International Journal of Pure and Applied Mathematics Volume 93 No. 2 2014, 243-260 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu doi: http://dx.doi.org/10.12732/ijpam.v93i2.9 # γ - P_S -GENERALIZED CLOSED SETS AND γ - P_S - $T_{ rac{1}{2}}$ SPACES Baravan A. Asaad^{1 §}, Nazihah Ahmad², Zurni Omar³ ^{1,2,3}School of Quantitative Sciences College of Arts and Sciences Universiti Utara Malaysia 06010 Sintok, Kedah, MALAYSIA **Abstract:** This paper defines new class of sets called γ - P_S -generalized closed using γ - P_S -open set and τ_{γ} - P_S -closure of a set in a topological space. By using this new set, we introduce a new space called γ - P_S - $T_{\frac{1}{2}}$ and define three functions namely γ - P_S -g-continuous, γ - P_S -g-closed and γ - P_S -g-open. Some theoretical results and properties for this space and these functions are obtained. Several examples are given to illustrate some of the results. AMS Subject Classification: 54A05, 54C05, 54C10, 54D10 Key Words: γ - P_S -open set, γ - P_S -closed set, γ - P_S -g-closed set, γ - P_S - $T_{\frac{1}{2}}$ space, γ - P_S -g-continuous function #### 1. Introduction Kasahara [8] defined the concept of α -closed graphs of an operation on τ . Later, Ogata [11] renamed the operation α as γ operation on τ . He defined γ -open sets and introduced the notion of τ_{γ} which is the class of all γ -open sets in a topological space (X,τ) . Further study by Krishnan and Balachandran ([9], [10]) defined two types of sets called γ -preopen and γ -semiopen sets. The notion of α - γ -open sets have been defined by Kalaivani and Krishnan [7]. Meanwhile, Basu, Afsan and Ghosh [4] defined γ - β -open sets by using the operation γ on Received: February 23, 2014 © 2014 Academic Publications, Ltd. url: www.acadpubl.eu [§]Correspondence author τ . Carpintero, Rajesh and Rosas [5] introduced another notion of γ -open set called γ -b-open sets of a topological space (X, τ) . Recently, Asaad, Ahmad and Omar [1] defined the notion of γ -regular-open sets which lies strictly between the classes of γ -open set and γ -clopen set. They also introduced a new class of sets called γ - P_S -open sets, and they also defined γ - P_S -operations and their properties [2]. In the present paper, we define a new class of sets called γ - P_S -generalized closed using γ - P_S -open set and τ_{γ} - P_S -closure of a set and then invistigate some of its properties. A new space called γ - P_S - $T_{\frac{1}{2}}$ and functions called γ - P_S -g-continuous, γ - P_S -g-closed and γ - P_S -g-open are defined. Some theorems and results for this space and these functions are obtained. #### 2. Preliminaries and Basic Definitions Throughout this paper, spaces (X,τ) and (Y,σ) (or simply X and Y) always mean topological spaces on which no separation axioms assumed unless explicitly stated. An operation γ on the topology τ on X is a mapping $\gamma\colon \tau\to P(X)$ such that $U\subseteq \gamma(U)$ for each $U\in \tau$, where P(X) is the power set of X and $\gamma(U)$ denotes the value of γ at U [11]. A nonempty subset A of a topological space (X,τ) with an operation γ on τ is said to be γ -open [11] if for each $x\in A$, there exists an open set U containing x such that $\gamma(U)\subseteq A$. The complement of a γ -open set is called a γ -closed. The τ_{γ} -closure of a subset A of X with an operation γ on τ is defined as the intersection of all γ -closed sets containing A and it is denoted by τ_{γ} -Cl(A) [11], and the τ_{γ} -interior of a subset A of X with an operation γ on τ is defined as the union of all γ -open sets containing A [10]. Now we begin to recall some known notions which are useful in the sequel. **Definition 2.1.** Let (X, τ) be a topological space and γ be an operation on τ . A subset A of X is said to be: - 1. γ -regular-open if $A = \tau_{\gamma}$ - $Int(\tau_{\gamma}$ -Cl(A)) [1]. - 2. γ -preopen if $A \subseteq \tau_{\gamma}$ - $Int(\tau_{\gamma}$ -Cl(A)) [9]. - 3. γ -semiopen if $A \subseteq \tau_{\gamma}$ - $Cl(\tau_{\gamma}$ -Int(A)) [10]. - 4. α - γ -open if $A \subseteq \tau_{\gamma}$ - $Int(\tau_{\gamma}$ - $Cl(\tau_{\gamma}$ -Int(A))) [7]. - 5. γ -b-open if $A \subseteq \tau_{\gamma}$ - $Cl(\tau_{\gamma}$ - $Int(A)) \cup \tau_{\gamma}$ - $Int(\tau_{\gamma}$ -Cl(A)) [5]. - 6. γ - β -open if $A \subseteq \tau_{\gamma}$ - $Cl(\tau_{\gamma}$ - $Int(\tau_{\gamma}$ -Cl(A))) [4]. - 7. γ -clopen if it is both γ -open and γ -closed. - 8. γ -dense if τ_{γ} -Cl(A) = X [6]. **Definition 2.2.** The complement of γ -regular-open, γ -preopen, γ -semiopen, α - γ -open, γ -b-open and γ - β -open set is said to be γ -regular-closed [4], γ -preclosed [9], γ -semiclosed [10], α - γ -closed [7], γ -b-closed [5] and γ - β -closed [4], respectively. **Definition 2.3.** [2] A γ -preopen subset A of a topological space (X, τ) is called γ - P_S -open if for each $x \in A$, there exists a γ -semiclosed set F such that $x \in F \subseteq A$. The complement of a γ - P_S -open set is called a γ - P_S -closed. The class of all γ - P_S -open and γ - P_S -closed subsets of a topological space (X, τ) are denoted by τ_{γ} - $P_SO(X)$ and τ_{γ} - $P_SC(X)$, respectively. **Definition 2.4.