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Abstract

This paper considers the classic problem of the dynamics of axisymmetric waves
on a rectilinear vortex, in the absence of viscosity. The waves alter the axial pressure
distribution and thus generate axial flows which depend on the radial distribution of
vorticity. To simplify this problem, models have been introduced which average over
the cross-section and eliminate the radial dependence. One approach, pioneered by
Lundgren & Ashurst (1989), J. Fluid Mech. 200, 283–307, averages the momentum
equation. Another averaging method, due to Leonard (1994), Phys. Fluids 6, 765–
777, focuses on the vorticity equation. The present paper takes a fresh look at
the derivation of these two distinct models, which we refer to as the momentum
wave model and vorticity wave model respectively, using the tools of differential
geometry to develop a hybrid Eulerian–Lagrangian approach. We compare these
models with area waves in the asymptotic limit of a slender vortex, with radial
structure retained. Numerical calculations are presented to show the differences
between waves in the full slender vortex system and those in the momentum and
vorticity wave models. We also discuss modification of the vorticity wave model to
allow an external irrotational flow, and simulations are presented where a vortex is
subjected to uniform axial stretching. Our approach can also be developed to model
more complicated configurations, such as occur during vortex collisions.

Key words: vortex stretching, area waves, Euler equation, Lagrangian
coordinates, vortex collision

1 Introduction

The study of waves and instabilities on vortices has a long history in fluid mechanics, as
reviewed for example in Saffman (1992). The present paper concerns the classic topic of waves
on a vortex in axisymmetric geometry, for inviscid, incompressible flow. The basic mechanism
behind these area waves is straightforward (Lundgren & Ashurst, 1989; Abid et al., 2002).
Suppose we have an axisymmetric vortex column dependent only on radius r in cylindrical
polar coordinates (r, θ, z). Axial vorticity ω3 corresponds to azimuthal velocity v ≡ u2, in the
θ direction. If the radius of the cross section is reduced at some axial location z, conservation
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of angular momentum will cause the vortex to spin faster there, lowering the pressure at the
vortex centre. The low pressure will drive an axial flow that tends to increase the vortex radius
at z. This restoring mechanism drives standing waves on a vortex column, made up as the sum
of two propagating waves moving on a fast time-scale, the wave velocity being related to the
vortex turnover time. We can also explain this process using vorticity (Leonard, 1994): if we
squeeze a vortex and so increase the azimuthal velocity locally, the variation in this velocity
component along the axis will lead to the winding up of axial vorticity ω3 to generate azimuthal
vorticity ω2: uncurling this component using the right hand rule confirms that this corresponds
to an axial flow towards the squeezed region. From either perspective, the axial fluid flow is
coupled to variations in the radius or area along a vortex, hence the term area waves (Lundgren
& Ashurst, 1989).

Looking to a more general geometry, several authors have considered the dynamics of vortex
filaments, the axial vorticity being localized near a curve C(t) in R3. Incorporating an additional
axial flow corresponds to including an azimuthal component of vorticity, one that circulates
around C. The equations for vortex dynamics in this limit were first elaborated in papers by
Ting and co-workers (Tung & Ting, 1967; Ting, 1971; Callegari & Ting, 1978), reviewed in
the book Ting, Klein & Knio (2007). In these papers the effect of axial flow is incorporated
in multiple-scale expansions of the Navier–Stokes equations, the short scale being the vortex
width and the large scale being the typical radius of curvature of C. These are matched to
give equations for the internal evolution of the vortex and for its motion, valid both with and
without viscosity. In these works, the time-scale used is that of the motion of the filaments,
and the vorticity and flows are taken to be independent of the fast area wave / vortex turnover
time-scale. This then factors out area waves, and means that the leading order flow or vorticity
components must satisfy certain compatibility conditions. At a similar time, Widnall, Bliss &
Zalay (1971) and Widnall & Bliss (1971) investigated the effects of axial flow on the motion
of vortex rings and perturbed filaments, and Moore & Saffman (1972) developed equations for
inviscid vortex motion using a force balance method, equating the forces on each side of the
boundary of the vortex filament. The resulting equations were also derived in Fukumoto &
Miyazaki (1991), by working from the vorticity equation and applying systematic expansions
to the Biot–Savart law. In the studies of Moore & Saffman (1972) and Fukumoto & Miyazaki
(1991), the effects of axial flow on the overall vortex motion are identified, but the fast internal
dynamics of the axial flow are removed from the system by assuming a uniform core radius,
a = a(t) only at leading order. The large scale motion of vortex filaments occurs on a slower
time scale than the vortex turnover time, and the solvability condition that ensures there is no
evolution on the fast area wave time scale — in other words no area waves — is just that the
radius a depends only on time and not on the axial coordinate.

There have also been a number of studies allowing area waves. Lundgren & Ashurst (1989)
and Marshall (1991, 1993) derive equations based on momentum balance, while Klein & Majda
(1991a,b), Leonard (1994), Margerit & Brancher (2001) and Margerit (2002) work from the
vorticity equation; see Ting, Klein & Knio (2007) for a review of these and further papers. One
goal of these papers is to develop simplified equations for area waves, where the properties of
the vortex depend only upon the axial coordinate and time. Such models involve some sort
of averaging over the radial coordinate and result in hyperbolic systems of equations, leading
to area waves which steepen into shocks. Other studies and numerical simulations confirm the
many phenomena that can occur on the scale of a vortex core. From their numerical simulations,
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Melander & Hussain (1994) stress that the core dynamics shows neither pure mass transport
nor pure wave motion, and that the results are sensitive to the Reynolds number. Many of
the studies cited above consider the further issue of vortex breakdown, reviewed in Leibovich
(1978).

Our paper builds on the two seminal studies of Lundgren & Ashurst (1989), henceforth
referred to as LA89, and Leonard (1994), henceforth referred to as L94. In LA89, an equation
given below by (2.18) in Eulerian coordinates (z, t) describes area waves on a columnar vortex.
Here A(z, t) gives the area occupied by the vorticity in the filament at axial location z and time
t, and W (z, t) is the corresponding axial flow. Conservation of mass gives the equation (2.10)
and the coupled nonlinear equations may be solved numerically. The LA89 model is based on
conservation of momentum and so the resulting equation has a conservation form for the axial
velocity W . Although our focus is on purely axisymmetric vortex geometry, we should note
that LA89 considers the more general geometry of an arbitrary vortex filament, building on
the study of Moore & Saffman (1972).

In the second study, of L94, the same problem is addressed starting from the vorticity
equation and by averaging terms over the cross section, leads to an equation of the form
(2.26) below. 1 Although the resulting equation is very similar to (2.18), with the replacement
of the material transport term DtW by ADt(W/A), the physics is different, in that W/A is
proportional to the azimuthal vorticity ω2 in the system. This is the natural quantity that is
transported from the perspective of vortex dynamics (as discussed further in section 2). To give
a simple picture: if a vortex with a mean axial flow W is stretched out along its length using
a pure strain field, by a factor K, then the axial vorticity ω3 → Kω3, the azimuthal vorticity
ω2 → K−1/2ω2 and the corresponding axial flow w → K−1w. Since the area A → K−1A, it is
W/A that is conserved rather than W . We refer to equation (2.26) of L94 here as the vorticity
wave model, as its physics are very different from what we will call the momentum wave model
(2.18) of LA89. We stress that both models involve a radial averaging of the full dynamics
that is not a rational approximation in a mathematical sense: something has to give when we
reduce the (r, z, t) dependence to simply (z, t) dependence in the PDEs. For this reason we
refer to each of these using the term model below. Both models for area waves are derived in
an Eulerian framework in §2 below.

Our first goal in the present paper is to develop an analytical and numerical understanding
of area waves, and compare the above two heuristic models with the exact system for waves on
a columnar vortex. For this comparison we make use of the slender vortex or long wavelength
limit. As in the paper L94, we are particularly interested in following the evolution of vorticity.
Consequently, our focus will be on the Lagrangian description of a fluid flow, which is superior to
the Eulerian description for tracking the advection and stretching of vorticity. As we explain and
qualify below, the coordinate system we use is adapted to the shape of the vortex, and equations
are derived that allow the coordinates to evolve in time, following area waves on a vortex
column. For numerical simulations, Eulerian or Lagrangian approaches could be deployed,
but again for tracking vorticity a Lagrangian approach has many advantages: the vorticity
distribution is essentially fixed and it is the mapping into physical space that is evolved.

1 Some of the constants in (2.26) differ from L94 because of the choice of weighting in the cross
sectional average, as we discuss later.
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Our second goal is to begin to develop the analytical tools to study vortex dynamics with
axial flow in more complicated geometries than that of axisymmetric area waves on a colum-
nar vortex. We would like to have at our disposal tools to follow vortex dynamics in complex
three-dimensional situations including vortex stretching and collisions, incorporating also ax-
ial flow. From this perspective what is paramount is to follow and appropriately conserve the
vorticity distribution during advection and stretching using a Lagrangian framework, an Eu-
lerian framework being insufficient to do this. This is a longer term ambition, to revisit and
extend what is a complicated and well-studied classical problem of general vortex motion (see
Saffman, 1992; Ting, Klein & Knio, 2007, and references therein). Towards this ambition, we
here focus on waves on a rectilinear axisymmetric vortex, as both an important problem in its
own right and as a test bed for the development of methods for modelling vortices with axial
flow in more complex situations.

The remainder of the paper is structured as follows: in section 3 we start with an exact
formulation of the equations of motion and the vorticity equation in axisymmetric geome-
try. Our approach is novel in that we use Lagrangian coordinates, or more strictly hybrid
Eulerian–Lagrangian coordinates (Soward & Roberts, 2010) as discussed in detail below. Here,
our Lagrangian coordinates track vorticity surfaces as the vortex flexes in response to area wave
motions. The approach allows us to write down exact equations for the vortex in a form which
builds in the conservation of vorticity. The point is that the Lagrangian map is responsible for
mapping what is essentially a fixed axial vorticity distribution onto a more general vortex in
physical space. Although our focus is on time-dependent phenomena, in the case of a steady
flow the coordinates we use correspond to von Mises coordinates, applied to vortex dynamics
with axial flow by Klein & Ting (1992). To set up our Lagrangian framework, we first adopt
methods from differential geometry to write down the equations in a very general coordinate
system in §3.1. This section involves machinery that may be unfamiliar to some readers, and
can be skipped, as we set out the full governing equations in coordinate form in §3.2. We then
discuss the choices made to allow the coordinate system to follow the axisymmetric vortex
geometry in §4. We take the mathematical limit of a slender vortex in §5, and numerical sim-
ulations in §5.3 will exhibit area waves, the formation of shocks (at which point the slender
vortex system is no longer valid), and the development of internal structure.

In section 6, we derive the vorticity wave model in a Lagrangian frame, by averaging
the vorticity equation over radius to remove radial dependence. As in §2, we need to make
assumptions that are heuristic, in that they do not arise from a rational approximation to the
equations taken in an appropriate limit. Instead an average of the axial flow is taken at a key
point of the development to close the system. Our approach and the resulting equations are
broadly similar to those in L94, whose analysis is based on taking moments of the vorticity
equation, although we remark that L94 additionally includes effects of shorter wavelengths,
which are missing in our model. We then present numerical simulations comparing the two
model systems — the momentum wave model of LA89 and the vorticity wave model of L94 —
with the full slender vortex dynamics.

One advantage of a vorticity formulation is that an external irrotational flow, for example
time-dependent axial stretching (Marshall, 1992; Nolan, 2001; Abid et al., 2002) is easily in-
corporated into the governing equations. In our Lagrangian framework an external flow only
modifies the boundary conditions used for inverting the elliptic problem for the velocity, and
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so it is easily incorporated into the slender body system or the vorticity wave model. In an-
ticipation of future applications of these methods to problems involving vortex interactions
and collisions, we introduce imposed axisymmetric external flows to both the full slender body
system and to the vorticity wave model. In §7 we study the effects of a uniform external strain
field and find that the area waves tend to become frozen as the restoring effect is weakened,
leading to the emergence of a passively stretched area profile at long times. We consider ex-
ternal irrotational flows that depend on space and time in §8, with a focus on those having a
similarity form, and give concluding discussion in §9.

2 Momentum and vorticity wave models from an Eulerian perspective

All of our models are based on the approximation of a slender vortex tube, so we begin
with a summary of the slender vortex limit. We shall then derive the momentum wave model
of LA89 and vorticity wave model of L94 from an Eulerian perspective.

