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This paper considers a two-stage supply chain, consisting of a single warehouse and multiple retailers facing deterministic
demands, under a vendor-managed inventory (VMI) policy. It presents a two-phase optimisation approach for coordinating
the shipments in this VMI system. The first phase uses direct shipping from the supplier to all retailers to minimise the overall
inventory costs. Then, in the second phase, the retailers are clustered using a construction heuristic in order to optimise the
transportation costs while satisfying some additional restrictions. The improvement of the system’s performance through
coordinated VMI replenishments against the system with direct shipping only is shown and discussed in the comparative
analysis section.
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1. Introduction

Vendor-managed inventory (VMI) is an integrated inven-
tory management policy in which the supplier assumes, in
addition to its own inbound inventory, the responsibility
of maintaining inventory at the retailers, and ensuring that
they will not run out of stock at any moment. The replenish-
ment of the retailers is thus no longer triggered by retailers
placing orders, but instead it is the supplier who determines
when each of the retailers is replenished, and what the re-
plenishment quantities are. The supply is thus proactive, as
it is based on the available inventory information, instead of
being reactive, in response to retailers’ orders. This proac-
tive policy has many advantages for both the supplier and
the retailers. On the one hand, the supplier has the possibil-
ity to combine multiple deliveries to optimise truck loading
and to minimise transportation costs. Moreover, since the
supplier has direct information about retailers’ demand, de-
liveries will become more uniform and predictable. As a
consequence, the amount of inventory that must be held at
the supplier can be drastically reduced. On the other hand,
the retailers do not need to dedicate resources to the man-
agement of their inventories any longer. Furthermore, the
service levels towards the retailers (i.e., product availability)
can increase, as the supplier can track inventory levels and
subsequently take into account the replenishment urgency.

VMI has gained popularity, thanks to the availability of
many technologies that enable to monitor retailer invento-
ries in an online and cost-effective manner. Inventory data
can be made accessible much easier. However, this does

∗
Corresponding author. Email: MohdKamarulIrwan.AbdulRahim@ugent.be

not guarantee that implementing VMI always leads to im-
proved results. Failure can happen, for example due to the
unavailability of sharing the right pieces of information, or
due to the inability of the supplier to make the right deci-
sions. These two problems have to be solved in an integrated
manner when implementing VMI, which only adds to the
complexity, whereas managing inventory in a supply chain
and optimising transportation between stages are already
particularly challenging problems.

In this paper, we consider a two-stage supply sys-
tem with deterministic demand, operating under VMI (see
Figure 1). In particular, we focus on the single-warehouse,
multiple-retailer (SWMR) case in which a supplier serves a
set of retailers from a single warehouse. We assume that all
retailers face a deterministic, constant demand rate. Deliv-
eries to these retailers are made from the warehouse with a
fleet of vehicles having a limited capacity. The warehouse
in turn is replenished from an outside source. Incoming
shipments into the warehouse have to be coordinated with
outgoing shipments to the retailers in order to minimise the
total cost. This total cost consists of inventory holding costs
at the central warehouse and all retailers, costs for incoming
shipment into the warehouse, and outbound shipment costs
for the retailer replenishments. The optimisation problem
of minimising the total of inventory and transportation costs
encountered in this VMI system is known in the literature
as the inventory routing problem (IRP).

This SWMR case has been studied before in particu-
lar by Roundy (1985) and Chu and Leon (2008), amongst
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Figure 1. A two-echelon inventory system with SWMR.

others. However, they assumed that only direct shipping is
used to replenish the retailers, i.e., each vehicle visits a sin-
gle retailer and returns to the warehouse. Even under this
assumption, it is shown that the problem cannot be solved
in polynomial time.

We propose a two-phase heuristic solution approach to
minimise the overall inventory and transportation costs of
the SWMR system, under a VMI policy. In the first phase,
retailers are partitioned into subsets in order to minimise
the overall inventory costs of the system. Then, in the sec-
ond phase, a vehicle routing problem (VRP) procedure is
used to solve the routing in each of the retailer subsets
with the objective of minimising the travelled distance and
hence the transportation costs. As such, we drop the as-
sumption of direct shipments from warehouse to retailers,
but also include the option of combining multiple outbound
shipments in so-called milk-runs. To evaluate the impact of
VMI and milk-runs on the SWMR system, a comparative
analysis of the SWMR system before and after the adop-
tion of VMI and milk-runs is carried out. In particular, the
inventory management practices in the different scenarios
are examined and their related cost are compared.

The remainder of this paper is organised as follows.
Section 2 reviews the relevant literature. Section 3 presents
the formal description of the integrated SWMR–VMI deter-
ministic model. Section 4 reviews existing direct shipping
solutions and Section 5 describes the proposed two-phase
approach for milk-run solutions. A detailed analysis of an
illustrative supply chain example is given in Section 6.
Section 7 provides conclusions and directions for future
research.

