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Abstract
Video of the ocean surface is used as a means for estimating the sea state. Time series of pixel intensity values are given as 
input to a method that uses the Kalman filter and the least squares approximate solution for estimating the uncalibrated video 
amplitude spectrum. A method is proposed for scaling this spectrum to metres with the use of an empirical model of the 
ocean. The significant wave height is estimated from the calibrated video amplitude spectrum. The results are tested against 
two sets of video data, and buoy measurements in both cases are solely used for indicating the true state. For significant 
wave height values between 0.5 and 3.6 m, the maximum observed value of root mean square error is 0.37 m and of mean 
absolute percentage error 16%.

Keywords Ocean video · Sea state · Filtering algorithms · Kalman filter · Amplitude scaling · Geophysical image 
processing

Introduction

Video of the ocean surface in real environments is investi-
gated as a means of estimating the sea state. A methodology 
is proposed that estimates the amplitude spectrum with the 
use of the temporal variation of the wave field. This enables 
the approximation of parameters associated with the state 
of the ocean.

The study and modelling of the sea surface in deep and 
shallow water is of great importance for the construction of 
offshore structures and the execution of maritime operations 
[9, 14]. Structures are vulnerable to damage caused by the 
unpredictable nature of the seas, and some marine operations 
have to be performed in certain desirable (benign) sea states. 
For these operations, it is important to have on-board real 
time information of the state of the sea.

Any system design is an optimisation process [5]. In the 
case of designing and building harbours and other offshore 
structures, the effects of waves are a primary constraint [9]. 

This is why knowledge of the state of the ocean in an area 
over preferrably long periods of time is important for the 
design of these structures. In the case of maritime opera-
tions, in some cases operating limits associated with the 
sea state are clearly defined. For example, helicopter opera-
tions on ships are considered high risk operations, where 
clearly established procedures are defined. These procedures 
include restrictions associated with the state of the sea, wind 
speed and direction [17]. This information is usually passed 
to the helicopter providing service before any type of opera-
tion is executed.

The sea state modelling for deep water can also be used 
for the efficient construction of sea vessels and platforms [4] 
and for improving the efficiency of wave energy converters 
[1, 29]. Sea vessels are vulnerable to damage due to the 
unpredictable nature of the seas. This brings the need for 
instruments that can measure the ocean surface and tech-
niques and methods that can use this data in order to provide 
accurate and reliable information about the state of the sea.

Information about the sea state is in most cases achieved 
with the use of in situ devices, such as wave buoys. Remote 
sensing methods have also been proposed for obtaining the 
sea state, for example, using satellite or radar images [15], or 
stereo images [12, 28]. In the case of stereo, detailed eleva-
tion information becomes available.

The problem that is investigated in this work is, with the 
use of a single uncalibrated camera in real environments, 
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whether it is possible to estimate useful sea state informa-
tion. In early work based on photographs [26], the geometric 
configuration of the scene and theory of physics were used 
to answer this question. In another category [8], the sun’s 
glitter pattern was used. In this work we focus on the use 
of information that is available from the video without the 
requirement of glitter pattern being present. The science of 
data processing and modelling has advanced greatly since 
these early works, and it would be logical to now have better 
means to answer the same questions.

The study of the temporal variation of the wave field has 
been done in research with the use of time series of grayscale 
intensity values at a pixel level. An example of such work 
is the work of [7], where the image sequences are acquired 
from a wave basin. In this case, non-uniform illumination 
of the measured area has an effect on the results, something 
the authors try to overcome by forming a relationship for the 
distance of the light source. A charged couple device (CCD) 
camera is used, and a transfer function is formed with the 
use of in situ wave gauges. Efforts are made to minimise 
the effects of noise with spatial and temporal smoothing 
techniques.

The work by [31] utilises videos of the ocean in real 
environments. The authors propose a methodology that 
uses the extended maximum likelihood method (EMLM), 
the Bayesian directional method (BDM) and a window-
ing process to estimate the directional energy spectrum of 
the ocean in shallow water from a video camera. Configu-
rations of arrays of pixel intensity values are used in the 
input. In another published work, the same authors [32] use 
time series of pixel intensities and the BDM method to get 
the directional wave spectrum from shallow water video. 
Bathymetry information is estimated with the utilisation of 
the dispersion relation and the non-linear inversion method 
Levenberg–Marquardt (LM). As with [7], wave gauges are 
used for matching the peaks between video energy spec-
trum and in situ energy spectrum and the validation of the 
directional energy spectrum results are limited to only the 
customised ocean model SWAN.

