‘data doubles’ but constantly 

mutating models that may be called up on-demand as data become available to 

add, combine and aggregate with existing datasets. Specifically, these scalable data 

bodies are made possible by a reconceptualization of bodies as ‘leaky’ containers of 

biological signals (McStay, 2018). As the OECD’s turn to SEL measurement and 

the learning sciences now demonstrate, students’ scalable data bodies are now 

becoming a potential source of governing knowledge.  

Digital SEL measurement technologies, then, are based on standardized models 

and instruments for precisely recording, measuring and classifying human affects 

and traits from autonomic biological processes in ways that may be presented as 

quantifiably objective, unambiguous and precise. The psychological data produced 

may be effective in animating policy interest through the advocacy of international 

policy-influencers such as the OECD and WEF. These organizations are already 

establishing a precision science of the psychological traits, personalities and 

noncognitive capacities of students. They also potentially open up the body, 

moods, and behaviours of students to new forms of policy influence. As an 

OECD report on SEL indicates, data about noncognitive skills is understood to 

have increasing ‘policy relevance’ as it can be used to determine priorities for 

intervention (Kankaras, 2017).  

Brain data 

The human brain is the current focus of intensifying interest among scientists, 

governments, businesses, the media and various publics as ‘neurotechnology’ 

developments have made it possible to gaze upon the brain’s structure, functions 

and plasticity through scientific lenses (Ienca & Andorno, 2017). Educational 

researchers and policymakers have increasingly turned to neuroscience for insights 

into the brain-based aspects of students’ learning (Youdell & Lindley, 2018). New 

neurotechnologies appear to open up the ‘learning brain’ not just for inspection 
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and inscription, however, but to new forms of prescriptive policy intervention and 

even direct modification (Williamson, 2018).   

Neuroscience is one of the key sources of knowledge and expertise cited by 

advocates of precision education. The Precision Learning Center has direct 

partnerships with a dedicated neuroimaging centre at UCSF, BrainLENS 

(Laboratory for Educational NeuroScience), which integrates ‘the latest brain 

imaging techniques, genetic analysis, and computational approaches to examine 

processes of learning’ (http://brainlens.org/). It is dedicated both to shaping 

educational practices around neuroscientific insights and to influencing 

policymakers through the deployment of neuroscientific knowledge and evidence. 

Another partner, Neuroscape, uses ‘sophisticated neuroimaging, adaptive cognitive 

assessments’ to investigate ‘real-world learning and mechanisms that influence 

academic achievement and overall cognitive health’ 

(https://neuroscape.ucsf.edu/education/). Its main application is a ‘precision 

cognitive assessment tool—ACE (Adaptive Cognitive Evaluation)—that 

incorporates adaptive algorithms to rapidly assess and longitudinally track the 

multidimensional profile of cognitive control over time’. These partners 

demonstrate how neuroscience-based technologies are centrally positioned in 

precision education, treating the brain as a ‘leaky’ neural network of electrical 

signals that can be translated into new educational knowledge. 

What is the key technology underpinning the production of new neuro knowledge 

in education? A key area of neurotechnology development in education is 

electroencephalogram (EEG) recording of neural activity and neuroimaging. EEG 

has a long history supporting neuroscientific claims that the brain has been made 

‘legible’ (Rose, 2016). It remains a key neurotechnology in brain science research, 

and is integral to big data brain initiatives (Yuste et al, 2017). In particular, EEG 

data has become the subject of machine learning-based analyses using brain-

computer interfaces (BCIs):  

BCI systems can be trained to recognize the brain signatures associated to specific tasks 

and decode the current mental task of a user in real-time. … The capacity to decode 

mental states in real-time and modify the feedback to the subject accordingly opens 

unprecedented opportunities in neuroscience. (Biasiucci, Franceschiello & Murray, 2019, 

R84) 