In this section coordinates are the usual cylindrical polars (r, θ, z) and vector components
are referred to the usual unit vectors (r̂, θ̂, ẑ). We consider a slender vortex, that is the limit
when the vortex length and axial scale ` satisfies ` � 1, as compared with the vortex radius
a(z, t) which is taken to be of order unity. This then fixes an appropriate time scale and yields
the scalings

∂t, ∂z = O(`−1), ∂r = O(1), ∂θ = 0, u = O(`−1), v, w = O(1), p = O(1). (2.1)

The leading order governing equations for the velocity u = (u, v, w) are

−r−1v2 + pr = 0, (2.2)

∂t(rv) + u(rv)r + w(rv)z = 0, (2.3)

∂tw + uwr + wwz + pz = 0, (2.4)

r−1(ru)r + wz = 0. (2.5)

The only simplification of this approximation is in the radial momentum balance, allowing a
direct calculation of pressure as a radial integral of r−1v2. The corresponding vorticity ω has
components (ω1, ω2, ω3), and of these we need only

ω2 = −wr, ω3 = r−1∂r(rv), (2.6)

since ω1 is of order `−2. Note that the axial vorticity ω3 is here given exactly whereas the
formula for the azimuthal vorticity ω2 neglects a term ∂u/∂z, meaning that in regions where
ω2 is zero, there is also no axial flow at leading order (unless it is r-independent and so imposed
externally). From (2.2, 2.4) the quantity χ = ω2/r obeys the equation

∂tχ+ uχr + wχz = ∂z(v
2/r2). (2.7)

We now turn to the simpler models of interest to us. We take the vortex boundary to be a
circle at each z station

r = a(z, t), (2.8)
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with all vorticity confined to r ≤ a. The cross sectional area A(z, t) and mean flow W (z, t) are
defined by

A(z, t) = πa2, W (z, t) = 〈w〉 ≡ A−1
∫ a

0
w(r, z, t) 2πr dr. (2.9)

It is then a consequence of conservation of volume (2.5) that

∂tA+ ∂z(AW ) = 0. (2.10)

We now neeed to choose a vortex structure with which to do calculations. The most straight-
forward course is to take axial vorticity ω3 to be independent of radius for r ≤ a(z, t). Given
such a Rankine vortex has constant circulation Γ along its length, this choice gives the uniform
(as a function of r) profile

ω3(z, t) = Γ/A(z, t), r ≤ a, (2.11)

and zero outside, that is for r > a. The corresponding azimuthal velocity v is given by (2.6),

v =

Γr/2A, r ≤ a,

Γ/2πr, r > a,
(2.12)

and integrating to infinity, the pressure field from (2.2) is

p =

p∞ − Γ2/4πA+ Γ2r2/8A2, r ≤ a,

p∞ − Γ2/8π2r2, r > a.
(2.13)

This gives the basic vortex structure.

To obtain the LA89 equation we focus on the axial momentum equation (2.4) and take the
axial flow as a uniform ‘slug flow’ profile

w(r, z, t) = W (z, t), r ≤ a, (2.14)

and zero outside. This cannot truly be correct since radial dependence arises from the pressure
field (2.13). So instead of satisfying (2.4) at each point (r, z), we integrate this equation over
a fixed volume V given by z1 ≤ z ≤ z2 and 0 ≤ r ≤ R where R is larger than a(z, t) for all
(z, t), and z1, z2 are arbitrary. Note that w = 0 on r = R. Making use of (2.13, 2.14), for the
individual terms we obtain:∫

V
∂tw dV = ∂t

∫
V
w dV = ∂t

∫ z2

z1
AW dz =

∫ z2

z1
∂t(AW ) dz, (2.15)∫

V
(uwr + wwz) dV =

∫
V
u · ∇w dV =

∫
V
∇ · (uw) dV =

∫
∂V
uw · n dS

=
[∫ a

0
w2 2πr dr

]z2
z1

=
[
AW 2

]z2
z1

=
∫ z2

z1
∂z(AW

2) dz, (2.16)∫
V
pz dV =

∫ z2

z1

∫ R

0
pz 2πr dr dz =

∫ z2

z1

Γ2Az
4πA3

∫ a

0
(A− πr2) 2πr dr dz =

∫ z2

z1

Γ2Az
8πA

dz. (2.17)

Putting these together and making use of (2.10) gives

DtW ≡ (∂t +W∂z)W =
Γ2

8π
∂z

(
1

A

)
, (2.18)
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which is the LA89 momentum wave model in Eulerian coordinates.

The alternative approach of L94 applies a similar process to the azimuthal vorticity equation
in the form (2.7). Inside the vortex r ≤ a, the right-hand side ∂z(v

2/r2) is independent of r
from (2.12), so this suggests taking χ independent of r. We thus set

ω2 = rχ(z, t), r ≤ a, (2.19)

and zero outside. Integrating (2.6) gives the axial flow inside as

w = 1
2
χ(a2 − r2), r ≤ a. (2.20)

It may then be checked that the mean flow W = χA/4π and so we can write

w = 2W (1− πr2/A), ω2 = 4πrW/A, r ≤ a. (2.21)

Again this quadratic axial velocity profile will not provide a solution of the full problem — the
vorticity equation (2.7) will not be satisfied pointwise — and so we apply (2.7) integrated over
the volume V defined above. The various terms are∫

V
∂tχdV = ∂t

∫
V
χdV = ∂t

∫
V

4πW/AdV = ∂t

∫ z2

z1
4πW dz =

∫ z2

z1
4π ∂tW dz, (2.22)∫

V
(uχr + wχz) dV =

∫
V
u · ∇χdV =

∫
V
∇ · (uχ) dV =

∫
∂V
uχ · n dS

=
[∫ a

0
wχ 2πr dr

]z2
z1

=
[
4πW 2

]z2
z1

=
∫ z2

z1
4π ∂zW

2 dz, (2.23)∫
V
∂z(v

2/r2) dV =
∫ z2

z1

∫ a

0
−1

2
Γ2A−3 ∂zA 2πr dr dz =

∫ z2

z1
−1

2
Γ2A−2 ∂zAdz. (2.24)

Putting this together yields

∂tW + ∂zW
2 =

Γ2

8π
∂z

(
1

A

)
. (2.25)

We can rewrite this to bring in the material derivative Dt = ∂t + W∂z, using (2.10), in the
form

ADt

(
W

A

)
= A(∂t +W∂z)

(
W

A

)
=

Γ2

8π
∂z

(
1

A

)
. (2.26)

Although this equation, governing what we call the vorticity wave model of L94, involves W ,
it is best viewed as an equation governing azimuthal vorticity ω2 = rχ ∝ rW/A in (2.21).

That W/A is the relevant quantity in the transport equation (2.26) for vorticity may also
be seen by considering how vorticity behaves under a strain field. While for area waves the
local strain is generated by variations along the vortex, the most tractable example is a uniform
rectilinear vortex (independent of z) subjected to an externally imposed uniform strain field.
We therefore briefly consider the flow field u and vorticity field ω of the form

u = −1
2
κ(t)rr̂ + v(r, t)θ̂ + [κ(t)z +W (r, t)]ẑ, (2.27)

ω = ω2(r, t)θ̂ + ω3(r, t)ẑ, (2.28)
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with ω2 = −∂rW , ω3 = r−1∂r(rv). The function κ(t) gives the time-dependence of the external
irrotational strain field (and in later notation we will write the external axial flow component
as Wext = κ(t)z). The vorticity equation then gives

∂tω2 − 1
2
κr ∂rω2 = −1

2
κω2, ∂tω3 − 1

2
κr ∂rω3 = κω3. (2.29)

With the use of the Lagrangian radial variable s given by

s = re−
1
2
K(t), K(t) =

∫ t

0
κ(τ) dτ, (2.30)

the solution is

ω2 = e−
1
2
K(t) ω20(s), ω3 = eK(t) ω30(s), v = e

1
2
K(t) v0(s), W = e−K(t)W0(s), (2.31)

the subscript zero denoting initial conditions. It is evident that what is conserved is W/A,
since areas shrink as A ∝ e−K(t). If the stretching amplitude κ(t) is non-zero just for a finite
time interval, then the vorticity and velocity distributions before and after are simply related
through the quantity K from an integration over that time window. While W/A is conserved,
the momentum W in the axial flow is changed during the time interval by the pressure forces
linked to the externally imposed irrotational flow. In fact examination of the Euler equation
shows that the pressure field is

p = (1
4
∂tκ− 1

8
κ2)r2 − 1

2
(∂tκ+ κ2)z2 −

∫ ∞
r

ρ−1V 2(ρ) dρ, (2.32)

up to the addition of a constant and so there are both r- and z-dependent terms that appear
in the axial momentum equation in the presence of an external strain field.

As we have already noted, both the momentum wave model (2.18) and the vorticity wave
model (2.26) involve a judicious, but in some ways arbitrary, averaging of the governing equa-
tions, and so the approximations are heuristic rather than rational in the strict mathematical
sense. If our interest is in the vorticity dynamics of filaments, with an eye to vortex stretching
and vortex collisions, the second of these has the proper vorticity conservation properties, even
in the presence of stretching. In short, in the second model the main approximation is in the
advecting flow field rather than in the vorticity distribution. Note that (2.26) is not quite the
same as that derived in L94, where weighted moments of the vorticity equation are taken rather
than the average over the vortex cross section as here. For example to calculate the average
axial transport of ω2 in L94, the axial flow is weighted by the strength of ω2. The effect of this
is to give an equation of the same structure, but with different constants. A choice of weighting
could be used to fine-tune any model based on LA89 or L94, but in the present paper we will
just use a straightforward average.

It is worth noting that the two models, (2.18) and (2.26), really are distinct, having different
dispersion relations. We linearise (2.10) and for the momentum wave model (2.18), about
W = W0, A = A0 to obtain

ω/k −W0 = ±Γ/
√

8πA0, (2.33)

for disturbances proportional to eikz−iωt. This gives disturbances travelling at the same velocity
upstream or downstream relative to the uniform axial flow W0. However for the vorticity wave
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model (2.26) the dispersion relation is

ω/k −W0 = 1
2
W0 ± 1

2

√
W 2

0 + Γ2/2πA0. (2.34)

Thus for small W0 we regain (2.33), while for large W0

ω/k −W0 ' W0 or − Γ2/2πA0W0, (2.35)

and waves propagate more rapidly downstream than upstream (L94). We will test this against
the full slender body system in sections 5 and 6.

3 Governing equations

We turn now to a derivation of the equations for slender axisymmetric vortex dynamics
using a coordinate system that is adapted to the geometry of vortex lines: in particular our
aim is to simplify the description of the nested surfaces on which vortex lines spiral. As these
surfaces are axisymmetric our coordinate system will be chosen to simplify the axial and
radial components of vorticity (rather than the azimuthal component). We consider a vortex
in physical space M̃ = R3 with cylindrical polar coordinates (r̃, θ̃, z̃) as depicted in figure 1(a).
The vortex is axisymmetric, independent of the coordinate θ̃, with boundary r̃ = ã(z̃, t̃). We
have now made a major change of notation from the previous section by adorning quantities in
physical space with tildes. We will use untilded variables for quantities referred to the moving
coordinate system, to be defined shortly. We find it convenient to use bold letters for vector
fields, differential forms or other tensors. We use light typeface for coordinates, scalar fields
and tensor components.

We adopt a new (r, θ, z) coordinate system, in which vortex lines lie on surfaces given
by r = const. and varying θ = θ̃ and z. This can be viewed as in figure 1 as a map φ from
cylindrical vortex surfaces in (r, θ, z) coordinates in panel (b), to time-dependent curved vortex
surfaces in physical space, panel (a). We wish to write down the equations of motion in the
physical space M̃ with respect to the (r, θ, z) coordinate system; however these coordinates are
curvilinear, non-orthogonal, and unsteady. In addition to the choice of coordinates, we need to
adopt bases for the various vector fields employed. To do this in a systematic fashion we need
the language of classical differential geometry. In the next section we will set out the theory in
coordinate-free form. Readers who are unfamiliar with this approach can skip section 3.1 and
move directly to section 3.2, which gives the results in explicit coordinate form.

3.1 Fluid flow in a geometric setting

We now make a change of gear, and in this section only we discuss the equations for fluid
motion in an entirely abstract setting. We assume some standard background in differential
geometry, including vector fields, differential forms, the Lie derivative L, the inner product
y, the musical raising and lowering operators ] and [, and the exterior derivative d; see for
example, Hawking & Ellis (1973), Schutz (1980), Frankel (1997), Besse & Frisch (2017) or
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Fig. 1. Vortex (a) shown in physical space M̃ with cylindrical polar coordinates (r̃, θ, z̃), and (b)
represented in the space M with coordinates (r, θ, z). A map φ takes points in M to points in M̃
and a single vortex line is depicted in both geometries.

Webb (2018). We also write various key formulae in components in appendix A, as this may
be more familiar to some readers.

Although our vortex always lies in ordinary Euclidean space R3 and is axisymmetric, we
set out the equations for incompressible, inviscid fluid dynamics in a general form valid for any
three-dimensional orientable manifold M̃ equipped with a metric g̃ and induced volume form
µ̃. The fluid flow is given by a time-dependent velocity field ũ(x̃, t̃) defined at points x̃ in M̃
and times t̃. It will be divergence free, so that d(ũyµ̃) = 0. The corresponding momentum ν̃
of the fluid is defined to be the 1-form field given by applying the metric to the velocity field,
with ν̃ = g̃(ũ, ·) = ũ[̃. A standard argument based on the variational principle for classical
mechanics (see, e.g., Arnold & Khesin, 1998) gives the equations governing ideal, incompressible
fluid motion as

∂t̃ ν̃ + Lũ ν̃ + d(p̃− 1
2
ũyν̃) = 0, (3.1)

ν̃ = ũ[̃ = g̃(ũ, ·), (3.2)

d(ũyµ̃) = 0. (3.3)

Here p̃ is the usual pressure field, and the Lie derivative term Lũ ν̃ expresses transport of
momentum in the flow field. Since y denotes a contraction or inner product, we can write
ũyν̃ = g(ũ, ũ) = |ũ|2. We can also apply the exterior derivative d to obtain an equation for
the vorticity ζ̃ = dν̃,

∂t̃ ζ̃ + Lũ ζ̃ = 0, (3.4)

ζ̃ = dν̃, (3.5)

with of course dζ̃ = d2ν̃ = 0.