Time series of pixel intensity values from coastal sur-
veillance systems in the nearshore are utilised by [20] for 
approximating the dominant period with the use of the fast 
Fourier transform algorithm. The technique first through 
a thresholding value identifies the areas of non-breaking 
waves, which are then passed through a filter. The main 
challenges of this work are the identification of the low cut-
off frequencies of the filter and the isolation of the infor-
mation of surface variation from environmental brightness 
fluctuations. The authors observe that the applicability of 
the technique is not valid for low and high sea states, but 
rather only medium sea states. In [27] the authors propose a 
methodology to get bathymetry information from near-shore 
locations. In this case, the foam in nearshore areas is used for 

getting the propagation of the waves. The complex empirical 
orthogonal function (CEOF) is performed to get the phase 
speed, which is then used with the dispersion relation to get 
the bathymetry of the scene.

The information of wave crests is used in [30] to esti-
mate the dominant period from video in the surf zone. First, 
low-pass filtering and backward frame differencing are per-
formed to remove noise caused by foam. Then, a thresh-
olding process is performed for isolating the wave crests 
from the rest of the video. The methodology is called linear 
feature extraction. The estimation of wave properties is done 
with the use of temporal and space information of wave crest 
locations instead of pixel time series. The dominant period 
is found from the time between successive crests.

The particle image velocimetry (PIV) algorithm is used 
in [13] to get the phase speed information from videos of the 
nearshore ocean. The foam noise is removed with the same 
method as in [30], the backward frame differencing method. 
Then the PIV algorithm is used for tracking the increment of 
high intensity values, which are considered to be temporal 
increments of wave crests. The surface velocity vectors are 
used in order to get the phase speed estimations, which are 
found to be consistent with the estimations of the method 
by [30]. An adaptive multi-pass algorithm is introduced 
that initially performs the cross-correlation interrogation in 
a relatively large window. Then the calculated vector field is 
used as a reference for higher resolution levels and the inter-
rogation window size is refined after each iteration.

In the case of using a single camera, and without taking 
into account physical phenomena associated with the scene 
geometry, such as refraction of light, the problem to solve 
is the correct distinction of the information from video that 
is caused by the movement of the ocean from all other irrel-
evant information. In Spencer et al. [25], the authors utilise 
the phase speed information from pixel time series and the 
Phillips ocean energy spectrum for acquiring information 
about the pixel to metre scale of the video and the sea state. 
In one of our earlier works [18], we extended Spencer et al.’s 
work using radar images and proposed a method for getting 
the sea state from video that focuses solely on the domi-
nant waves present and the spatial information. In [23], the 
authors investigated and proposed improvements to Spencer 
et al.’s work with the use of airborne video data. The domi-
nant frequency is determined as the centroid of a selection 
of frequencies near the peak frequency obtained with an 
iterative thresholding process.

This work uses the same type of input data, namely time 
series of pixel intensity values, and will aim to provide estima-
tions of the sea state. First, an uncalibrated amplitude spectrum 
is formed with the use of a method based on the Kalman fil-
ter and least squares approximation. The configuration of the 
filtering algorithm aims to distinguish the ocean movement 
elements from all other irrelevant elements from video. Then, 
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a scaling process is proposed for transferring the uncalibrated 
amplitude spectrum to metres. From this, the significant wave 
height is estimated.

Ocean Theory

The dominant frequency is the sinusoidal element with the 
highest energy in the ocean energy spectrum. Two other 
components from ocean theory are introduced briefly here; 
these are used later in the methodology for scaling the uncali-
brated amplitude spectrum from ocean video (see “Scaling to 
metres”). For full details see Kinsman [16].

Energy to Amplitude in Ocean Waves

In general, the energy of a wave is directly proportional to the 
square of its amplitude. In ocean theory, in [6] the authors used 
the first law of hydrodynamics and represented ocean wave 
energy as the sum of kinetic and potential energy. From their 
findings, a relationship can be formed that connects the total 
energy, E, of a wave to its amplitude, A:

where � is the water density and g is the gravitation constant.

