
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Empowering learners with personalised learning approaches?
Agency, equity and transparency in the context of learning
analytics

Citation for published version:
Tsai, Y-S, Perrotta, C & Gasevic, D 2020, 'Empowering learners with personalised learning approaches?
Agency, equity and transparency in the context of learning analytics', Assessment & Evaluation in Higher
Education, vol. 45, no. 4, pp. 554-567. https://doi.org/10.1080/02602938.2019.1676396

Digital Object Identifier (DOI):
10.1080/02602938.2019.1676396

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Assessment & Evaluation in Higher Education

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 23. Jul. 2021

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/429844701?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1080/02602938.2019.1676396
https://doi.org/10.1080/02602938.2019.1676396
https://www.research.ed.ac.uk/en/publications/2b071cb4-2eae-4ebd-b88c-b9f461a8f6dc


For Peer Review Only
Empowering learners with personalised learning 

approaches? Agency, equity and transparency in the context 
of learning analytics

Journal: Assessment and Evaluation in Higher Education

Manuscript ID Draft

Manuscript Type: Original Paper

Keywords: learning analytics, agency, equity, transparency

 

URL: http://mc.manuscriptcentral.com/caeh E-mail: aehe@bath.ac.uk

Assessment and Evaluation in Higher Education



For Peer Review Only

Taylor and Francis Word Template for journal articles

Yi-Shan Tsaia [0000-0001-8967-5327]*, Carlo Perrottab [0000-0003-3572-0844] and Dragan Gaševićc [0000-0001-9265-

1908]

aSchool of Informatics, University of Edinburgh, Edinburgh, United Kingdom; bFaculty of 

Education, Monash University, Clayton, Australia; cFaculty of Education, Monash University, 

Clayton, Australia

yi-shan.tsai@ed.ac.uk

Provide short biographical notes on all contributors here if the journal requires them.

Page 1 of 22

URL: http://mc.manuscriptcentral.com/caeh E-mail: aehe@bath.ac.uk

Assessment and Evaluation in Higher Education

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only

Empowering learners with personalised learning approaches? Agency, equity and 

transparency in the context of learning analytics

Abstract

The emergence of personalised data technologies, such as learning analytics (LA) is 

framed as a solution to manage the needs of higher education student populations that are 

growing ever more diverse and larger in size. However, the current approach to learning 

analytics presents tensions between increasing student agency in making learning-related 

decisions and ‘datafying’ students in the process of collecting, analysing and interpreting 

data. This paper presents a study that explores staff and student experience of agency, 

equity, and transparency in existing data practices and expectations towards LA in a UK 

university. The results show a number of intertwined factors that have contributed to the 

tensions between enhancing a learner’s control of their studies and, at the same time, 

diminishing their autonomy as an active agent in the process of LA. This paper argues 

that learner empowerment should not be automatically assumed to have taken place as 

part of the adoption of learning analytics. Instead, the interwoven power relationships in a 

complex educational system and the interactions between humans and machines need to 

be taken into consideration when presenting LA as an equitable process to enhance 

student agency and educational equity.

Keywords: learning analytics, agency, equity, transparency

Introduction

In education, the trend towards data-based methods of governance and management initially led 

to a thriving field of educational data mining, concerned with the automated exploration of data 

from educational settings (Siemens and Baker 2012). Later, it enabled the emergence of 

Learning Analytics (henceforth LA) as a distinct field of research and practice that aims to use 

data to optimise learning and the environments where it occurs (Long et al. 2011). While LA 

shows great potential in tackling educational challenges of attainment and student retention, 

there are also prevailing concerns around the ethical and privacy implications of the use of 

student data, and the extent to which LA can benefit every student (Tsai, Moreno-Marcos, Jivet, 

et al. 2018). 

A key problem with current approaches to LA lies in the tensions between increasing 

student agency in making learning-related decisions and ‘datafying’ students in the process of 

collecting, analysing and interpreting data. On the one hand, digital technologies in education 

have been associated with the rise of a distinct form of market-based individualism, which shifts 
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the traditional values of education from public good to private interest (Castañeda and Selwyn 

2018). This  frames learning as a self-centred endeavour and investment (Thompson and Cook 

2017), with learners entrusted with more responsibility to improve their own performance 

through technology-enhanced support. On the other hand, the indiscriminate collection and 

analysis of student data from digital learning environments risks disregarding human factors and 

the socio-cultural contexts in which the data is generated (Perrotta 2013; Gašević, Dawson, and 

Siemens 2015). These tensions bring to the fore an urgent need for a critical discourse to further 

examine the paradoxical promises of LA in enhancing student agency, while furthering a 

pervasive governance culture of data collection, interpretation, and intervention design, thereby 

contentiously exercising ‘algorithmic control’ over education.