We wish now to use moving coordinates for the vortex in the physical space M̃ = R3,
as depicted in figure 1(a). We will define moving coordinates (r, θ, z) with θ = θ̃ and (r, z)
adapted to follow the axisymmetric surfaces on which vortex lines (generally spirals) lie. We
can think of our vortex as sitting in another space M = R3 with coordinates (r, θ, z), where
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it has a simpler structure. A time-dependent map φ then takes points from M to M̃. This is
depicted in figure 1(b): inM the vortex lines lie on cylindrical surfaces of constant r for r ≤ a
where a is the (now constant) radius of the vortex. In M the flow is also much simplified, as
we discuss below. Much of the dynamics of the vortex in the physical space M̃ is now hidden
inside the map φ.

Our next goal is to write down the equations for the fluid flow using the coordinate system
(r, θ, z) based in M. We first proceed formally, in full generality. Suppose that (x̃1, x̃2, x̃3)
are any (fixed) coordinates on M̃ (these need not be Cartesian nor orthogonal), and suppose
we have a time-dependent map φ from points labelled by (fixed) coordinates (x1, x2, x3) on a
manifold M, to points on M̃,

(x̃1, x̃2, x̃3) = φ(x1, x2, x3, t). (3.6)

We will use both t̃ and t as time variables, with t = t̃. Now, if we fix a coordinate point
(x1, x2, x3) in M, the image point under φ traces a path in M̃ as time t varies, and this
specifies a (generally time-dependent) vector field Ũ on M̃: this is the velocity of the moving
coordinate system on M̃, formally

Ũ = ∂tφ ◦ φ−1. (3.7)

We assume that φ is a diffeomorphism at all times t, and is as smooth as is needed in
subsequent manipulations. We can then apply a pull back φ∗ by the map φ to the above
equations (3.1–3.5) to obtain

∂t ν + Lu−U ν + d(p− 1
2
uyν) = 0, (3.8)

∂t ζ + Lu−U ζ = 0, (3.9)

now regrouped, with

ν = u[ = g(u, ·), (3.10)

d(uyµ) = 0, (3.11)

ζ = dν. (3.12)

Here we have denoted the pulled back fields by removing the tilde label, so that for example,

u = φ∗ũ, ν = φ∗ν̃, U = φ∗Ũ , g = φ∗g̃, p = φ∗p̃. (3.13)

Equations (3.8–3.12) hold because pull backs commute with the exterior derivative d, the Lie
derivative L and contraction, and because the following identity holds for any tensor field τ :

φ∗ ∂t̃ τ̃ = ∂t τ − LU τ . (3.14)

In this identity the first time derivative, denoted ∂t̃, is taken at a point on M̃ with coordinates
(x̃1, x̃2, x̃3) fixed, while the second time derivative ∂t, with t = t̃, is taken with the coordinates
(x1, x2, x3) held fixed, that is a fixed point onM but a moving point on M̃. This is a straight-
forward generalisation to any tensor object of the usual identity ‘∂t = Dt−U · ∇’ used for the
material derivative ‘Dt’ in fluid dynamics.

We will work with the system of equations (3.8–3.12), but it is convenient to rewrite these
by defining u = U + v so that, while u is the full velocity field, v is the velocity relative to
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the moving coordinate system. We can also use Cartan’s formula

Lv α = d(vyα) + vydα, (3.15)

valid for any differential form α. 2 The dynamical equations are rewritten most conveniently
as

∂t ν + vydν + dπ = 0, (3.16)

∂t ζ + d(vyζ) = 0, (3.17)

with

π = p+ 1
2
vyν − 1

2
Uyν, (3.18)

u = U + v. (3.19)

The full set of governing equations is then (3.16–3.19) together with (3.10–3.12): note that we
have written down equations for both momentum and vorticity for completeness but will focus
on the latter in what follows.

We remark that if the coordinate system is entirely Lagrangian, then we have u = U and
v = 0; the map φ is then the Lagrangian map of fluid parcels from their initial positions to
those at a general time t. In this case the vorticity is constant with respect to the moving
coordinate system, ∂tζ = 0, so that vorticity in M is given by the field values at time t = 0,
ζ = ζ0. In physical space M̃, vorticity ζ̃ is then given by the push forward in the flow map
from the initial condition, ζ̃ = φ∗ ζ0; this is the Cauchy solution as discussed by Besse & Frisch
(2017).

However there is no need to use an entirely Lagrangian coordinate system: we can choose
to absorb into the flow U whatever component of the motion we wish, dealing then with
the residue v. There is considerable freedom here, and the acid test is whether it simplifies
the problem at hand. This approach is sometimes referred to as hybrid Euler–Lagrange (e.g.,
Soward & Roberts, 2010); in the present context we can think of the coordinate system as
taking care of part of the motion of Lagrangian parcels, with velocity U , while the remaining
v is the Eulerian residue. For example this method is at the heart of Generalised Lagrangian
Mean (GLM) and related theories, where U gives a mean flow, and the v component tracks
waves or other fluctuations; see Bühler (2014), Gilbert & Vanneste (2018), and references
therein.

It is worth noting that there is a compatibility condition between the flow U of the coordi-
nate system and the metric g. In the physical space M̃ the metric g̃ is steady, in other words
∂t̃ g̃ = 0. Looking at (3.14) it then follows that in M, the pulled back metric g is generally
time-dependent and satisfies

∂t g − LU g = 0. (3.20)

Alternatively this can be seen as an equation that evolves the metric g given the flow U . It
can be verified that the velocity field U and metric g used below satisfy this condition; we
omit the details.

2 Note that this formula gives the commonly used identities of vector calculus for a × (∇ × b) and
∇× (a× b); see for example Webb (2018).
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3.2 Fluid flow in a coordinate setting

We now set out the equations in full component form. In preparation for future calculations
we will move to cylindrical polar coordinate labels (x1, x2, x3) → (r, θ, z), but we stress that
the coordinates are entirely arbitrary at this point; there is no assumption of axisymmetry, for
example.

The Euler equation, at a fundamental level, governs the transport of momentum ν in
a fluid flow with velocity field u. Although these are usually identified in Euclidean space
with Cartesian coordinates, here the components νi and ui are linked by the metric g for the
coordinate system:

νi = gij u
j. (3.21)

In fact these components are referred to the standard coordinate bases, so that for example

u = u1∂r + u2∂θ + u3∂z, ν = ν1 dr + ν2 dθ + ν3 dz (3.22)

(in traditional language ui are simply the contravariant components of velocity and νi the
covariant components). The fluid flow is incompressible, which may be expressed in coordinate
form as

∂i(µu
i) = 0. (3.23)

Here |g| = µ2 is the determinant of the metric tensor, so that

µ = µ dr ∧ dθ ∧ dz (3.24)

is the standard volume form, with µ > 0.

Now our coordinate system is itself time-dependent, and at any point in physical space a
fixed coordinate point moves with velocity U . Thus we define the velocity v relative to the
coordinate system by u = U + v, or

ui = U i + vi. (3.25)

The Euler equation (3.16, 3.18) then transports momentum relative to the moving coordinate
system via

(∂t + v1∂r + v2∂θ + v3∂z)ν1 − v1ν1r − v2ν2r − v3ν3r + πr = 0, (3.26)

(∂t + v1∂r + v2∂θ + v3∂z)ν2 − v1ν1θ − v2ν2θ − v3ν3θ + πθ = 0, (3.27)

(∂t + v1∂r + v2∂θ + v3∂z)ν3 − v1ν1z − v2ν2z − v3ν3z + πz = 0, (3.28)

π = p+ 1
2
(v1ν1 + v2ν2 + v3ν3 − U1ν1 − U2ν2 − U3ν3), (3.29)

using here letter subscripts or ∂ for derivatives, and numerical ones for components. Although
there are numerous terms here, many cancel out or are zero in typical applications once a
metric is put in and the relations (3.21) and (3.25) are applied.

For the vorticity equation it is convenient to define components ζi by

ζ = ζ1 dθ ∧ dz + ζ2 dz ∧ dr + ζ3 dr ∧ dθ, (3.30)
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with, from (3.12),

ζ1 = ν3θ − ν2z, ζ2 = ν1z − ν3r, ζ3 = ν2r − ν1θ, (3.31)

which satisfy

ζ1r + ζ2θ + ζ3z = 0 (3.32)

(this is just dζ = 0). The vorticity equation (3.17) can then be written in a variety of ways, of
which we prefer

(∂t + v1∂r + v2∂θ + v3∂z)ζ1 − (ζ1∂r + ζ2∂θ + ζ3∂z)v
1 + (v1r + v2θ + v3z)ζ1 = 0, (3.33)

(∂t + v1∂r + v2∂θ + v3∂z)ζ2 − (ζ1∂r + ζ2∂θ + ζ3∂z)v
2 + (v1r + v2θ + v3z)ζ2 = 0, (3.34)

(∂t + v1∂r + v2∂θ + v3∂z)ζ3 − (ζ1∂r + ζ2∂θ + ζ3∂z)v
3 + (v1r + v2θ + v3z)ζ3 = 0, (3.35)

as the terms have clear interpretations. In each equation the first set of terms involves Lie
dragging of each vorticity component using (∂t+Lv)ζi, the second set gives vortex stretching via
Lζvi and the final set (v1r +v2θ +v3z)ζi very roughly corresponds to the intensification of vorticity
through compression (bearing in mind that the latter pair of effects are not independent in
incompressible flow).

The above Euler and vorticity equations, (3.26–3.29) and (3.33–3.35), are valid for any
moving, non-orthogonal coordinate system (r, θ, z). What distinguishes different problems, the
actual geometry, resides in the relationships (3.21, 3.23, 3.25). Below we will work to define
the (r, θ, z) coordinates so that the vorticity surfaces are given by constant r; at the same time
we will derive the motion of the coordinate system given by U and the metric g, also µ, to
feed into the above framework.

4 Exact formulation for axisymmetric vortex evolution

In this section we shall apply the exact formulation of Euler flows given above to the problem
at hand, the evolution of an axisymmetric vortex, as depicted in figure 1(a). There are several
choices to be made to facilitate the analysis. The first is the map φ from M to M̃, taken up
in the next subsection. Then we must specify the fluid configuration to be studied, namely a
vortex with a circular boundary and a simple choice of axial vorticity and azimuthal velocity as
a function of radius. These assumptions will then prepare us for taking the asymptotic slender
body limit and making heuristic approximations, together with simulations, as detailed in
sections 5 and 6.

4.1 Coordinate system

Recall that we have the vortex evolving in physical space M̃ = R3, where we mostly use tilde
labels, and where we may use Cartesian coordinates (x̃, ỹ, z̃) or cylindrical polar coordinates
(r̃, θ̃, z̃). We will also use Cartesian unit vectors i, j, k ≡ ẑ, or for cylindrical polars, r̂, θ̂, ẑ,
in M̃ but without tildes to avoid excessive notation.
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The above general development allowed us to exploit coordinates (x1, x2, x3) = (r, θ, z) in
M, as depicted in figure 1(b). These fixed coordinates inM thus provide moving coordinates in
M̃, through the map φ in (3.6). Although the coordinate system is hybrid Eulerian–Lagrangian
as mentioned above, we will for brevity refer to the moving coordinates (r, θ, z) as Lagrangian
coordinates, and we refer to M as Lagrangian space. The coordinate map we use is given by
(r̃, θ̃, z̃) = φ(r, θ, z, t) with

r̃ = F (r, z, t), θ̃ = θ, z̃ = h(z, t), (4.1)

where F (r, z, t) and h(z, t) are functions we are free to choose. Note that we set h independent
of r, and we require that F (0, z, t) = 0 to preserve points on the axis. We will in due course fix
the evolution of F and h so that vorticity surfaces are given by constant r and varying z (and
θ). The fact that z̃ = h(z, t) is a single-valued function of z means that surfaces will not be
able to fold back on themselves, but in any case such folding would violate the slender vortex
limit that we will take in due course.

We may use position vectors in Cartesian and polar coordinates in M̃ to write

r̃ = F cos θ i+ F sin θ j + hk = F r̂ + hẑ. (4.2)

The velocity of any Lagrangian point is

Ũ = ∂tr̃ = U r̂ +W ẑ, (4.3)

the components being time derivatives of our map,

U(r, z, t) = Ḟ , W (z, t) = ḣ. (4.4)

Strictly speaking we should write Ũ for U and W̃ for W ; however we omit the tildes to keep
notation lighter later on. Nonetheless these are velocities in physical space M̃ referred to the
usual unit vectors as in (4.3). We also set

J(z, t) = ∂zh = h′, (4.5)

so that we have

∂tJ = ∂zW. (4.6)

Here J(z, t) = ∂z̃/∂z is the Jacobian of the transformation of points along the axis. We will
often use a prime for z-derivatives and a dot for t-derivatives where it is convenient, but we
will also use subscripts and ∂z, ∂t.

Equation (4.3) gives the velocity of the coordinate system but referred to the unit vectors
r̂ = ∂r̃ and ẑ = ∂z̃: we need to transform these components to the ∂r and ∂z coordinate system
to obtain the components U i of U as in (3.25). It may be checked from (4.1) that the change
of basis is, explicitly,∂r

∂z

 = Q

∂r̃
∂z̃

 ,
∂r̃
∂z̃

 = Q−1

∂r
∂z

 ,
dr̃
dz̃

 = QT

dr
dz

 ,
dr
dz

 = (Q−1)T

dr̃
dz̃

 , (4.7)
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with

Q =

Fr 0

Fz h′

 , Q−1 =

 F−1r 0

−FzF−1r h′−1 h′−1

 . (4.8)

For the θ components we simply have ∂θ = ∂θ̃ = r̃θ̂, dθ̃ = dθ. Strictly speaking, ∂r, ∂z are
vectors in M and ∂r̃, and ∂z̃ are vectors on M̃, so they cannot be linked in this way! Instead
it is the pull-backs φ∗∂r̃ and φ∗∂z̃ that we are writing in terms of ∂r, ∂z. Although we needed
the map φ to clarify the governing equations in the previous section, in the context of later
calculations we generally drop mention of φ as the action of the map can be understood in
terms of such changes of bases, without undue confusion.

