

Effectiveness of Silhouette Rendering Algorithms in Terrain Visualisation

Abstract: Si
communicati
could be use
new method
effectiveness
images.

Keywords: N

1. Introduc

The aim of t
of silhouet
visualisation
photorealism
Non photore
paper for cre
technique u
silhouette re
the Wirefram
Cohen [16]
this paper.

 The dig
Talbot was u
3D. The resu
the evaluatio

Previous Wo

Terrain visu
sections, n
automated v
representatio
makers since
of the earlie
rounded ‘mo
of a regularl
of these ‘m
incorporate v
being shaded
Dowson has
provide a goo

 The aut
in 3D includ

S

060

R
De
Ruzinoor bin Che Mat
ekolah Teknologi Maklumat
Universiti Utara Malaysia
10 Sintok, Kedah Darulaman.

Malaysia.
ruzinoor@uum.edu.my

lhouette Rendering Algorithms have been successfu
ng shape and cartoon rendering. This paper explores
d in terrain visualisation. This approach has been imple
of displaying and viewing terrain data in an artistic sty
of the algorithm. The resulting terrain images are close

on-photorealistic animation and rendering (NPAR), visua

tion

his paper is to evaluate the effectiveness
te rendering algorithms in terrain
. Currently, terrain visualisations use
 in 3D. But a different approach, namely
alistic Rendering (NPR), is used in this
ating the terrain image in 3D. The NPR
sed in this paper is dependent on
ndering algorithms. The evaluation of
e Method, introduced by Raskar and

and adapted by Liu [13], is reported in

ital elevation models (DEM) for Port
sed as real data for modelling terrain in
lts produced from this data were used in
n.

rk in Terrain Visualisation and NPR

alisation can be divided into two
amely manual representation and
isualisation of terrain. The manual

n of terrain has been a challenge to map
 the earliest maps were produced. Some
st maps of terrain showed mountains as
lehills’: the simple, uniform, side views
y rounded dome [11]. The arrangement
olehill’ symbols evolved over time to
ariations in size and shape as well as
 to give an impression of illumination.
 produced a table to categorise and
d review of all of these techniques [5].

omated methods for visualising terrain
e mosaics (a pseudo-colouring the cells

of the g
polygon
p.43).
comput
produci
is espec
great va
produce

 Th
was de
produci
it. NP
attempt
directly
purpose
appear

 Re
display
Recent
images
pencil [
pen-and

 Gr
which
custom
Markos
techniq
techniq
visible
Appel's
the syst
on com
reality
availab

M

Dr. Mahes Visvalingam
eader in Digital Cartography
partment of Computer Science

The University of Hull
Hull HU6 7RX,
United Kingdom

.Visvalingam@dcs.hull.ac.uk
lly used in various applications such as
how effective silhouette rendering algorithms
mented in a 3D modelling system to create a

le. Real terrain data has been used to test the
r to human drawn illustration than to shaded

lisation, silhouette and terrain.

rid), profiles, contouring, vertices, wiremesh,
 model and photorealism (see Dowson [5]
He states that “The great advantage of
er visualisation of terrain data is that of
ng images very quickly and effortlessly. This
ially the case with 3D diagrams which are of
lue but can be time consuming and tedious to
 using conventional cartography”.

is paper falls within the area of NPR, which
fined by Green et al. [8] as concerned with
ng imagery that look as if an artist had drawn
R has also described by Hertzmann as "any
 to create images to convey a scene without
 rendering a physical simulation"[9]. The
 of this technique is to produce images that
to have been drawn by hand.

searchers in NPR have investigated the
 of 3D worlds using various display models.
work has focused on the modelling of artistic
and styles using silhouette [9], graphite

21], computer generated watercolour [4] and
-ink illustration [20].