** Let A be any subset of a topological space (X, τ) and γ be an operation on τ . Then: - 1. the τ_{γ} - P_S -interior of A is defined as the union of all γ - P_S -open sets of X contained in A and it is denoted by τ_{γ} - $P_SInt(A)$ [2]. - 2. the τ_{γ} - P_S -closure, τ_{γ} -preclosure and $\tau_{\alpha-\gamma}$ -closure of A is defined as the intersection of all γ - P_S -closed, γ -preclosed and α - γ -closed sets of X containing A and it is denoted by τ_{γ} - $P_SCl(A)$ [2], τ_{γ} -pCl(A) [9] and $\tau_{\alpha-\gamma}$ -Cl(A) [7], respectively. **Remark 2.5.** [2] Let (X, τ) be a topological space and γ be an operation on τ . For any subset A of a space X. The following statements are true. - 1. A is γ - P_S -closed if and only if τ_{γ} - $P_SCl(A) = A$. - 2. A is γ - P_S -open if and only if τ_{γ} - $P_SInt(A) = A$. - 3. τ_{γ} - $P_SCl(X \setminus A) = X \setminus \tau_{\gamma}$ - $P_SInt(A)$ and τ_{γ} - $P_SInt(X \setminus A) = X \setminus \tau_{\gamma}$ - $P_SCl(A)$. **Remark 2.6.** [2] Let (X, τ) be a topological space and γ be an operation on τ . For each element $x \in X$, the set $\{x\}$ is γ -P_S-open if and only if $\{x\}$ is γ -regular-open. **Theorem 2.7.** Let A be a subset of a topological space (X, τ) and γ be an operation on τ . Then: 1. $x \in \tau_{\gamma}$ - $P_SCl(A)$ if and only if $A \cap U \neq \phi$ for every γ - P_S -open set U of X containing x [2]. 2. $x \in \tau_{\gamma}\text{-}pCl(A)$ if and only if $A \cap U \neq \phi$ for every γ -preopen set U of X containing x [9]. **Definition 2.8.** Let (X, τ) be a topological space and γ be an operation on τ . A subset A of X is called: - 1. γ -pre-generalized closed (γ -preg-closed) if τ_{γ} - $pCl(A) \subseteq G$ whenever $A \subseteq G$ and G is a γ -preopen set in X [9]. - 2. α - γ -generalized closed (α - γ -g-closed) if $\tau_{\alpha-\gamma}$ - $Cl(A) \subseteq G$ whenever $A \subseteq G$ and G is a α - γ -open set in X [7]. **Definition 2.9.** [9] A topological space (X, τ) with an operation γ on τ is said to be γ -pre $T_{\frac{1}{2}}$ if every γ -preg-closed set in X is γ -preclosed. **Theorem 2.10.** [9] For any topological space (X, τ) with an operation γ on τ . Then X is γ -pre $T_{\frac{1}{2}}$ if and only if for each element $x \in X$, the set $\{x\}$ is γ -preclosed or γ -preopen. **Definition 2.11.** [3] Let (X, τ) and (Y, σ) be two topological spaces and γ be an operation on τ . A function $f: (X, \tau) \to (Y, \sigma)$ is called γ - P_S -continuous if the inverse image of every closed set in Y is γ - P_S -closed set in X. **Definition 2.12.** [3] Let (X, τ) and (Y, σ) be two topological spaces and γ be an operation on τ . A function $f: (X, \tau) \to (Y, \sigma)$ is called γ - P_S -closed if the image of every closed set in Y is γ - P_S -closed set in X. # 3. γ - P_S -Generalized Closed Sets In this section, we define a new class of sets called γ - P_S -generalized closed using γ - P_S -open set and τ_{γ} - P_S -closure of set. Also study some of its basic properties. **Definition 3.1.** Let A be any subset of a topological space (X, τ) with an operation γ on τ is called γ - P_S -generalized closed $(\gamma$ - P_S -g-closed) if τ_{γ} - $P_SCl(A) \subseteq G$ whenever $A \subseteq G$ and G is a γ - P_S -open set in X. The class of all γ - P_S -g-closed sets of X is denoted by τ_{γ} - $P_SGC(X)$. A set A is said to be γ - P_S -generalized open $(\gamma$ - P_S -g-open) if its complement is γ - P_S -g-closed. Or equivalently, a set A is γ - P_S -g-open if $F \subseteq \tau_{\gamma}$ - $P_SInt(A)$ whenever $F \subseteq A$ and F is a γ - P_S -closed set in X. **Lemma 3.2.** Every γ - P_S -closed set is γ - P_S -g-closed. *Proof.* Let A be any γ - P_S -closed set in a space X and $A \subseteq G$ where G is a γ - P_S -open set in X. Then τ_{γ} - P_S Cl $(A) \subseteq G$ since A is γ - P_S -closed set. Therefore, A is γ - P_S -g-closed set. The following example shows that the converse of the Lemma 3.2 is not true. **Example 3.3.** Let $X = \{a, b, c\}$ with the topology $\tau = \{\phi, \{a\}, \{b, c\}, X\}$. Define an operation $\gamma \colon \tau \to P(X)$ by $\gamma(A) = A$ for all $A \in \tau$. Then τ_{γ} - $P_SC(X) = \{\phi, \{a\}, \{b, c\}, X\}$ and τ_{γ} - $P_SGC(X) = \text{all subsets of } X$. So $\{b\}$ is γ - P_S -g-closed, but it is not γ - P_S -closed. **Lemma 3.4.** The union of any two γ - P_S -g-closed sets may not be γ - P_S -g-closed. **Lemma 3.5.** The intersection of any two γ - P_S -g-closed sets may not be γ - P_S -g-closed. Reverse implication of the above theorem does not hold as seen from the following example. **Example 3.6.** Let X=(0,1) and τ be the usual topology on X. Define an operation γ on τ by $\gamma(U)=U$ for all $U\in\tau$. Let A be the set of rational numbers in X except the singleton set $\{\frac{1}{2}\}$ and B be the set of irrational numbers in X. Then A and B are both γ - P_S -g-closed sets, but $A\cup B$ is not γ - P_S -g-closed. **Theorem 3.7.