In this way, the components Ũ1 = U and Ũ3 = W of the coordinate system velocity
Ũ = Ũ1∂r̃ + Ũ3∂z̃ in the physical space are linked to those in the Lagrangian space, namely
U = U1∂r + U3∂z, by

U1 = F−1r U − FzF−1r h′−1W = F−1r Ḟ − FzF−1r h′−1ḣ, U2 = 0, U3 = h′−1W = h′−1ḣ. (4.9)

The metric g for the (r, θ, z) coordinate system is calculated from (4.2), by taking the length
squared of

dr̃ = (Fr dr + Fz dz)r̂ + F dθ θ̂ + h′ dz ẑ, (4.10)

giving

g = F 2
r dr

2 + F 2 dθ2 + (h′2 + F 2
z ) dz2 + FrFz(dr ⊗ dz + dz ⊗ dr). (4.11)

The determinant of the metric tensor is |g| = F 2F 2
r h
′2 and so we can write the volume form as

µ = µ dr ∧ dθ ∧ dz, µ = FFrh
′, (4.12)

which is the multiple r−1FFrh
′ of the usual volume element r dr ∧ dθ ∧ dz.

To interpret our coordinates let us set h′ = 1, say, and then the above transformation in
(4.7,4.8) yields

∂z̃|r̃ = ∂z|r − FzF−1r ∂r|z, (4.13)

which relates an axial derivative in the physical space, ∂z̃|r̃, to an axial derivative in the La-
grangian space, ∂z|r. A derivative in the Lagrangian space corresponds to a derivative along a
vorticity surface in physical space (see figure 1). For the special case of a steady flow this coin-
cides with a derivative along a stream surface, and then (r, z) reduce to von Mises coordinates;
this is employed in Klein & Ting (1992) to simplify the PDEs for motion of vortices, steady
on the area wave time-scale but evolving on the longer time-scale of vortex motion.

4.2 Vorticity and flow field

Now we need to make choices that define the structure of the vortex and configuration
of the moving coordinate system. We will specify that the axial vorticity ζ3 depends only on
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r, that there is no radial vorticity ζ1, that there is also no radial velocity v1, and that the
configuration is axisymmetric:

ζ3 = ζ3(r), ζ1 = 0, v1 = 0, ∂θ = 0. (4.14)

This gives the picture with respect to Lagrangian coordinates in figure 1(b), with vortex lines
inM spiralling on fixed cylindrical surfaces, r = const. Naturally the vortex as seen in physical
space does possess radial velocity and radial vorticity, as in figure 1(a), and the vorticity surfaces
take the form r̃ = F (r, z, t) for z̃ = h(z, t), r fixed and θ, z varying.

With these conditions applied, equations (3.32, 3.33, 3.35) are satisfied automatically, while
(3.34) becomes

∂tζ2 + (v3ζ2)z = ζ3∂zv
2. (4.15)

On the right-hand side is a source term from the wind-up of axial vorticity ζ3 by the azimuthal
flow field v2, giving azimuthal vorticity ζ2. In addition, on the left-hand side there is transport
of ζ2 along the axis of the vortex by virtue of the (v3ζ2)z term. Thus, in the Lagrangian
coordinate system, the vorticity dynamics simplifies considerably.

However we have moved much of the complexity to the determination of the moving coor-
dinate system and advecting flow field, and we turn to this now. Equations (3.31) give

0 = −ν2z, (4.16)

ζ2 = ν1z − ν3r, (4.17)

ζ3 = ν2r. (4.18)

The first and last of these define ν2(r) given ζ3(r). We stress here that we are free to choose our
vorticity profile ζ3(r) to be fixed for all time; the corresponding azimuthal (angular) momentum
ν2(r) is then also fixed. The actual dynamics is in the other variables.

The profile we choose to use is

ζ3 =

2Ωr, r ≤ a,

0, r > a,
ν2 =

Ωr2, r ≤ a,

Ωa2, r > a,
(4.19)

a Rankine vortex with constant angular velocity Ω, constant radius a and resulting circulation
Γ = 2πΩa2 in the Lagrangian coordinates. Note that the full axial vorticity within the vortex
is ζ3 dr ∧ dθ = 2Ωr dr ∧ dθ and so the vorticity 2Ω per unit area r dr ∧ dθ is uniform. Thus we
are choosing the simplest possible vortex core. In physical coordinates the radial extent of the
vortex is

0 ≤ r̃ ≤ ã(z̃, t) ≡ F (a, z, t), z̃ = h(z, t), (4.20)

at each z̃ station along the vortex axis; see figure 1(a).

Since the axial ζ3(r) vorticity distribution is fixed, it is only the azimuthal component
ζ2(r, z, t) that has dynamical content. It is this component that drives the advective flow in
(4.15), and also evolves the coordinate system in time. To obtain this flow we first note that
the incompressibility condition (3.11) or (3.23) permits the introduction of a Stokes stream
function ψ given here by

(u1∂r + u3∂z)yµ = dψ, ψ = ψ dθ, (4.21)
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so that

u1 = −(FFrh
′)−1 ψz, u3 = (FFrh

′)−1 ψr, (4.22)

using the definition of µ in (4.12). We also have that the momentum ν = u[ is linked to the
flow velocity u via (3.21). Using the metric in (4.11) we have for radial and axial components:

ν1 = F 2
r u

1 + FrFzu
3, ν3 = FrFz u

1 + (h′2 + F 2
z )u3. (4.23)

(Hopefully from the context there is little risk of confusion between superscripts for squared
quantities such as F 2

r and r2, and for components u1, u2 and u3.)

Given knowledge of F and h — the shape of the coordinate system — equations (4.17, 4.22,
4.23) combine to give an elliptic second order PDE determining the stream function ψ in terms
of the vorticity ζ2. This needs to be solved with suitable boundary conditions, for example flow
decaying as r → ∞ or a prescribed irrotational flow for r � a, as discussed later. From the
solution we obtain the flow components u1 and u3, and u2 is found similarly, via (3.21, 4.11),
from

ν2 = F 2 u2. (4.24)

In this way we obtain the complete velocity field u.

Finally, we need to split the flow u as in (3.25), between motion U of the coordinate
system and the residual flow v. Recall that our chosen F and h provide U and so determine
the splitting u = U + v. Conversely, imposing the condition v1 = 0 in (4.14), namely that the
coordinate system follows vorticity surfaces, gives a constraint on F and h which we use as an
evolution equation for F . From (3.25, 4.9) with v1 = 0, we have

u1 = U1 = F−1r Ḟ − FzF−1r h′−1ḣ, (4.25)

u2 = v2, (4.26)

u3 = U3 + v3 = h′−1ḣ+ v3. (4.27)

In (4.25) the actual radial motion given by u1 is completely absorbed by the coordinate system,
and so (4.25) provides the PDE we need to step F (r, z, t) in time given u1 and h:

∂tF = Fru
1 + Fzh

′−1ḣ. (4.28)

In (4.26) there is no azimuthal motion of the cooordinates so that U2 = 0 and u2 and v2 are
identical, given by (4.24) with ν2 as in (4.19): these express angular momentum conservation
during the vortex evolution.

We have not yet chosen or constrained the function h(z, t) and this is still open to us, as
the remaining freedom in the choice of coordinate system. In the axial component (4.27) this
corresponds to a split of the actual velocity u3(r, z, t) into a piece U3(z, t) determining the
motion of the coordinate system and the residual piece v3 that appears in the axial advection
of vorticity, as in (4.15). Since generally u3 will have a non-trivial dependence on r there is
no unique way to do this and we can make choices depending on the situation. One option,
which we use below to study the simplified models, is to take U3 to be the average axial flow
U3 = ū3. A simpler option is to take U3 = 0, ḣ = 0, and say h(z, t) = z; in other words we
just switch off any axial motion of the coordinate system. We shall take this option for the
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numerical runs in section 5. Finally, we can use h(z, t) to adapt the coordinate system to an
externally imposed flow, as we do in section 7.

4.3 Vorticity and flow field in physical space

In the Lagrangian coordinate system it is easy to lose track of what the various velocity and
vorticity components are in the physical space M̃ and how these tie up with the calculations
in section 2; in this section we make some links. From the vorticity 2-form field ζ we define
the vorticity vector field ω via ωyµ = ζ, which yields (see also appendix A),

ω = ω1∂r + ω2∂θ + ω3∂z, ω1 = µ−1ζ1, ω2 = µ−1ζ2, ω3 = µ−1ζ3. (4.29)

Let us focus on ζ3 and set ωaxial = ω3∂z. Using the profile (4.19) and working through the
change of basis in (4.7) we obtain inside the vortex

ωaxial = 2Ωrµ−1∂z = 2Ωr(FFrh
′)−1(Fzr̂ + h′ẑ). (4.30)

Thus while the distribution inside, ζ3 = 2Ωr, is fixed, the physical vorticity field can change in
magnitude as the coordinate system flexes, and gains a radial as well as an axial component.

This formula (4.30) is general, but if we take a simple situation (as discussed later) in which
we have F = rf(z, t) with f 2h′ = 1, so that the expansion or contraction in scale by a factor
f at each z station is uniform, then this simplifies to

ωaxial = 2Ω(rf ′r̂ + h′ẑ) =
Γ

A

(
rf ′

h′
r̂ + ẑ

)
, (4.31)

where we identify A = πã2 = πa2f 2 and use the circulation Γ = 2πΩa2. The ẑ component here
is Γ/A as we had in (2.11). Likewise we can consider the component of the momentum ν2 and set
νazi = ν2 dθ = ν2 dθ̃. The corresponding velocity component is uazi = νazi] = r̃−2ν2∂θ̃ = r̃−1ν2θ̂,
thus giving for the profile (4.19) (as r̃ = rf , ã = af),

uazi =

Ωr2r̃−1θ̂ = Γr̃/2A θ̂, r̃ ≤ ã,

Ωa2r̃−1θ̂ = Γ/2πr̃ θ̂, r̃ > ã,
(4.32)

in agreement with (2.12). Finally, while the profiles in (4.19) are fixed for all time, ζ2 evolves
according to (4.15). Below we consider a simplified model with ζ2 = rχ(z, t), in (6.6); here this
corresponds to ω2 = µ−1rχ(z, t) from (4.29), and (again with F = rf , f 2h′ = 1, µ = r) we
have

ωazi = ω2∂θ = ω2∂θ̃ = χ∂θ̃ = r̃χθ̂, (4.33)

in agreement with (2.19). Thus the notation and fields are consistent when comparing the
present Lagrangian model with the discussion in section 2.
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5 Slender vortex limit

5.1 Slender vortex scalings

The system as outlined in the previous section is a complete Lagrangian description of the
evolution of a vortex under only the assumption of axisymmetry. Naturally, adopting a flexible
coordinate system means unavoidable complexity in the elliptic problem that would need to
be solved numerically to go from ζ2 to ψ. Thus, this approach offers few advantages over an
Eulerian description. We therefore revisit the limit of a slender vortex introduced in section 2,
using now the notation of the Lagrangian description.

In Lagrangian space our vortex sits in 0 ≤ r ≤ a and 0 ≤ z ≤ ` with, say, periodic boundary
conditions in z. Let us take a = O(1) and `� 1. We have freedom in the fundamental design
of the map φ, so we use it to map the vortex in M to a vortex in M̃ of similar proportions,
with radius and length

ã(z̃, t) = F (a, z, t) = O(1), ˜̀(t) = h(`, t)− h(0, t) = O(`). (5.1)

The slender vortex scalings are

F = O(1), h = O(`), ∂r = O(1), ∂z = O(`−1), ∂t = O(`−1). (5.2)

For the flow variables the appropriate scalings are

ζ2 = O(1), ζ3 = O(1), u1, v1, U1 = O(`−1), u2, v2, u3, v3, U3 = O(1), (5.3)

ψ = O(1), ν1 = O(`−1), ν2, ν3 = O(1), p = O(1) (5.4)

(pressure p will be mentioned later). Then (4.17) and (4.23b) simplify to

ζ2 = −ν3r, ν3 = h′2u3, (5.5)

at leading order. With these and (4.22), the elliptic problem for ψ given ζ2 simplifies down to
an equation involving only r-derivatives,

ζ2 = −[(FFr)
−1h′ψr]r (5.6)

(cf. (2.2) in the Eulerian description). Solutions to the homogeneous form of (5.6) take the
form ψ = γ(z, t)F 2 + δ(z, t). The term δ must be excluded as r → 0 since the corresponding
flow obtained from (4.22) is singular there. The γF 2 = γr̃2 piece grows as r̃ →∞ and so must
be excluded for r > a as there is (for the time being) no externally imposed irrotational flow,
giving the boundary condition

∂rψ|r=a = 0, (5.7)

corresponding to zero axial flow u3 at r = a. The evolution is given by time-stepping the PDE
(4.15) for ζ2 with (5.6) used to calculate ψ and so u1, u3 from (4.22) and then use made of
(4.24–4.27) as before. This remains a system in (r, z, t) variables which can only generally be
tackled numerically, as we proceed to do.
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5.2 Numerical solution

We now outline the basis of our numerical solution of area waves in the slender vortex
system. The solution to (5.6) under the boundary conditions discussed above is (suppressing
the dependence on z, t),

ψ(r) = 1
2
h′−1

[ ∫ r

0
F (ρ)2 ζ2(ρ) dρ+ F (r)2

∫ a

r
ζ2(ρ) dρ

]
, (5.8)

and so

u3(r) = h′−2
∫ a

r
ζ2(ρ) dρ. (5.9)

For the numerical solution we make the choice that h(z, t) = z, as indicated at the end of
section 4.2, which removes any axial motion of the coordinate system from consideration, and
makes h′ = 1, ḣ = 0, U3 = 0. Other choices here would simply give the same results under
an axial coordinate transformation: for example, in section 6.1 we average the axial flow to
obtain the vorticity wave model, and then a different choice of h is convenient. Starting with a
vortex profile in (4.19), we then have two PDEs to time step, namely (4.15) for the azimuthal
vorticity ζ2(r, z, t), and

∂tF = Fr u
1 (5.10)

for the shape of vorticity surfaces from (4.28), together with the use of the relationships

u1 = −(FFr)
−1ψz, u2 = v2 = F−2ν2, u3 = v3 = (FFr)

−1ψr, (5.11)

and (5.8, 5.9) with h′ = 1.