een et al. [8] used an interactive NPR system,
has the capability to interactively display a
 shaded model and edge lines. However,
ian et al. [14] presented a new real time NPR
ue based on an economy of line. This
ue used a rendered method for determining
lines and surfaces, based on a modification of
 hidden line algorithm. They demonstrated
em with several NPR styles, which all operate
plex models at interactive frame rates. The
is that NPR software (Piranesi) is now

le on the market [17], which has a capability

https://www.researchgate.net/publication/34486893_Algorithms_for_Rendering_in_Artistic_Styles?el=1_x_8&enrichId=rgreq-29f44b9a-ba85-407a-acb8-25a27d7138a3&enrichSource=Y292ZXJQYWdlOzIzNTc1MTMxMDtBUzo5NzIyNTU2ODk0ODIyNUAxNDAwMTkxNzkwMTU1
https://www.researchgate.net/publication/34486893_Algorithms_for_Rendering_in_Artistic_Styles?el=1_x_8&enrichId=rgreq-29f44b9a-ba85-407a-acb8-25a27d7138a3&enrichSource=Y292ZXJQYWdlOzIzNTc1MTMxMDtBUzo5NzIyNTU2ODk0ODIyNUAxNDAwMTkxNzkwMTU1
https://www.researchgate.net/publication/2411849_Orientable_Textures_for_Image-Based_Pen-and-Ink_Illustration?el=1_x_8&enrichId=rgreq-29f44b9a-ba85-407a-acb8-25a27d7138a3&enrichSource=Y292ZXJQYWdlOzIzNTc1MTMxMDtBUzo5NzIyNTU2ODk0ODIyNUAxNDAwMTkxNzkwMTU1
https://www.researchgate.net/publication/2513077_Computer-Generated_Graphite_Pencil_Rendering_of_3D_Polygonal_Models?el=1_x_8&enrichId=rgreq-29f44b9a-ba85-407a-acb8-25a27d7138a3&enrichSource=Y292ZXJQYWdlOzIzNTc1MTMxMDtBUzo5NzIyNTU2ODk0ODIyNUAxNDAwMTkxNzkwMTU1
https://www.researchgate.net/publication/236973459_Non-Photorealistic_Rendering?el=1_x_8&enrichId=rgreq-29f44b9a-ba85-407a-acb8-25a27d7138a3&enrichSource=Y292ZXJQYWdlOzIzNTc1MTMxMDtBUzo5NzIyNTU2ODk0ODIyNUAxNDAwMTkxNzkwMTU1
https://www.researchgate.net/publication/236973459_Non-Photorealistic_Rendering?el=1_x_8&enrichId=rgreq-29f44b9a-ba85-407a-acb8-25a27d7138a3&enrichSource=Y292ZXJQYWdlOzIzNTc1MTMxMDtBUzo5NzIyNTU2ODk0ODIyNUAxNDAwMTkxNzkwMTU1
https://www.researchgate.net/publication/220792153_Image_Precision_Silhouette_Edges?el=1_x_8&enrichId=rgreq-29f44b9a-ba85-407a-acb8-25a27d7138a3&enrichSource=Y292ZXJQYWdlOzIzNTc1MTMxMDtBUzo5NzIyNTU2ODk0ODIyNUAxNDAwMTkxNzkwMTU1

for rendering any 3D image as a Non-photorealistic
image.

2. Silhouettes

Researchers have defined silhouettes in different
ways. Hertzmann and Zorin [10] quoted that
“silhouette drawing is sufficient to convey
information about simple objects, it is often
insufficient for depicting objects that are complex or
free-form. From many points of view, a smooth
object may have no visible silhouette lines, aside
from the outer silhouette, and all the information
inside the silhouette is lost”. Other than that, Lake et
al. [12] have defined the silhouette edge as “the edge
shared by a front-facing and a back-facing polygons
(see Figure 1.0). The silhouette in each frame, can be
found by taking the dot products of the face normal
of the two faces adjacent to an edge with the viewing
vector (see Equation 1.0) and comparing the product
of these two dot products with zero. If the result of
this computation is less than or equal to zero, the
edge is a silhouette edge and it is flagged for
rendering”.

 Hertzmann has provided an extensive review on
silhouettes and the survey of the technological
problem for finding visible silhouettes of 3D
surfaces. He mentioned that "silhouette are important
both perceptually and aesthetically. Efficient
silhouette detection is an interesting technical
problem, because silhouettes typically occur only in
a few places on a 3D shape at any given moment"
[9].