** Let A be a subset of topological space (X, τ) and γ be an operation on τ . Then A is γ - P_S -g-closed if and only if τ_{γ} - P_S Cl $(A)\setminus A$ does not contain any non-empty γ - P_S -closed set. Proof. Let F be a non-empty γ - P_S -closed set in X such that $F \subseteq \tau_{\gamma}$ - $P_SCl(A)\backslash A$. Then $F \subseteq X\backslash A$ implies $A \subseteq X\backslash F$. Since $X\backslash F$ is γ - P_S -open set and A is γ - P_S -g-closed set, then τ_{γ} - $P_SCl(A) \subseteq X\backslash F$. That is $F \subseteq X\backslash \tau_{\gamma}$ - $P_SCl(A)$. Hence $F \subseteq X\backslash \tau_{\gamma}$ - $P_SCl(A) \cap \tau_{\gamma}$ - $P_SCl(A) \subset X\backslash \tau_{\gamma}$ - $P_SCl(A) = \phi$. This shows that $F = \phi$. This is contradiction. Therefore, $F \not\subseteq \tau_{\gamma}$ - $P_SCl(A)\backslash A$. Conversely, let $A \subseteq G$ and G is γ - P_S -open set in X. So $X \setminus G$ is γ - P_S -closed set in X. Suppose that τ_{γ} - $P_SCl(A) \not\subseteq G$, then τ_{γ} - $P_SCl(A) \cap X \setminus G$ is a non-empty γ - P_S -closed set such that τ_{γ} - $P_SCl(A) \cap X \setminus G \subseteq \tau_{\gamma}$ - $P_SCl(A) \setminus A$. Contradiction of hypothesis. Hence τ_{γ} - $P_SCl(A) \subseteq G$ and so A is γ - P_S -G-closed set. Corollary 3.8. Let A be a γ -P_S-g-closed subset of topological space (X, τ) with an operation γ on τ . Then A is γ -P_S-closed if and only if τ_{γ} -P_SCl(A)\A is γ - P_S -closed set. *Proof.* Let A be a γ - P_S -closed set. Then τ_{γ} - $P_SCl(A) = A$ and hence τ_{γ} - $P_SCl(A) \setminus A = \phi$ which is γ - P_S -closed set. Conversely, suppose τ_{γ} - $P_SCl(A)\backslash A$ is γ - P_S -closed and A is γ - P_S -g-closed. Then by Theorem 3.7, τ_{γ} - $P_SCl(A)\backslash A$ does not contain any non-empty γ - P_S -closed set and since τ_{γ} - $P_SCl(A)\backslash A$ is γ - P_S -closed subset of itself, then τ_{γ} - $P_SCl(A)\backslash A=\phi$ implies τ_{γ} - $P_SCl(A)\cap X\backslash A=\phi$. This implies that τ_{γ} - $P_SCl(A)=A$. Therefore, A is γ - P_S -closed in X. **Remark 3.9.** For any set $A \subseteq (X, \tau)$, $\tau_{\gamma} - P_S Int(\tau_{\gamma} - P_S Cl(A) \setminus A) = \phi$. Proof. Obvious. **Theorem 3.10.** In any topological space (X, τ) , a set $A \subseteq (X, \tau)$ is γ - P_S -g-closed if and only if τ_{γ} - P_S Cl $(A) \setminus A$ is γ - P_S -g-open set. *Proof.* Let F be a γ - P_S -closed set in X such that $F \subseteq \tau_{\gamma}$ - $P_SCl(A) \setminus A$. Since A is γ - P_S -g-closed. Then by Theorem 3.7, $F = \phi$. Hence $F \subseteq \tau_{\gamma}$ - $P_SInt(\tau_{\gamma}$ - $P_SCl(A) \setminus A)$. This shows that τ_{γ} - $P_SCl(A) \setminus A$ is γ - P_S -g-open set. Conversely, suppose that $A \subseteq G$, where G is a γ - P_S -open set in X. So τ_{γ} - $P_SCl(A) \cap X \setminus G \subseteq \tau_{\gamma}$ - $P_SCl(A) \cap X \setminus A = \tau_{\gamma}$ - $P_SCl(A) \setminus A$. Since $X \setminus G$ is a γ - P_S -closed and hence τ_{γ} - $P_SCl(A) \cap X \setminus G$ is γ - P_S -closed set in X and τ_{γ} - $P_SCl(A) \setminus A$ is γ - P_S -g-open set. Then τ_{γ} - $P_SCl(A) \cap X \setminus G \subseteq \tau_{\gamma}$ - $P_SInt(\tau_{\gamma}$ - $P_SCl(A) \setminus A) = \phi$. By Remark 3.9, τ_{γ} - $P_SInt(\tau_{\gamma}$ - $P_SCl(A) \setminus A) = \phi$ implies that τ_{γ} - $P_SCl(A) \cap X \setminus G = \phi$ and hence τ_{γ} - $P_SCl(A) \subseteq G$. This means that A is γ - P_S -g-closed. \square **Theorem 3.11.** Let (X, τ) be a topological space and γ be an operation on τ . If a subset A of X is γ - P_S -g-closed and γ - P_S -open, then A is γ - P_S -closed. *Proof.* Since A is γ - P_S -g-closed and γ - P_S -open set in X, then τ_{γ} - $P_SCl(A) \subseteq A$ and so A is γ - P_S -closed. **Theorem 3.12.** Let (X, τ) be a topological space and γ be an operation on τ . If a subset A of X is γ - P_S -g-closed and γ - P_S -open and F is γ - P_S -closed, then $A \cap F$ is γ - P_S -closed. *Proof.* Since A is both γ - P_S -g-closed and γ - P_S -open set. Then by Theorem 3.11, A is γ - P_S -closed and since F is γ - P_S -closed, then $A \cap F$ is γ - P_S -closed. \square **Corollary 3.13.** If $A \subseteq X$ is both γ - P_S -g-closed and γ - P_S -open and F is γ - P_S -closed, then $A \cap F$ is γ - P_S -g-closed. *Proof.* Follows from Theorem 3.12 and the fact that every γ - P_S -closed set is γ - P_S -g-closed. **Corollary 3.14.** For any topological space (X, τ) . If a subset A of X is γ - P_S -g-closed and γ - P_S -open, then A is γ -preg-closed. *Proof.* The proof follows directly from Theorem 3.11 and the fact that every γ - P_S -closed set is γ -preclosed and every γ -preclosed set is γ -preg-closed [9]. \square **Theorem 3.15.** If $A \subseteq (X, \tau)$ is both γ -regular-open and γ - P_S -g-closed, then A is γ -regular-closed and hence it is γ -clopen. *Proof.* Let A be both γ -regular-open and γ - P_S -g-closed. Since A is γ -regular-open set. Then A is γ - P_S -open and by Theorem 3.11, A is γ - P_S -closed and so it is γ -preclosed. Again since A is γ -regular-open set, then A is γ -semiopen. Therefore, A is γ -regular-closed in X. Thus A is both γ -open and γ -closed and hence it is γ -clopen. **Lemma 3.16.