
Ibrahim et al. / Malaysian Journal of Fundamental and Applied Sciences Vol. 9, No.4 (2013) 191-195

| 191 |

ISSN 1823-626X

Malaysian Journal of Fundamental and Applied Sciences
available online at http://mjfas.ibnusina.utm.my

SEALiP: A Simple and Efficient Algorithm for Listing Permutation via Starter Set
Method
Haslinda Ibrahim*, Lugean Zake, Zurni Omar and Sharmila Karim

School of Quantitative Sciences, College of Arts and Sciences, Universiti Utara Malaysia, 06010 Sintok, Kedah Malaysia

Received 20 January 2013, Revised 1 April 2013, Accepted 25 April 2013, Available online 22 May 2013

ABSTRACT

Algorithm for listing permutations for n elements is an arduous task. This paper attempts to introduce a novel method for generating permutations. The
fundamental concept for this method is to seek a starter set to begin with as an initial set to generate all distinct permutations. In order to demonstrate
the algorithm, we are keen to list the permutations with the special references for cases of three and four objects. Based on this algorithm, a new method
for listing permutations is developed and analyzed. This new permutation method will be compared with the existing lexicographic method. The results
revealed that this new method is more efficient in terms of computation time.

| Permutation| Starter set| Lexicographic|
® 2013 Ibnu Sina Institute. All rights reserved.
 http://dx.doi.org/10.11113/mjfas.v9n4.108

1. INTRODUCTION

Permutation algorithms are one of the component
from which all field of computer science grow. Permutation
is the different arrangements that can be made with a given
number of things taking some or all of them at a time. The
applications of permutation are used in various fields such
as mathematics, group theory, statistics, and computing. In
general, permutation algorithms have received much
attention in the literature [1,3,8-10]. Permutation algorithms
can be classified into two main categories namely
algorithms based on non-exchanged (random) and
algorithms based on exchanged (lexicographic) [8]. In
addition to the random and lexicographic algorithms for
generating permutation, there are other permutations
algorithms such as: using sequences of permutation,
choosing any elements of permutations, and using
permutation matrices [1,5,6]. Based on the methods
mentioned above, we found that the most challenging task
dealing with permutation is when n is large enough. For
example, the value of n = 10! is 3628800. However, in real
application problems we usually are dealing with more than
ten or even hundred items. Thus, to design a simple and
efficient algorithm for permutation generation is
fundamental and a practical issue.

Most of the existing algorithms concentrate on
listing all n! permutations. The advantage of this proposed
algorithm is to produce some sets to begin with and these
sets finally generate all the n! permutations. However, a
work on generating starter set as basis to list n! was
proposed in 2010 [2]. Thus this paper aims to provide a
method to list n! permutations based on starter set that will

be discussed in section 2.3. The present paper is divided
into two parts. In the first part various categories of
permutation methods are reviewed whilst the second part
focuses on the computation time. The comparison between
proposed method and classical method such as
lexicographic will be carried out at the end of the study.

2. PERMUTATION METHODS

This section will present discussion on permutation
algorithms based on non-exchanged (random) and
exchanged (lexicographic). Then we will provide another
permutation algorithm based on starter set.

2.1 Permutation Algorithms Based on Non-
Exchanged (random)

In this section, we are concerned on a variety of
algorithms which not based on exchanges. These
algorithms are for generating a random permutation that
may be used to generate random cycles of length n instead.
So some algorithms use random cyclic rotations to obtain
the n! distinct permutations. The basic idea for generating
permutation at random is to generate at random one of the
n! sequences of integers k1, k2, ..., kn satisfying 0 ≤ ki< i
(since ki is always zero, it may be omitted), and to convert it
to a permutation through a bijective correspondence. For
the latter correspondence, one could interpret the (reverse)
sequence as a Lehmer code. The above algorithm for
generating permutation was first published in 1938 by
Fisher and Yates [4].