It is convenient for numerical solution to introduce an area variable α(r, z, t) = F 2 so that
the physical cross-sectional vortex area is πα(r, z, t) at each value of r and axial location z = z̃.
With this the evolution equations take a convenient conservation form,

∂tζ2 = (v2ζ3 − v3ζ2)z, ∂tα = −2ψz, (5.12)

with

v2 = α−1ν2, v3 =
∫ a

r
ζ2(ρ) dρ, ψ = 1

2

[ ∫ r

0
α(ρ) ζ2(ρ) dρ+ α(r)

∫ a

r
ζ2(ρ) dρ

]
. (5.13)

The equations are integrated numerically using a Lax–Wendroff scheme with 200 points in r
and z.

5.3 Numerical results

Having chosen a base vorticity profile as say (4.19), the remaining parameters are (a,Ω, `)
giving also the circulation Γ = 2πΩa2. We are free to choose the scale a and angular velocity
(inverse time) scale Ω, in effect to non-dimensionalise the equations on this basis. In line with
later non-dimensionalisation of the vorticity and area wave models, we will without loss of
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Fig. 2. Slender vortex simulations for the initial A(z, 0) in (5.16) and ū3(z, 0) = W0 = 0: (a) A (from
0.9π to 1.1π) and (b) ū3 (from −0.87 to 0.87) are depicted on a colour scale in the (z, t)-plane with
here z = z̃.

generality fix a and Ω with:

a = 1, Ω =
√

2, Γ = 2π
√

2. (5.14)

We also fix the period of any wave as ` = 2π without loss of generality: the slender vortex
theory is valid in the limit ` → ∞ so in practice we have scaled ` out of the problem via
(5.2–5.4) and are thus able to fix it arbitrarily.

To compare with the vorticity and momentum wave models we will focus on plots of the
area profile A(z, t) of the vortex, setting

A(z, t) = πã2(z, t) = πα(a, z, t) = πF 2(a, z, t). (5.15)

To start a wave in the simulation we specify a variation in area, and take

A(z, 0) = π(A0 + A01 cos z), F (r, z, 0) = r(A0 + A01 cos z)1/2, A0 = 1, A01 = 0.1, (5.16)

a uniform contraction/expansion at each z station. The other key quantity is some measure
of the axial flow. Now this component is u3 ∂z = u3 ∂z̃ = u3 ẑ (as h′ = 1 here), but as
u3 = u3(r, z, t) this generally depends on radius. To compare with the axial flow W (z, t) in the
vorticity and area wave models we use the average of u3 over the vortex, setting

ū3(z, t) = 〈u3〉 ≡ 1

πã2

∫ ã

0
u3 2πr̃ dr̃ =

2

ã2

∫ a

0
u3FFr dr =

1

ã2

∫ ã2

0
u3 dα. (5.17)

We also need to be able to impose an initial axial flow corresponding to a given W (z, t), in
other words impose an initial ū3(z, 0). For this we will choose a quadratic profile by setting

ζ2(r, z, 0) = 4a−2r ū3(z, 0), u3(r, z, 0) = 2a−2(a2 − r2) ū3(z, 0), (5.18)

as per (5.9).

Results from the numerical simulations are presented in figures 2–5. The first figure shows
evolution of the initial area profile in (5.16) and zero initial axial flow, ū3 = W0 = 0 in (5.18). in
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Fig. 3. Slender vortex simulations for the initial A(z, 0) in (5.16) and ū3(z, 0) = W0 = 0: (a) ζ2 (from
−0.42 to 0.53) and (b) u3 (from −0.24 to 0.22) are depicted on a colour scale in the (r, t)-plane for
z = π/2 and z = π/4 respectively.
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Fig. 4. Slender vortex simulations for the initial A(z, 0) in (5.16) and ū3(z, 0) = W0 = 0.1: (a) A (from
0.9π to 1.1π) and (b) ū3 (from 0.013 to 0.188) are shown in the (z, t)-plane with here z = z̃.

the (z, t) plane with time running up to t = 25. The evolution of A is shown in panel 2(a) and
the mean axial flow ū3 in panel 2(b). We observe a standing pattern of waves: axial flow runs
from thick to thin regions of the vortex, overshoots and then goes back again. As one might
expect in this hyperbolic system with no dissipation, the wave forms tend to sharpen and form
shock-like structures in the later evolution. To illustrate the internal vortex structure figure
3(a) shows ζ2 at the z = π/2 station with radius r horizontal and time up to t = 25 vertically.
This field gains a structure of nested, like-signed rings, more complicated than the simplified
profile that we use for the vorticity wave model in (6.6) below, which is linear, proportional
to r. On the other hand the resulting axial flow, shown in figure 3(b) at z = π/4, retains a
reasonable approximation to a quadratic profile throughout the run, until small scales from
shock behaviour appear. The overall pattern of standing waves does not propagate in (z, t)
space, by virtue of the z → −z symmetry of the equations and initial conditions. Because of
our choice of h, we have z̃ = z and so the figures are the same with respect to physical and
Lagrangian axial coordinates. Note that the W = 0 case is the classic Rankine vortex, which
is known to be neutrally stable, including a long-wavelength axisymmetric wave propagating
with a speed of around ±0.835Ωa ' ±1.18 (see, e.g. Saffman, 1992), giving good agreement
with the period of the standing waves in figure 2.
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Fig. 5. Slender vortex simulations for the initial A(z, 0) in (5.16) and ū3(z, 0) = W0 = 0.1: (a) A (from
0.9π to 1.1π) and (b) ū3 (from 0.013 to 0.188) are shown in the (ẑ, t)-plane, ẑ = z −W0t.

Next we introduce a non-zero initial axial flow, a constant ū3(z, 0) = W0 = 0.1, giving the
azimuthal vorticity ζ2 and axial flow u3 specified by (5.18). Figure 4 shows the quantities A
and ū3 in the (z, t)-plane, showing a similar pattern, now propagating to the right. To compare
with later simulations we also show the same panels in figure 5, now plotted in the (ẑ, t) plane
where ẑ = z−W0t is a Lagrangian coordinate following the mean flow (noting that ū3 averaged
over z remains at W0 = 0.1 for this run). The standing wave pattern continues to propagate
to the right, with respect to the mean axial flow.

6 The vorticity and momentum wave models

6.1 Assumptions and derivation

We now seek to compare our numerical results with the simplified models in which we
remove the radial dependence from the full slender vortex system above. Within our Lagrangian
framework we will first derive the vorticity wave model, which as discussed in section 2 is based
on vorticity conservation in L94, as distinguished from the momentum wave model of LA89.
We will thus make two key modelling assumptions that will prove not to be justified, but when
an averaging step is put it in, will yield the vorticity wave model that we derived in the Eulerian
framework in section 2.

Our first modelling assumption is that the vorticity surfaces are such that there is only
a uniform compression or expansion of the coordinate system at each z-station, so that we
replace the general F (r, z, t) by the specific form

F (r, z, t) = rf(z, t). (6.1)

This restricts the allowed geometry of the vortex surfaces. With (6.1) we will make use of our
freedom to choose the flow of the coordinate system in the z-direction by making the convenient
requirement that h(z, t) is to satisfy

f 2h′ = 1. (6.2)
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Once we impose this, we can fix the evolution of f or of h but not both. We will shortly focus
on allowing h′ to match the axial flow. This condition makes the map φ from Lagrangian (r, z)
to physical (r̃, z̃) coordinates volume-preserving, with FFrh

′ = rf 2h′ = r and so

µ = µ dr ∧ dθ ∧ dz, µ = r, (6.3)

from (4.12). With this, (4.22) is replaced by

u1 = −r−1ψz, u3 = r−1ψr. (6.4)

We will take uniform axial vorticity ζ3 in the vortex, as per (4.19) (other choices could be
made), and consider the governing equation (4.15) for the azimuthal vorticity ζ2. Our second
modelling assumption is that the advecting axial velocity u3 that appears in the vorticity
equation (4.15) is a uniform ‘slug flow’, 3 independent of r across the vortex r ≤ a. This means
that using u3 = U3 + v3 we can absorb the axial flow completely into the coordinate system
u3 = U3(z, t), v3 = 0 giving the evolution of h(z, t) as in (4.27). With v3 = 0, equation (4.15)
simplifies to

∂tζ2 = ζ3 ∂zv
2, (6.5)

with v2 = u2 = Ωf−2 from (4.19, 4.24, 6.1). The solution to this may be written as

ζ2(r, z, t) = χ(z, t)r, r ≤ a, (6.6)

and zero for r > a, with
∂tχ = 2Ω2 ∂zf

−2. (6.7)

This represents the generation of azimuthal vorticity ζ2 by variations in the local angular
velocity v2 along the vortex. It arises from the variation of area in z and so ultimately by
conservation of angular momentum. The cross-sectional area A(z, t) in (5.15) is now given by

A(z, t) = πa2f 2(z, t). (6.8)

The azimuthal vorticity ζ2 in (6.6) is now a source of axial and radial flow, via the stream
function ψ. We need to integrate out the relation (5.6) which is

(r−1ψr)r = −χf 4r, r ≤ a, (6.9)

and zero for r > a. This has the homogeneous solution (cf. discussion above (5.8)) ψ =
γ(z, t)r2 + δ(z, t) and with this we obtain, for a flow that is regular at r = 0 and dies away as
r →∞,

ψ =

−
1
8
χf 4r2(r2 − 2a2),

1
8
χf 4a4,

u1 =


1
8
(χf 4)′r(r2 − 2a2),

−1
8
(χf 4)′a4r−1,

u3 =

−
1
2
χf 4(r2 − a2), r ≤ a,

0, r > a.

(6.10)

We can now assess what we have in view of the earlier modelling assumptions, that the vorticity
surfaces take a simple form and the axial flow is independent of r. Our first assumption was

3 Note that if the vorticity surfaces are given by a uniform expansion/contraction for each z in (6.1),
this geometry is preserved if the axial flow is independent of r.
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invoked to simplify F (r, z, t) = rf(z, t) in (6.1) so that at each z-station the coordinate system
expands or contracts uniformly in r. For this to be correct the flow u1 = U1 above needs to be
strictly linear in r, and we observe that it isn’t. Similarly the second assumption requires the
axial velocity u3 to be uniform in radius so that we can set u3 = U3(z, t) only and v3 = 0. Again
this does not hold: the winding up of uniform axial vorticity creates an azimuthal vorticity
component ζ2 that gives a quadratic axial flow profile u3.

To eliminate radial dependence we must take a heuristic step. As we have started by
assuming a uniform axial flow u3 = U3(z, t), independent of radius, in writing down (6.5), the
most straightforward step to take is to replace the u3 that appears in the vorticity equation
(6.5) by its average ū3 (averaged with respect to area r dr ∧ dθ) and set U3 = ū3, v3 = 0. This
fixes the evolution of the geometry, with

U3 = ḣ/h′ = f 2ḣ = ū3 = 1
4
χf 4a2. (6.11)

Then our closed system of equations is

∂tχ = 2Ω2∂zf
−2, ∂th = 1

4
χf 2a2, f 2∂zh = 1. (6.12)

Gathering up elements from elsewhere, namely W = ḣ, J = h′, Γ = 2πΩa2, A = πa2f 2 and
eliminating χ = 4πW/A, we obtain a closed set of equations as

A∂t

(
W

A

)
=

Γ2

8πJ
∂z

(
1

A

)
, ∂tJ = ∂zW, AJ = πa2. (6.13)

These are the governing equations in Lagrangian coordinates for the vorticity wave model. A
similar system is obtained by L94 (with different constants that arise from different weighting
in the averages). Again we stress that while W appears prominently in the equation, this is
fundamentally an equation governing azimuthal vorticity, here measured by χ = 4πW/A.

We leave the equation in the above form for easy comparison with the momentum wave
model (2.18) of LA89, which in Lagrangian coordinates amounts to

∂tW =
Γ2

8πJ
∂z

(
1

A

)
, ∂tJ = ∂zW, AJ = πa2. (6.14)

Our discussion using geometrical tools is based on following vorticity surfaces, and a derivation
of the LA89 model, based as it is on averaging the Euler or momentum equation, does not fit
so naturally into this framework. Nonetheless we check in appendix B that the LA89 model
may be obtained from the Euler equation written in the form given in section 3.

