
Analysis of Single Sign-On Protocols fiom the 
Perspective of Architecture Deployment, Security and 

Usability 
Abdullah Hussein Al-ghushami, Nur Haryani Zakaria, Norliza Katuk, Abubakar Mohammed 

School of Computing 
Universiti Utara Malaysia 

06010 UUM Sintok Kedah, Malaysia 
* Corresponding email: a ~hashami02@vahoo.com, harvani(iiluum.edu.mv, k.norliza~uum.edu.mv, abubakar33221 O,mail.com 

Abstract- Single Sign-On (SSO) requires one time authentication 
with a set of username and password which then allows an 
authorized user to enter all resources. This scheme was introduced 
to overcome the issue of memorability load among users who own 
several accounts. Currently, there are four main SSO protocols; 1) 
Security Assertion Markup Language (SAML), 2) OpenID, 3) 
InfoCard and 4) OAuth. These protocols were sh~died separately 
and they have different architecture deployment and 
implementation wise. It was found from the literature, that many 
users were not aware of the existence of those protocols which 
probably explain the slow adoption. Thus, this paper seeks to 
study the four protocols together by making further analysis and 
then compare them in terms of its architecture deployment and 
implementation wise focusing on security and usability 
perspective. It is much in hope that this paper will be beneficial in 
giving a better understanding of the SSO protocols, and contributes 
to better improvement in its implementation. 

Keywords - Single Sign-On (SSO), Protocols, Arcltitect~rre 
Deployment, Secrrrity, Usability 

Single Sign-On (SSO) is a type of  technology where users 
are only required to authenticate themselves, one time only 
and then are given access to other security resources. This 
means that users do not have to re-authenticate again in 
order to get access to all other available resources on the 
internet, which saves time and effort. Furthermore, most of 
the users today own several accounts and they have to 
remember each and every single username and password 
which is very difficult to memorize all the passwords. 
Therefore SSO was introduced to solve the problem by 
allowing a user to use a single credential instead of multiple 
credentials to get access to multiple websites. SSO helps 
developers and users by escaping them to remember 
multiple passwords and also reduces the amount of time and 
effort that the users spend on entering numerous passwords 
to login. There are mainly four SSO protocols, namely 
Security Assertion Markup Language (SAML), OpenID, 
InfoCard and OAuth [ I ,  2, 31. These protocols provide good 
credential management to the end users. Although, these 
protocols aim to provide users with single authentication, 
nevertheless its architecture deployment and implementation 
wise varies from one another. There are a number of 
existing studies [1,2,4,5] which focus on these protocols. 
Unfortunately, it was done separately, making it more 

challenging to view those protocols from various 
perspectives. In addition, the literature also suggests that the 
adoption of these protocols were not as rapid as it should be 
[6] which perhaps were due to the lack of overall 
understanding among the users on its implementation 
perspective. So by realizing this limitation, this paper seeks 
to study these four protocols by making further analysis and 
comparison of its architecture deployment in term of  
security and usability perspectives. This paper is organized 
as follows. Section I1 elaborates further on SSO architecture 
deployment. The analysis of the protocols fiom security and 
usability perspective is described in section 111. Discussion 
in section V will entail the comparison between the 
protocols. This paper concludes in the final section VI along 
with possible future work to be undertaken. 

11. SSO ARCHITECTURE DEPLOYEMENT 

In order to discuss SSO architecture deployment, we 
classify the architecture into two; 1) Simple SSO 
architecture and 2) Complex SSO Architecture. The 
following sub-section will elaborate further on each type of  
architecture. Figure 1 below summarizes the two types of 
architecture deployment. 

Fig 1. SSO Architecture Deployment 

I .  The Simple SSO Architecture 

This architecture is simple to deploy in an authentication 
infrastructure which means that it can only be deployed with 
a single authentication authority. The users could hold a 
single set of credentials. Simple SSO could be easily 
deployed in homogeneous local area network (LAN) and 
intranet location. This is also approved by operating system 
companies, especially when all computers run on a similar 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UUM Repository

https://core.ac.uk/display/42983914?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


platform by trusting the same third party for authentication 
authority [2]. However, the simple SSO architecture could 
be complex when it expends for covering the diverse 
organizations and platforms that used diverse authentication 
credential and protocol govern by diverse authority. 
2. The Complex SSO Architecture 
The complex SSO architecture deployment on the other 
hand, governs many diverse authentication authorities with 
one or various sets of credentials for every user. This 
diversity in context means that SSO could be implemented 
on several platforms and covered by several organizations 
which use several authentication protocols and credentials 
[2]. Under the complex SSO architecture deployment it can 
further be classified according to either using single 
credential or many credentials. 