2.1 Techniques for Detecting Silhouettes

Researchers in NPR have produced many different
techniques for detecting silhouettes. All the
techniques have their advantages and disadvantages
which depends on how the silhouette will be
detected. The silhouette techniques can be divided
into those operating on:

• The image planes (Image based)
• 3D surfaces (Model based)

• Hybrid Approach
• Highlighting Silhouettes

Image based

Saito and Takahashi [19] showed how silhouette
edges could be used to enhance the display of
images. The silhouette edges can be rendered by
highlighting the discontinuities in the z-buffer
derivative. This is similar with creases or folds in the
image that can be rendered using same technique as
before but for the second derivative of z-buffer. They
also rendered the outlines of 3D objects by applying
edge-detection filters to specially prepared depth and
normal maps and compositing the results with the
rest of the scene.

 Curtis [3] has introduced the loose and sketchy
techniques for rendering silhouettes. This technique
automatically draws the visible silhouette edges of a
3-D model by using image processing and a
stochastic, physically based particle system. It
requires only a depth map of the model and a few
simple parameters set by the user to detect the
silhouette.

Model Based

Gooch et al. [7] have used model based techniques
for finding the silhouette edges. The fundamental
idea of this technique is that when silhouettes and
other edge lines are explicitly drawn, then very low
dynamic range shading is needed for the interior.
Their technique was implemented by adopting a
shading algorithm based on cool-to-warm tones.
Warms colours are considered to advance in the
image, while cool colours recede. This style of
shading was adopted to ensure that black silhouettes
and edge lines are clearly visible. Thus, by using
silhouettes and edge lines, as well as cool-to-warm
tones, they can create images that are very easy to be
understood. However, this technique is complicated
and difficult to implement.

 Barequet et al. [1] presented an efficient
tracking of perspective-accurate silhouette by
reducing the problem to point location queries. They
used an incremental algorithm for computing the
silhouettes of polyhedral models and updating them
as the viewpoint changes. This algorithm exploits the
coherence in silhouettes to obtain fast updates of the
silhouettes. They assumed that the silhouettes of a
model from a given viewpoint is known. An edge
ceases to be respectively a silhouette edge if and only
if it shared by one front-facing and one back-facing
polygon, and exactly one of it adjacent polygons
changes orientation.

 Bremer and Hughes [2] have using ray tracing
technique for rendering the silhouette. The aim of

Silhouette Edge = (face normal1.eyevect) * (facenormal2.eyevect) ≤ 0

Equation 1.0

Figure 1.0: Silhouette edge detection
 (Image from Lake et al. [12])

https://www.researchgate.net/publication/34486893_Algorithms_for_Rendering_in_Artistic_Styles?el=1_x_8&enrichId=rgreq-29f44b9a-ba85-407a-acb8-25a27d7138a3&enrichSource=Y292ZXJQYWdlOzIzNTc1MTMxMDtBUzo5NzIyNTU2ODk0ODIyNUAxNDAwMTkxNzkwMTU1

this technique is to produce a non-photorealistic
rendering of an implicit surface. Silhouette and some
shading near silhouettes are rendered using these
techniques. Their method was directly inspired by
Markosian et al. [14] that produce real time
silhouette renderings of a polygonal model. This
algorithm starts with finding the silhouette edges and
information for shading, tests the edges for
occlusion, and then draws the edges and shading
information.

Hybrid Approach

This technique introduced by Northrup and
Markosian [15] can be classified as the latest
technique for detecting silhouette edges. It rendering
silhouette outlines of 3D polygonal meshes with
stylised strokes. This technique works by combining
the benefits of the image-based approach with the
accuracy of a geometry-based approach. It started
with detecting the silhouette edges of the model and
then computes the visibility and adjacency using a
2D projection of the silhouette edges. At a high
level, this algorithm proceeds as follows:

• Find the silhouette edges.
• Determine visible segments of each edge.
• Apply correction for overlaps in segments.
• Link segments into smooth paths.
• Render stylised strokes along these paths.