** For any subset A in (X, τ) . If A is γ -semiopen, then τ_{γ} - $P_SCl(A) = \tau_{\gamma}$ -pCl(A). Proof. Let $x \notin \tau_{\gamma}\text{-}pCl(A)$, then there exists a γ -preopen set U containing x such that $A \cap U = \phi$ implies that $\tau_{\gamma}\text{-}Cl(\tau_{\gamma}\text{-}Int(A)) \cap \tau_{\gamma}\text{-}Int(\tau_{\gamma}\text{-}Cl(U)) = \phi$. Since A is γ -semiopen, then $A \cap \tau_{\gamma}\text{-}Int(\tau_{\gamma}\text{-}Cl(U)) = \phi$. Since U is γ -preopen set containing x, then $x \in \tau_{\gamma}\text{-}Int(\tau_{\gamma}\text{-}Cl(U))$ and $\tau_{\gamma}\text{-}Int(\tau_{\gamma}\text{-}Cl(U))$ is γ - P_S -open set. So by Theorem 2.7 (1), $x \notin \tau_{\gamma}\text{-}P_SCl(A)$. Hence $\tau_{\gamma}\text{-}P_SCl(A) \subseteq \tau_{\gamma}\text{-}pCl(A)$. But $\tau_{\gamma}\text{-}pCl(A) \subseteq \tau_{\gamma}\text{-}pCl(A)$ in general. Then $\tau_{\gamma}\text{-}P_SCl(A) = \tau_{\gamma}\text{-}pCl(A)$. \square Similar to Lemma 3.16, we can show that τ_{γ} - $pCl(A) = \tau_{\gamma}$ - $Cl(A) = \tau_{\alpha-\gamma}$ -Cl(A) for every γ -semiopen set A in (X, τ) . So we have the next corollary. Corollary 3.17. For each γ -semiopen A in (X, τ) , we have $$\tau_{\gamma}\text{-}P_{S}Cl(A) = \tau_{\gamma}\text{-}pCl(A) = \tau_{\gamma}\text{-}Cl(A) = \tau_{\alpha-\gamma}\text{-}Cl(A).$$ **Lemma 3.18.** For any subset A in (X, τ) . If A is γ - β -open, then τ_{γ} - $Cl(A) = \tau_{\alpha-\gamma}$ -Cl(A). *Proof.* The proof is similar to Lemma 3.16. \Box **Theorem 3.19.** If a subset A of (X, τ) is both α - γ -open and γ -preg-closed, then A is γ - P_S -g-closed. *Proof.* Suppose that A is both α - γ -open and γ -preg-closed set in X. Let $A \subseteq G$ and G be a γ - P_S -open set in X. Since A is α - γ -open. Then A is γ -preopen. Now $A \subseteq A$. By hypothesis, τ_{γ} - $pCl(A) \subseteq A$. Again since A is α - γ -open, then A is γ -semiopen. By Corollary 3.17, we get τ_{γ} - $P_SCl(A) \subseteq A \subseteq G$. Thus, A is γ - P_S -g-closed. **Theorem 3.20.** If a set A in X is both α - γ -open and α - γ -g-closed, then A is γ - P_S -g-closed. *Proof.* The proof is similar to Theorem 3.19 and using Corollary 3.17 to obtain $\tau_{\alpha-\gamma}$ - $Cl(A) = \tau_{\gamma}$ - $P_SCl(A)$ for every γ -semiopen set in X. The converse of Theorem 3.19 and Theorem 3.20 are true when A is γ -regular-open as it can be seen from the following corollary. Corollary 3.21. Let A be a γ -regular-open subset of a topological space (X, τ) with an operation γ on τ . Then the following conditions are equivalent: - 1. A is γ - P_S -g-closed. - 2. A is γ -preg-closed. - 3. A is α - γ -g-closed. **Theorem 3.22.** In a topological space (X, τ) with an operation γ on τ . Then every subset of X is γ - P_S -g-closed if and only if τ_{γ} - $P_SO(X) = \tau_{\gamma}$ - $P_SC(X)$. Proof. Assume that every subset of X is γ - P_S -g-closed. Let $U \in \tau_{\gamma}$ - $P_SO(X)$. Since U is γ - P_S -g-closed. Then by Theorem 3.11, we have U is γ - P_S -closed. Hence τ_{γ} - $P_SO(X) \subseteq \tau_{\gamma}$ - $P_SC(X)$. If $F \in \tau_{\gamma}$ - $P_SC(X)$, then $X \setminus F \in \tau_{\gamma}$ - $P_SO(X)$ and $X \setminus F$ is γ - P_S -g-closed. Then by Theorem 3.11, $X \setminus F$ is γ - P_S -closed and hence F is γ - P_S -open set. Thus, τ_{γ} - $P_SC(X) \subseteq \tau_{\gamma}$ - $P_SO(X)$. This means that τ_{γ} - $P_SO(X) = \tau_{\gamma}$ - $P_SC(X)$. Conversely, suppose that τ_{γ} - $P_SO(X) = \tau_{\gamma}$ - $P_SC(X)$ and that $A \subseteq G$ and $G \in \tau_{\gamma}$ - $P_SO(X)$. Then τ_{γ} - $P_SCl(A) \subseteq \tau_{\gamma}$ - $P_SCl(G) = G$. So A is γ - P_S -g-closed. **Theorem 3.23.** Let A, B be subsets of a topological space (X, τ) and γ be an operation on τ . If A is γ - P_S -g-closed and $A \subseteq B \subseteq \tau_{\gamma}$ - P_S Cl(A), then B is γ - P_S -g-closed set. Proof. Let A be any γ - P_S -g-closed set in (X,τ) and $B \subseteq G$ where G is γ - P_S -open. Since $A \subseteq B$, then $A \subseteq G$ and hence τ_{γ} - $P_SCl(A) \subseteq G$. Since $B \subseteq \tau_{\gamma}$ - $P_SCl(A)$ implies τ_{γ} - $P_SCl(B) \subseteq \tau_{\gamma}$ - $P_SCl(A)$. Thus τ_{γ} - $P_SCl(B) \subseteq G$ and this shows that B is γ - P_S -g-closed set. \square From Theorems 3.7 and 3.23, we obtain the following proposition. **Proposition 3.24.** Let A, B be subsets of a topological space (X, τ) and γ be an operation on τ . If A is γ - P_S -g-closed and $A \subseteq B \subseteq \tau_{\gamma}$ - $P_SCl(A)$, then τ_{γ} - $P_SCl(B)\setminus B$ contains no non-empty γ - P_S -closed set. **Theorem 3.25.** Let A and B be subsets of (X, τ) . If A is γ -P_S-g-open and τ_{γ} -P_SInt(A) \subseteq B \subseteq A, then B is γ -P_S-g-open set. Proof. Since τ_{γ} - $P_SInt(A) \subseteq B \subseteq A$ implies that $X \setminus A \subseteq X \setminus B \subseteq X \setminus \tau_{\gamma}$ - $P_SInt(A)$. By Remark 2.5 (3), we get $X \setminus A \subseteq X \setminus B \subseteq \tau_{\gamma}$ - $P_SCl(X \setminus A)$. Since A is γ - P_S -g-open and then $X \setminus A$ is γ - P_S -g-closed. So by Theorem 3.23, $X \setminus B$ is γ - P_S -g-closed and hence B is γ - P_S -g-open. \square **Theorem 3.26.