2.1. With Single Credential 
The architecture with a single credential used only one set 
of credential that can be acknowledged by several 
authentication authorities. Such as token based SSO and 
public key-based as follows: 
2.1. I.  Token Based SSO 
Token based SSO is the simplest type by using only single 
set of credential. The users obtain temporary token whereby 
user token being validated by using cryptographic 
approaches which depend on secret key called symmetric 
cryptography [2]. The success of this process relies on the 
trust of the authentication authorities. 
2.1.2. Public Key-Based SSO 
In public key-based SSO architecture, each user requires to 
register his or her with trust authentication authority. It 
relies on private key and public key called asymmetric key. 
In contrast to token SSO architecture, the public key SSO 
requires updating based on latest technology [2]. 

2.2. With Several Credentials 
This type of architecture is considered as complex due to 
deploying several different credentials and could be 
accomplished in three ways as follows: 
2.2.1 Credential Synchronization 
This type of architecture requires users to enter his or her 
credential in each single authentication. Therefore, with this, 
it is supposed not considered as SSO. However, there will 
be software that will help to synchronize the changing of a 
user's credentials in all applications. The policy will ensure 
that the change request to all concerned authentication 
servers is done automatically [2]. 
2.2.2. Secure Client Side Credential Cashing 
This type of architecture involves a set of main credential 
being used to unlock for each user credential. This allows 
the user to access resources needed through diverse 
authentication credential. When the credential valid, it could 
be used to login to other resource servers whereby the 
secondary authentication depends on the primary one. The 
SSO system using secure side mechanism is not 
recommended to be deployed in the mobile devices (i.e, 
PDA) due to security concern since the architecture 

deployment is not making use of authentication 
infrastructure [2]. 
2.2.3. Secure Server Side Credential 
In this architecture, the sever side store credential in the 
central repository. The set of credential used on the server 
side is not the same for each authentication authority. The 
server side offers good security due to all credential does 
not store in client disk [2]. 

111. ANALYSIS OF SIGNLE SIGN-ON (SSO) PROTOCOLS: 
SECURITY & USABLITY PERSPECTIVES 

This section entails hrther analysis of the SSO protocols 
mentioned in the previous section. These protocols operate 
in federated environment whereby end users are allowed to 
login to the system at one time. 

A. Security Assertion Markup Language (SAML) 
SAML is mainly used in enterprises and schoolsluniversities 
where the users will log on once and will be able to 
authenticate with other websites either internally or 
externally [7]. XML open source or standard is being used 
for developing the SAML. It is also used among identity 
provider (IdP) and Relaying Party (RP) for exchange 
authentication and authorization data. It defines rules and 
syntax for information exchange [8]. SAML also consist of 
XML messages called assertions. These assertions help to 
specify if users are being authenticated and what types of  
roles it deployed. There are several protocols such as SMTP, 
FTP, HTTP and SOAP are used to transfer these assertions. 
SAML is being used in some methods such as digital 
signature or encryption [7, 91. 

Fig 2. SAML Workflow [lo] 

B. OpenID Protocol 

OpenID is a decentralized SSO protocols, which solves the 
problem of having an individual login and password for any 
website that support OpenID. It is an open protocol for any 
SSO systems [I]. It is user centric, which each user could be 
free to select his or her OpenID providers. Therefore, 
OpenID does not need any established trust among IdP and 
RP. OpenID Foundation [I], investigated billions of  
OpenID established user accounts which are offered by the 
main IdP (e.g., Yahoo, Google, Facebook). This protocol 
allows the use of the available account for signing-in to 



several sites without creating another account with the site 
[I I]. In this protocol, the identity of user's could be a URL, 
and OpenID authentication emphasizes that the user controls 
the content at that URL. The workflow of the OpenID 
protocol is shown in Figure 3. 

with the client side computer program (known as the 
identity selector (i.e.: Windows Card Space). Compared to 
other SSO protocols, InfoCard is considered as a heavy 
weight protocol due to users must install an identity 
selector. In addition, InfoCard is user-centered protocol for 
selecting security and privacy requirement and thus is more 
utilizable with other SSO application. 

