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ABSTRACT 
 

Aims: In this study a survival mixture model of three components is considered to analyse survival 
data of heterogeneous nature. The survival mixture model is of the Exponential, Gamma and 
Weibull distributions. 
Methodology: The proposed model was investigated and the Maximum Likelihood (ML) estimators 
of the parameters of the model were evaluated by the application of the Expectation Maximization 
Algorithm (EM). Graphs, log likelihood (LL) and the Akaike Information Criterion (AIC) were used to 
compare the proposed model with the pure classical parametric survival models corresponding to 
each component using real survival data. The model was compared with the survival mixture 
models corresponding to each component.  
Results: The graphs, LL and AIC values showed that the proposed model fits the real data better 
than the pure classical survival models corresponding to each component. Also the proposed 
model fits the real data better than the survival mixture models corresponding to each component. 
Conclusion: The proposed model showed that survival mixture models are flexible and maintain 
the features of the pure classical survival model and are better option for modelling heterogeneous 
survival data. 
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1. INTRODUCTION  
 
Survival analysis is concerned with the 
investigation of a particular event happening 
within a given duration of time. Survival analysis 
is widely applied in many fields such as Medical 
studies, biology, social sciences, economics and 
engineering to mention a few. The most 
commonly used methods in survival analysis are 
the nonparametric methods. Pure classical 
parametric survival models are commonly 
employed in survival analysis; they are better 
option when the chosen distribution seems to fit 
the data properly. The Exponential, Gamma, and 
Weibull distributions are commonly used in the 
literature for modeling survival data [1-4]. 
Survival mixture models are most appropriate for 
modeling survival data when the data are 
believed to be heterogeneous in nature. 
Recently, many research works employed the 
methods of survival mixture models to analyse 
survival data. A two component mixture model of 
Weibull distributions was proposed to anlaysed 
survival data where the parameters of the model 
were estimated by the weighted least squares 
method [5]. A two component survival mixture 
model of Weibull distributions was proposed; 
where the parameters of the models were 
estimated by graphical approach [6]. Also a new 
technique for evaluating the parameters of a two 
component survival mixture model of Weibull 
distribution was developed to analyse survival 
data [7]. 
 
The Expectation Maximization Algorithm (EM) 
was employed to evaluate the parameters of the 
Weibull-Weibull survival mixture model of two 
components and the EM stability was 
investigated [8]. Two components survival 
mixture models of Gamma-Gamma, Weibul-
Weibull and Lognormal-lognormal were proposed 
to analyse survival data. Model selection method 
was used to select the model which better 
represents the real data [9]. A survival mixture of 
mixed distribution was employed for analyzing 
heterogeneous survival data. The mixed 
distribution model is a two components survival 
model of the Extended Exponential-Geometric 
(EEG) distribution where the EM was employed 
to estimate the model parameters [10]. Few 
researchers considered survival mixture models 
of different distributions. A two component 
parametric survival mixture model of different 
distributions of Exponentiated Pareto and 

Exponential distributions was used to model 
survival data [11]. Two components survival 
mixture models of different distributions 
consisting of an Exponential-Gamma, an 
Exponential-Weibull and a Gamma-Weibull 
models were proposed for analysing 
heterogeneous survival data by employing EM 
[12]. 
 
Three components parametric survival mixture 
models did not receive much attention. In a 
situation of an open heart surgery study; the risk 
of death after surgery was divided into three 
different time overlapping phases which are 
better analysed by a three component mixture 
model [13-15]. A parametric survival mixture 
model of the Exponential, Gamma and Weibull 
distributions was considered to fit heterogeneous 
survival data. Simulated data were used to 
investigate the stability and consistency of the 
EM [16]. In another study, model selection 
technique was employed to compare the 
parametric survival mixture model of the 
Exponential, Gamma and Weibull distributions 
with the parametric survival mixture model 
corresponding to each component [17]. A three 
component parametric survival mixture model of 
Weibull distributions was proposed to model 
survival data by applying Bayesian estimation 
method [18]. EM was usually employed on data 
believed to consist of some missing or 
unobserved observations [19].  The parameters 
of survival mixture models are commonly 
evaluated by implementing the EM Algorithm 
[20,21]. 
 