Highlighting Silhouettes

The work done by Raskar and Cohen [16] renders the
silhouette edges using a traditional polygonal
rendering setup. The silhouette edges can be
rendered by simply pulling the back-facing polygons
towards the camera. This technique does not require
pre-processing or adjacency information for dynamic
scenes. Only two sets of polygons are needed to
compute visible silhouette edges for a given
viewpoint. These two sets are P1 the layer of visible
polygons nearest viewpoint, and the second layer P2
of polygons from that viewpoint. It is determined by
front-facing and back-facing polygons. The
intersection of these two layers gives silhouette edges
in object spaces. The silhouette edges also can be
rendered by computing the projection of P1, P2 and
P1∩ P2 using a depth buffer directly in image space.
The pseudo-code to render silhouette edges in black
on white background are described below:-

• Draw background with white colour.
• Enable back face culling, set depth function

to “Less Than”
• Render (front facing) polygons in white.
• Enable front face culling, set depth function

“Equal To”.

• Draw (back-facing) polygons in black
wireframe.

• Repeat for a new viewpoint.

 These methods of producing silhouettes are
called the general method. Raskar and Cohen [16]
provided three techniques for rendering the
silhouette, namely a) Wireframe Rendering b)
Translated back-facing polygons c) View-dependent
modification of back-facing polygons. Liu [13] has
adapted the first technique for highlighting
silhouettes. He then rendered the polygons using
stroke textures that divided into two types, which is
hatching and stipple lines. All of these techniques
have been proven to be very useful for 3D technical
illustration fly-through and to create NPR
animations.

3. Implementation

Borland C++ Builder Version 5.0 was used for
adapting Raskar and Cohen [16] demo program,
written in Visual C++. A successful 3D-terrain
model was developed by reading the DEM data from
the file. Then OpenGL component was used for
rendering a silhouette and produced good sketches of
terrain. The simple Graphical User Interface (GUI)
was built using the Forms on Borland C++ Builder
and produced a user-friendly environment for the
user (see Figure 3.0).

w
a
m
In
a
o
th
p
T
W

Figure 2.0: GUI for the program

title

Image

OpenGL Component
Panel button

scrollbar
menu
 The code for the silhouette rendering
as written in an object oriented fash

dvantage of using Borland C++ Builder
akes easier to implement the Graphi
terface (GUI) and also creates a pro

ppearance. Other than that, by writing
bject oriented fashion, it makes it easier
is program for another purpose. It also ea

rogrammer to understand the flow of this
his program runs successfully on Window
indow NT.
algorithm
ion. The
is that it
cal User
fessional

 code in
to extend
sier for a
program.
s 9x and

4. Evaluation, Result and Discussion

Based on the literature review, one technique for
silhouette rendering algorithm has been chosen for
investigation, a Wireframe Method introduced by
Rossignac and van Emmerick [18], and adapted by
Raskar and Cohen [16] and by Liu [13]. The chosen
techniques seemed appropriate for this project and
were evaluated to establish whether they can produce
perceptually appropriate results for terrain
visualisation.

Wireframe Method

Raskar and Cohen [16] presented several simple
methods to draw silhouette edges but Liu [13] only
implemented one of the methods and it rendering
using stroke textures. This paper investigated and
implemented what has been done by Liu [13]. This
method is called the Wireframe Method. The idea of
this method is to render the front facing polygons as
a white background and render the back facing
polygons as a wireframe. It involved multi-pass
rendering for highlighting silhouette edges.

Evaluation

This technique produced good 3D terrain silhouette
edges. The silhouette edges produced using this
method are better than those produced by Everitt's
[6] One Pass Silhouette Rendering method. For
investigation on this method, there are many
different approaches have been used for testing. One
of the approaches is by setting the line width for
silhouette edges with different size. As shown by
Figure 3 below, using different line width for
depicting the silhouette edges, gives different results.
The silhouette edges produced by line width set as
2.0 seems to give the best results. On the other hand,
silhouette edges produced by line width set as 4.0 is
not reasonable for depicting the silhouette edges
because the line width is too thick for a silhouette
edges (see Figure 3.0).

e
se
u
in

li
sh
T
th
v
to
w
st
u

b) Silhouette edges with line width set as 4.0
 Figure 3.0:Comparison of line width.

 The second approach is by setting the silhouette
dges as a line and line stipple (see Figure 4.0). To
t the line stipple, glLineStipple function has been

sed. The code below shows how this function is set
 this program.

 //function for setting line stipple
 glLineWidth(lineWidth);
 glLineStipple (1, 0x4444);
 glEnable (GL_LINE_STIPPLE);
 Dem.Draw();
 glDisable(GL_LINE_STIPPLE);

a) Silhouette edges set as a line with the line
width set as 3.0

b) Silhouette edges set as a line stipple with the
line width set as 3.0
 Figure 4.0: Comparison of silhouette edges
 between line and line stipple.