2. A brief review of models and solution approaches

An important stream of research related to the SWMR is
the one that takes transportation costs explicitly into ac-
count. Federgruen and Zipkin (1984) were probably among
the first to integrate between inventory allocation and rout-
ing problems. They have considered a plant with a lim-
ited amount of available inventory serving a set of retailers
with random periodic demand rates. The objective of their
model is to allocate available inventory in the warehouse

to the retailers in a way that minimises total transportation
costs at the end of the period. They modelled the prob-
lem as a nonlinear mixed integer program, and proposed an
approximation method for its solution. Federgruen, Prasta-
cos, and Zipkin (1986) extended the work by Federgruen
and Zipkin (1984) to the case in which the product consid-
ered is perishable. Chien, Balakrishnan, and Wong (1989)
simulated a multiple period planning model based on a sin-
gle period approach and formulated it as a mixed integer
programming problem. Campbell, Clarke, Kleywegt, and
Savelsbergh (1998) studied a two-phase heuristic based on
a linear programming model. In the first phase, they calcu-
lated the exact visiting period and quantity to be delivered
to each retailer. Then, in the second phase, retailers are se-
quenced into vehicle routes. Bertazzi, Paletta, and Speranza
(2002) proposed a fast local search algorithm for the single
vehicle case in which an order-up-to level (OU) inventory
policy is applied. Aghezzaf, Raa, and Landeghem (2006)
formulated a model for the long-term IRP when demand
rates are stable and economic order quantity-like policies
are used to manage the inventory of the retailers. The au-
thors then proposed a column generation based heuristic.
Other examples of recent contributions in the SWMR sys-
tem were carried out by Aghezzaf (2008), Solyali and Sural
(2011, 2012), Aghezzaf, Zhong, Raa, and Mateo (2012),
Rahim and Aghezzaf (2012), Archetti, Bertazzi, Hertz, and
Speranza (2012), Coelho, Cordeau, and Laporte (2012a,
2012b), and Coelho and Laporte (2013a, 2013b).

In the context of replenishment strategies, Gallego and
Simchi-Levi (1990, 1994) considered a direct shipping ap-
proach in which each vehicle visits only a single retailer
in each one of its trips. Retailers have deterministic de-
mand rates and no shortages or backlogs are allowed. They
assumed that a sufficient number of vehicles, each with a
limited capacity, are available and that the storage capac-
ities at the retailers are sufficiently large. Kim and Kim
(2000) also examined a direct shipping method, but allow
for more than one trip per vehicle and time period. They
formulated the problem as a mixed integer linear program
and proposed a Lagrangian heuristic to solve it. More re-
cent works in the direction of direct shipping strategies with
deterministic demand can be found in Zhao, Wang, and Lai
(2007), Bertazzi (2008), Li, Wu, Lai, and Liu (2008), and
Li, Chen, and Chu (2010). Barnes-Schuster and Bassok
(1997) extended the direct shipping strategy to the case of
independent stochastic stationary demand rates. Through
simulation studies, they demonstrated that when the truck
capacities are close to the mean of the demand, the di-
rect shipping strategy performs well. Kleywegt, Nori, and
Savelsbergh (2002) developed an approach that is designed
for a different setting in which vehicle routes are limited
and only allow for direct shipping. They introduced and
modelled it as a Markov decision process and developed
an approximate dynamic programming method in order to
find good quality solutions with a reasonable computational
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effort. Direct shipping strategies are shown to be effective
alternative to more complex strategies when the economic
lot sizes for all retailers are close to the capacities of the ve-
hicles. However, it may not be the ideal policy when many
retailers require significantly less than a vehicle load.

When a direct shipping strategy is proven ineffective,
a milk-run approach should be considered, where each ve-
hicle serves multiple retailers in one delivery (one route).
For this reason, most studies concentrated on a special type
of distribution policies called fixed partition (FP) policies,
as they are easily implemented and effective in many situ-
ations. Anily and Federgruen (1990, 1993) are among the
first to adopt the ideas of FP policy. They analysed the re-
plenishment strategy, where the set of retailers is partitioned
into regions and each region is served independently. If a
retailer in some region is visited, all retailers in that region
are visited. Viswanathan and Mathur (1997) extended the
work of Anily and Federgruen (1990) for the multi-period,
multi-product problem. They presented a new heuristic that
generates a stationary nested joint replenishment policy
for the problem with deterministic demands. Then, they
adopted a power-of-two policy and the results showed that
when the replenishment periods are power-of-two multiples
of a common base planning period, good performance can
be achieved. Chan, Federgruen, and Simchi-Levi (1998)
investigated the effectiveness of the class of FP policies
and zero inventory ordering policies, and constructed an
effective algorithm resulting in an FP policy that is asymp-
totically optimal. Jung and Mathur (2007) extended the
replenishment strategy discussed in Anily and Federgruen
(1993) by allowing different reorder intervals for each re-
tailer in a cluster. They developed a three-step heuristic
and the solution is rounded to fit the power-of-two policy
constraints. Interesting studies in this research stream are
found in Chan, Muriel, Shen, Simchi-Levi, and Teo (2002),
Anily and Bramel (2004), Gaur and Fisher (2004), Zhao,
Chen, and Zang (2008), Raa and Aghezzaf (2008, 2009),
Bertazzi, Chan, and Speranza (2013), and Chu and Shen
(2010).