*Corresponding author. E-mail: linda@uum.edu.my

Malaysian Journal of Fundamental and Applied Sciences Vol.9, No.4 (2013) 191-195

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UUM Repository

https://core.ac.uk/display/42983672?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://mjfas.ibnusina.utm.my/
http://www.foxitsoftware.com/shopping

Ibrahim et al. / Malaysian Journal of Fundamental and Applied Sciences Vol. 9, No.4 (2013) 191-195

| 192 |

The basic algorithm given for generating a random
permutation of the numbers 1- n goes as follows:

Step 1: Write down the numbers from 1 to n.
Step 2: Pick a random number k between one and the
number of unstruck numbers remaining (inclusive).
Step 3: Counting from the low end, strike out the kth
number not yet struck out, and write it down elsewhere.
Step 4: Repeat from step 2 until all the numbers have been
struck out.
Step 5: The sequence of numbers written down in step 3 is
now a random permutation of the original numbers.

We show an example of how the steps for this algorithm
work. To produce 4! permutations from (1 2 3 4), it has 24
permutations as shown below:
(1 2 3 4), (2 3 1 4), (3 1 2 4), (1 3 2 4),
(2 1 3 4), (3 2 1 4), (2 3 4 1), (3 1 4 2),
(1 2 4 3), (3 2 4 1), (1 3 4 2), (2 1 4 3),
(3 4 1 2), (1 4 2 3), (2 4 3 1), (2 4 1 3),
(3 4 2 1), (1 4 3 2), (4 1 2 3), (4 2 3 1),
(4 3 1 2), (4 1 3 2), (4 2 1 3), (4 3 2 1).

2.2 Permutation Algorithms Based on
Exchanged (Lexicographic)

Permutation algorithms that based on exchanged n!
permutations of n are usually obtained by a series of (n!–1)
exchanges [8]. Thus, this algorithm when applied to
permutations, the lexicographic order increases in
numerical order (or equivalently, alphabetic order for lists
of symbols). There are many ways to systematically
generate permutations of a given sequence. One classical
algorithm, which is both simple and flexible, is based on
finding the next permutation is lexicographic ordering. This
technique generates the distinct permutations by converting
to permutations, one starts by sorting the sequence in
increasing order (which gives its lexicographically minimal
permutation), and then repeats to the next number.

The following steps show how to generate
permutation lexicographically and transform the given
permutation:

Step 1: Find the largest index j such that a[j] <a[j + 1]. If
no such index exists, the permutation is the last
permutation.
Step 2: Find the largest index l such that a[j] <a[l]. If l
exists and satisfies j < l, j+1 is such an index.
Step 3: Swap a[j] with a[l].
Step 4: Reverse the sequence from a[j + 1] up to the final
element a[n].

Strictly speaking, if the n items going through permutations
are ordered by a precedence relation “<”, then permutations
𝜋𝜋𝑎𝑎 = �𝜋𝜋𝑎𝑎 ,1 𝜋𝜋𝑎𝑎 ,2 …𝜋𝜋𝑎𝑎 ,𝑛𝑛� precedes permutation
𝜋𝜋𝑏𝑏 = �𝜋𝜋𝑏𝑏 ,1 𝜋𝜋𝑏𝑏 ,2 …𝜋𝜋𝑏𝑏 ,𝑛𝑛� if and only if, for some i ≤ 1,
we have 𝜋𝜋𝑎𝑎 ,𝑗𝑗 = 𝜋𝜋𝑏𝑏 ,𝑗𝑗 for all j <i and 𝜋𝜋𝑎𝑎 ,𝑖𝑖 = 𝜋𝜋𝑏𝑏 ,𝑖𝑖 .