Significant infrastructural development is underway to construct the institutions, 

technical systems, and professional expertise necessary to undertake intensive 

EEG studies in education. These include new research centres and labs, innovative 

startup companies, and partnerships between researchers, developers and 

educators. One notable example is the Brainwave Learning Center, a partnership 

between Stanford University and a ‘lab school’ in Silicon Valley with its own on-
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site ‘brainwave recording studio’ featuring sophisticated wearable EEG headnets 

and BCIs for real-time analyses of the neural correlates of learning and cognition 

(https://www.synapseschool.org/about-us/blc). Another example is the 

FocusEDU neuroheadset produced by the Harvard-incubated startup company 

BrainCo, which ‘can quantify real-time student engagement in the classroom’ 

through brainwave-detecting headbands and a software platform which gives 

teachers access to real-time student brain data 

(https://www.brainco.tech/product/focusedu). BrainCo’s FocusEDU package 

also comes with neurofeedback software offering ‘brain priming exercises’ for 

improved ‘self-regulation’, and in partnership with another education technology 

company it announced a ‘neuro-optimized education platform’ to deliver 

personalized learning based on machine learning analysis of students’ brainwaves 

during ‘microlearning routines’ (https://www.brainco.tech/use-cases-new/). As 

such, FocusEDU reads the material brain for proxy signals of learning processes, 

actively primes the brain for enhanced performance, and informs adaptive 

platforms to personalize the digital learning experience. 

EEG is opening opportunities for educational neuroscientists to render the 

‘learning brain’ legible, particularly as insights about the brain’s ‘plasticity’ have 

inspired efforts to sculpt its cognitive and affective capacities (Costandi, 2016). 

From a digital policy sociology analysis, these emerging neurotechnologies present 

the prospect of new forms of ‘neurogovernance’ that are concerned with the 

measurement and reshaping of malleable brain processes (Pitts-Taylor, 2016). Pitts-

Taylor (2016, p.35) argues that phenomena such as ‘neuroplasticity’ are the 

products of a ‘specific configuration’ of ‘knowledge systems, tools, researchers, 

research subjects, bodies, [and] institutions’: 

A phenomenon includes the entities under investigation, the scientific tools and practices 

that touch them, the knowledges that inform them, and the material changes the measures 

make. Neural plasticity can be understood this way. To make sense of the plasticity of the 

brain, scientists, scholars, and policymakers call forth particular configurations of bodies, 

brain matter, measurements and other practices. (Pitts-Taylor, 2016, pp. 35-36) 

Neurotechnologies such as EEG headsets are key sociotechnical parts of the 

configuration of brain plasticity. They provide the measurement techniques by 

which to scan and quantify the brain and its malleability, and they introduce 

neurofeedback to then materially sculpt that measured brain to perform in 

optimized ways. In this sense, neurotechnologies are ‘materially performative’ 

(Pitts-Taylor, 2016), actively targeting regions and processes of the brain for 

priming and activation in order to improve or sculpt its measured qualities. As the 

brain has been made machine-readable by neurotechnologies, it may become 

increasingly ‘machine-writable’ as it becomes possible not just to decode mental 
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processes but directly manipulate the brain mechanisms underlying people’s 

physical and mental abilities (Yuste et al, 2017). 

As neuroscience and neurotechnologies are taken up in precision education 

initiatives, they too raise the possibility of materially performative effects, as 

measures and ‘readings’ of brain activity generated through the digitally-filtered 

gaze of neuroscience become knowledge for use in brain-based policy 

interventions and pedagogic practices. The scientific groundwork for brain-based 

policy is already being laid. Policy-influencing organizations including the OECD 

are increasingly turning to data from the brain sciences as knowledge of how 

young people learn as a way of recommending policy interventions, for example 

investing in early years programs to stimulate brain development (Kuhl et al, 2019). 