D. OAuth Protocol 
OAuth is an open source for authorization mechanism and 
offer a generic framework to make the information owner 
authorize the third party from accessing owner data that 
save on server with not return to third-party credential like 
username and password [5,15]. Figure 5 shows how this 
protocol works. 

Fig 3. OpenID Workflow [12] 

The good thing about OpenID is that it uses decentralized 
authentication, which indicate that there are no single IdP 
which users wuld select from. It depends on users and webs 
for selecting the third party, they would like to grant for the 
purpose of authentication. In comparison with other 
protocols, it is simpler, lighter and user friendly protocol. In 
other words, the focus of this protocol is more on scalability 
rather than security. 

C. InfoCard Protocol 

The Information Card protocol (called Infocard) [4] being 
individual digital identity which is similar to a real identity 
card like a credit or license cards. Microsoft Cardspace [I31 
could be identity system which provides protection and 
consistent method for users in handling and managing 
personal information and in verifying identity for visiting 
sites. Figure 4 shows InfoCard workflow in how user login 
to RP website. 

Fig 4. Infocard Workflow [14] 

It used to help sites or systems to get personal data from 
user sides. Every card is consisted assertions of a user 
identity which issued by either provider or users. When 
logging into a website, the user selects a card instead of 
hislher names and passwords. This card used to manage 

I I 

Fig 5. The Worklfow of OAuth Protocol [16] 

It enables the user for sharing his or her resources as 
pictures and folders without relating to their identity data 
such as username placed on RP. It enables the consumer's 
application to access protected resources from RP by using 
an application program interface (API). It is utilized for 
securing API in portable and desktop systems [17]. There 
are two techniques of OAuth tokens namely 1) request token 
that used for authenticating user during cookie of its request 
via RP and 2) access tokens that used for obtaining 
requested information from RP [15]. 

IV. DISCUSSION 

The previous sections have discussed about four main SSO 
protocols, and its workflow. Based on this, it is clearly 
shown that some of the protocols placed it's emphasized on 
security perspective while others may emphasize on 
usability. It is therefore becoming a big challenge for 
researchers to find the balance in-between security and 
usability. The following Table I summarize the comparisons 
made in between the four protocols based on the several 
characteristics, namely; purpose, implementation, 
techniques used, architecture deployment, security and 
usability. 



TABLE I. SUMMARY OF COMPARISON BETWEEN SSO 
PROTOCOLS 

Today, there are several SSO architectures with diverse 
features and underlying infrastructures. Jan Clercq [2] 
specifies two core architectures to obtain SSO, including 
simple and complex SSO. The complex SSO deals with two 
solutions which are single and multiple sets of user 
credentials. The protocols discussed in this paper are mainly 
deployed on the complex SSO architecture [2]. Among the 
four protocols, many users prefer OpenID login. However, 
there are security concerns such as phishing and profiling, 
which need further thoughts [18]. The InfoCard protocol 
also has some security issues, particularly when the protocol 
is used on shared end devices (i.e. computer, laptop). The 
deployment of the protocols becomes difficult and 
complicated, especially when users switch among several 
workstations. This also affects the usability perspective 
which resulted in InfoCard face adoption issues among 
users. For example, the Microsoft did not continue in the 
implementation and development of InfoCard protocol since 
February 2011 [19]. On the other hand, OAuth protocol is 
considered secure when the whole end point from identity 
provider and relaying party were secure socket layer (SSL) 
protected. 
From a usability perspective when deploying SAML, the 
users' login to any system has to rely upon a party which 
requires user identity. The IdP has made session of that 
particular user. The service provider has already obtained 
the identity of the user and the provider already has a 
session established for that user. In that case, there is no 
necessity to request for users' security credentials whereby 
the identity provider can just return the identity of the user 
to the service provider without bothering the user at all. 
Hence, it is becoming less troublesome for the users. 
Unfortunately, from a security perspective, DNS of users 
are spoofed (i.e. attackers are able to impersonate SAML 
IdP and can get user credentials) for later usage. 

V. CONCLUSION 
This paper discussed the comparison between those major 
protocols from various perspectives mainly on architecture 
deployment, workflow, security and usability. Based on the 
comparison made, this study found that each protocol is still 
prone to several security issues (e.g.: phishing, malware, 
spoofing) which requires specific attention to solve it. In 
terms of usability, OpenID and OAuth seems more user 
friendly compared to the others, nevertheless OAuth is 
hardly adopted due to the focus is more on authorization not 
authentication. It is much in hope that this paper will be 
beneficial in giving a better understanding of the SSO 
protocols, and contributes to better improvement in its 
implementation. 