 Figure 4.0 shows that the silhouette edges set by
ne stipple looks as if it was drawn by hand and
ows more clearly the slopes and breaks of slope.

he steeper slopes appear as short stipple lines and
e flat areas are shown as more stipple lines. This

ariation makes it look hand drawn. But, people tend
 draw solid lines. This means that if the people

a) Silhouette edges with line width set as 2.0

ant to make their image like a hand drawn, the line
ipple can be used; otherwise solid lines can be
sed.

 Another approach for investigating this method
is setting the different camera projections. One
projection is set as orthographic and the other one is
set as perspective (see Figure 5.0).

 The silhouette edges in an orthographic
projection are better than in perspective projection.
The orthographic projection gives more information
about the edges of terrain where it shows in detail the
slopes and break slopes. However for perspective
projection, some of the edges seem to be joining each
other as a line.

 The last effect that can be observed from
investigating this method is that the results of terrain
image produced extra lines on the silhouette edges.
These effects are shown in a square in Figure 6.0.

5. Conclusion

From the evaluation, this method seems effective for
showing the silhouette edges. By setting the edges as
a different type of line and setting different camera
projections, the user can get different depictions of
terrain models. This method works in real-time and is
relatively fast for rendering the silhouette edges. The
edges of the silhouettes in wireframe method are
rendered for each polygon, in order to produce the
terrain image. This causes problems, where some
lines look like the straight lines. On the whole, this
method is very effective and suitable for use with the
sketching technique.

6. Acknowledgements

The digital elevation models (DEM) used for testing
was provided by Ordnance Survey. The data remain
their copyright.

 Thanks to my wife for correcting my English in
this paper.

7. References

[1] Barequet,G.; Duncan,C.A.; Goodrich,M.T.;

Kumar,S.; Pop,M.; “Efficient Perspective-
Accurate Silhouette Computation”, Proceedings
of the fifteenth Annual Symposium on
Computational Geometry, pp. 417 – 418, 1999.

[2] Bremer, D.J.; Hughes, J.F.; “Rapid Approximate

Silhouette Rendering of Implicit Surfaces”, In
Proc. The Third International Workshop on
Implicit Surfaces, 1998.
http://citeseer.nj.nec.com/cache/papers2/cs/1176
8/http:zSzzSzwww.cs.brown.eduzSzpeoplezSzjf
hzSziszSzpaper.pdf/rapid-approximate-
silhouette-rendering.pdf
[Accessed 18/5/2002]

[3] Curtis C.; “Loose and Sketchy Animation”,

SIGGRAPH 1998 Technical Sketch, 1998.
http://www.cs.washington.edu/homes/cassidy/lo
ose/sketch.html [Accessed 4/05/2002]

[4] Curtis, C.J.; Anderson, S.E.; Seims J.E.;

Fleischer, K.W.; Salesin, D.H; “Computer-
Generated Watercolor”, Computer Graphics
(Proceedings of SIGGRAPH '97), Annual
Conference Series, pp. 421 – 430, 1997.

[5] Dowson, K.; “Towards Extracting Artistic

F
w

a) Silhouette edges with projection camera set as
orthographic function.

Figure 5.0: Comparison of silhouette edges
between orthographic and perspective
projections.

b) Silhouette edges with projection camera set as
perspective function.

Extra lines on the terrain image

Sketches and Maps from Digital Elevation
Models”, unpublished PhD Thesis, The
Department of Computer Science, The
University of Hull, 203pp., 1994.

igure 6.0: Problem in the terrain images with
ireframe methods.

[6] Everitt’s, C.; “One-Pass Silhouette Rendering
with GeForce and GeForce2”, Technical Report
from NVIDIA Corporation, 2000.
http://partners.nvidia.com/marketing/developer/d
evrel.nsf/TechnicalDemosFrame?OpenPage
[Accessed 4/08/2001]

[7] Gooch A.; Gooch B.; Shirley P.; Cohen E.; “A

Non-Photorealistic Lighting Model for
Automatic Technical Illustration”, Proceeding of
SIGGRAPH 98, pp. 447 – 452, 1998.