An extension of this research line is concerned with
the models that involve location–inventory network de-
sign, integrating the location and inventory decisions. Bara-
hona and Jensen (1998) studied a practical distribution net-
work design problem for computer spare parts. Their model
takes into account the inventory costs at the various ware-
houses. Erlebacher and Meller (2000) developed an analyt-
ical model to minimise the total fixed operating costs and
inventory holding costs incurred by warehouses, together
with the transportation costs. Shen, Coullard, and Daskin
(2003) and Daskin, Coullard, and Shen (2002) considered
the case where retailers are facing uncertain demands fol-
lowing a Poisson distribution. Shen et al. (2003) studied
a facility location problem in which the facilities manage
their inventory through an (r,Q) policy, while Daskin et al.
(2002) presented an efficient solution based on Lagrangian

relaxation approach. Shu, Teo, and Shen (2005) solved the
problem for general demand distributions. Sharma (2007)
examined the increase/decrease in the demand level and the
flexibility of the production rate in order to reduce the in-
ventory cost at the warehouse. Shen and Qi (2007) defined
a model for the stochastic supply chain design problem.
Ozsen, Coullard, and Daskin (2008) introduced the capac-
itated warehouse location model with risk pooling, which
captures the interdependence between the capacity issues
and the inventory management at the warehouses. Chen, Li,
and Ouyang (2011) studied a reliable inventory–location
model to optimise facility location decisions, allocation of
retailers and management of inventory in case warehouses
are at a risk of disorder. More recent contributions in this re-
search area are found in Tancrez, Lange, and Semal (2012),
Berman, Krass, and Tajbakhshm (2012), and Hamedani,
Jabalameli, and Bozorgi-Amiri (2013). In all models, the
inventory holding costs at the retailers are ignored. The
model examined here does not consider the design issue.
However, it takes all inventories at the warehouse as well as
at the retailers into account.

In this paper, we extend the SWMR model proposed by
Roundy (1985) and Chu and Leon (2008) to allow for travel
cost optimisation. Roundy (1985) introduced two new types
of policies, namely, integer-ratio policies and power-of-two
policies. Power-of-two policies are a subset of the class
of integer-ratio policies in which each facility orders at a
power-of-two multiple of a base planning period. Roundy
has shown that for the SWMR inventory model, the cost
rate of the optimal power-of-two policy is within 6% of the
cost rate of any feasible policy. This result has made power-
of-two policies very attractive. The complexity of each of
the two policies developed by Roundy (1985) is O(nlog(n)),
where n is the total number of retailers.

Chu and Leon (2008) consider the same problem as
Roundy and proposed a solution method which only con-
siders the feasible power-of-two policies. Instead of succes-
sively checking whether the optimal reorder period of the
warehouse falls within a certain interval (Roundy, 1985),
Chu and Leon (2008) proposed a method that takes advan-
tage of the property that the total average cost of the system
is convex.

The approaches proposed by Roundy (1985) and Chu
and Leon (2008) consider the transportation costs as fixed
costs. This means that there is no coordination between
retailers to minimise transportation and fleet costs. There-
fore, in order to integrate inventory management and rout-
ing cost optimisations, we extended these approaches to
include routing optimisation. Some effective routing op-
timisation procedures for VRP are used to design an ef-
ficient heuristic for SWMR. Laporte, Gendreau, Potvin,
and Semet (2000) classified the constructive techniques for
solving VRP in two main groups. The first group consists of
methods that combine existing routes using a savings
method, and the second group consists of techniques
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assigning vertices to vehicle routes using an insertion cost.
In this paper, we adopt the savings heuristic developed by
Clarke and Wright (1964) and the improvement heuristic
developed by Lin (1965) for the routing part of the problem.

3. The integrated SWMR–VMI deterministic model

In this section, the two-echelon SWMR–VMI system is for-
mally described in a mathematical model. The model allows
to find the optimal system order policy, i.e., minimising the
sum of all operational costs. For the model development,
let R be the set of retailers, indexed by j, and R+ = R ∪
{0} the set of facilities, where 0 indicates the warehouse.
We also define the following parameters:

• tij: trip duration from facility i ∈ R+ to facility
j ∈ R+ ,

• τ ij: transportation cost from facility i ∈ R+ to facility
j ∈ R+ ,

• ϕ0: fixed ordering cost incurred by the warehouse
each time it places an order; the ordering cost is
assumed independent of the order quantity,

• ϕj: fixed cost per delivery to retailer j ∈ R; the delivery
cost is assumed independent of the replenishment
quantity,

• h0: inventory holding cost rate per unit per period in
warehouse 0,

• hj: inventory holding cost rate per unit per period at
retailer j,

• dj: constant demand rate per period faced by
retailer j.

A solution to the problem is an order policy, which is
described by the time between consecutive replenishments,
or the replenishment interval, for all facilities in R+ . All
of these replenishment intervals will be a power-of-two
multiple of a base planning period, denoted by TB.

Furthermore, for any retailer j, either of the two fol-
lowing cases must hold: (1) the retailer’s replenishment
interval, denoted by Tj, is a power-of-two multiple of the
warehouse’s replenishment interval, denoted by T0, or (2)
vice versa, that is T0 is a power-of-two multiple of Tj.