In this paper, we argue that learner empowerment should not be automatically assumed 

to have occurred through the adoption of personalised data technologies such as LA. Instead, 

the interwoven power relationships in a complex educational system and the interactions 

between humans and machine need to be taken into consideration when presenting LA as an 

equitable process to enhance student agency and educational equity. We reflect on the 

aforementioned issues by drawing on data collected from six student focus groups (26 

participants in total) and 5 staff focus groups (18 participants in total) carried out in a UK higher 

education institution. The analysis was informed by two research questions:

1. How might personalised data technologies enhance or hamper equity and agency?

2. How might existing and expected transparency of data practices strengthen or compromise 

student agency?

With the first question, we intend to draw attention to the prevailing assumption that 

personalised data technologies can empower learners (Kurilovas, Krikun, and Melesko 2016; 

Mouri et al. 2016; Charleer et al. 2018). This assumption is widespread, despite some evidence 

suggesting that presenting students with their own data can have a negative impact on 

motivations and chances of academic success (Lonn, Aguilar, and Teasley 2015). In line with 

this more critical research, we examine this assumption from the aspects of equity and agency in 

the context of LA. The second question explores the presence of student agency by looking into 

the control of their own data. In particular, we present issues on information asymmetries 

between data collectors and data subjects due to power imbalance (Acquisti and Grossklags 

2007; Rubel and Jones 2016). This paper critically examines the extent to which learning 

analytics can be used to enhance student agency and educational equity.

In the next section, we discuss key concepts of datafication, agency, equity and 

transparency, drawing on relevant contributions from various disciplinary perspectives, 

including critical sociology. Thereafter, we present the participants’ experience of agency, 
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equity, and transparency in existing data practices and their expectations of LA. In the 

conclusion, we outline the problems to address when implementing LA as a means to create a 

more inclusive and equitable learning environment in higher education.

Agency and transparency in the context of learning analytics 

Education in a data-led society

Much has been written about the role of data and algorithms in society, and several perspectives 

from diverse theoretical orientations are now available (Hallinan and Striphas 2016; Kelling et 

al. 2009; Kitchin 2014; Turow, McGuigan, and Maris 2015). The ongoing multidisciplinary 

debate is concerned with the extent to which Big Data enables novel ways of understanding the 

world and acting upon it. Drawing on the literature, Kitchin (2014) argues that Big Data are 

often defined as huge in volume, high in velocity, diverse in variety, exhaustive in scope, 

striving to capture entire populations (N=all), relational in nature, flexible and scalable. Big 

Data is therefore qualified using attributes evoking power and comprehensiveness, but also 

heterogeneity and uncertainty. As Kitchin notes (2014, 2): 

The challenge of analysing Big Data is coping with abundance, exhaustivity and 

variety, timeliness and dynamism, messiness and uncertainty, high relationality, and 

the fact that much of what is generated has no specific question in mind or is a by-

product of another activity.

This has led to an assertive, optimistic form of empiricism underpinned by a presumed ability of 

analytical approaches to generate new insights from Big Data that partial, sampled datasets 

cannot guarantee. Indeed, this was the spur behind several forms of data analytics in specific 

domains, with LA being no exception. 

In particular, LA has emerged as a solution to address prevalent challenges in education, such as 

student retention, widening access, and personalised support for a massive student cohort 

(Ferguson 2012; EDUCAUSE 2018). The two main aims of LA are the diagnosis and prediction 

of various dimensions of educational performance, both geared towards the production of 

‘actionable insights’ of immediate and demonstrable instructional effectiveness (Clow 2013; 

Siemens 2013). Other popular trends include using LA to provide personalised feedback at scale 
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(Pardo et al. 2019) and to identify variables and behaviours that promote student success and 

address the need for quality assurance of educational services (Lester et al. 2018). Theoretically, 

the field of LA is broadly aligned with scholarship in the learning sciences, assessment and 

instructional design – while simultaneously positioning itself as a collection of computational 

innovations (mostly from data science), made possible by the growing penetration and ubiquity 

of digital platforms and devices in education. Similar to themes in the Big Data discourse, LA is 

susceptible to the enduringly partial nature of whole datasets, which remain shaped by the 

contingent sociotechnical conditions in which they are generated, the dependence on using 

technologies for measurement, storage and digitisation, as well as the contextual and domain-

specific assumptions that underpin the deployment of computational methods (Kitchin 2014). 

These constraints impose questions on the degree to which learning analytics can present 

faithful and fair information about learners in different disciplines and from different socio-

cultural and economic backgrounds. 