These brain data need to be understood as complex sociotechnical 

accomplishments that are inseparable from the infrastructures of people, 

technologies and methods that produced them. As such, further unpacking of the 

computational structures and functions of neurotechnologies would illuminate the 

novel ways in which student brain data are now able to be created, and further 

contribute to analyses foregrounding the role of digital technologies in producing 

the new neuro-knowledge that transnational governance organizations such as the 

OECD support as sources of policymaking. 

Biodata 

The third thread of precision education is human genomics. Again, the crucial 

question here is about how the turn to data-intensive technology in human 

genomics is changing the ways knowledge is produced, and what implications this 

raises for the use of genomic knowledge in epistemic governance. Human 

genomics is integral to the precision education initiatives at the PLC and Jacobs 

Foundation, and to the wider development of a field of ‘educational genomics’ 

which aims to enable educational organizations to create tailor-made curriculum 

programmes based on a student’s DNA profile (Gaysina, 2016).  

The emergence of a data-intensive educational genomics depends on the 

historically-situated creation of standardized measurement practices that determine 

what ‘biodata’ can and cannot be subjected to the analytical gaze, the design of the 

bioinformatic infrastructures for moving biological data, the production of 

biotechnologies for analysis, and the varied data practices of biologists, 

bioinformaticians and biotechnology companies, such as ordering, combining, 

organizing, correlating and clustering genetic data (Leonelli, 2016). The 

infrastructures, statistical practices and technologies underpinning genetic sciences 

are highly consequential to the forms of analysis and knowledge production that 

can take place (Stevens, 2013). From this perspective, digitally-stored ‘biodata’ or 

‘bioinformation’ is the current instantiation of long-standing scientific concerns 
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with recording human biology in standardized statistics (Porter, 2018). Human 

genetic science has now advanced to aggregate individual level genomic data into 

vast ‘biobanks’ that are amenable to analysis through machine learning and 

predictive analytics (Prainsack, 2017). 

Within education specifically, the work of behavioural geneticist Plomin (2018) on 

‘polygenic scores’ is significant since he has cultivated a strong media presence and 

become an especially forceful advocate for the use of genetic data in education 

practice and policy. He explicitly advocates the ideal of ‘precision education’ to 

‘customize education, analogous to “precision medicine”’ (Plomin & von Stumm, 

2018, p.155). Plomin’s advocacy for genetics in precision education depends on 

massive biotechnological advances in recent years. At the core of his research is a 

‘fortune telling device’ capable of predicting an individual’s psychological traits 

from DNA traces, such as school attainment, achievement and intelligence. This 

device is a ‘polygenic score’ based on a single nucleotide polymorphism (SNP) 

microarray analysis. SNPs are tiny genetic variants that, if added together, can 

produce a polygenic score for various traits. Underlying polygenic scoring are SNP 

microarrays, or ‘SNP chips’. Genetic microarray SNP chips combine genomics, 

silicon chip manufacturing, signal and image processing, statistics, software skills 

and bioinformatics. They are, ultimately, highly standardized bioinformatics 

technologies for the automated analysis of genomic information, which exist in 

material form as credit card-sized silicon glass membranes imprinted with prepared 

biodata. Within education, Plomin (2018, p.181) argues that ‘polygenic scores are 

key for personalized learning, as they predict pupils’ profiles of strengths and 

weaknesses, which offers the possibility to intervene early to prevent problems and 

promote promise’. SNP microarray chips are thus changing the very conditions of 

knowledge production in education, and raising the prospect for precision 

education based on polygenic scores. Moreover, Plomin’s SNP chips are 

manufactured by Illumina, one of the world’s largest biotechnology companies, 

which situates his research in a global industrial genomics infrastructure, and 

illustrates how the production of policy-relevant genetics knowledge is inseparable 

from the market logics of the biotechnology industry (Leonelli, 2016).  