Case 1: Tj is a power-of-two multiple of T0

In the first situation, replenishments of retailer j (with a
replenishment quantity of djTj) can always be initiated at
the moment an inbound shipment in the warehouse arrives.
As a result, the warehouse serves as a cross-dock and never
holds any inventory destined for that retailer. The resulting
inventory cost rate for retailer j in this first case is denoted
IC1

j , and is given by

IC1
j = ϕj

Tj

+ 1

2
hjdjTj . (1)

Case 2: T0 is a power-of-two multiple of Tj

In the second situation, a replenishment of retailer j (with
a replenishment quantity of djTj) can only be initiated at
the moment an inbound shipment in the warehouse arrives
every T0/Tj times. The other times, replenishments are made
from inventory in the warehouse. As a result, the warehouse
does hold inventory for that retailer. The resulting inventory
cost rate for retailer j in this second case, denoted by IC2

j ,
is then given by

IC2
j = ϕj

Tj

+ 1

2
hjdjTj + 1

2
h0dj (T0 − Tj ). (2)

Thus, given all the replenishment intervals, the total
inventory cost rate IC is

ICMR = ϕ0

T0
+

∑
j∈R

(
ϕj

Tj

+ 1

2
hjdjTj

+ 1

2
h0dj

[
max(T0, Tj ) − Tj

] )
. (3)

The second element in the total cost rate is the trans-
portation cost rate. When milk-runs are used, decisions have
to be made about clustering retailers and designing a trip
per cluster, i.e., a VRP has to be solved. We assume that
retailers in the same cluster all have the same replenishment
interval. The notation used for the milk-runs is the follow-
ing: V is the set of available vehicles, indexed by v; Rv is
the cluster of retailers served by vehicle v ∈ V; tripv is the
(shortest possible) milk-run trip that visits all customers in
Rv; τ v = ∑

(i,j )∈tripv τij is the transportation cost of making
tripv; and Tv is the replenishment interval of all retailers
in Rv. The transportation cost rate when using milk-runs,
TCMR, is then given by

TCMR =
∑
v∈V

τ v

T v
. (4)

The total cost rate TCRMR, which is the sum of the
inventory cost rate ICMR and the transportation cost rate
TCMR, can then be written as follows:

TCRMR = ϕ0

T0
+

∑
v∈V

(
τ v + ∑

j∈Rv ϕj

T v
+

∑
j∈Rv

hjdj

2
T v

+
∑
j∈Rv

h0dj

2
[max(T0, T

v) − T v]

)
. (5)

For any tripv visiting cluster Rv with interval Tv to be
feasible; however, two conditions have to be met. First, the
time between consecutive iterations, i.e., the interval Tv,
must be longer than the duration of the trip, which results
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in a lower bound for the interval Tv, denoted by T v
min:

T v ≥ T v
min =

∑
(i,j )∈tripv

tij . (6)

Second, the total quantity delivered to all retailers in the
trip cannot exceed the vehicle capacity κ , which results in
an upper bound for the interval Tv, denoted by T v

max:

T v ≤ T v
max = κ∑

j∈Rv dj

. (7)

Apart from the first term, TCRMR (5) is separable per
cluster/vehicle, and therefore, the intervals Tv can be opti-
mised individually. The two possible cases identified above
reappear here.

Case 1: Tv ≥ T0

In this case, the warehouse never holds inventory for re-
tailers in Rv, and the last term of the cost rate function is
zero. The interval value Tv∗ that minimises the cost rate for
vehicle v is as follows:

T v∗ =

√√√√2
(
τ v + ∑

j∈Rv ϕj

)
∑

j∈Rv hjdj

(≥ T0). (8)

Case 2: Tv < T0

In this case, the warehouse does hold inventory for retailers
in Rv, and the last term of the cost rate function is non-
zero. The interval value Tv∗ that minimises the cost rate for
vehicle v is then

T v∗ =

√√√√2
(
τ v + ∑

j∈Rv ϕj

)
∑

j∈Rv (hj − h0)dj

(< T0). (9)

Since there is also a minimum and maximum value for
the interval Tv, the optimal interval T v

opt is as follows:

T v
opt =

⎧⎨
⎩

T v∗, if T v
min ≤ T v∗ ≤ T v

max
T v

min, if T v
min > T v∗

T v
max, if T v∗ > T v

max

. (10)

The problem to be solved is then to partition the set
of retailers R into feasible clusters Rv, design a minimum
cost trip per cluster, determine integer values for all Tv and
T0, such that the total cost rate TCRMR is minimised. To
solve this SWMR–VMI problem efficiently, we propose an
algorithm that combines a solution method for the direct
shipping with an effective heuristic for VRP as explained
below.

4. Review of classical direct shipping solutions

To solve the SWMR–VMI problem, first, we describe the
modelling algorithms developed in Roundy (1985) and the
extension developed by Chu and Leon (2008).

4.1. Roundy’s algorithm

For the case of direct shipping, all retailers are in separate
clusters, and the total cost rate TCRDS is

TCRDS = ϕ0

T0
+

∑
j∈R

(
τ0j + τj0 + ϕj

Tj

+ hjdj

2
Tj

+ h0dj

2

[
max(T0, Tj ) − Tj

] )
. (11)

Apart from the first term, TCRDS (11) is separable per
retailer, and therefore, the intervals Tj can be optimised
individually. Again, there are the same two possible cases.