In the context of education, equity has two dimensions. The first is fairness, which 

ensures opportunities to achieve personal potential without being impeded by personal 

conditions. The second is inclusion, which ensures a basic minimum standard of education for 

all (Simon, Kuczera, and Pont 2007). Similar themes have been highlighted in some LA circles, 

with several authors expressing concerns about the unfair differential impact of predictive 

models in education (Prinsloo and Slade 2014; Roberts, Chang, and Gibson 2017). This interest 

in the fairness of LA is, of course, a reflection of a broader social and scientific debate about the 

dangerous tendency of predictive modelling to reproduce existing biases based on race, gender 

and class (Richardson, Schultz, and Crawford 2019). Indeed, predictive fairness is an emerging 

area of experimentation in the LA field, with new promising techniques such as ‘slicing 

analysis’ (Gardner, Brooks, and Baker 2019) being proposed. Slicing analysis evaluates model 

accuracy for different sub-groups or individuals to identify unfair differences, which can be 

used to identify fairer model. However, questions remain about the tendency to treat fairness 

and justice as properties of computational models, rather than properties of social systems 

(Selbst et al. 2019). This means that, for example, innovations to make analytics-based 

predictions in a MOOC ‘fairer’ might miss the point if they fail to acknowledge the broader 

conditions that make MOOC participation more likely among specific gender or race groups. 

Agency and data in education

The pervasiveness of digital technology has inspired a public debate about fundamental aspects 

of human nature (Castañeda and Selwyn 2018). Critical arguments within and beyond academia 

often take aim at data-based surveillance, algorithmic manipulation of behaviours and artificial 
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intelligence to ask rather philosophical questions about what it means to be human, or to have 

‘agency’. While an in-depth examination of this topic is beyond the scope of our article, it is 

important to identify some key ideas that have particular relevance to the present study, i.e. how 

human agency is constrained by digitisation and automation.

In research that focuses on formal educational settings, i.e. schools and higher education, 

agency is generally understood as cognitive and metacognitive agency: a collection of active 

processes of knowledge acquisition or development, as well as the complex assortment of 

individual strategies that allow awareness of and control over those processes. A number of 

studies in the learning sciences and psychology have explored various aspects of agency in 

relation to human cognition (computational aspects, situatedness, schemata, motivations, 

dispositions and so forth) from a relatively individualistic point of view (Nicholls 1984; Dweck 

2000). In education, this is translated into an emphasis on students as rational agents with the 

potential to take responsibility for their own learning (Crick and Goldspink 2014). This has had 

a notable influence on the development of LA as a distinct discipline (Shum and Crick 2012). 

Indeed, aspects of individual cognition have been computationally modelled and then used for 

the development of various forms of adaptive or AI-enabled instruction, including various 

flavours of ‘personalised learning’, such as intelligent tutoring systems (providing instructional 

advice on a one-to-one basis, akin to human tutors), recommender systems (predicting a user’s 

preference or needs for an item), and pedagogical agents (simulated figures designed to 

facilitate interactions between learners and the computer programme). The individualistic slant 

of a large part of research in the learning sciences (and by extension in LA) reflects traditional 

empirical foci in psychology. 

By contrast, sociological perspectives tend to favour a different view where human agency is 

profoundly shaped by structural factors. In the broader context of digital innovation and the so-

called ‘datafication’ trend, these sociological perspectives have produced a number of critical 

arguments, several of which attend to educational technology and LA in particular. An 

increasingly vocal debate within this ‘camp’ discusses agency in algorithmic ‘systems of 

control’ (Agre 1994; Kitchin and Dodge 2012; Williamson 2015); that is, systems where 

computational power is a tool in the service of a pervasive culture of governance that seeks to 

exert control through economic rationality, efficiency and individual accountability . This 

culture is seen as the result of global factors and influences, which contributed to derail the 

process of digital innovation away from the emancipation and the empowerment of human 

agency, and towards compliance, control and, often, outright surveillance. In the context of LA, 

these arguments have translated into a critique of key notions such as ‘actionable intelligence’ 
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as the focus of LA has shifted, according to some (e.g. Knox 2017), from hindsight to foresight 

and prediction. The emphasis on action informed by predictive models has, for its critics, a 

tendency to prioritise effects and indicators (signals) over causes, thus leading to narrow 

remedial strategies in which students and teachers are channelled along predefined trajectories 

of educational performance that, paradoxically, leave little room for agency.

Transparency and data in education

Transparency is a major theme in current discussions about algorithmic accountability (e.g. 