One key way that data-intensive genetics projects create novel conceptualizations 

of education and implications for policy is illustrated by the largest educational 

genomics study ever undertaken. The study is approvingly referenced by Plomin 

(2018) as an exemplar of how polygenic scoring will up-end existing theories of 

genetics in education. In 2018 the Social Science Genetic Association Consortium 

(SSGAC) published a huge genetic analysis of the educational attainment of a 

sample of a million people (Lee et al, 2018). The sample included data from two 

large-scale ‘biobanks’, including that of the private consumer genetic ancestry 

company 23andMe, which also contributed research staff and resources to the 
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analysis. The results found genetic patterns associated with educational attainment 

across over a thousand genetic variants, demonstrating strong polygenic evidence 

for genetic influence on educational outcomes. But the million-sample study also 

links genetics and education to other outcomes with significant policy implications. 

The SSGAC is not merely a genetics consortium, but is co-directed by a 

‘genoeconomist’ (Benjamin et al, 2012). ‘Genoeconomics’ is interested in the 

application of genetic data to economics, and focuses on polygenic scoring because 

it is partly predictive of socio-economic outcomes—with school attainment, as the 

SSGAC study concluded, strongly associated with longer-term economic outcomes 

such as labour market ‘success’ (Ward, 2018). As such, the SSGAC study 

instantiates the use of genetics data as a predictor of socio-economic outcomes, 

such as human capital, labour market productivity, and public spending. Although 

the SSGAC is careful not to generate specific policy implications from the study, it 

is clear that data linking genes to educational attainment and long-term economic 

outcomes could be valuable evidence for policymakers seeking to enhance human 

resources according to various ‘success’ metrics. Research on the ‘genetics of 

success’ modelled on precision medicine shares the ‘ultimate goal’ of a ‘treatment 

target’, though instead of a drug, the treatments would include ‘policies and 

programs—interventions that change children’s environments rather than their 

physiologies’ (Belsky, 2016).  

An ontological commitment to bio-objective realism, derived from standardized 

biodata imprinted on silicon, infuses educational genomics, which is now 

producing highly policy-relevant knowledge about the associations between DNA, 

education, and socio-economic outcomes. The key critical point is that educational 

genomics depends on educational processes being captured as ‘biodata’ in 

biobanks, imprinted on to bioinformatic SNP chips, and calculated into polygenic 

scores to predict socio-economic outcomes. Such genetics studies treat these 

technologies as mere ‘tools’ of scientific discovery, rather than instruments that 

participate actively in what and how knowledge is produced. Critical researchers of 

bioinformatics, however, contend the human subjects of genetic analysis are in fact 

‘networked and calculable bodies’ conjured from interoperable datasets (van 

Baren-Nawrocka, Consoli & Zwart, 2019), or ‘bioinformation’ translated from 

fleshly matter into standardized and portable formats for inclusion in datasets and 

biobanks (Parry & Greenhough, 2018). Furthermore, Stevens (2017) argues 

biological science has adapted to the computational capacities of big data systems, 

with biologists tailoring their work to the capacities, constraints and quantitative 

logics of technological infrastructure. In particular, he notes how big data-based 

biological studies are modelled on the very same algorithmic techniques of 

‘searching’ and ‘pattern detection’ that were developed by commercial web 

companies. From this view, the uptake of bioinformatics and big data is not simply 
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a rescaling of biological sciences. Rather than seeing bioinformatics as a passive 

portal to the secrets of the human body, how human biology is understood is 

actively shaped by the apparatus of the bioinformatics lab. It bears consequences 

for the kinds of biological knowledge and conceptualizations generated as a result, 

which tend to foreground a ‘cybernetic’ view of human biology as consisting of 

codes, information and data that can read, transcribed, scripted and analysed (Parry 

& Greenhough, 2018). These computational bio-objects are the constructs of new 

relations between biology, digitalization and business, as ‘bioinformatic 

infrastructures are built around the values of business: speed, efficiency, growth.... 

In this new world, business and biology unite forces’ (Reardon, 2017, p.177). 

Genoeconomics further mobilizes these bioinformatics infrastructures to advance 

scientific understanding of the connections between DNA and economic 

outcomes.  