Going from Lagrangian to Eulerian variables we have the relationships:

∂t = ∂t̃ +W∂z̃, ∂z = J∂z̃ = πa2A−1∂z̃, (6.15)

and the system (6.13) becomes (2.26), while (6.14) beomes (2.18), as derived in section 2 (with
appropriate substitution (z̃, t̃)→ (z, t)).

In the discussion below (6.2) we explained that we could fix the evolution of f or of h′ to
close the system, but not generally both. It is interesting to check the outcome if we followed
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an alternative approach, say to set U1(a, z, t) = u1(a, z, t) = −1
8
(χf 4)′a3 so that the evolution

of f now tracks the motion of the boundary r = a, r̃ = ã of the vortex; a short calculation
leads to the same system of equations. Specifically we use (4.28, 6.10)

U1(a, z, t) = u1(a, z, t) = −1
8
(χf 4)′a3 = a(ḟ/f − ḣf ′/h′f) = −1

2
a(ḣ/h′)′, (6.16)

with f 2h′ = 1 giving ḟ/f = −1
2
ḣ′/h′ and f ′/f = −1

2
h′′/h′. Integrating implies that

ḣ/h′ = 1
4
χf 4a2, (6.17)

up to a constant C(t) of integration which we set to zero (it would correspond to adding a
uniform flow in the axial direction). Thus it turns out that we recover (6.11), and on hindsight
this follows from conserving the volume of the vortex in physical space. The two choices of
evolving h or evolving f amount to the same final answer in this case, though other choices,
for example taking other profiles with the same circulation and/or another weighted average
of the axial flow, could give other constants in the equations: these are members of a general
class of approximate models, pioneered in L94.

6.2 Numerical simulations

We will simulate the equations for the momentum and vorticity wave models numerically
to compare with the slender vortex system. First we non-dimensionalise, following discussion
in LA89 (section 4) and set a length scale, area scale and time scale via

L = a, A = πa2, T = 2
√

2πa2/Γ. (6.18)

Note that the time taken for a particle to go around the circumference of a vortex radius
a, circulation Γ, is

√
2T ; the velocity scale L/T is the maximum velocity in the vortex (i.e.

at r = a), divided by
√

2. We set, using daggers temporarily to denote new dimensionless
variables,

z = Lz†, t = T t†, A = AA†, W = (L/T )W †, J = J†, h = Lh†, (6.19)

to leave, dropping the daggers, for the vorticity wave model (6.13),

A∂t

(
W

A

)
= −∂z logA, ∂tJ = ∂zW, AJ = 1, (6.20)

and for the momentum wave model (6.14),

∂tW = −∂z logA, ∂tJ = ∂zW, AJ = 1. (6.21)

This non-dimensionalisation corresponds to the choice of values in (5.14) for simulations of the
slender vortex system (though the area A there is π times the area here), and this allows direct
comparison of numerical results.

We present numerical simulations of the two models: these were written in conservation
form for Lax–Wendroff time stepping using the following pairs of variables and equations as
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Fig. 6. Momentum wave simulations for the initial A(z, 0) in (5.16) and W (z, 0) = W0 = 0: (a) A
(from 0.9 to 1.1) and (b) W (from −0.1 to 0.1) are depicted on a colour scale in the (z, t)-plane. The
figure also applies for other values of W0, with W plotted in the range −0.1 +W0 to 0.1 +W0 in (b).
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Fig. 7. Vorticity wave simulations for the initial A(z, 0) in (5.16) and W (z, 0) = W0 = 0: (a) A (from
0.9 to 1.1) and (b) W (from −0.11 to 0.11) are depicted on a colour scale in the (z, t)-plane.

follows

momentum wave: (W,J) : ∂tW = ∂z log J, ∂tJ = ∂zW, (6.22)

vorticity wave: (WJ, J) : ∂t(WJ) = ∂zJ, ∂tJ = ∂z(J
−1(WJ)). (6.23)

For the LA89 momentum wave model, figure 6 shows numerical results with W (z, 0) = W0 = 0
and the initial area profile A(z, 0) = A0 + A01 cos z, A0 = 1, A01 = 0.1; see (5.16). Figure 7
shows simulations for the vorticity wave model but only up to t = 20, as soon after this the
steepening of the wave motion does not allow further computation. The results of both of these
are similar and may be compared with those for the full slender system in figure 2, which shows
a comparable pattern of waves up to t = 25, with slightly shorter period, i.e. the waves are a
little more vigorous.

We then keep the same initial A(z, 0) but set a constant initial axial flow W (z, 0) = W0 6= 0.
Before showing any results it is worth considering symmetries of the equations. Naturally both
vorticity and momentum models, and the exact slender vortex system, have the symmetry of
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Fig. 8. Vorticity wave simulations for the initial A(z, 0) in (5.16) and W (z, 0) = W0 = 0.1: (a) A
(from 0.9 to 1.1) and (b) W (from 0 to 0.22) are shown in the (z, t)-plane, z being the Lagrangian
coordinate.

reversing the axial flow and the axial direction,

W (z, t)→ −W (−z, t), A(z, t)→ A(−z, t), (6.24)

giving the motionless standing waves in figures 2, 6, 7 when the initial condition has W = 0
and A even in z. However, in addition the LA89 momentum wave model is unchanged when

W (z, t)→ W (z, t) + C, A(z, t)→ A(z, t), (6.25)

where C is any constant. Thus the results for an initial condition with any constant W = W0

are essentially the same as for W = W0 = 0 and the same A. The momentum wave model is
blind to Galilean shifts in the velocity inside the vortex. Thus the pictures in figure 6 apply
to any initially constant W = W0, with just a shift of the scale in panel (b): the pattern of
standing waves does not propagate as we are in a Lagrangian frame (z, t) translating with the
mean flow W0 in the vortex.

However the picture is different for the vorticity wave model (and also for the slender vortex
system), since the symmetry (6.25) does not hold and so the results for W0 6= 0 are intrinsically
different from those depicted for W0 = 0 in figure 7. For W0 = 0.1, figure 8 shows evolution
of W and A: the standing waves now have a drift on top of the translation in the mean flow.
When the results for the same initial conditions in the slender vortex system are referred to
the mean flow, in figure 5, we again see the pattern of waves moving rightwards and so the
results are close to the vorticity wave model (noting that the horizontal axes in figures 5, 6
and 8 are all essentially equivalent). Again the waves in figure 5 are somewhat more vigorous
but otherwise have a similar structure.

The earlier figures show (drifting) patterns of standing waves that are plainly a combination
of two waves propagating upstream and downstream. To try to isolate these waves we focus
on the dispersion relation for the vorticity wave model, which in the present (z, t) coordinate
system (i.e. with z a Lagrangian coordinate moving with the mean flow) is

ω/k = 1
2
W0 ± 1

2

√
W 2

0 + 4, (6.26)
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Fig. 9. Downstream wave. Profiles of (a) A and (b) W or ū3 are plotted against z ≡ ẑ at time t = 8, in
the momentum wave model (blue), vorticity wave model (red) and slender vortex system (magenta).
In (c,d) the evolution of A and ū3 respectively are shown for the slender vortex system in the (ẑ, t)
plane.

for modes proportional to eikz−iωt. We take the initial condition with A(z, 0) given in (5.16)
and

W (z, 0) = ū3(z, 0) = W0 +W01 cos z, A0 = 1, A01 = 0.1, W0 = 0.2, W01 = ωA01/kA0, (6.27)

so the initial condition satisfies the linear dispersion relation for the vorticity wave model. We
have also run using the dispersion relation ω/k = ±1 appropriate to the momentum wave
model, and obtained very similar results, unsurprisingly for this modest value of W0.

Figure 9 shows the downstream wave (+ sign in (6.26)), with panels (a,b) showing profiles
of A(z, t) and ū3(z, t) at time t = 8. The wave in the full slender vortex system (magenta) has
overtaken the waves for the momentum wave model (blue) and vorticity wave model (red). The
time t = 8 is just before the breaking of the wave in the slender vortex system, while the wave
for the vorticity wave model has just broken. The evolution of the fields A and ū3 in panels
(c,d), for the slender vortex system, shows rather more structure than a simple wave. Similarly
figure 10 shows the upstream wave (− sign in (6.26)): again the slender vortex system wave
is the speediest, and the waves are slower to break. All profiles here are referred to the mean
flow, using the coordinates z or ẑ. Overall the vorticity wave model gives the closest profiles to
the full slender vortex system, under a phase shift, although it underestimates the velocity of
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Fig. 10. Upstream wave. Profiles of (a) A and (b) W or ū3 are plotted against z ≡ ẑ at time t = 8, in
the momentum wave model (blue), vorticity wave model (red) and slender vortex system (magenta).
In (c,d) the evolution of A and ū3 respectively are shown for the slender vortex model in the (ẑ, t)
plane.

disturbances. In the full slender vortex system, waves travelling downstream move faster than
upstream, relative to the mean flow in the vortex, as is evident in figures 9, 10. This asymmetry
is captured by the vortex wave model, but cannot be by the momentum wave model, for the
reasons discussed below (6.25). Note that our initial condition for the slender vortex system,
of a quadratic profile for the axial flow in (5.18), is closer to the set-up for the vorticity wave
model than for the momentum wave model. In our full numerics, we have not tried to impose
the axial slug flow that is the basis of the momentum wave model, as this would create a vortex
sheet on the surface r = a, leading rapidly to instability.

7 External irrotational flow

One advantage of our framework is that it is relatively straightforward to include the effects
of an external irrotational flow on the vortex. This enables us to study the effect of a uniform
strain field, or of more complex external flows modelling the interactions of vortices. In the
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physical variables (r̃, z̃) let the irrotational flow be given by

Ũ ext = Ũ1
ext ∂r̃ + Ũ3

ext ∂z̃ = Uext r̂ +Wext ẑ, (7.1)

with Wext depending on the axial coordinate and time, but not on radius r̃. We introduce the
stream function ψext,

ψext = 1
2
r̃2Wext, (7.2)

Uext = −r̃−1 ∂z̃ψext = −1
2
r̃ ∂z̃Wext, (7.3)

Wext = r̃−1 ∂r̃ψext. (7.4)

Since our vortex is slender, we may regard it as situated along the z-axis but subjected to
this external flow. In the Lagrangian coordinates the (same) stream function ψext = ψext dθ =
ψext dθ̃, applies with Wext = Wext(z, t) and

ψext = 1
2
F 2Wext, (7.5)

u1ext = −1
2
FF−1r h′−1W ′

ext − FzF−1r h′−1Wext, (7.6)

u3ext = h′−1Wext, (7.7)

making use of (4.22). Thus to specify an external axial flow along the vortex, we simply add
these terms to the stream function and velocity components determined above in section 6.1.
No contribution is made to the vorticity. We will consider this both in the context of the
exact system for a slender vortex discussed in section 5, and for the vorticity wave model in
section 6. We will not consider the momentum wave model further since our main interest here
is vorticity dynamics and, as discussed in §2, in a uniform strain field only the vorticity wave
model captures correctly the conservation of W/A and so faithfully represents the evolution of
the vorticity field in this case.

7.1 Vorticity wave model with external flow

For the vorticity wave model of section 6 it is straightforward to include the external flow
above by replacing

ψ → ψ + ψext = ψ + 1
2
r2f 2Wext, (7.8)

u1 → u1 + u1ext = u1 − 1
2
r(f 2Wext)

′, (7.9)

u3 → u3 + u3ext = u3 + f 2Wext, (7.10)

in (6.10), using f 2h′ = 1. Then (6.11) becomes

U3 = ḣ/h′ = f 2ḣ = ū3 = 1
4
χf 4a2 + f 2Wext. (7.11)

and if we set W = 1
4
χf 2a2 as before we obtain the governing equations as

A∂t

(
W

A

)
=

Γ2

8πJ
∂z

(
1

A

)
, ∂tJ = ∂z(W +Wext), AJ = πa2. (7.12)
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Fig. 11. Vorticity wave simulations for the initial A(z, 0) in (5.16), W0 = 0.1 and uniform expansion
with κ = 0.1: (a) eκtA (from 0.9 to 1.1) and (b) W (from −0.05 to 0.18) are shown in the (z, t)-plane,
z being the Lagrangian coordinate.

0 1 2 3 4 5 6

-8

-6

-4

-2

0

2

4

6
10

-3

Fig. 12. For a continuation of the run in figure 11, W is plotted at time t = 100 (blue) together with
the right-hand side of (7.17) (red).

The total axial flow is W +Wext but only the rotational part W contributes to the azimuthal
vorticity as measured by W/A. The effect of Wext is just to modify the evolution of the Jacobian
J and area A in the Lagrangian coordinate system.

We consider the case of uniform expansion

Wext(z, t) = κz̃ = κh(z, t), (7.13)

where κ > 0 is a constant, and use the non-dimensional system (6.20) with W replaced by
W +Wext. The equation for the Jacobian becomes

∂tJ = ∂z(W + κh) = ∂zW + κJ, (7.14)

and the resulting equations may be written in conservation form as

(WJ, e−κtJ) : ∂t (WJ) = ∂z(e
κt(e−κtJ)), ∂t(e

−κtJ) = ∂z(e
−2κt(WJ)/(e−κtJ)). (7.15)

Figure 11 shows a run in which a strain field with strength κ = 0.1 is superposed on the
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earlier vorticity wave simulation depicted in figure 8. The waves can be seen to slow down
and become less intense. For large times, the induced axial flow W (z, t) tends to become
subdominant to Wext and so becomes decoupled from the dynamics and independent of time.
By neglecting W in the equation for J and solving this to give

J(z, t) ' eκtJ∞(z), A(z, t) ' e−κtA∞(z), t→∞, (7.16)

we find that

W ' Γ2

8π2a2κ

J ′∞
J∞

= − Γ2

8π2a2κ

A′∞
A∞

, t→∞. (7.17)

Thus the axial flow induced by the area waves becomes frozen out, subdominant to the expo-
nentially increasing external stretching. This is evident in a longer run to t = 100 shown in
figure 12. Note that in all these runs the Lagrangian coordinate z is used for plotting, whereas
the corresponding range of physical space coordinate z̃ is increasing exponentially as 2πeκt.