Ananny and Crawford 2018; Tsai and Gašević 2017). This debate has important implications 

for LA. Indeed, transparency is one of the overarching goals of the LA project, which seeks to 

make learning visible and measurable in order to inform actionable feedback. The transparency 

theme is somewhat reversed in critical arguments while retaining the theme of empowerment 

through openness. Here, the emphasis is on the need to make computational systems more 

accountable in relation to the collection and manipulation of personal data: black boxes to be 

opened up and critically interrogated (Pasquale 2015). In both cases, the underlying assumption 

is that positive outcomes (evidence-based learning and democratic accountability) will be 

attained by rendering complex realities more transparent. 

Transparency and accountability are treated as preconditions for the production of authenticity: 

authentic learning, or authentic democratic accountability. This approach may lead to a number 

of issues, including what Ananny and Crawford (2018, 7) call a ‘false binary’ between complete 

secrecy and total openness. On the one side, complete secrecy is not only unattainable, but 

problematic in its own right in several institutional settings, including education; on the other, 

total openness mistakenly assumes that individuals are informed, rational agents perfectly 

positioned to maximise benefits from publicly available information. As such, the rhetoric of 

transparency in all its manifestations – i.e. as the desirable outcome of analytics or as an ethical 

imperative for algorithmic methods – may privilege ‘seeing over understanding’ (ibid., 8). It 

could be argued that the prioritisation of transparency as visibility over self-reflexive knowledge 

also underpins the current political discourse of institutional disclosure. For example, the new 

European General Data Protection Regulation (The European Parliament and the Council of the 

European Union 2016) intends to empower individuals with the right and responsibility to make 

decisions regarding the use of their personal data, while institutions are held accountable for 

ensuring the transparent provision of relevant information to enable this process. However, the 

inherent imbalance in the power relationships in the various contexts in which data is collected 

poses questions about the extent to which individuals can truly make informed decisions about 
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the use of their data. The implementation of student-centred learning analytics is no exception 

(Knox 2017). 

Methodology

This study sets out to understand teachers’ and students’ expectations of LA, and questions the 

extent to which LA can empower learners and enhance equity in education, so as to move 

towards a deliberative, democratic integration of LA. A focus group was chosen to capture data, 

taking advantage of dynamics in a group where participants inspire one another and probe ideas 

among themselves (Liamputtong 2011) to increase data richness. In particular, focus groups 

allow for shared experiences among the participants that increases willingness to discuss 

personal views.

Participants

To enable in-depth discussions, a focus group typically involves a relatively small number of 

participants ranging from four to twelve (Liamputtong 2011). This study involved six student 

focus groups, each comprising four to five participants. Participants were invited widely from a 

comprehensive university in the UK to include a diversity of student bodies from different 

disciplines and degree types. We received 139 positive responses from students, and we selected 

six students for each group (6 groups) to represent as many different disciplines as possible. The 

selection process was first-come-first-serve, with the constraint that, where possible, 

participants were chosen from differing disciplines. However, only 26 students (7 males, 19 

females) participated in this case study at the end due to late withdrawals or absence. The six 

groups are labelled as UG1, UG2, UG3, UG4, PG, and ODL in this paper. UG1 and UG2 

comprise undergraduate students from the Arts, Humanities, and Social Sciences College, 

which had the largest student body compared to the other colleges. UG3 comprise 

undergraduate students from the Science and Engineering College, and UG4 from the Medicine 

and Veterinary Medicine College. PG includes postgraduate students from mixed disciplines 

and ODL consists of online-distance learning students from mixed disciplines. Only one 

participant from the ODL group had past experience with learning analytics.

The process of sampling for teaching staff focus groups proved challenging partly due to their 

busy work schedules. Five focus groups of participants were sampled widely from the three 

university colleges mentioned above (labelled as G1 to G5 in this paper). Twenty-five teaching 

staff volunteered but only eighteen (10 males, 8 females) managed to attend the focus groups. 
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As a result, three of the groups comprised three to five participants respectively, and two 

comprised only two participants due to late withdrawals or absence. Five of the participants had 

director roles (e.g., programme director or director of undergraduate studies), and three had 

personal tutor roles. Not all the participants had experience with LA, although most of them had 

a certain degree of experience of working with or using data to inform their teaching practices.

Procedure

The focus group interviews were semi-structured, each lasting approximately an hour. All 

participants received a short introduction to the concept of learning analytics before the focus 

group interviews started. As the institution’s adoption of learning analytics was at a rather early 

stage, the focus groups were intended to understand participants’ awareness and attitudes 

regarding existing data practices, which the interviewer drew upon to guide participants to 

consider the potential benefits and challenges of using student data for learning analytics. To 

this end, ten different questions were designed for staff and student focus groups respectively to 

understand their current experience with existing data practices at the university and 

expectations or desires to address learning and teaching challenges through LA (accessible here: 

http://bit.ly/FG_questions). All participants signed a consent form to participate in the study and 

agreed to have their conversations recorded. Each student received ten pounds and each 

teaching staff member received lunch in gratitude for their time.