** A subset A in (X, τ) is γ - P_S -g-open if and only if G = X whenever G is γ - P_S -open set in X and τ_{γ} - $P_SInt(A) \cup X \setminus A \subseteq G$. Proof. Let G be a γ - P_S -open set in X and τ_{γ} - $P_SInt(A) \cup X \setminus A \subseteq G$. This implies $X \setminus G \subseteq \tau_{\gamma}$ - $P_SCl(X \setminus A) \cap A = \tau_{\gamma}$ - $P_SCl(X \setminus A) \setminus (X \setminus A)$. Since G is γ - P_S -open and A is γ - P_S -g-open, then $X \setminus G$ is γ - P_S -closed and $X \setminus A$ is γ - P_S -g-closed. So by Theorem 3.7, $X \setminus G = \phi$ implies G = X. Conversely, suppose F is a γ - P_S -closed set in X and $F \subseteq A$. Then $X \setminus A \subseteq X \setminus F$ and hence τ_{γ} - $P_SInt(A) \cup X \setminus A \subseteq \tau_{\gamma}$ - $P_SInt(A) \cup X \setminus F$. Since τ_{γ} - $P_SInt(A) \cup X \setminus F$ is γ - P_S -open set in X, then by hypothesis τ_{γ} - $P_SInt(A) \cup X \setminus F = X$. It follows that $F \subseteq \tau_{\gamma}$ - $P_SInt(A)$. Therefore, A is γ - P_S -g-open set in X. \square Recall that a topological space (X,τ) with an operation γ on τ is γ -semi- T_1 if for each pair of distinct points x,y in X, there exist two γ -semiopen sets U and V such that $x \in U$ but $y \notin U$ and $y \in V$ but $x \notin V$ [10]. **Theorem 3.27.** [2] Let (X, τ) be a topological space and γ be an operation on τ . If X is γ -semi- T_1 , then the notion of γ - P_S -open set and γ -preopen set coincide, or this means that the notion of γ - P_S -closed set and γ -preclosed set coincide. **Remark 3.28.** In the above theorem, we can conclude that τ_{γ} - $P_SCl(A) = \tau_{\gamma}$ - $P_SCl(A)$ for any subset A of a γ -semi- T_1 space X. П **Theorem 3.29.** Let (X, τ) be γ -semi- T_1 space and γ be an operation on τ . A set A is γ - P_S -g-closed if and only if A is γ -preg-closed. *Proof.* Follows from Theorem 3.27 and Remark 3.28. □ Recall that a topological space (X, τ) with an operation γ on τ is γ -locally indiscrete if every γ -open subset of X is γ -closed, or every γ -closed subset of X is γ -open [1]. **Theorem 3.30.** [2] Let (X, τ) be a topological space and γ be an operation on τ . If X is γ -locally indiscrete, then τ_{γ} - $P_SO(X) = \tau_{\gamma}$. **Lemma 3.31.** If a space (X, τ) is γ -locally indiscrete, then every γ - P_S -open subset of X is γ - P_S -closed. *Proof.* Follows directly from Theorem 3.30. The following theorem shows that if a space X is γ -locally indiscrete, then τ_{γ} - $P_SGC(X)$ is discrete topology. **Theorem 3.32.** If a topological space (X, τ) is γ -locally indiscrete, then every subset of X is γ - P_S -g-closed. *Proof.* Suppose that (X, τ) is γ -locally indiscrete space and $A \subseteq U$ where $U \in \tau_{\gamma}$ - $P_SO(X)$. Then τ_{γ} - $P_SCl(A) \subseteq \tau_{\gamma}$ - $P_SCl(U)$ and by Lemma 3.31, we have τ_{γ} - $P_SCl(A) \subseteq U$ and so A is γ - P_S -g-closed set. \square Recall that a topological space (X, τ) with an operation γ on τ is γ -hyperconnected if every γ -open subset of X is γ -dense [1]. **Theorem 3.33.** [2] If a topological space (X, τ) is γ -hyperconnected if and only if τ_{γ} - $P_SO(X) = \{\phi, X\}$. **Theorem 3.34.** In a topological space (X, τ) with an operation γ on τ , if τ_{γ} - $P_SO(X) = \{\phi, X\}$, then every subset of X is a γ - P_S -g-closed. Proof. Let A be any subset of a topological space (X, τ) and τ_{γ} - $P_SO(X) = \{\phi, X\}$. Suppose that $A = \phi$, then A is a γ - P_S -g-closed set in X. If $A \neq \phi$, then X is the only γ - P_S -open set containing A and hence τ_{γ} - $P_SCl(A) \subseteq X$. So A is a γ - P_S -g-closed set in X. **Corollary 3.35.** If a topological space (X, τ) is γ -hyperconnected, then every subset of X is γ - P_S -g-closed. *Proof.* Follows from Theorem 3.33 and Theorem 3.34. □ **Theorem 3.36.** In any topological space (X, τ) with an operation γ on τ . For an element $x \in X$, the set $X \setminus \{x\}$ is $\gamma - P_S$ -g-closed or $\gamma - P_S$ -open. *Proof.* Suppose that $X\setminus\{x\}$ is not γ - P_S -open. Then X is the only γ - P_S -open set containing $X\setminus\{x\}$. This implies that τ_{γ} - $P_SCl(X\setminus\{x\})\subseteq X$. Thus $X\setminus\{x\}$ is a γ - P_S -g-closed set in X. Corollary 3.37. In any topological space (X, τ) with an operation γ on τ . For an element $x \in X$, either the set $\{x\}$ is γ - P_S -closed or the set $X\setminus \{x\}$ is γ - P_S -g-closed. *Proof.* Suppose $\{x\}$ is not γ - P_S -closed, then $X\setminus\{x\}$ is not γ - P_S -open. Hence by Theorem 3.36, $X\setminus\{x\}$ is γ - P_S -g-closed set in X. **Lemma 3.38.