[8] Green, S.; Salesin, D.; Schofield S.; Hertzmann,

A.; Litwinowicz, P.; Gooch, A.; Curtis, C.;
Gooch. B.; “Non-Photorealistic Rendering”,
SIGGRAPH 99 Course Notes, 1999.
http://www.cs.utah.edu/npr/papers/npr_course_S
ig99.pdf [Accessed 28/03/2002]

[9] Hertzmann, A.; “Algorithm for Rendering in

Artistic Styles”, PhD Thesis Department of
Computer Science, New York University, 159pp,
2001.

[10] Hertzmann, A.; Zorin, D.; “Illustrating Smooth

Surfaces”, In SIGGRAPH 2000 Proceedings,
2000.
http://citeseer.nj.nec.com/cache/papers2/cs/1589
4/http:zSzzSzwww.mrl.nyu.eduzSzhertzmannzS
zillustrationzSzhertzmannzorin.pdf/hertzmann00
illustrating.pdf
[Accessed 1/12/2002]

[11] Imhof, E.; “Cartographic Relief Presentation”,

Steward, H.J. (ed.), Walter de Gruyter, 389pp,
1982.

[12] Lake, A.; Marshall, C.; Harris, M.; Blackstein,

M.; “Stylised Rendering Techniques For
Scalable Real-Time 3D Animation”, Graphics
Algorithms and 3D Technologies Group (G3D)
Intel Architecture Labs(IAL) University of North
Carolina at Chapel Hill, 2001.
ftp://download.intel.com/ial/3dsoftware/toon.pdf
[Accessed 4/12/2001]

[13] Liu, J; “Computer Generated pen-and-ink

Illustration”, Technical Reports Department of
Computer Science SUNY at stony brook, 2001.
http://www.cs.sunysb.edu/~jliu/cse528/final_pro
j_report.html [Accessed 8/11/2001]

[14] Markosian, L.; Kowalski,M.A.; Trychin, S.J.;
Lubomir, Bourdev, L.D.; Goldstein, D.; Hughes,
J.F.; “Real-Time Nonphotorealistic Rendering”,
Computer Graphics (Proceedings of SIGGRAPH
'97), Annual Conference Series, pp. 415 – 420,
1997.

[15] Northrup, J.D.; Markosian, L.; “Artistic

Silhouettes: A Hybrid Approach”, To appear in
the proceedings of NPAR 2000, 2000.
http://citeseer.nj.nec.com/cache/papers2/cs/1439
0/http:zSzzSzwww.cs.brown.eduzSzresearchzSz
graphicszSzresearchzSzpubzSzpaperszSzsil-
300dpi.pdf/northrup00artistic.pdf
[Accessed 1/11/2001]

[16] Raskar, R.; Cohen, M.; “Image Precision

Silhouette Edges”, Proceedings of the 1999
symposium on Interactive 3D graphics, Atlanta,
GA USA, pp. 135 – 140, 1999.
http://www.cs.unc.edu/~raskar/NPR/sil.html
[Accessed 3/11/2001]

[17] Richens, P.; “Technical Details”, Informatix

Software International, 2000.
http://www.informatix.co.uk/pir_ajart.htm
[Accessed 5/5/2002].

[18] Rossignac, J.; van Emmerick, M.; “Hidden

Contours on a Framebuffer”, Proceedings of the
7th Eurographics Workshop on Computer
Graphics Hardware, Cambridge, UK, Sept. 1992.

[19] Saito, T.; Takahashi, T.; “Comprehensible
Rendering of 3D Shapes”, Computer Graphics
(Proceeding of SIGGRAPH '90), 24(4), pp. 197
– 206, 1990.

[20] Salisbury M.P.; Wong M.T.; Hughes, J.F.;

Salesin, D.H..; “Orientable Textures for Image-
Based Pen-and-Ink Illustration”, Computer
Graphics (Proceedings of SIGGRAPH '97),
Annual Conference Series, pp. 401 – 406,
August 1997.

[21] Sousa, M.C.; Buchanan, J.W.; “Computer-

generated graphite pencil rendering of 3D
polygonal models”, Computer Graphics Forum,
18(3), pp. 195 – 207, 1999.