A thematic analysis

The focus group interviews were transcribed verbatim and then analysed using a thematic 

coding method (Grbich 2012). The coding scheme was developed inductively, which involved 

the researcher reading the transcripts repeatedly to identify recurring themes and types of issues 

raised. The qualitative analysis tool – Nvivo – was employed to assist in this process. In total, 

64 codes categorised into 3 main themes and 14 sub themes were developed to analyse student 

focus groups (accessible here: http://bit.ly/students_coding), while 59 codes categorised into 4 

main themes and 26 sub themes were developed to analyse staff focus groups (accessible here: 

http://bit.ly/staff_coding).

In the following sections, the student participants are denoted as S (student) and teacher 

participants as T (teachers) with numbers (1 to 5) to differentiate between individuals in the 
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same group. Some of the participants were second language speakers of English. The selected 

excerpts are faithful to the original responses, with the minor exception that some redundant 

words, such as ‘like’ and ‘you know’, were edited out whenever these words were not 

considered to contribute significant meaning.

Results and discussion

Our engagement with teaching staff and students highlighted the existence of different 

perspectives regarding the role of LA in enhancing equity, agency and transparency, with some 

notable misalignments in expectations. These differences need to be considered carefully when 

higher education institutions deploy LA so as to cultivate a sense of ownership. In this section, 

we present the results in accordance with the two research questions introduced previously. 

How might personalised data technologies enhance or hamper equity and agency?

Personalisation and equity

Learning analytics promises to tailor support to individuals by profiling students using their 

learning data and demographic characteristics so as to devise a suitable intervention. In this 

way, learning analytics strives to help individuals achieve their optimal potential rather than 

bringing every student to the same level of performance. This personalised approach 

demonstrates potential in enhancing equity by acknowledging that education is by no means 

one-size-fits-all and students at different learning stages require different levels of support. 

However, targeted support arguably risks labelling certain groups of students while seemingly 

disadvantaging other students by directing resources away from them. We highlighted in our 

literature review that fairness and equity are emerging as important concerns in LA, but caution 

is needed when treating these dimensions as properties of models rather than properties of social 

systems. Our qualitative data extends this point further, providing an insight into the contextual 

and personal factors that a ‘diverse’ approach to LA could engage with. For example, some 

student participants suggested that LA should help instructors and programme directors 

understand the educational backgrounds and learning needs of different students, so as to 

provide relevant support instead of overloading students with superfluous information:

I have ASD [autism spectrum disorder] which causes me social and communication 

issues and I’ve sort of spent the first year and a half being quite lonely and isolated at 

University and yet overwhelmed by lots of information, but unable to sift through it 
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[information bundled up in a generic information] and work out exactly what was of 

benefit specifically to me (S4, UG1).  

If English is not your first language, they could use that and make you aware of the 

support that is available to you as a foreign language speaker. Now there were some 

people who were from very unprivileged backgrounds or people who lived at home 

and didn’t live at a university accommodation. For them you could be giving more 

guidance of how to get involved. So just looking at your background and sending an 

email to the people saying, ‘Look, this is available’. (S3, UG1)

While the students generally believed that a personalised approach to educational offerings and 

learning support can enhance their educational achievement, some students pointed out the 

problem of unfairness when restricting access to resources under the banner of personalisation:

For the personalisation of services, I wouldn’t go so far, because we want to have 

equal access to all the services at the university. I would give them data about my high 

school years or what curriculum I studied to assess whether all students are on the 

same starting level, maybe the beginning of university. And for those purposes to sort 

of tailor initial support services (S3, UG2).

Similarly, the teaching staff expressed a desire to understand the nature of the student body and 

relationships between learning behaviour and performance, so as improve the planning and 

delivery of a course according to the needs of a growing population of students from diverse 

cultural and educational backgrounds:

I think that sometimes these processes of using data and things like that can help us 

with this [widening access]. You know, they can help us to understand the nature of 

our student body more effectively and try to tune the ways that we work with them 

more effectively (T3, G3).

However, they were also concerned about ‘fairness’ in targeted support and the pedagogical 

effectiveness:

I suppose there could be an argument for equity of treatment. You’re taking a 

particular class of students and you’re putting much more effort into them than the 

rest. We can sort of say that part of education is being given the freedom to fail on 

your own, as opposed to school, you sort of learn from that (T4, G2).
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Despite the common interest among students and teaching staff in using LA to improve 

curriculum design and student support, teaching staff tended to look for the big picture of a 

student cohort whereas students focused on the differences between individuals and expected 

educational equity to be achieved by optimising everyone’s opportunity to excel. Nevertheless, 

fairness emerges as a central concern around personalisation for both students and teachers. 