** Let (X,τ) be a topological space and γ be an operation on τ . A set A in (X,τ) is γ - P_S -g-closed if and only if $A \cap \tau_{\gamma}$ - $P_SCl(\{x\}) \neq \phi$ for every $x \in \tau_{\gamma}$ - $P_SCl(A)$. Proof. Suppose A is γ - P_S -g-closed set in X and suppose (if possible) that there exists an element $x \in \tau_{\gamma}$ - $P_SCl(A)$ such that $A \cap \tau_{\gamma}$ - $P_SCl(\{x\}) = \phi$. This follows that $A \subseteq X \setminus \tau_{\gamma}$ - $P_SCl(\{x\})$. Since τ_{γ} - $P_SCl(\{x\})$ is γ - P_S -closed implies $X \setminus \tau_{\gamma}$ - $P_SCl(\{x\})$ is γ - P_S -open and A is γ - P_S -g-closed set in X. Then τ_{γ} - $P_SCl(A) \subseteq X \setminus \tau_{\gamma}$ - $P_SCl(\{x\})$. This means that $x \notin \tau_{\gamma}$ - $P_SCl(A)$. This is a contradiction. Hence $A \cap \tau_{\gamma}$ - $P_SCl(\{x\}) \neq \phi$. Conversely, let G be any γ - P_S -open set in X containing A. To show that τ_{γ} - $P_SCl(A) \subseteq G$. Let $x \in \tau_{\gamma}$ - $P_SCl(A)$. Then by hypothesis, $A \cap \tau_{\gamma}$ - $P_SCl(\{x\}) \neq \phi$. So there exists an element $y \in A \cap \tau_{\gamma}$ - $P_SCl(\{x\})$. Thus $y \in A \subseteq G$ and $y \in \tau_{\gamma}$ - $P_SCl(\{x\})$. By Theorem 2.7 (1), $\{x\} \cap G \neq \phi$. Hence $x \in G$ and so τ_{γ} - $P_SCl(A) \subseteq G$. Therefore, A is γ - P_S -g-closed set in (X, τ) . **Theorem 3.39.** For any subset A of a topological space (X, τ) . Then $A \cap \tau_{\gamma}\text{-}P_SCl(\{x\}) \neq \phi$ for every $x \in \tau_{\gamma}\text{-}P_SCl(A)$ if and only if $\tau_{\gamma}\text{-}P_SCl(A) \setminus A$ does not contain any non-empty $\gamma\text{-}P_S\text{-}closed$ set. *Proof.* The proof is directly from Theorem 3.7 and Lemma 3.38. \Box Corollary 3.40. Let A be a subset of topological space (X, τ) and γ be an operation on τ . Then A is γ - P_S -g-closed if and only if $A = E \setminus F$, where E is γ - P_S -closed set and F contains no non-empty γ - P_S -closed set. *Proof.* Let A be any γ - P_S -g-closed set in (X, τ) . Then by Theorem 3.7, τ_{γ} - $P_SCl(A)\backslash A = F$ contains no non-empty γ - P_S -closed set. Let $E = \tau_{\gamma}$ - $P_SCl(A)$ is γ - P_S -closed set such that $A = E\backslash F$. Conversely, let $A = E \setminus F$, where E is γ - P_S -closed set and F contains no non-empty γ - P_S -closed set. Let $A \subseteq G$ and G is γ - P_S -open set in X. Then $E \cap X \setminus G$ is a γ - P_S -closed subset of F and hence it is empty. Therefore, τ_{γ} - $P_SCl(A) \subseteq E \subseteq G$. Thus A is γ - P_S -g-closed set. # 4. γ - P_S - $T_{\frac{1}{2}}$ Spaces This section introduces a new space called γ - P_S - $T_{\frac{1}{2}}$ by using γ - P_S -g-closed set. **Definition 4.1.** A topological space (X, τ) with an operation γ on τ is said to be γ - P_S - $T_{\frac{1}{2}}$ if every γ - P_S -g-closed set in X is γ - P_S -closed set. **Lemma 4.2.** A topological space (X, τ) is γ - P_S - $T_{\frac{1}{2}}$ if and only if τ_{γ} - $P_SGC(X) = \tau_{\gamma}$ - $P_SC(X)$. *Proof.* Follows from Definition 4.1 and Lemma 3.2. **Theorem 4.3.** For any topological space (X, τ) with an operation γ on τ . Then X is γ - P_S - $T_{\frac{1}{2}}$ if and only if for each element $x \in X$, the set $\{x\}$ is γ - P_S -closed or γ - P_S -open. *Proof.* Let X be a γ - P_S - $T_{\frac{1}{2}}$ space and let $\{x\}$ is not γ - P_S -closed set in X. By Corollary 3.37, $X\setminus\{x\}$ is γ - P_S -g-closed. Since X is γ - P_S - $T_{\frac{1}{2}}$, then $X\setminus\{x\}$ is γ - P_S -closed set which means that $\{x\}$ is γ - P_S -open set in X. Conversely, let F be any γ - P_S -g-closed set in the space (X, τ) . We have to show that F is γ - P_S -closed (that is τ_{γ} - $P_SCl(F) = F$). Let $x \in \tau_{\gamma}$ - $P_SCl(F)$. By hypothesis $\{x\}$ is γ - P_S -closed or γ - P_S -open for each $x \in X$. So we have two cases: Case (1): If $\{x\}$ is γ - P_S -closed set. Suppose $x \notin F$, then $x \in \tau_{\gamma}$ - $P_SCl(F) \setminus F$ contains a non-empty γ - P_S -closed set $\{x\}$. A contradiction since F is γ - P_S -g-closed set and according to the Theorem 3.7. Hence $x \in F$. This follows that τ_{γ} - $P_SCl(F) \subseteq F$ and so τ_{γ} - $P_SCl(F) = F$. This means that F is γ - P_S -closed set in X. Thus a space X is γ - P_S - $T_{\frac{1}{2}}$. Case (2): If $\{x\}$ is γ - P_S -open set. Then by Theorem 2.7 (1), $F \cap \{x\} \neq \phi$ which implies that $x \in F$. So τ_{γ} - $P_SCl(F) \subseteq F$. Thus F is γ - P_S -closed. Therefore, X is γ - P_S - $T_{\frac{1}{2}}$ space. **Proposition 4.4.** If a space (X, τ) is $\gamma - P_S - T_{\frac{1}{2}}$, then the set $\{x\}$ is $\gamma - P_S$ -closed or γ -regular-open for each $x \in X$. *Proof.* The proof is directly from Theorem 4.3 and Remark 2.6. \Box Corollary 4.5. If a space (X, τ) is γ - P_S - $T_{\frac{1}{2}}$, then for each point $x \in X$ the set $\{x\}$ is γ -b-closed. *Proof.* Let X be a γ - P_S - $T_{\frac{1}{2}}$ space. Then by Theorem 4.3, $\{x\}$ of X is either γ - P_S -closed set or γ - P_S -open set. If $\{x\}$ is γ - P_S -closed set, then $\{x\}$ is γ -b-closed set. If $\{x\}$ is γ -b-closed set. In both cases, we have $\{x\}$ is γ -b-closed set. \square **Theorem 4.6.