Bioinformatic education studies therefore produce novel knowledge about 

education that is only attainable through automated big data methods of searching 

and detecting patterns across huge biobanks. This raises significant methodological 

challenges for policy sociology analyses, since if we are seeking to understand how 

policy-relevant knowledge is produced then we need to understand how complex 

bioinformatics instruments and infrastructures perform this work. The expertise of 

epistemic governance now resides in robotized machines and in the computational 

expertise of the professional bioinformaticians and biotechnology engineers who 

inhabit the digital laboratories of contemporary biology. 

Conclusion 

Precision education demonstrates the importance of attending to the role of the 

digital in contemporary forms of policy sociology. With the emergence of intimate 

data based on psychology, neuroscience and genomics, the biological body is being 

presented as explanatory evidence for learning processes, school attainment, and 

other socio-economic outcomes, and then mobilized as an evidence base for the 

promotion of an applied, multidisciplinary precision science of education. The 

OECD is now firmly advocating new ‘science of learning’ insights from 

computationally data-intensive advances in psychology, neuroscience and 

biomedicine in order to ‘transmit scientific evidence into education policy and 

practice’ (Kuhl et al, 2019, p.3). Variations of precision education are being 

presented as potential sources of policy knowledge and of transnational 

governance. This article represents an initial attempt to open up precision 

education for policy sociology analysis in the 2020s. 

Data-intensive and life-sensitive sciences represent an emerging, next-generation 

iteration on the logics of transnational, comparative modes of ‘governing by 

numbers’ (Grek, 2009). Hansen and Porter (2012, p.410) argue that numbers are 
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integral to transnational governance because of their properties of ‘order, mobility, 

stability, combinability, and precision’. Through the data-intensive production of 

numbers and calculations about the ‘machine-readable’ student bodies, precision 

education ‘stabilizes’ and ‘orders’ the body according to psychological, neurological 

and biological categories; it renders the body ‘mobile’ across instruments, 

infrastructures, and scientific settings, and ‘combinable’ through the networked 

interlinking of datasets; and it presents the body as precisely knowable by dint of 

its technical traceability. To this list, ‘predictability’ may also be added, as precision 

education aims to calculate corporeal measures into predictions of future states and 

trajectories of learning. Precision education in this scientific context exemplifies a 

‘metrological realist’ (Desrosieres, 2001) ontology, rooted in the natural sciences, 

that students’ emotions, personalities, behaviours, neural activities, and genetic 

traits can be made objectively and precisely machine-readable as biological codes 

and numbers contained in the body, and from there potentially machine-writable 

as targets of learning engineering, policy intervention and governance.  

From a policy sociology perspective, precision education illustrates the increasingly 

integral work of digital technologies in the production of knowledge and evidence 

for policymaking and governance. A key contribution of policy sociology over the 

last decade has been to the understanding of ‘epistemic governance’ and the use of 

large-scale comparative data as ‘governing knowledge’ (Fenwick et al, 2014). While 

international large-scale assessments and comparative data have produced 

important governing knowledge for decades, the shift to real-time big data 

analytics has opened up new opportunities for evidence production and policy 

influence. The use of digital technologies in new forms of scientific educational 

research and evidence creation is reconfiguring the conditions for knowledge 

production, and reconfiguring understandings of the human beings that are the 

subjects of education policy and governance. However, forensic understanding of 

the technologies of knowledge production such as those of digital psychometrics, 

biometrics, neurotechnology, and bioinformatics remains lacking. This paper has 

presented some initial coordinates for future studies in digital policy sociology. 

Unanswered questions persist about the specific ways in which computational 

structures, hardware, infrastructures, software algorithms, analytics and machine 

learning participate in data-intensive forms of psychology, brain science and 

genetics, and how they shape the knowledge that may then be deployed in policy 

production and governance. Policy sociology in the coming decade will need to 

attend to these very specific digital ways of knowing and intervening in education.    
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