Moreover, it poses a paradoxical question concerning whether personalisation enhances one’s 

opportunity to succeed or takes away the opportunity to learn from failures.

Personalisation and agency

Agency is the capacity of individuals to ‘control’ and ‘compose’ their behaviour for a 

determined end, and to anticipate how others would interpret their behaviour (Enfield and 

Kockelman 2017). In the context of education, agency is characterised by choice-making in 

learning; generating new knowledge; taking responsibility for learning; and engaging in 

learning relationships (Crick and Goldspink 2014). LA aims to promote student agency by 

positioning students as active actors to make data-informed decisions related to learning 

(Kurilovas, Krikun, and Melesko 2016; Mouri et al. 2016; Charleer et al. 2018), such as 

adjusting learning strategies upon critical reflections of their behavioural patterns or 

performance. However, the range and amount of data that can be collected for learning analytics 

to identify suitable support for individuals has often led to ethical issues around surveillance and 

‘datafying’ students (Zuboff 2015). In the focus groups, students, while agreeing that learning 

was their own responsibility, expected personalised feedback to guide them in making learning- 

or career-related choices. In contrast, teaching staff highlighted a concern about suppressing 

learner autonomy through excessive support. 

For example, the students pointed out that information about their learning progress could help 

them spend time more efficiently by focusing on areas that need to be improved or working 

strategically towards the next assignment or exam. This was perceived as especially beneficial 

in the early years of higher education when students are still trying to adapt to a learning mode 

that involves fewer interactions with instructors, but more independent effort on the learner’s 

side.

Ultimately it is, it’s our responsibility. We’re adults. We’re in control of our own 

learning but that doesn’t mean that support and guidance and help and pastoral care 

aren’t still important especially in the first few years (S4, UG1).
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Another student pointed out the struggle when being encouraged to explore ‘whatever they want 

to do’:

Sometimes freedom just makes you lost…. I think what is more helpful is they 

[instructors] really show us the optimum way to get to our career rather than let us do 

whatever we want, ‘cause they know how we’ve been performing all these years, all 

these semesters, and they can see what is our opportunities (sic) in certain areas (S1, 

CAHSS2). 

To the students, personalised support and guidance can scaffold the process of exerting agency 

on one’s own learning decisions. They objected to the idea of framing education as a self-

centred endeavour, as technology-based learning has increasingly been positioned as 

(hyper)individualised or less collective (Castañeda and Selwyn 2018). Similarly, the teaching 

staff being interviewed agreed that LA has the potential to enhance student agency with 

appropriate support to help them understand and interpret data, thereby leading to self-initiated 

changes in behaviours. However, several participants also raised concerns that learning 

analytics could potentially hamper rather than enhance student agency:

The more we start identifying individual students, ‘well, you need a remedial class 

because you’re underperforming’, you’re kind of taking that agency away from 

students. And I think there is a very big danger of this kind of approach…. Spoon 

feeding students, telling them what they have to know, giving them sort of tests and 

stuff, has been the way that universities responded to poor satisfaction scores, poor 

teaching scores, or whatever it is. In other words, instead of saying ‘students, listen, 

we need a dialogue about this’, it’s been more prescriptive action (T4, G3).

The one thing that we must get over to our students is the primary responsibility for 

their learning is there. That really is the bottom line. I mean that’s what you do when 

you leave [the university]…. What you’re telling the employer [is] this person can cut 

the mustard (T2, G2).

A comparison of the responses from the students and staff reveals mismatched interests among 

the key stakeholders of LA. Students tended to focus on addressing their current struggles, 

while institutions focused on responding, perhaps in a rather haphazard manner, to the results of 

student satisfaction surveys. By contrast, the teaching staff were more concerned that 

unbalanced (constant, excessive, or dictating) personalised interventions can have negative 
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impacts on the development of a student’s problem-solving abilities, which is sometimes gained 

through a painful learning process. It was notable that the students emphasised the need for 

personalised support to enhance choice-making in learning (Crick and Goldspink 2014), 

whereas the teaching staff were more concerned with helping students to develop a sense of 

responsibility for learning (ibid.).

Some teaching staff pointed out the paradox of LA in promoting student agency with 

targeted support and meanwhile diminishing it through constant surveillance in online learning 

environments:

There is a series of parallel demands that actually play against one another: being 

more independent, having more freedom, and they are being monitored much more 

closely… (T2, G4).

Moreover, the issue of surveillance in creating a sense of remoteness and distance between data 

subjects and the data collector (Bauman and Lyon 2012) has also led to discussion on ‘being 

treated as numbers’ among the student focus groups: 

See that this person is beyond just data….  not reducing a person just to the figures 

that are being shown on your laptop regarding the person’s performance…. You have 

to understand why the numbers are coming…. I feel like interaction is the key…to 

understand the data you need to understand where it’s coming from (S4, UG2).