In this study, real data were used to investigate 
the flexibility and appropriateness of a three 
component survival mixture of the Exponential, 
Gamma and Weibull distributions in modelling 
heterogeneous survival data. The arrangement 
of this article is as follows; in section two, the 
survival analysis and some important probability 
functions were highlighted. The development of 
survival mixture model of three components and 
the application of the EM in estimating the ML 
parameters of the model were discussed. 
Section three was devoted to data application to 
evaluate the parameters of the proposed model 
and the discussion of the result. Finally in section 
four the summary and conclusion were 
presented.  
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2. SURVIVAL ANALYSIS AND THREE 
COMPONENTS MIXTURE MODEL 

 
Survival analysis deals with applying particular 
statistical methods to model and analyse survival 
data. The focus of interest is the occurrence of a 
particular event of interest within a given period 
of time. The response of primary interest is the 
random variable T which is non-negative and 
gives the survival time of an object or an 
individual. The survival time can be represented 
by three functions which are interchangeable The 
probability density function (pdf) is denoted by

)(tf , which is expressed as 

 

                         (1) 
 

Where )(tF is the distribution function of the 

random variable T. The graphical representation 
of the probability density function is frequently 

used in the literature, the graph of )(tf , is 

commonly referred to as the density curve. The 
area between the curve and the t axis of the non-

negative density function )(tf  is equal to 1. The 

survival function )(tS is commonly expressed as 

   

)(1)( tFtS                            
(2) 

 
Which estimated the probability of an individual 
surviving beyond a specified time t . The survival 

function )(tS is a continuous monotonic 

decreasing function with  

and . The hazard 

function denoted by , and is given by  

   

)(

)(
)(

tS

tf
th                           (3) 

 
Which gives the probability of an individual will 
fail within a small interval , provided that 

the individual was alive until the beginning of that 
interval.  
 
Pure classical parametric survival models are 
powerful methods in survival analysis. They are 
preferred when the chosen probability distribution 
appropriately represents the data. The 
Exponential, Gamma and Weibull distributions 
are among the most important and frequently 
used distributions in survival analysis [1,2,3,4]. 

The probability density function )(tf and survival 

function )(tS  of these distributions are 

highlighted below.  
 
Exponential Distribution 
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Where   is a scale parameter 
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Gamma distribution 
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Where  is the shape parameter and   is the 

scale parameter 
   

                    (7) 

 

Where  is known as the  

 
incomplete Gamma function.  
 
Weibull Distribution 
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 Where  is the shape parameter and   is the 

scale parameter 
 

   -exp)( t 
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               (9) 

 
In survival analysis, mixture models are 
frequently used because they are flexible. They 
are the best option where pure classical 
parametric survival models do not fit the data of 
heterogeneous nature [20,22]. Survival mixture 
model of three components is used when it is 
believed that the data consist of three 
subpopulation or subgroups. Equation (10) 
represents a survival mixture model of three 
components.  
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Where the vector ),,,,,( 321 QYX  , 

represents the vector the parameters of the 
mixture model. The functions 

);(),;( YYXX tftf  and );( QQ tf  are the 

probability density function corresponding to 

each component with some parameters YX  ,

and Q  respectively. 

 

In this paper, a survival mixture model of three 
components of different distributions is proposed 
to analyse survival data which is believed to be 
heterogeneous. The paper proposed a survival 
mixture model of the Exponential, Gamma and 
Weibull distributions. The proposed model is 
defined as 
 

),;(

),;();();(

22

31121__





t

ftftftf WGEWGE 

 (11) 
 

Where si '  represent the mixing probabilities of 

the three subpopulations with 1
3

1


i

i . The 

functions GE ff , and Wf , as defined in (4), (6) 

and (8), represent the probability functions of the 
Exponential, Gamma and Weibull distributions 
respectively. 
 
One of the most efficient and effective methods 
commonly used to estimate the ML estimators of 
finite mixture models is the EM Algorithm [21].  
 

Let nttt ,...,, 21  be a set of observations of n 

incomplete data and 321 ,, zzz  be a set of 

missing observations, where 1)(  ikki tzz , if 

the observation belongs to the k
th

 component 

and 0 otherwise for 3,2,1k and ni ,...,2,1 . 

On the implementation of the EM to the mixture 
model, the variables z`s are considered as 
missing values. The EM consists of two different 
steps, the first one is the Expectation step or the 
E-step and the second one is the Maximization 
step or the M-step. 
 

The  z`s variables are treated as missing 
observations in the E-step, the hidden variable 

vector ],,[ 321 iiii zzzz   are estimated by the 

evaluation of the conditional expectation

)|( iki tzE .  

 

Thus  
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The functions )|(),|( 21 iiii tzEtzE and 

)|( 3 ii tzE  calculated in the E-step will be 

maximized in the M-step of the EM under the 

condition 1
3

1


i

i . The evaluation of the mixing 

probabilities i  and vector of parameter 

],,[ QYX   , is by the implementation of the 

Lagrange method. The mixing probabilities will 
be obtained by;  
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 The ML estimator of the parameter  of the 
Exponential distribution for the proposed model 
can be obtained by the equation (19) [12,16,17]. 
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The maximum likelihood estimators of the 

parameters 1  and 1 of the Gamma 

distribution for proposed model are evaluated 
using equations (20) and (21) respectively             
[9,12,16,17].    
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And 
 























n

i
i

n

i
ii

z

tz

1
2

1
2

ˆˆ

ˆ
ˆ


                         (21) 

 

Where r is the number of Newton-Raphson 

iteration within EM Algorithm and (.) and (.)'  

are a digamma and trigamma functions 
respectively. 
 