** Every $\gamma - P_S - T_{\frac{1}{2}}$ space is $\gamma - preT_{\frac{1}{2}}$. *Proof.* Let (X,τ) be a γ - P_S - $T_{\frac{1}{2}}$ space. Then by Theorem 4.3, every singleton set is γ - P_S -closed or γ - P_S -open. This implies that every singleton set is γ -preclosed or γ -preopen. Therefore, by Theorem 2.10, (X,τ) is γ -pre $T_{\frac{1}{2}}$ space. The converse of the above theorem does not hold as seen from the following example. **Example 4.7.** Let $X = \{a, b, c\}$ with the topology $$\tau = \{\phi, X, \{b\}, \{c\}, \{b, c\}, \{a, b\}\}.$$ Define an operation $\gamma \colon \tau \to P(X)$ as follows: for every $A \in \tau$ $$\gamma(A) = \left\{ \begin{array}{ll} Cl(A) & \text{if } c \notin A \\ A & \text{if } c \in A \end{array} \right.$$ Then $\tau_{\gamma} = \{\phi, X, \{c\}, \{b, c\}, \{a, b\}\}, \tau_{\gamma} - P_S C(X) = \{\phi, X, \{b\}, \{c\}, \{a, b\}\} \text{ and } \tau_{\gamma} - P_S GC(X) = \{\phi, X, \{b\}, \{c\}, \{b, c\}, \{a, b\}\}.$ Then (X, τ) is γ -pre $T_{\frac{1}{2}}$ but it is not γ - P_S - $T_{\frac{1}{2}}$ since the set $\{b, c\}$ is γ - P_S -g-closed, but it is not γ - P_S -closed. **Theorem 4.8.** Let (X,τ) be a γ -semi- T_1 space. Then (X,τ) is γ - P_S - $T_{\frac{1}{2}}$ if and only if (X,τ) is γ -pre $T_{\frac{1}{2}}$. *Proof.* The proof follows from Theorem 3.27 and Theorem 3.29. ### 5. γ - P_S -g-Continuous Functions In this section, we introduce a new class of functions called γ - P_S -g-continuous by using γ - P_S -g-closed set. Some theorems and properties for this function are studied. **Definition 5.1.** Let (X, τ) and (Y, σ) be two topological spaces and γ be an operation on τ . A function $f: (X, \tau) \to (Y, \sigma)$ is called γ - P_S -g-continuous if the inverse image of every closed set in Y is γ - P_S -g-closed set in X. **Theorem 5.2.** For a function $f:(X,\tau)\to (Y,\sigma)$ with an operation γ on τ , the following statements are equivalent: - 1. f is γ - P_S -g-continuous. - 2. The inverse image of every open set in Y is γ -P_S-g-open set in X. - 3. For each point $x \in X$ and each open set V of Y containing f(x), there exists a γ - P_S -g-open set U of X containing x such that $f(U) \subseteq V$. | Proof. | Straightforward. | 1 | |--------|------------------|---| | | | | **Remark 5.3.** Every γ - P_S -continuous function is γ - P_S -g-continuous. *Proof.* Obvious since every γ - P_S -closed set is γ - P_S -g-closed set. The converse of the above remark does not true as seen from the following example. **Example 5.4.** Let (X,τ) be a topological space and γ be an operation on τ as in Example 4.7. Suppose that $Y = \{1,2,3\}$ and $\sigma = \{\phi,Y,\{1\},\{1,3\}\}$ be a topology on Y. Let $f: (X,\tau) \to (Y,\sigma)$ be a function defined as follows: f(a) = 1, f(b) = 2 and f(c) = 3. Then f is γ - P_S -g-continuous, but f is not γ - P_S -continuous since $\{2,3\}$ is closed in (Y,σ) , but $f^{-1}(\{2,3\}) = \{b,c\}$ is not γ - P_S -closed set in (X,τ) . **Theorem 5.5.** Let (X,τ) be γ - P_S - $T_{\frac{1}{2}}$ space and γ be an operation on τ . A function $f:(X,\tau)\to (Y,\sigma)$ is γ - P_S -continuous if and only if f is γ - P_S -g-continuous. *Proof.* Follows from Remark 4.2. **Theorem 5.6.** Let $f: (X, \tau) \to (Y, \sigma)$ be a function and γ be an operation on τ . If (X, τ) is γ -locally indiscrete space, then f is γ - P_S -g-continuous. *Proof.* This is an immediate consequence of Theorem 3.32. **Theorem 5.7.** Let γ be an operation on the topological space (X, τ) . If the functions $f: (X, \tau) \to (Y, \sigma)$ is γ - P_S -g-continuous and $g: (Y, \sigma) \to (Z, \rho)$ is continuous. Then the composition function $g \circ f: (X, \tau) \to (Z, \rho)$ is γ - P_S -g-continuous. Proof. It is clear. \Box **Proposition 5.8.** Let γ be an operation on the topological space (X, τ) . If $f: (X, \tau) \to (Y, \sigma)$ is a function, $g: (Y, \sigma) \to (Z, \rho)$ is closed and injective, and $g \circ f: (X, \tau) \to (Z, \rho)$ is γ - P_S -g-continuous. Then f is γ - P_S -g-continuous. *Proof.* Let F be a closed subset of Y. Since g is closed, g(F) is closed subset of Z. Since $g \circ f$ is γ - P_S -g-continuous and g is injective, then $f^{-1}(F) = f^{-1}(g^{-1}(g(F))) = (g \circ f)(g(F))$ is γ - P_S -g-closed in X, which proves that f is γ - P_S -g-continuous. **Definition 5.9.** Let (X, τ) and (Y, σ) be two topological spaces and β be an operation on σ . A function $f: (X, \tau) \to (Y, \sigma)$ is called β - P_S -g-closed if for every closed set F of X, f(F) is β - P_S -g-closed set in Y. **Remark 5.10.** Every β - P_S -closed function is β - P_S -g-closed. The converse of the above remark does not true as seen from the following example. **Example 5.11.** Let $X = \{a, b, c\}$ with the topology $\tau = \{\phi, \{c\}, \{b, c\}, X\}$ and $\sigma = \{\phi, X, \{b\}, \{a, c\}\}$. Define an operation β on σ by $\beta(A) = A$ for all $A \in \sigma$. Define $f: (X, \tau) \to (X, \sigma)$ by f(a) = a, f(b) = c and f(c) = b. Then f is β - P_S -g-closed, but f is not β - P_S -closed function since $\{a\}$ is closed set in (X, τ) , but $f(\{a\}) = \{a\}$ is not β - P_S -closed set in (X, σ) . **Theorem 5.12.