Aligned with the students’ views, several teaching staff highlighted the risk of removing human 

factors by discounting the professional knowledge of teachers or decontextualizing data that are 

produced by students who each have different personal circumstances and learning approaches:

I don’t want it [LA] to make all of the students behave in the exact same way to satisfy 

an algorithm. I want it to enable students to have the best experience in whatever that 

experience is. You know, you can be totally different from everyone else and still do 

perfectly fine. I want it [LA] to…enable students to do better and not make them all 

mini ‘me’s (T2, G5).

Here, we observed resistance to the algorithmic control that has been pervasively used to 

enhance economic efficiency in educational contexts (Williamson, 2015), and a call to reflect on 

how technologies mould people’s emotional and cognitive interactions with each other and with 

the machine (Castañeda and Selwyn 2018).
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How might existing and expected transparency of data practices strengthen or 

compromise student agency?

Although the students being interviewed were generally aware that the institution collected and 

used certain types of data about them, such as academic and immigration and study permit data, 

it was not clear to them who could access the data and how it could be used to improve 

academic offerings and support. In general, a phenomenon of information asymmetry was 

observed, which arguably diminishes student agency in giving informed consent about the use 

of their data. Firstly, the implications of consent given to have one’s data collected were not 

clear to students at the time of enrolment:

You have to agree to share this data otherwise you wouldn’t enrol, so you are not 

probably thinking that much about the consequences of every single piece of data that 

you provide to the university. It’s just because it’s a part of the [application] process 

(S4, UG3).

I’ve only just sort of begun my studies so I don’t think I have enough time in to say 

‘well, I don’t think you should have collected that’ (S1, ODL).

I would assume that [I gave consent at enrolment]. I think often you’re signing 

consent for things you don’t realise…. (S2, PG)

Although the phenomenon of exchanging data for education is likely to have changed since the 

implementation of 2016/679 GDPR (The European Parliament and the Council of the European 

Union 2016) in May 2018, the ‘lawfulness of processing’ in GDPR still allows institutions to 

process personal data when it is necessary for the purpose of ‘legitimate interests’ or to carry out 

tasks that are of ‘public interest’. Moreover, although these students were explicitly asked to 

provide consent, the priority to complete the enrolment process at the moment they came to the 

university was likely to cloud their risk assessment on data sharing, or to lead to indifference in 

the consequences of sharing personal data. As a result, students compromised on consent-giving 

out of rational ignorance – users consider the effort and loss of time in reading a lengthy and 

complex policy to outweigh the perceived risk of disclosing personal information (Acquisti and 

Grossklags 2007). Our analysis  provides some evidence in support of contributions that critique 

notions of ‘ideal’ transparency, which places the burden to seek out information about a system 

on individuals, and reinforces the mistaken assumption that people will hold perfect information 

to make rational decisions and give fully informed consent (Ananny and Crawford 2018).
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Secondly, there has been insufficient communication between the institution and students 

regarding what happens after data is collected. The involvement of students often ceases after 

their data has been collected. This results in limited understanding of the benefits of opting into 

data collection, especially when it comes to giving feedback to improve teaching and 

educational services in general:

Sometimes it just feels like they kind of have to take feedback at the end of the 

courses just because it looks nice, but you don’t really know if they actually even read 

it or use it (S3, UG3).

It is always like individual feedbacks between us and the university and then we don’t 

know what the university do, and the university decides by themselves. We are being 

separated (S1, UG2).

This indicates that when opt-in or opt-out options are made available to students sharing data in 

exchange for particular LA services or interventions, concrete examples showing how the loop 

from data collection to action is closed are crucial to informed consent. This also applies to 

cases where service providers are involved, as the students in general showed distrust in sharing 

data externally for the fear of becoming the targets of commercial advertisements.

Thirdly, cognitive limitations in understanding the algorithms embedded in LA systems could 

compromise the rational choices in sharing personal data, known as the phenomenon of 

bounded rationality – self-disclosure decisions are not always rational due to perceived or actual 

cognitive limitations in understanding all necessary information required to give informed 

consent (Acquisti and Grossklags 2007). In some cases, the opaqueness of algorithms results in 

distrust of analytics. This point in particular was raised by teaching staff:

The cleverer the algorithm, the opaquer and therefore the more dangerous it is…. We 

don’t know what biases are actually built into the data because the way in which the 

data are gathered are contaminated by, for example, issues of race and gender and so 

on. So it doesn’t take long before an algorithm becomes magic. It becomes something 

beyond our understanding and that’s dangerous (T1, G5).