7.2 Slender vortex dynamics with external flow

We now consider the full slender vortex model under the influence of an imposed, irro-
tational external flow given by ψext in (7.5). In our earlier simulations of the slender vortex
system we set h′ = 1, ḣ = 0, z̃ = z. When there is an external irrotational flow present, it
is sensible to choose h to absorb it into the coordinate system. All that will be left are some
factors in the equations which represent the geometrical effect of stretching in the coupling of
various quantities.

Again it is helpful to first suppose there is no vortex present. Then ζ3 = 0 and we have only
irrotational flow. We absorb this into the background coordinate system motion by setting

U1
ext = u1ext, U3

ext = u3ext, (7.18)

and defining Fext = rfext(z, t) and hext(z, t), by integrating

ḟext = −1
2
fext

W ′
ext

h′ext
, ḣext = Wext, (7.19)

with respect to time. With these definitions, equations (4.25, 4.27) are satisfied, with v3 = 0
and all quantities labelled by ‘ext’. We can also impose

f 2
exth

′
ext = 1 (7.20)

at time t = 0 and then this condition is preserved subsequently. All we have done is ensure
that a point labelled by constant (r, z) is a Lagrangian parcel in the external flow.

In the presence now of vorticity, we choose to keep the same evolution of h, setting h = hext,
but allow additional flexing in radius F so that the coordinate system continues to follow
vorticity surfaces in real space. In this more general situation, we retain the above definitions
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Fig. 13. Slender vortex simulations for the initial A(z, 0) in (5.16), W = 0.1 and uniform expansion
with κ = 0.1: (a) eκtA (from 0.9π to 1.1π) and (b) eκt ū3 (from −0.035 to 0.172) are shown in the
(z, t)-plane, z being the Lagrangian coordinate.

of ψext, U
1
ext, U

3
ext, hext, fext and make the following replacements,

ψ → ψ + ψext, h→ hext, F → Ffext, (7.21)

u1 → u1ext + u1, u3 → u3ext + u3, U1 → U1
ext + U1, U3 → U3

ext, (7.22)

in the governing equations, (4.15, 4.22, 4.24–4.27, 5.6), to give

∂tζ2 + (v3ζ2)z = ζ3∂zv
2, (7.23)

ζ2 = −(h′ext)
2 [(FFr)

−1ψr]r, (7.24)

u1 = U1 = −(FFr)
−1 ψz = F−1r Ḟ , (7.25)

u2 = v2 = F−2h′ext ν2, (7.26)

u3 = v3 = (FFr)
−1 ψr. (7.27)

Thus, all other things being equal, stretching when h′ext > 0 reduces the flow generated for a
given azimuthal vorticity ζ2 distribution, but intensifies the azimuthal v2 component, through
angular momentum conservation.

We again undertake a simulation for pure exponential stretching with, for constant κ,

hext = zeκt, fext = e−
1
2
κt, Wext = κzeκt. (7.28)

Figure 13 shows a simulation and we again see the area waves petering out as t increases. Note
that by virtue of (4.7) the earlier W in figure 11 should be compared with ū3∂z = h′ū3∂z̃ =
eκtū3ẑ here. The comparison with figure 11 for the vorticity model is good, noting that the
two horizontal coordinates z are not quite the same (in the earlier simulation this includes the
motion with the background flow W +Wext whereas for the present one it includes only Wext).

To analyse the limit as t → ∞, given κ > 0 note that the following orders of magnitude
hold,

ζ3, ν2, F = O(1), ζ2, v
2 = O(eκt), ψ, u1, U1, u3, v3, Ḟ = O(e−κt), (7.29)

and so evolution of the vortex profile, given by F , freezes out. In (7.23) the (v3ζ2)z term becomes
negligible as t→∞. Given that F becomes time-independent, ζ3 = ζ3(r) and ν2 = ν2(r), this
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equation may be integrated to leave

ζ2 = κ−1eκtζ3ν2 ∂zF
−2. (7.30)

Thus the azimuthal vorticity profile ζ2 becomes linked to the vortex shape and ζ2 grows ex-
ponentially as eκt. The corresponding axial flow component u3 = O(e−κt) but as mentioned
above this needs multiplying by eκt when referred to the usual unit vector ẑ; in short the actual
measured axial flow eκtu3 again becomes frozen in time at O(1) levels, as for the vorticity wave
model (figure 12 and (7.17)).

8 Singular external flows

Following LA89 it is clear that if an external irrotational disturbance compresses a vortex
locally, area waves rush in to restore the cross sectional area. However we have seen that the
effect of uniform axial stretching is to freeze the evolution of area waves, so that the resulting
vortex profile is simply passively stretched in the external flow. This then raises the question
of the competition between these two effects: if an external stretching flow itself introduces
a small and shrinking scale into the evolution, when do area waves act to restore the cross
section, and when are they defeated by freezing?

We explore this briefly in the context of the vorticity wave model, working from the gov-
erning equations (7.12), and looking principally at scaling properties. We consider a similarity
form of Wext in which the spatial scale collapses to zero at a time t∗ while the velocities increase.
Although this is a somewhat artificial problem in the context of waves on a columnar vortex,
the goal is to throw light on more complex problems such as the collision of vortex filaments,
something we return to in our concluding discussion.

We let τ = t∗− t and so ∂t = −∂τ . We assume the axial flow is given by a Lagrangian map
of the form

hext(z, t) = τβ ĥext(ξ), ξ = z/τα. (8.1)

Suppose first there is no vortex present so that we have Wext = ḣext, J = h′ext, with

Wext = ḣext = τβ−1 Ŵext(ξ), J = h′ext = τβ−α Ĵ(ξ), A = τα−β Â(ξ), (8.2)

and so

Ŵext = −βĥext + αξĥ′ext, Ĵ = ĥ′ext, ÂĴ = πa2. (8.3)

We now introduce a vortex, and axial variations in area will tend to drive area waves given
by W : we can use the first of (7.12) to estimate the scaling of W as

W = τ 1−α Ŵ (ξ), (8.4)

with this equation becoming

(2α− β − 1)ÂŴ + αξ(ÂŴ ′ − Â′Ŵ ) = − Γ2

8π2a2
Â′. (8.5)
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Comparing (8.2, 8.4), the condition that the driven axial flow W is comparable with the
external flow Wext is

α + β = 2. (8.6)

If α + β > 2 then Wext is dominant and area waves die out as τ → 0. However if α + β < 2
then W will tend to dominate and the area waves will rush in to keep the vortex cross section
from becoming singular in the limit. The critical, transitional case is α + β = 2 where neither
flow can be ignored; in a future study we will examine similarity solutions that solve (8.5), and
their properties.

To connect this with other studies, note that while for Lagrangian coordinates,

∂z ∼ τ−α, ∂t ∼ τ−1, (8.7)

for Eulerian coordinates we have

∂z̃ ∼ τ−β, ∂t̃ ∼ τ−1. (8.8)

Since z̃/τβ = ĥext(z/τ
α) we see the symmetry between the treatment of the two spatial coor-

dinates as expressed above. Leray (1934) scalings are often used in studies of vortex stretching
and potential singularity formation and here correspond to α = 3/2 and β = 1/2, so that the
axial z̃ scale and vortex radius A1/2 decrease as τ 1/2 while the velocity Wext increases as τ−1/2.
This satisfies condition (8.6) and indicates that in a slender vortex configuration involving
Leray scalings, area wave dynamics should be considered in analysing the vortex evolution.
This could be done by developing an asymptotically correct slender vortex system, or through
averaging to yield a model akin to the vorticity wave model of L94 which, as discussed in the
present paper, has the scope to capture key effects of area waves in potentially frustrating local
vortex collapse and singularity formation.

9 Discussion

In this paper we have given a discussion of area waves on a columnar vortex using a
Lagrangian framework, strictly a hybrid Eulerian–Lagrangian framework, with a focus on the
limit of a long-wave disturbances, in other words the slender vortex limit. Our approach involves
tracking the vorticity distribution via a map from the Lagrangian to the physical space, which
preserves the vorticity and enables a detailed comparison between the slender vortex dynamics
and the models of LA89 and L94, both analytically and numerically. Note that although it
is straightforward to write down the exact equations in generality without taking the slender
vortex limit, the difficulty of inverting the vorticity distribution to find the corresponding fluid
flow means that it is unlikely to be a useful way of understanding phenomena such as vortex
breakdown, when shock-like behaviour breaks any imposed separation of scales. However in
the slender limit the equations become tractable to numerics and further approximations.
We have given simulations of the full slender vortex equations and compared them with the
momentum wave model of LA89 and the vorticity wave model of L94. Both models show a
good comparison with the full slender system, giving travelling and standing waves with the
correct structure and reasonable agreement with the velocities involved. When there is a mean
axial flow, the full system has an asymmetry between waves propagating upstream and those
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propagating downstream, which can understood in terms of the vorticity distribution. As a
result, this effect is best captured by the vorticity wave model; the momentum wave model has
an extra symmetry that equates upstream and downstream waves. We should also qualify our
comparisons by noting that the initial conditions we use in our simulations are closer to the
model flows in the vorticity wave model than those in the momentum wave model (which would
involve vortex sheets). In the present paper we have also restricted to waves on a straight vortex,
and we plan to extend the Euler–Lagange approach to more complex centreline geometry. This
would allow us to assess the various area wave models against the full core dynamics and so
make contact with studies of the effects of axial flow on vortex ring motion and instabilities
(e.g. Lundgren & Ashurst, 1989; Margerit & Brancher, 2001; Margerit, 2002; Ting, Klein &
Knio, 2007). We have also not considered the stability properties of the vortices we have used,
with constant axial vorticity and quadratic axial flow; the case of zero axial flow W = 0 is well
known to be stable (see, e.g., Saffman, 1992). Studies of more general profiles, in particular
the smooth Batchelor vortex, indicate stability provided the axial flow is not too strong (see,
e.g. Lessen, Singh & Paillet, 1974).

The approach based on differential geometry, that is the explicit use of metric and volume
forms, has many advantages, one in particular being that it gives convenient bases for writing
down the velocity, the momentum and the vorticity in any context. The separation between
the velocity as an advecting vector field, and the momentum as a 1-form field, is crucial and
once this is made, the Euler and vorticity equations have an intuitive form. Another advantage
is the complete flexibility in coordinates; however there is a corresponding disadvantage, that
the physical components of the flow and vorticity field, referred to a standard orthogonal
coordinate system, are not as accessible. The Lagrangian systems we develop allow an external
straining flow to be incorporated with little difficulty. Simulations of the slender vortex system
and the vorticity wave model both show area waves freezing and the vortex profile becoming
passive under uniform axial strain.

We have also investigated similarity scalings where an external irrotational flow involves
increasing axial velocities over a shrinking scale. Although this is a somewhat artificial problem
in the present context of an axisymmetric columnar vortex, we pursued it because analogous
processes operate when vortices collide and stretch each other in three dimensions. Here we
find that depending on the exponents governing the external flow, area waves may dominate
and tend to impose a uniform vortex cross section, or stretching may dominate and tend to
freeze out the area waves. The transitional case where both phenomena are present — neither
may a priori be ignored — includes the Leray (1934) scalings used in many singularity studies;
for example see Pumir & Siggia (1987), Pelz (2001), Moffatt & Kimura (2019a) and references
therein. Of course we have only looked at this in the most straightforward, axisymmetric con-
text, and real problems involving colliding vortices are highly three-dimensional. Nonetheless
if we apply the Leray scalings to our system, admittedly a somewhat artifical step, we can con-
clude that it may be perilous to ignore axial flow in other idealised models of vortex stretching
and potential singularity formation; the area wave restoring mechanism may draw fluid in to
prevent the local thinning of a vortex.

Another phenomenon which may well be important is that colliding vortices will generally
change cross sectional shape, not only the obvious distortion from circle to ellipse, but through
an inevitable erosion of vorticity as induced flows drive vortices together (Pumir & Siggia,
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1987; Hormoz & Brenner, 2012; Childress, Gilbert & Valiant, 2016). This has the general effect
of making the circulation of colliding vortex cores a function of the axial component and time,
impacting on similarity scalings (Childress & Gilbert, 2018). With the tools developed in the
present paper, we plan further studies with an eye towards more three-dimensional configura-
tions where vortices may pair and stretch intensely; see, for example, Takaki & Hussain (1984),
Pumir & Siggia (1987), Saffman (1990), Klein, Majda & Damodaran (1995), Bustamante &
Kerr (2008) and Moffatt & Kimura (2019a,b).