Case 1: Tj ≥ T0

The interval value τ ′
j that minimises the cost rate for retailer

j is as follows:

τ ′
j =

√
2
(
τ0j + ϕj + τj0

)
hjdj

. (12)

Case 2: Tj < T0

The interval value τ j that minimises the cost rate for retailer
j is then

τj =
√

2
(
τ0j + ϕj + τj0

)
(hj − h0)dj

. (13)

It is easy to verify that τ ′
j ≤ τj .

Since TCRDS is convex in T0, the optimal solution to
the relaxed problem (without integer-ratio or power-of-two
restrictions) given T0, is the following:

Tj =
⎧⎨
⎩

T0 if τ ′
j ≤ T0 ≤ τj

τ ′
j if T0 < τ ′

j

τj if τj < T0

. (14)

The algorithm introduced by Roundy (1985) assumes
that no shortage or backlogging is permitted. Without loss
of generality, replenishment is assumed to be instantaneous.
Moreover, the base planning period TB is assumed fixed,
and only power-of-two policies are employed, i.e., the order
intervals are all power-of-two multiples of TB:

T0 = 2k0TB k0 ≥ 0 and integer, (15)

Tj = 2kj TB kj ≥ 0 and integer,∀j ∈ R. (16)
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6 M.K.I.A. Rahim et al.

4.2. Chu and Leon’s solution algorithm

The algorithm proposed by Chu and Leon (2008), which
extends the method developed in Roundy (1985), is the
algorithm we will adopt in the direct shipping phase of our
solution procedure. The method starts by letting T0 be a
power of two of TB. The proposed method then finds the
corresponding optimal power-of-two multiples Tj for each
retailer j, and calculates the corresponding total cost rate
of the system. Then, T0 is iteratively increased to the next
power-of-two period until the total cost rate of the system
increases. At this point, the optimal power-of-two policy is
found.

The optimal power-of-two solutions, denoted by t ′j and
tj, are obtained by rounding the optimal solutions τ ′

j and τ j

to the nearest power-of-two multiples of TB.
Thus, this algorithm has proven that for a given T0,

the optimal power-of-two policy is given by (Chu & Leon,
2008)

Tj =
⎧⎨
⎩

T0 if t ′j ≤ T0 ≤ tj
t ′j if T0 < t ′j
tj if tj < T0

. (17)

Based on (17), and the fact that TCRDS is convex in
T0, Chu and Leon proposed an iterative heuristic that mon-
itors the changes in total cost rate, if interval Ti is used
instead of interval Tj. The heuristic for the SWMR system
is summarised as follows (see Chu & Leon, 2008).

Step 0: Calculate τ ′
j = √

2(τ0j +ϕj +τj0)/hj dj and τ j =√
2(τ0j +ϕj +τj0)/(hj −h0)dj , ∀j ∈ R and round these to the nearest

power of two to obtain t ′j and tj. Find tmin = min{t ′j : j ∈ R}
and tmax = max{tj: j ∈ R}. Let i = 0, T0 = tmin, T0 = {Ø},
and TCRDS(T0) = ∞.

Step 1: Choose Tj according to condition (17). Set i = i
+ 1. Let Ti = {T0, T1, . . . , Tn} and calculate TCRDS(Ti)
using (11). If TCRDS(Ti) < TCRDS(Ti − 1), go to Step 2.
Otherwise, the best power-of-two policy has been found
and is given by T∗ = Ti − 1. Stop.

Step 2: If T0 < tmax, set T0 = 2T0 and go back
to Step 1. Otherwise, the optimal T0 is in the range
[tmax, ∞]. For any T0 > tmax, the optimal Tj re-
main the same as the values last calculated (in
Step 1). Therefore, given these optimal Tj, ∀j, T0 can be
found by first minimising (11) with respect to T0 and then
rounding the solution such that 2k−1

√
2TB ≤ T0 = 2kTB ≤

2k
√

2TB with k integer. Stop.

5. Solution approach for SWMR–VMI with
milk-runs

This section presents a solution approach for the problem
presented in Section 3. Our method uses the work of Roundy
(1985) and Chu and Leon (2008) for the case of direct
shipping as a starting point, and then builds upon it to be

able to tackle the case of milk-runs. The solution frame-
work is illustrated in Figure 2 and consists of the following
steps.

We start by initialising the set of clusters, with each
retailer in a separate cluster, i.e., the direct shipping case. We
then use the algorithm of Chu and Leon (2008) presented
above to find the replenishment interval for each retailer as
well as the warehouse. These power-of-two order intervals
are then used in the next phase, the VRP phase.

For the VRP phase, the retailers are clustered per re-
plenishment interval. We then use the savings heuristic of
Clarke and Wright (1964) for each of the clusters. The main
purpose of this algorithm is to optimise the transportation
costs and to select retailers who can be replenished in a
milk-run rather than with separate direct shipments.

For every cluster of retailers (that have the same replen-
ishment interval after the previous step), we first perform
the savings procedure as follows.

Step 1: Compute the savings, Sij = τ i0 + τ 0j − τ ij, of
combining every possible pair of retailers i and j
in the cluster. Order the savings Sij in a decreasing
order.

Step 2: Find the first feasible link in the list which can be
used to extend one of the two ends of the currently
constructed route.

Step 3: If the route cannot be expanded further, terminate
the route. Choose the first feasible link in the list to
start a new route.