For example, to generate all permutations of integers
(1 2 3 4) for 4 elements, a lexicographic algorithm produces
permutations in order just like dictionaries contain. The
lexicographic order of 4! permutations of four distinct items
{1 2 3 4} is (1 2 3 4) < (1 2 4 3) < (1 3 2 4) < (1 3 4 2) < (1
4 2 3) < (1 4 3 2) < (2 1 3 4) < (2 1 4 3) < ... < (4 1 2 3) < (4
1 3 2) < 4 2 1 3) < (4 2 3 1) <(4 3 1 2) < (4 3 2 1).
Here are the permutations based on the steps explained
above:
(1 2 3 4), (1 2 4 3), (1 3 2 4), (1 3 4 2),
(1 4 2 3), (1 4 3 2), (2 1 3 4), (2 1 4 3),
(2 3 1 4), (2 3 4 1), (2 4 1 3), (2 4 3 1),
(3 1 2 4), (3 1 4 2), (3 2 1 4), (3 2 4 1),
(3 4 1 2), (3 4 2 1), (4 1 2 3), (4 1 3 2),
(4 2 1 3), (4 2 3 1), (4 3 1 2), (4 3 2 1).
The lexicographic algorithm requires more effort and time
to generate all permutations as the size of the elements get
larger [1,6].

2.3 Permutation Algorithms Based on Starter
sets

A new algorithm for generating permutations by
choosing any elements of permutations was found by Rohl
[6]. The purpose of this algorithm is to give a simple,
general algorithm which will produce arrangements of n
symbols taken r at a time where the symbols may or may
not be distinct. Various procedures based on the algorithm
are presented, some producing the arrangements in
lexicographical order, some not. The algorithm is easy to
use as the basis for a solution to some combination
problems. But we noticed that no timing information had
been provided. The reason is that this algorithm is not
designed specifically for its execution time but for its
adaptability specifically to a wide variety of problems.

An algorithm for generating permutations by using
permutation matrices was proposed by Mani [5]. The
algorithm is proposed in an original technique, by using a
cyclic of permutation matrices’ rotations. The only
restrictions on the implementation language are the
availability of a function and efficient pointer
manipulations.

This section will examine the other algorithm for
generating all permutations by using combinatorial
approach that was developed by Ibrahim et al. [2]. Notably,
this new algorithm for listing all permutations for n
elements was developed based on distinct starter sets.
Hence, once the starter sets are obtained, each starter set is
then cycled to obtain the first half of the distinct
permutations. The complete list of permutations is achieved
by reversing the order of the first half of the permutation.
This algorithm has advantages over the other algorithms
due to its simplicity and ease of use.

The followings definitions are needed in the
following sequel for algorithm development.

Definition 2.3.1. A starter set is a set that is used as a basis
to enumerate other permutations.

Ibrahim et al. / Malaysian Journal of Fundamental and Applied Sciences Vol. 9, No.4 (2013) 191-195

| 193 |

Definition 2.3.2. A reversed (inverse) set is a set that is
produced by reversing the order of permutation set.

Definition 2.3.3. An equivalence starter set is a set that
can produce the same permutation from any other starter
set.

We will provide two different cases to generate 3! and 4!
permutations before we develop the general algorithm for
this method.

Case 1: 3! = 6 distinct permutations. Here we will provide
steps to list all six distinct permutations.

Step 1: Fix one element from integers {1, 2, 3} for example
“1”, we have the following different permutations:

{1, 2, 3}, {1, 3, 2}

Step 2: Determine all equivalent starter sets

 {1, 2, 3} ≅ {1, 3, 2)

Step 3: Delete the equivalent starter set, then we have only
the following starter sets.

{1, 2, 3}

Step 4: Generate distinct permutations from this starter set.

1 2 3
2 3 1
3 1 2

Step 5: Find the reverse of the above permutations.

Starter set
(1, 2, 3)

 Reverse

1 2 3 3 2 1
2 3 1 1 3 2
3 1 2 2 1 3

Now we have six different permutations from the above
steps.

{1, 2, 3}, {3, 2, 1}
{2, 3, 1}, {1, 3, 2}
{3, 1, 2}, {2, 1, 3}

Case 2: 4! = 24 distinct permutations. For example, to
generate all permutations from the integers {1, 2, 3, 4} for 4
elements, the following steps are developed:

Step 1: Fix one element from the integers {1, 2, 3, 4}, for
example “1”, we have the following starter sets:

{1, 2, 3, 4}, {1, 2, 4, 3}, {1, 3, 2, 4},
{1, 3, 4, 2}, {1, 4, 2, 3}, {1, 4, 3, 2}

Step 2: Determine all equivalent starters sets and starter
sets in the following:

{1, 2, 3, 4}≅ {1, 4, 3, 2}
{1, 2, 4, 3}≅ {1, 3, 4, 2}

 {1, 3, 2, 4}≅ {1, 4, 2, 3}

Step 3: Delete the equivalence starter sets, then we produce
the following starter sets.