A Some equations in terms of components

In this appendix we note some of the formulae from the early part of section 3.1 in coordinate
form, as this may be more familiar to some readers; we drop the tildes for convenience. The
Euler and related equations (3.1–3.3) evolve the momentum ν in the flow field u with pressure
p acording to

∂t νi + uj ∂jνi + νj ∂iu
j + ∂i(p− 1

2
ujνj) = 0, (A.1)

νi = gij u
j, (A.2)

∂i(µu
i) = 0. (A.3)

The metric g links momentum and velocity in (A.2), and the square root of its determinant,
µ = |g|1/2, comes into the incompressibility condition (A.3). For vorticity, we have defined the
vorticity 2-form ζ = dν, which can be thought of as the anti-symmetric 2-tensor with

ζ = ζij dx
i ⊗ dxj = 1

2
ζij dx

i ∧ dxj, (A.4)

defined by (3.5),
ζij = ∂iνj − ∂jνi, (A.5)

and which evolves according to (3.4), which is

∂t ζij + uk ∂kζij + ζkj ∂iu
k + ζik ∂ju

k = 0. (A.6)

To pick on one component, say ζ12, we have

∂t ζ12 + uk ∂kζ12 + ζ12 ∂1u
1 + ζ32 ∂1u

3 + ζ12 ∂2u
2 + ζ13 ∂2u

3 = 0. (A.7)

As we are undertaking explicit calculations we find it convenient to set, cf. (3.30),

ζ1 = ζ23 = −ζ32, ζ2 = ζ31 = −ζ13, ζ3 = ζ12 = −ζ21, (A.8)

and so, adding and subtracting a term of ζ3∂3u
3, we obtain

∂t ζ3 + (u1∂1 + u2∂2 + u3∂3)ζ3 − (ζ1∂1 + ζ2∂2 + ζ3∂3)u
3 + (∂1u

1 + ∂2u
2 + ∂3u

3)ζ3 = 0, (A.9)

which is essentially the version which emerges in (3.35), and similarly for ζ1 and ζ2.

Instead of the vorticity considered as the 2-form field ζ, we can think of it as a vector field
ω, with ωyµ = ζ or

ζij = µεijkω
k, ωi = 1

2
µ−1εijkζjk (A.10)
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or even,

ω1 = µ−1ζ1, ω2 = µ−1ζ2, ω3 = µ−1ζ3. (A.11)

This vector field is Lie-dragged also in incompressible flow,

∂tω + Luω = 0, (A.12)

or in components

∂t ω
i + uj ∂jω

i − ωj ∂jui = 0. (A.13)

We could work with ζ or ω in our study but have preferred to use ζ as it is more simply
related to the momentum ν via (A.5) and thence to the velocity field via (A.2): only the
metric components gij (and not the volume element µ) then appear in the elliptic problem
going from the vorticity 2-form field ζ to the flow field u.

B The Lundgren–Ashurst model system

We present a derivation of the LA89 model for momentum-based area waves within our
framework, by averaging the Euler equation rather than the vorticity equation. The Euler
equation is written in generality in (3.26–3.29). We set ∂θ = 0, U2 = 0, and under the slender
vortex scalings (5.2–5.4) obtain at leading order,

− v2ν2r − v3ν3r + 1
2
(v2ν2 + v3ν3 − U3ν3)r + pr = 0, (B.1)

(∂t + v1∂r + v3∂z)ν2 = 0, (B.2)

(∂t + v1∂r + v3∂z)ν3 − v2ν2z − v3ν3z + 1
2
(v2ν2 + v3ν3 − U3ν3)z + pz = 0. (B.3)

Now we need to relate velocity and momentum, and jump straight to using the simplified
metric with F = rf(z, t) and f 2h′ = 1. Equations (4.22–4.27) give

u1 = U1 + v1 = −r−1ψz, u2 = v2, u3 = U3 + v3 = r−1ψr, (B.4)

ν1 = f 2u1 + rff ′u3, ν2 = r2f 2v2, ν3 = f−4u3. (B.5)

Next we use U3 = U3(z, t), f = f(z, t), and the relationship between ν2, ν3 and u2, u3 above
to simplify (B.1, B.3) as

−r−3f−2(ν2)2 + pr = 0, (B.6)

(∂t + v1∂r + v3∂z)ν3 + 1
2
(v2zν2 − v2ν2z) + 1

2
(v3zν3 − v3ν3z)− 1

2
(U3ν3)z + pz = 0. (B.7)

We gain the leading order centrifugal pressure balance in the radial equation, and in the axial
equation we have grouped the terms in a useful fashion. So far everything is exact in the
slender vortex limit with the chosen metric. To make further progress we need to make some
assumptions of a modelling nature. We take u1 to be proportional to r so that the radial
motion is absorbed into the evolution of the coordinate system giving v1 = 0, u1 = U1. This
corresponds to applying our first modelling assumption from section 6 that the radial flow is
a uniform contraction or expansion. We take the axial flow again to be a slug flow, as per our
second assumption and set v3 = 0, u3 = U3. The evolution equations (B.2, B.7) for ν2 and ν3
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become, after some simplification,

∂tν2 = 0, (B.8)

f−2∂2t h = −1
2
r−2(f−2)′ν22 − pz. (B.9)

In obtaining (B.9) we have used (B.8) and chosen some profile for ν2(r) independent of z. We
have also used freely that f 2h′ = 1 and so f 4ν3 = u3 = U3 = ḣ/h′ = f 2ḣ.

Equation (B.6) gives the pressure; from integrating and requiring continuity at r = a and
tending to zero at infinity, we obtain

p =


1
2
Ω2(r2 − 2a2)f−2, r ≤ a,

−1
2
Ω2a4r−2f−2, r > a.

(B.10)

With this, minus the right-hand side of (B.9) simplifies to

pz + 1
2
r−2(f−2)′(ν2)

2 = Ω2(r2 − a2)(f−2)′, r ≤ a, (B.11)

and zero for r > a. In the axial momentum equation (B.9), the left-hand side depends only on
(z, t) while the right-hand side has radial dependence. The assumption of driving a slug flow
is not warranted by the exact dynamics. Thus we average the right-hand side of (B.11) over
0 ≤ r ≤ a and gain the model axial momentum equation as

f−2∂2t h = 1
2
Ω2a2(f−2)′. (B.12)

We now set ḣ = W , Γ = 2πΩa2, A = πa2f 2 and J = h′ = f−2 to obtain

∂tW =
Γ2

8πJ
∂z

(
1

A

)
, (B.13)

which is the LA89 area wave model as required.

Acknowledgements

The authors are very grateful to the Leverhulme Trust, which supported ADG and this collab-
oration through the award of a Research Fellowship. ADG also acknowledges support by the
EPSRC under grant EP/T023139/1. We thank Jacques Vanneste for numerous discussions on
matters of fluid flow and differential geometry. We appreciate the helpful critique and useful
references to the literature from the referees.

References

Abid, M., Andreotti, B., Douady, S. & Nore, C. 2002 Oscillating structures in a stretched–
compressed vortex. J. Fluid Mech. 450, 207–233.

Arnold, V.I. & Khesin, B.A. 1998 Topological methods in hydrodynamics. Springer–Verlag,
Applied Mathematical Sciences, vol. 125.

41



Besse, N. & Frisch, U. 2017 Geometric formulation of the Cauchy invariants for incompressible
Euler flow in flat and curved spaces. J. Fluid Mech. 825, 412–478.

Bühler, O. 2014 Waves and mean flows, 2nd edition. Cambridge University Press.
Bustamante, M.D. & Kerr, R.M. 2008 3D Euler about a 2D symmetry plane. Physica D 237,

1912–1920.
Callegari, A.J. & Ting, L. 1978 Motion of a curved vortex filament with decaying vortical core

and axial velocity. SIAM J. Appl. Math. 35, 148–175.
Childress, S., Gilbert, A.D. & Valiant, P. 2016 Eroding dipoles and vorticity growth for Euler

flows in R3: axisymmetric flow without swirl. J. Fluid Mech. 805, 1–30.
Childress, S. & Gilbert, A.D. 2018 Eroding dipoles and vorticity growth for Euler flows in R3:

the hairpin geometry as a model for finite-time blowup. Fluid Dyn. Res. 50, article 011418.
Frankel, T. 1997 The geometry of physics. Cambridge University Press.
Fukumoto, Y. & Miyazaki, T. 1991 Three-dimensional distortions of a vortex filament with

axial velocity. J. Fluid Mech. 222, 369–416.
Gilbert, A.D. & Vanneste, J. 2018 Geometric generalised Lagrangian-mean theories. J. Fluid

Mech. 839, 95–134.
Hawking, S.W. & Ellis, G.F.R. 1973 The large scale structure of space-time. Cambridge Uni-

versity Press.
Hormoz, S. & Brenner, M.P. 2012 Absence of singular stretching of interacting vortex filaments.

J. Fluid Mech. 707, 191–204.
Klein, R. & Ting, L. 1992 Vortex filament with axial core structure variation. Appl. Math. Lett.

5, 99–103.
Klein, R. & Majda, A.J. 1991a Self-stretching of a perturbed vortex filament. I. The asymptotic

equation for deviations from a straight line. Physica D 49, 323–352.
Klein, R. & Majda, A.J. 1991b Self-stretching of a perturbed vortex filament. II. Structure of

solutions. Physica D 53, 267–294.
Klein, R., Majda, A.J. & Damodaran, K. 1995 Simplified equations for the interaction of nearly

parallel vortex filaments. J. Fluid Mech. 288, 201–248.
Leibovich, S. 1978 The structure of vortex breakdown. Ann. Rev. Fluid Mech. 10, 221–246.
Leonard, A. 1994 Nonlocal theory of area-varying waves on axisymmetric vortex tubes. Phys.

Fluids 6, 765–777, referred to as L94 in the text.
Leray, J. 1934 Sur un liquide visqueux emplissant l’espace. Acta Math. 63, 193–248.
Lessen, M., Singh, P.J. & Paillet, F. 1974 The stability of a trailing line vortex. Part I. Inviscid

theory. J. Fluid Mech. 63, 753–763.
Lundgren, T.S. & Ashurst, W.T. 1989 Area-varying waves on curved vortex tubes with ap-

plication to vortex breakdown. J. Fluid Mech. 200, 283–307, referred to as LA89 in the
text.

Margerit, D. 2002 Axial core-variations of axisymmetric shape on a curved slender vortex
filament with a similar, Rankine, or bubble core. Phys. Fluids 14, 4406–4428.

Margerit, D. & Brancher, J.-P. 2001 Asymptotic expansions of the Biot–Savart law for a slender
vortex with core variation. J. Eng. Math. 40, 297–313.

Marshall, J.S. 1991 A general theory of curved vortices with circular cross-section and variable
core area. J. Fluid Mech. 229, 311–338.

Marshall, J.S. 1992 Buckling of a columnar vortex. Phys. Fluids A 4, 2620–2627.
Marshall, J.S. 1993 The effect of axial pressure gradient on axisymmetrical and helical vortex

waves. Phys. Fluids A 5, 588–599.
Melander, M.V. & Hussain, F. 1994 Core dynamics on a vortex column. Fluid Dynam. Res.

42



13, 1–37.
Moffatt, H.K. & Kimura, Y. 2019a Towards a finite-time singularity of the Navier–Stokes

equations. Part 1. Derivation and analysis of dynamical system. J. Fluid Mech. 861, 930–
967.

Moffatt, H.K. & Kimura, Y. 2019b Towards a finite-time singularity of the Navier–Stokes
equations. Part 2. Vortex reconnection and singularity evasion. J. Fluid Mech. 870, R1.

Moore, D.W. & Saffman, P.G. 1972 The motion of a vortex filament with axial flow. Phil.
Trans. R. Soc. Lond. A 272, 403–429.

Nolan, D.S. 2001 The stabilizing effects of axial stretching on turbulent vortex dynamics. Phys.
Fluids 13, 1724–1738.

Pelz, R.B. 2001 Symmetry and the hydrodynamic blow-up problem. J. Fluid Mech. 444, 299–
320.

Pumir, A. & Siggia, E.D. 1987 Vortex dynamics and the existence of solutions to the Navier–
Stokes equations. Phys. Fluids 30, 1060–1626.

Saffman, P.G. 1990 A model of vortex reconnection. J. Fluid Mech. 212, 395–402.
Saffman, P.G. 1992 Vortex dynamics. Cambridge University Press.
Schutz, B. 1980 Geometrical methods of mathematical physics. Cambridge University Press.
Soward, A.M. & Roberts, P.H. 2010 The hybrid Euler–Lagrange procedure using an extension

of Moffatt’s method. J. Fluid Mech. 661, 45–72.
Takaki, R. & Hussain, A.K.M.F. 1984 Dynamics of entangled vortex filaments. Phys. Fluids

27, 761–763.
Ting, L. 1971 Studies in the motion and decay of vortices. In Aircraft wake turbulence and its

detection (ed. J.H. Olsen, A. Goldburg, M. Rogers), Plenum Press, New York.
Ting, L, Klein, R. & Knio, O.M. 2007 Vortex dominated flows: analysis and cvomputation for

multiple scale phenomena. Applied Mathematical Sciences series, vol. 161. Springer.
Tung, C. & Ting, L. 1967 Motion and decay of a vortex ring. Phys. Fluids 10, 901–910.
Webb, G. 2018 Magnetohydrodynamics and fluid dynamics: action principles and conservation

laws. Lecture Notes in Physics, vol. 946. Springer.
Widnall, S.E. & Bliss, D.B. 1971 Slender body analysis of the motion and stability of a vortex

filament containing an axial flow. J. Fluid Mech. 50, 335–353.
Widnall, S.E., Bliss, D.B. & Zalay, A. 1971 Theoretical and experimental study of the stability

of a vortex pair. In Aircraft wake turbulence and its detection (ed. J.H. Olsen, A. Goldburg,
M. Rogers), Plenum Press, New York.

43