Step 4: Steps 2 and 3 are repeated until no further feasible
links can be chosen.

Then, a 2-opt improvement heuristic is applied to fur-
ther reduce transportation costs. This consists of deleting
and re-inserting sub-routes. The possible sub-routes are in-
serted into the existing solution, and the cheapest alternative
is kept. If no cheaper alternative is found, the solution is
restored and no improvement is realised. However, if a prof-
itable reconnection is identified, it means that the solution
can be improved.

After the VRP phase, every route determines a new
retailer cluster. If these retailer clusters are the same as be-
fore, we stop. Else, we return to the initial step to recalculate
cycle times for each of the clusters and the central ware-
house. Then, we can calculate the total cost for each of the
clusters in the SWMR–VMI system.

To examine the impact of introducing milk-runs, we
calculate the change in total inventory and transportation
costs for each of the retailers and the warehouse.

6. A detailed analysis of an illustrative supply
chain example

In this particular case, we consider 15 retailers as illus-
trated in Figure 3. These retailers are scattered around the
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Figure 2. Solution framework for the SWMR–VMI system with milk-runs.

warehouse and have demand rates that are assumed to be
stable, adding up to 6.341 ton/hour for all 15 retailers. We
assume that a fleet of vehicles is available for product re-
plenishment from the warehouse. The data of this case is
obtained by Aghezzaf et al. (2006).

Table 1 shows the distances (in km) between the differ-
ent retailers. Travel times can be obtained from Table 1 by
considering an average speed of 50 km/hour for each vehi-
cle. We assume that all vehicles in the fleet have a capacity

of 60 ton and a transportation cost of €0.10 per km. We
also assume that the fixed ordering cost of the warehouse
is €75 and all retailers have the same fixed cost per deliv-
ery of €50. Finally, we assume that there is a difference in
inventory holding cost rates at the warehouse versus at the
retailers, with (hj − h0) > 0.

To solve this illustrative example, we use our solution
method presented above. In the first step, we start from the
direct shipping solution and use the method of Chu and

Figure 3. An example case with 15 retailers.
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8 M.K.I.A. Rahim et al.

Table 1 Distance matrix (in km) for the example case.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 – 270 480 490 330 550 430 140 260 240 150 240 360 200 430 320
1 – 740 560 580 680 650 420 530 440 210 410 450 260 400 170
2 – 500 490 410 190 350 370 320 540 590 750 660 600 800
3 – 630 160 310 480 630 290 390 720 850 670 180 710
4 – 770 590 290 160 470 490 190 300 350 750 520
5 – 220 540 630 310 490 760 910 740 340 810
6 – 340 430 210 440 610 770 630 430 740
7 – 160 230 250 270 420 310 470 450
8 – 340 400 230 380 350 630 510
9 – 240 450 600 440 320 540

10 – 370 480 280 290 320
11 – 160 170 650 330
12 – 210 770 310
13 – 570 170
14 – 570
15 –

Leon (2008) to find the power-of-two order intervals for
each retailer as well as the warehouse. We use TB = 1 hour.

Initialisation:

Step 0: τ ′
j = √

2(τ0j +ϕj +τj0)/hj dj and τ j =√
2(τ0j +ϕj +τj0)/(hj −h0)dj , ∀j ∈ R and round these to the

nearest power of two. This results in t ′j={64, 32, 64, 32,
64, 64, 64, 32, 64, 64, 32, 32, 64, 64, 64} and tj={64, 32,
64, 32, 128, 64, 64, 64, 64, 64, 32, 32, 64, 64, 128}. We
find tmin = min{t ′j : j ∈ R} = 32 hours and tmax = max{tj:
j ∈ R} = 128 hours. i = 0; T0 = tmin = 32 hours; and
TCRDS(T0) = ∞.

Iteration 1:

Step 1: We set i = 1 and choose Tj according to condition
(17): T1={32, 64, 32, 64, 32, 64, 64, 64, 32, 64, 64, 32, 32,
64, 64, 64} and find TCRDS(T1) = €70.00 using (11). Since
TCRDS(T1) < TCRDS(T0), we go to Step 2.

Step 2: Set T0 = 64 hours and return to Step 1.

Iteration 2:

Step 1: i = 2 and T2={64, 64, 32, 64, 32, 64, 64, 64, 64,
64, 64, 32, 32, 64, 64, 64}. We find TCRDS(T2) = €68.44,
which is less than TCRDS(T1), so we go to Step 2.

Step 2: Step 2: Set T0 = 128 hours and return to Step 1.

Iteration 3:

Step 1: i = 3 and T3={128, 64, 32, 64, 32, 128, 64, 64,
64, 64, 64, 32, 32, 64, 64, 128}. We find TCRDS(T3) =
€77.17, which is more than TCRDS(T2). Therefore, the op-
timal power-of-two policy is T2.

In the next step, we solve the VRP problem in order to
reduce transportation costs. The problem is to define the
allocation of retailers to routes, determine the sequence in
which the retailers shall be visited on a route, and decide
which vehicle shall cover which route.

To solve the constrained VRP sub-problems, first, we
calculate the transportation costs between all pairs of points.
The transportation cost is given by τ ij = δ.v.tij euro per
tour, where tij represents the travel time between the pairs
of retailers at a speed of v km per hour, and δ is the travel
cost per km.