{1, 2, 3, 4}, {1, 2, 4, 3}, {1, 3, 2, 4}

Step 4: Generate all permutations from these starters set
{(1, 2, 3, 4), (1, 2, 4, 3), (1, 3 ,2 ,4)}. All permutations are
generated cyclically for every permutation as the following:

starter set {1, 2, 3, 4}
1 2 3 4
2 3 4 1
3 4 1 3
4 1 3 2

starter set {1, 2, 4, 3}

1 2 4 3
2 4 3 1
4 3 1 2
3 1 2 4

Starter set {1, 3, 2, 4}

1 3 2 4
3 2 4 1
2 4 1 3
4 1 3 2

Step 5: Find the inverses (reverse) of the above
permutations,

Starter set
(1, 2, 3, 4)

 Reverse

1 2 3 4 4 3 2 1
2 3 4 1 1 4 3 2
3 4 1 2 2 1 4 3
4 1 2 3 3 2 1 4

Starter set
(1, 2, 3, 4)

 Reverse

1 2 4 3 3 4 2 1
2 4 3 1 1 3 4 2
4 3 1 2 2 1 3 4
3 1 2 4 4 2 1 3

Starter set
(1, 2, 3, 4)

 Reverse

1 3 2 4 4 2 3 1
3 2 4 1 1 4 2 3
2 4 1 3 3 1 4 2
4 1 3 2 2 3 1 1

Ibrahim et al. / Malaysian Journal of Fundamental and Applied Sciences Vol. 9, No.4 (2013) 191-195

| 194 |

From step 5 we can have all 24 distinct permutations for 4!.

For case 5! we have 120 distinct permutations. By
employing this method we need to generate only 12 starter
sets and apply the same steps as mentioned above to list all
the permutations. Thus we can summarize the algorithms to
generate permutation based on the starter sets as listed in
the following.

Permutation algorithm based on starter set
Step 1:
Step 2:
Step 3:

Step 4:

Step 5:
Step 6:

Step 7:

Fix one element
Determine other starter set
Determine the equivalence starter set and
eliminate this set.
Repeat step 2-3 to produce all distinct starters.
Cycle each starter to get n!/2 permutations
Reverse the order of each n!/2 permutation to get
another n!/2 permutations
List all n! permutations

3. PERFORMANCE OF PERMUTATION
ALGORITHMS

Several algorithms to generate permutations have
been presented such as lexicographic algorithm and random
cyclic algorithm. All these algorithms have their strengths
and weaknesses from the viewpoint of the efficiency
evaluation. For example, lexicographic algorithm uses more
execution time to make the strictly-ordered permutations.
This algorithm happens to repeat the same permutation
again, and the repeated permutation is actually not needed
[1,6,8]. Random cyclic algorithm has the same problem in
terms of execution time to generate permutation [5,8]. The
most familiar and well-known algorithm used to find all
permutations is called a lexicographic algorithm. A
lexicographic algorithm as we mentioned earlier requires
more time to find all permutations [1,6,8].

 The proposed permutation algorithm based on
starter set is as an endeavour to improve the performance of
the algorithm to generate permutation [2]. In this section we
compare the proposed permutation algorithm based on
starter set with the lexicographic permutation algorithm.

The efficiency of both algorithms can be computed
in terms of the execution time. We have used permutation
algorithm for starter set as described in section 2.3 and
lexicographic algorithm as discussed in section 2.2. The
pseudo code for both algorithms can be found in [7]. Table
1 enumerates algorithms for lexicographic and starter set
for n = 4 elements. While the efficiency of both algorithms
was computed in terms of the execution time. Based on
several tests conducted on different order of n elements, the
results stated in Table 2 show the value in seconds for the
execution time of the lexicographic algorithm and starter
set algorithm. We can see that results of the execution time
of the starter set algorithm are less than the lexicographic
algorithm (see Fig.1). This computation time have been
implemented by using MATLAB version 7 and were

performed in laptop Acer 5635Z (Pentium 800 MHz CPU,
3 MB of main memory).