We’re kind of caught between two competing demands from the same group 

[students], which is on the one hand the demand for more transparency and more 

information, and on the other hand, the fact that oftentimes the outcome of that is not 
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in any explicable or direct way correlated to the results or what they’re doing in the 

course. And it actually produces an effect that we don’t realise and they don’t realise 

as well (T1, G4).

In this case, information asymmetry results from a power imbalance caused by humans making 

decisions based on second-hand information (selective summary statistics provided by 

algorithms). The complexity of a technological system poses another limitation of transparency; 

that is, seeing does not necessarily lead to understanding (Ananny and Crawford 2018). 

Moreover, the opaqueness of algorithms can dangerously direct attention away from the process 

of learning activities and the associated social, cultural, and political factors in the broader 

context. As a result, it becomes an almost impossible task for students to challenge the precision 

of analytics of their learning.

Conclusion

Our analyses have identified conflicting interests in LA among students, teachers, and 

institutions, which have led to mismatched perceptions and expectations about the way LA can 

be used to enhance learner agency and improve equity. We argue that LA-based interventions 

should not be assumed to empower students. A number of intertwined factors have contributed 

to the tensions between enhancing a learner’s control of their studies and, at the same time, 

diminishing their autonomy as an active agent in the process of LA. These factors include the 

way interventions are devised and delivered, the way data is collected, analysed, and 

interpreted, the transparency of the data process, and the opaqueness of algorithms. We 

summarise our findings with three recommendations to mitigate the observed tensions:

First, interventions need to be based on the learning sciences to balance what students want and 

what is good for them. It is notable that students are concerned about making good 

decisions regarding learning and career development, whereas teachers highlighted the 

risks of learning analytics in terms of spoon-feeding students, leading to the removal of 

agency. While these two views do not necessarily conflict with each other, they 

highlight the importance of devising LA-triggered interventions based on learning 

sciences. For example, the seven principles of feedback proposed by Nicol and 

Macfarlane-Dick (2006) could be used as a framework for LA-based feedback to drive 

self-regulation.

Secondly, LA needs to leverage rather than replace human contact. Key to this is a realistic 
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evaluation of staff capacity and capability to deliver interventions. While the students generally 

bought into the rhetoric of personalisation advanced by learning analytics, their idea of 

personalisation was not necessarily a computational one. In fact, they lamented the lack of 

individualised support from human tutors, while showing a degree of suspicion for automated 

systems that focus on coarse, dichotomous metrics of educational performance, such as the risk 

of dropping out or failure. On the one hand, this suggests a desire to maintain a degree of 

control, indeed agency, over learning; on the other, it points to a notion of support that is 

dialogic, human-based and, inevitably, labour intensive in nature. Mirroring these concerns, 

teachers pointed to the confusion between individualised support and ‘industrial-scale 

provision’ – a confusion that has been introduced by the institution as a result of pressures to 

widen access to higher education as well as demonstrate performance via quantitative 

indicators, such as student satisfaction and progression. As a result, the version of 

personalisation expected by students was considered unrealistic by teaching staff, in that such 

levels of support cannot be delivered by humans without placing undue pressures on already 

heavy workloads. 

Thirdly, issues of transparency and visibility in terms of data policies, practices, and algorithms, 

requires a more informed debate around the implications for agency. An important question, in 

this regard, is the following: to what degree does agency depend on a relative lack of visibility 

and transparency? Despite the fact that obtaining explicit consent before data is collected and 

processed has been acknowledged as a requirement in Europe, the ineffective communication of 

policies puts burden on students seeking to comprehend the consequences of giving data away 

and being responsible for it. This appears like an effort to fulfil an obligation rather than to help 

students develop agency in any constructive way. Moreover, the disengagement of students in 

phases beyond data collection and the challenge of making algorithms transparent in a 

comprehensible way discredit the idea that LA empowers students, as little room has been left 

for agency in this remedial approach. 

The paradox of agency highlights the need to ‘deobfuscate’ the politics of data-based 

personalisation. Indeed, this is not only an ethical priority but also a methodological one, 

concerned with a more accurate understanding and communication of the inner ‘sociality’ of 

algorithmic diagnosis and prediction. It is crucially important to acknowledge and address the 

conflicting beliefs about data-based personalisation, surveillance, and agency when introducing 

LA as an equitable solution to educational challenges. In order to mitigate these conflicts, 

institutions need to intentionally involve different groups of users in a partnership to design and 

implement LA (Dollinger and Lodge 2018; Roberts, Chang, and Gibson 2017), and develop a 
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context-based policy (Tsai, Moreno-Marcos, Tammets, et al. 2018) that ensures the deployment 

of LA to align with the institutional values of inclusion, equity, and student autonomy. 
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