The replenishment quantity for each retailer is obtained
by multiplying its cycle time with its demand rate. The
resulting replenishment quantities are given in Table 2. The
inventory holding cost rates are various at the retailers (see
Table 2) and the inventory holding cost rate at the warehouse
is €0.05.

A VRP is solved for two sets of customers: those with
a cycle time of 64 hours {1, 3, 5, 6, 7, 8, 9, 10, 13, 14,
15}, and those with a cycle time of 32 hours {2, 4, 11, 12}.
The result of the savings heuristic is shown in Figure 4. The

Table 2 Quantities delivered to each of the retailers.

Demand Inventory Cycle time Delivery
Retailers (ton/hour) holding cost (€) (hours) (ton)

1 0.209 0.25 64 13.38
2 0.622 0.30 32 19.90
3 0.322 0.17 64 20.61
4 0.798 0.25 32 25.24
5 0.134 0.29 64 8.58
6 0.429 0.20 64 27.46
7 0.381 0.18 64 24.38
8 0.503 0.20 64 32.19
9 0.217 0.18 64 13.89
10 0.269 0.15 64 17.22
11 0.823 0.21 32 26.34
12 0.598 0.25 32 19.14
13 0.247 0.14 64 15.81
14 0.348 0.15 64 22.27
15 0.441 0.07 64 28.22
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Table 3 Distribution results for the different tours.

Vehicle Capacity Total cost,
Tours Load (ton) utilisation (%) TCRMR (€/hour)

V1 = (6, 5, 3) 56.64 94.4 61.29
V2 = (13, 15, 1) 57.41 95.7 58.55
V3 = (14, 9, 10) 53.38 89.3 59.29
V4 = (8, 7) 56.58 94.3 59.02
V5 = (12, 11) 45.47 75.9 62.97
V6 = (2, 4) 45.44 75.7 65.67

retailers of the first set are assigned to four routes: route V1

= (6, 5, 3) with a total demand of 56.64 ton, route V2 = (13,
15, 1) with a total demand of 57.41 ton, route V3 = (14, 9,
10) with a total demand of 53.38 ton, route V4 = (8, 7) with
a total demand of 56.58 ton. The retailers in the other set are
assigned to two routes: route V5 = (12, 11) which delivers
45.47 ton, and route V6 = (2, 4) which delivers 45.44 ton.

In Table 3, the vehicle load and the total cost rate TCRMR

for each of the sub-tours are clearly shown. From the re-
sults above, it shows that the truck loading is optimised
efficiently with the average capacity utilisation for all tours
being 87.48%.

As can be seen in Figure 4, sub-tour V3 = (14, 9, 10)
can be improved. This improvement is found in the 2-opt
heuristic that we apply next (see Figure 5). The existing
route (0–14–9–10–0) is changed to a new route (0–10–14–
9–0). This decreases total transportation costs from €114
to €100.

Figure 6 shows the new solution for SWMR–VMI after
the savings and improvement heuristics. We now have six
customer clusters (one per route), which are different from
the initial clustering (where we had one cluster for each
retailer). Therefore, the solution procedure starts a new
iteration and will evaluate the reorder intervals for these
new clusters.

Table 4 shows the total of the inventory costs, ICDS,
and round trip transportation costs, TCDS, for every retailer
with direct shipping. Table 5 shows the total costs of the
inventory, ICMR, and transportation, TCMR, for every re-
tailers cluster after the adoption of VMI and milk-runs. As
we know, before implementing VMI and milk-runs, each
retailer is exclusively served by a vehicle in trip visiting
that retailer only. Then, once VMI and milk-runs are imple-
mented, some retailers are clustered and served in a sub-tour
of a the trip made by the vehicle.

Figure 4. A VRP tour solution.

Figure 5. Solution of the sub-tour problem (improvement heuristic).
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10 M.K.I.A. Rahim et al.

Figure 6. Solution of the example problem (savings + improvement heuristic).

Table 4 Inventory and transportation costs with direct shipping.

Retailers ICDS (€/hour) TCDS (€/hour)

1 3.63 0.84
2 6.22 3.00
3 3.70 1.53
4 6.56 2.06
5 3.20 1.72
6 4.70 1.34
7 4.15 0.44
8 5.17 0.81
9 3.20 0.75

10 3.24 0.47
11 6.16 1.50
12 5.60 2.25
13 3.06 0.63
14 3.62 1.34
15 2.94 1.00

Total cost 65.15 19.68

Table 6 gives the comparisons between the results ob-
tained by the inventory management policy before and
then after the adoption of VMI and milk-runs. From the
table above, we can see that the inventory cost is re-
duced by 16.16% and the transportation cost is decreased
by 38.10%, when implementing VMI and milk-runs in

Table 5 Inventory and transportation costs with milk-runs.

Retailers clusters ICMR (€/hour) TCMR (€/hour)

V1 = (6, 5, 3) 9.26 2.03
V2 = (13, 15, 1) 7.28 1.27
V3 = (10, 14, 9) 7.73 1.56
V4 = (8, 7) 8.15 0.88
V5 = (12, 11) 10.59 2.38
V6 = (2, 4) 11.61 4.06

Total cost 54.62 12.18

Table 6 Summary results for inventory and transportation costs.