Table 1. Lexicographic order and starter set order for n=4!

Lexicographic Starter set (A) Reverse from A
1 2 3 4 1 2 3 4 4 3 2 1
1 2 4 3 2 3 4 1 1 4 3 2
1 3 2 4 3 4 1 2 2 1 4 3
1 3 4 2 4 1 2 3 3 2 1 4
1 4 2 3 1 2 4 3 3 4 2 1
1 4 3 2 2 4 3 1 1 3 4 2
2 1 3 4 4 3 1 2 2 1 3 4
2 1 4 3 3 1 2 4 4 2 1 3
2 3 1 4 1 3 2 4 4 2 3 1
2 3 4 1 3 2 4 1 1 4 2 3
2 4 1 3 2 4 1 3 3 1 4 2
2 4 3 1 4 1 3 2 2 3 1 4
3 1 4 2
3 1 4 2
3 2 1 4
3 2 4 1
3 4 1 2
3 4 2 1
4 1 2 3
4 1 3 2
4 2 1 3
4 2 3 1
4 3 1 2
4 3 2 1

Table 2.The execution time (in seconds) for Lexicographic
and starter set algorithm .

n Lexicographic algorithm Starter set algorithm
2
3
4
5
6
7
8

0.0009

0.0160
0.0360
0.0940
0.1410
0.4220
3.6400

0.0001
0.0010
0.0160
0.0310
0.1070
0.1820
2.5690

Fig. 1 Comparison of the execution times between the
starter set algorithm and lexicographic.

Ibrahim et al. / Malaysian Journal of Fundamental and Applied Sciences Vol. 9, No.4 (2013) 191-195

| 195 |

4. CONCLUSION

We have presented a new method to list n!
permutations based on starter set. The results show that this
new method has less computation time. Based on the
discussion on this study these three following questions
arise:
• Could we construct isomorphism classes to classify

equivalence starter sets? We expect to use one-
factorization or decomposition of compete graph (Kn).

• Could we employ these new algorithms (permutation
based on starter set) in other fields, for example in
cryptography (security), image processing?

• Could we determine the starter set without fixing any
positions?

ACKNOWLEDGEMENT
This research was supported by Malaysian Ministry of
Education under Fundamental Research Grant Scheme
(FRGS) vot 11768.

REFERENCES
[1] C.T. Fike, The Computer Journal, 18 (1) (1975) 21-22.
[2] H. Ibrahim, Z. Omar, & A. M. Rohni, Modern Applied Science, 4

(2) (2010) 89-93.
[3] D. E. Knuth, The Art of Computer Programming, 4 (2005) 1-26.
[4] D. H. Lehmer, Proceedings of Symposium Applied Mathemaitcs,

Combinatorial Analysis, (1960) 179-193.
[5] G. I. Mani, & G. Iye, Permutation generation using matrices.

Retrieved on November 01, 2010, from
http://www.drdobbs.com/184409671.

[6] J. S. Rohl, The Computer Journal, 21 (4) (1978) 302-305.
[7] L.M. Zake, New Algorithm for Determinant of Matrices Via

Combinatorial Approach. (2011), Unpublished Thesis. Universiti
Utara Malaysia

[8] R. Sedgewick, Journal Computer Science of Applied Mathematics, 9
(1977) 137-164.

[9] R.J. Ord-Smith, Part 1, The Computer Journal, 13 (1970) 152.
[10] R.J. Ord-Smith, Part 2, The Computer Journal, 15 (1970) 136.

http://en.wikipedia.org/wiki/Donald_Ervin_Knuth
http://www.drdobbs.com/184409671

	2.1 Permutation Algorithms Based on Non- Exchanged (random)
	2.2 Permutation Algorithms Based on Exchanged (Lexicographic)
	3. PERFORMANCE OF PERMUTATION ALGORITHMS
	4. CONCLUSION