The shape and scale parameters 2  and 2 of 

the Weibull distribution in the proposed model 
are obtained by solving the equations (22) and 
(23) respectively [9,12,16,17].  
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Where 
 

,

 

and r  is the number of  

 

Newton-Raphson iteration within EM.  
 

                   (23) 

 
3. REAL DATA APPLICATION AND 

DISCUSSION 
 
The real data analysed in this section are the 
Kidney Catheter data which is included as one of 
the datasets in famous survival package [23] of 
the R statistical software [24]. The data were 
studied originally in [25]. The data give the 
recurrence times to infection, at the time of 
inserting catheters of kidney patients using 
portable dialysis equipment. It consists of 76 
observations and 7 variables. The proposed 
model was used to analyse the data and then it 
was compared with the pure classical parametric 
survival models corresponding to each 
component using Log-likelihood (LL) and Akiake 
Information Criterion (AIC) value. Table 1. shows 
that the LL value of the proposed model is higher 
than that of the pure classical survival models 
and also the AIC value of the proposed model is 
lower than that of the pure classical survival 
models which makes the proposed model 
suitable for the real data used. 
 
The proposed model was graphically compared 
with pure classical parametric survival models 
corresponding to each component of the mixture 
model. The probability functions of proposed 
model and the pure classical parametric survival 
models along with the histogram of the Kidney 
Cather data were presented in Fig. 1. Fig. 1. 
shows that the proposed model analysed the real 
data better than the individual pure parametric 
survival models. 

Table 1. The parameters, LL and AIC values for the Kidney Catheter data 
 

Model Estimates LL AIC 
Exponential ̂  = 132.95 -341.7 685.4 

Weibull ̂ = 0.89,   ̂ = 128.00 -340.9 685.8 

Gamma ̂  = 0.86,  ̂ = 156.96 -341.20 686.40 

Mixture model  ̂ = 32.79 

1̂ = 20.38, 1̂ =  7.73 

2̂ = 3.91,  2̂ = 441.56 

1̂  = 0.52,   2̂ = 0.29 

-331.50 677.01 
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The Kidney Catheter data were used to compare 
the proposed model with the survival mixture 
models of the Exponential, Gamma and Weibull 
distributions, respectively to select the model that 
fits the data appropriately. Table 2. displays the 
estimated parameters of each model together 
with the LL and AIC values. It is observed that 
the proposed model represents the real data 
better than the other models. Also proposed 

model was compared graphically with the 
survival mixture models of the Exponential, 
Gamma and Weibull distributions, respectively. 
Fig. 2. shows the comparison of the density 
function of the proposed model with the other 
models. It is also observed that the proposed 
model represents the real data better than the 
other models. 

 

 
 
Fig. 1. The probability density functions of proposed model and the pure classical distribution 

of the Kidney Catheter data 
 

 
 

Fig. 2. The probability density functions of the proposed model and the mixture models of 
each component of the Kidney Catheter data 
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Table 2. LL and AIC of the proposed model and parametric survival mixture models of the 
same distribution 

 
 E_G_W  E1_E2_E3  G1_G2_G3  W1_W2_W3 

1̂  0.52 
1̂  0.26 

1̂  0.19 
1̂  0.41 

2̂  0.29 
2̂  0.22 

2̂  0.30 
2̂  0.53 

̂  32.79 
1̂  0.04 

1̂  3.59 
1̂  1.82 

1̂  20.38 
2̂  0.01 

2̂  4.11 
2̂  1.69 

2̂  3.91 
3̂  

0.01 
3̂  2.97 

3̂  26.56 

1̂  7.73   
1̂  3.44 

1̂  26.19 

2̂  441.56   
2̂  11.09 

2̂  202.39 

    
3̂  

79.42 
3̂  

545.34 

LL -331.50 LL -339.46 LL -337.30 LL -331.91 
AIC 677.01 AIC 682.91 AIC 690.61 AIC 679.83 

 

4. CONCLUSION 
 
This article proposed a survival mixture model of 
three components of the Exponential, Gamma 
and Weibull distributions to analyse survival data 
which is believed to be heterogeneous. Real data 
were used to estimate the parameters of the 
model. EM algorithm was employed in estimating 
the ML parameters of the proposed model. The 
comparison of the proposed model with the pure 
classical survival models and the survival mixture 
models corresponding to each distribution 
showed that the proposed model represents the 
data better than the other models. The proposed 
model showed that the survival mixture models 
are flexible and maintain the feature of pure 
classical survival models and they are better 
option to model heterogeneous survival data.  
 
*Note: The R language version 3.0.2 (2013-09-
25) http://CRAN.R-project.org was used for all 
the calculations and graphs 
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