** Let (Y, σ) be a topological space and β be an operation on σ . A function $f: (X, \tau) \to (Y, \sigma)$ is β - P_S -g-closed if and only if for each subset S of Y and each open set O in X containing $f^{-1}(S)$, there exists a β - P_S -g-open set R in Y such that $S \subseteq R$ and $f^{-1}(R) \subseteq O$. *Proof.* Suppose that f is β - P_S -g-closed function and let O be an open set in X containing $f^{-1}(S)$, where S is any subset in Y. Then $f(X \setminus O)$ is β - P_S -g-open set in Y. If we put $R = Y \setminus f(X \setminus O)$. Then R is β - P_S -g-closed set in Y containing S such that $f^{-1}(R) \subseteq O$. Conversely, let F be closed set in X. Let $S = Y \setminus f(F) \subseteq Y$. Then $f^{-1}(S) \subseteq X \setminus F$ and $X \setminus F$ is open set in X. By hypothesis, there exists a β - P_S -g-open set R in Y such that $S = Y \setminus f(F) \subseteq R$ and $f^{-1}(R) \subseteq X \setminus F$. For $f^{-1}(R) \subseteq X \setminus F$ implies $R \subseteq f(X \setminus F) \subseteq Y \setminus f(F)$. Hence $R = Y \setminus f(F)$. Since R is β - P_S -g-open set in Y. Then f(F) is β - P_S -g-closed set in Y. Therefore, f is β - P_S -g-closed function. **Theorem 5.13.** Let β be an operation on σ and $f:(X,\tau)\to (Y,\sigma)$ be β - P_S - $T_{\frac{1}{2}}$ space. Then f is β - P_S -g-closed if and only if f is β - P_S -closed. *Proof.* Follows from Remark 4.2. **Theorem 5.14.** Let $f:(X,\tau) \to (Y,\sigma)$ be a function and β be an operation on σ . If (Y,σ) is β -locally indiscrete space, then f is β - P_S -g-closed. *Proof.* This is an immediate consequence of Theorem 3.32. **Definition 5.15.** Let (X,τ) and (Y,σ) be two topological spaces and β be an operation on σ . A function $f:(X,\tau)\to (Y,\sigma)$ is called β - P_S -g-open if for every open set V of X, f(V) is β - P_S -g-open set in Y. **Definition 5.16.** A function $f:(X,\tau)\to (Y,\sigma)$ is said to be γ - P_S -g-homeomorphism, if f is bijective, γ - P_S -g-continuous and f^{-1} is γ - P_S -g-continuous. **Theorem 5.17.** The following statements are equivalent for a bijective function $f:(X,\tau)\to (Y,\sigma)$ with an operation β on σ . - 1. f is β - P_S -q-closed. - 2. f is β - P_S -g-open. - 3. f^{-1} is β - P_S -g-continuous. Proof. It is clear. **Proposition 5.18.** Let α be an operation on the topological space (Z, ρ) . If the function $f: (X, \tau) \to (Y, \sigma)$ is closed (resp., open) and $g: (Y, \sigma) \to (Z, \rho)$ is α - P_S -g-closed (resp., α - P_S -g-open). Then the composition function $g \circ f: (X, \tau) \to (Z, \rho)$ is α - P_S -g-closed (resp., α - P_S -g-open). Proof. Obvious. \Box **Proposition 5.19.** Let β be an operation on the topological space (Y, σ) . If $g: (Y, \sigma) \to (Z, \rho)$ is a function, $f: (X, \tau) \to (Y, \sigma)$ is β - P_S -g-open and surjective, and $g \circ f: (X, \tau) \to (Z, \rho)$ is continuous. Then g is γ - P_S -g-continuous. Proof. Similar to Proposition 5.8. \square **Proposition 5.20.** Let β be an operation on the topological space (Y, σ) . If $g: (Y, \sigma) \to (Z, \rho)$ is a function, $f: (X, \tau) \to (Y, \sigma)$ is continuous and surjective, and $g \circ f: (X, \tau) \to (Z, \rho)$ is β - P_S -g-closed. Then g is β - P_S -g-closed. Proof. Similar to Proposition 5.8. #### References - [1] B.A. Asaad, N. Ahmad and Z. Omar, γ -Regular-open sets and γ -extremally disconnected spaces, *Mathematical Theory and Modeling*, **3** 12 (2013), 132-141. - [2] B.A. Asaad, N. Ahmad and Z. Omar, γ - P_S -open sets in topological spaces, Proceedings of the 1st Innovation and Analytics Conference and Exhibition, $UUM\ Press,\ Sintok,\ (2013),\ 75-80.$ - [3] B.A. Asaad, N. Ahmad and Z. Omar, γ - P_S -functions in topological spaces, International Journal of Mathematical Analysis, **8** 6 (2014), 285-300. DOI: http://dx.doi.org/10.12988/ijma.2014.4121 - [4] C.K. Basu, B.M.U. Afsan, and M.K. Ghosh, A class of functions and separation axioms with respect to an operation, *Hacettepe Journal of Mathematics and Statistics*, **38** 2 (2009), 103-118. - [5] C. Carpintero, N. Rajesh and E. Rosas, Operation-b-open sets in topological spaces, fasciculi mathematici, 48 (2012), 13-21. - [6] C. Carpintero, N. Rajesh and E. Rosas, Somewhat (γ, β) -semicontinuous functions, *Bol. Soc. Paran. Mat.*, **30** 1 (2012), 45-52. DOI: http://dx.doi.org/10.5269/bspm.v30i1.13015 - [7] N. Kalaivani and G.S.S. Krishnan, On α - γ -open sets in topological spaces, *Proceedings of ICMCM*, **6** (2009), 370-376. - [8] S. Kasahara, Operation compact spaces, Math. Japonica, 24 1 (1979), 97-105. - [9] G.S.S. Krishnan and K. Balachandran, On a class of γ -preopen sets in a topological space, East Asian Math. J., **22** \mathcal{Z} (2006), 131-149. - [10] G.S.S. Krishnan and K. Balachandran, On γ -semiopen sets in topological spaces, *Bull. Cal. Math. Soc.*, **98** 6 (2006), 517-530. [11] H. Ogata, Operation on topological spaces and associated topology, Math. $Japonica, 36\ 1\ (1991),\ 175-184.$