Milk-runs Direct
(€/hour) shipping (€/hour) Gap (%)

Inventory cost 54.62 65.15 16.16
Transportation cost 12.18 19.68 38.10

Total cost 66.80 84.83 21.25

the system. Therefore, the total cost of the inventory and
transportation costs in the system after implementing VMI
and milk-runs is reduced by 21.25%.

In addition, Table 7 gives the summary results for the
main characteristics of the distribution pattern. For exam-
ple, the vehicle 1 with a 60 ton capacity makes the tour V1 =
(6, 5, 3). The tour has Tmin = 26 hours, Tmax = 67.8 hours,
and Tv = 64 hours. The maximal cycle time is higher than
the theoretical optimal cycle time. The actual cycle time
is therefore, 64 hours, giving a total cost rate for this tour
equal of €61.29/hour and the total demand is 56.64 ton.

From the table above, we also can evaluate the effect of
the vehicle storage capacity restrictions. In this case, capac-
ities of 60 ton, 80 ton, and 100 ton are used for delivering
the product to each of retailers clusters. The vehicle capac-
ity factor is used to show that our solution approach not
only helps to decide on the fleet size, but can also be used
to select the most appropriate vehicle type for a particular
problem instance. For the size of 15 retailers, which are
clustered by the same set partitions, the result shows that
the average total cost rate is €366.79 when using a small ve-
hicle of 60 ton, €315.08 when using a vehicle of 80 ton, and
€261.93 when using a larger vehicle of 100 ton. Therefore,
we can see that the smaller the delivery quantities to each
of the clusters are, the less retailers are replenished per tour
and more tours are made. Moreover, it also increased the
number of vehicles and transportation costs. In this case,
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Table 7 Summary results for characteristics of the distribution pattern.

Vehicle capacity Tour T v
min T v

max Tv T v
opt Vehicle load Total cost (€/hour)

60 ton V1 = (6, 5, 3) 26.00 67.80 64.00 64.00 56.64 61.29
V2 = (12, 11) 15.20 42.22 32.00 32.00 57.41 62.97
V3 = (13, 15, 1) 16.20 66.89 64.00 64.00 53.38 58.55
V4 = (10, 14, 9) 20.00 71.94 64.00 64.00 56.58 59.29
V5 = (2, 4) 26.00 42.25 32.00 32.00 45.47 65.67
V6 = (8, 7) 11.20 67.87 64.00 64.00 45.44 59.02

314.92 366.79
80 ton V1 = (6, 5, 3, 14) 28.40 64.88 64.00 64.00 78.91 64.32

V2 = (4, 11, 12) 18.40 36.05 32.00 32.00 71.01 69.23
V3 = (13, 15, 1, 10) 18.00 68.61 64.00 64.00 74.62 60.76
V4 = (9, 8, 7) 17.60 72.66 64.00 64.00 70.46 61.55
V5 = (2) 19.20 128.62 32.00 32.00 19.90 59.22

314.90 315.08
100 ton V1 = (9, 6, 5, 3, 14) 28.80 68.97 64.00 64.00 92.80 65.99

V2 = (2, 4, 12, 11) 33.40 35.20 32.00 33.40 94.89 76.16
V3 = (13, 15, 1, 10) 18.00 85.76 64.00 64.00 74.62 60.76
V4 = (8, 7) 11.20 113.12 64.00 64.00 56.58 59.02

318.89 261.93

however, a smaller vehicle capacity is utilised efficiently
instead of a larger one.

7. Conclusions

Managing inventory and routing in a supply chain is a very
challenging optimisation problem. In this paper, we propose
a global solution approach for a two-stage supply chain
implementing VMI. We focused on the problem, denoted by
SWMR–VMI, where a single warehouse delivers a single
product to a set of independent retailers. These retailers
draw the required material from the warehouse to satisfy
their given individual demands. The warehouse, in turn,
places orders to an outside supplier to fill the accumulated
demands of the retailers.

An approach is proposed to minimise the overall inven-
tory and transportation costs of the SWMR–VMI system,
while satisfying the retailers demands. The approach inte-
grates two effective algorithms, one for inventory manage-
ment and the second for routing optimisation. In particular,
the algorithms proposed by Roundy (1985) and improved
by Chu and Leon (2008) are used to solve the SWMR direct
shipping problem, and the heuristic of Clarke and Wright
(1964) is used to solve the VRP sub-problem. The results
of the proposed approach allowed us to investigate the ef-
fectiveness of an inventory management policy before and
after the implementation of VMI and milk-runs in a two-
stage supply chain. We found out that the transportation
cost is relevant; the effect of VMI and milk-runs can result
in significant inventory and transportation cost savings.

Further research will focus on adapting this solution
approach to enriched IRP problems, including larger sets
of retailers, driving-time restrictions on the vehicles and
their drivers, delivery time windows at the retailers, het-

erogeneous vehicle fleets, multiple warehouses, multiple
products, etc. Numerical experiments on the large-scale
problems are currently under investigation. Finally, the ba-
sic assumption of constant demand rates is not always valid.
So, it is worthwhile to investigate how the approach can be
extended to explicitly take some demand variability into ac-
count. We will be extending this research to the stochastic
case in the future research.
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