VI. ACKNOWLEDGEMENT 

This research was supported by Fundamental Research 
Grant Scheme (FRGS - SIO Code: 13 143) from the Ministry 
of Education (MoE) Malaysia. The content of this article is 
solely the responsibility of  the authors and does not 
necessarily represent the official views of the MoE, 
Malaysia. 

[I] R. Tawil, D. Recordon and B. Fitzpatrick. OpenID authentication 
2.0. http://openid.net/specs/ openid-authentication-2 O.html, 
December 2007. 

[2] V. Radha and D. H. Reddy, "A Suwey on Single Sign-On 
Techniques," Procediu Technology, vol. 4,  pp. 134-139, Jan. 2012. 

[3] A. Armando, R. Carbone, L. Compagna, J. Cut5llar, G. Pellegrino, 
and A. Sorniotti, "An authentication flaw in browser-based Single 
Sign-On protocols: Impact and remediations," Computers & 
Security 33 (2013): 41-58. 

[4] A. Nanda and M. B. Jones. Identity Selector Interoperability 
Pro-le V1.S. http://informationcard.neVspeci~cations, July 2008. 

[5] D. Hardt, "The OAuth 2.0 authorization framework," The Internet 
Eng Task Force RFC 6749, October 20 12. 

[6] S. Feld and N. Pohlmann, "Security analysis of OpenID , followed 
by a reference implementation of an nPA-based OpenID provider." 
In ISSE 2010 Secrtring Electronic Business Processes. Vieweg+ 
Teubner, 201 1. 13-25. 

[7] K. D. Lewis, J. E. Lewis, and D. Ph, "Web Single Sign-On 
Authentication using SAML," vol. 2, pp. 4148.2009. 

[8] Lewis, Kelly D., and James E. Lewis. "Web Single Sign-On 
Authentication using SAML." Infernational Jo~trnul of Computer 
Science lss~res (IJCSI) 7.4 (20 10). 

[9] Sun, San-Tsai, et al. "A billion keys, but few locks: the crisis of 
web single sign-on." Proceedings of the 2010 workshop on New 
security paradigms. ACM, 20 10. 

[lo] "Logging Into SAMYShibboleth Authenticated Sewer Using 
Phyton" (Stackoverflow) [online] 2013, 
J1ttb:~sta~koverflow.com/buestions/l65 12965/loeeine-into-saml- 
shibboleth-authenticated-sewer-usine-~vthon (Accessed: 12 June 
20 15). 

[I I] B. Adida. EmD: Web authentication by email address. In Web 2.0 
Security and Privacy Workshop 2008, Oakland, California, USA, 
2008. 

[I21 "Using OpenlD" (MediaWiki) [online] 2013, 
htt~://strattonbraziI.com/wiki/index.oho?title=Usine OoenID 
(Accessed: 12 June 201 5). 

[I 31 Microson Corp. Windows Cardspace. 
htt~://www.microso~.corn/windows/~roducts 



[I41 Chappell, D. "Introducing Windows Cardspace" (Microsfl 
Developer Network) [online1 2006, 
htt~s://~sdn.microsoft.corn/en-us/libraw/a480 189.asox 
(Accessed: 12 June 20 15). 

1151 V. Jain and A. Sharma, "A Taxonomy on Cloud Computing," vol. 
4, no. 3, pp. 149-153,2014. 

[I61 "Typical OAuth2.0 Workflow" (Tumblr) [online] 
hno:Ninerciatech.com/~ost~53930879442/this-is-the-~~ical-oauth- 
2-0-workflow-the-oauth (Accessed: 12 June 201 5). 

[I71 F. Yang and S. Manoharan, "A security analysis of the OAuth 
protocol," 2013 IEEE PociJic Rim Conference on 
Comm~mnico~ions, Compi~ters ond Signal Processing (PACRIM), 
pp. 271-276, Aug. 2013. 

[IS] C. Messina. OpenTD Phishing Brainstorm. 
hnp://w'ki.openid.net/OpenID Phishing Brainstorm, 2009. 

[I91 Al-sinani, H. S., & Mitchell, C. J. , Using CordSpace us o 
Pussword-bused Single Sign-on System, 201 I,. 0-23. 