(1)E =
1

2
�gA2,

Pierson–Moskowitz Spectrum

The Pierson–Moskowitz spectrum is an empirical energy 
spectrum of the ocean formed from data of shipborne wave 
recorders on ships in the North Atlantic ocean [22]. The 
energy spectrum of the ocean S according to this work is 
equal to:

where � is the angular frequency, � = 8.1 × 10−3 , � = 0.74 
and U is the wind speed at a height of 19.5 m above the 
ocean surface.

Methodology

The input of the presented methodology is video of the 
ocean surface from a single camera. Figures 1c and d show 
example stills from such video. First, any camera motion is 
stabilised. Then, if the camera is placed at an angle from 
the ocean surface, perspective transformation is performed 
to fix the scale issue (see “Preprocessing”). A single row of 
pixels from each frame is used for computational efficiency; 
perspective transformation allows all pixels to be used if 
desired.

(2)S(�) =
�g2

�5
exp

{
−�

(g∕U
�

)4}
,

Fig. 1  Shipborne and tower video data. a Ship video with horizon 
stabilisation. b Ship video left tracking point. c Ship video after 
perspective transformation. d Tower video. e Buoy station 41013. f 

Tower video after perspective transformation. Lines in c and f depict 
the pixel locations used in the experimental results
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For each pixel time series, an uncalibrated video amplitude 
shape is given in the output, with a methodology that uses 
the Kalman filter with the environment definition as described 
in “Kalman Filter” and the least squares approximate solu-
tion (“Least squares approximate solution”). Then, an aver-
aged shape is formed using the results of multiple time series 
(“Wave height shape”), and scaling is performed to transfer 
this shape to metres (“Scaling to metres”). From the scaled to 
metres video amplitude spectrum, the significant wave height 
is estimated (“Significant wave height”).

Kalman Filter

In essence, the Kalman filter is defined to track a sine wave 
with a particular frequency that moves across the pixel time 
series, with the presence of noise. It is defined to isolate the 
sinusoidal part that is moving across the time series from 
all other elements present in the video. And this is done 
separately for each frequency.

The frequency domain of the wave spectrum is first deter-
mined. The maximum period or minimum frequency is the 
basic frequency and is equal to 1∕tmax , where tmax is the length 
of the video in seconds. The minimum period or maximum 
frequency depends on the sampling rate and is equal to 1∕Δt 
where Δt is the time between two successive frames [24]. The 
Kalman filter as specified in the following text is performed 
for each frequency of the frequency domain and for the same 
time series of pixel intensity in the input.

Here, the true state of the signal is defined as the ele-
ment from video that represents the ocean movement, and 
the observation is the actual pixel intensity. This is not to 
imply that the algorithm correctly captures the true state. 
The environment definition is used so that a distinction is 
made between what it is received from video and what the 
required or useful part is.

For a given frequency, the sinusoidal form after the obser-
vation is:

where x∗
t
 is the pixel intensity at time t, A is the amplitude of 

the wave, � is the angular frequency, � is the phase and � is 

(3)x∗
t
= A sin(�t + �) + �t,

the noise (assumed to be zero-mean Gaussian distributed). 
The true signal is defined as:

where xt is the pixel intensity at time t, caused by the ocean 
movement. No input model is used in the Kalman filter envi-
ronment definition. The derivative of the true signal is equal 
to:

The second derivative of the signal is equal to:

Comparing the form of the signal and its second deriva-
tive, the second derivative can be expressed in regards to 
the original signal:

This is very useful in the environment definition, as it 
removes the amplitude and phase, whose variance across 
the algorithm iterations might introduce errors, and focuses 
on the true signal x. And the Kalman filter makes use of the 
sinusoidal form of the input signal, providing more accurate 
estimations.

In essence, the Kalman filter is defined to track a sine 
wave with a particular frequency that moves across the pixel 
time series, with the presence of noise. It is defined to isolate 
the sinusoidal part that is moving across the time series from 
all other elements present in the video. And this is executed 
separately for each frequency.

The environment in state-space form is defined as:

where � is the system transition or dynamics matrix and is 
defined as:

The process noise could be used to reflect uncertainty in the 
frequency of the signal, or to reflect the change in the sea 
state with the passage of time. Here, with videos of approxi-
mately a minute, it is assumed that the sea is statistically 
stationary, and do not use initial values in the process noise 
matrix.

Practically, when running this algorithm with a mix-
ture of multiple sinusoidal signals of different frequencies, 
amplitudes and phases, it was observed that the algorithm 
performed very well in estimating the true signal when only 
one frequency was given in the input for examination and the 
algorithm considered the rest as noise. This was the intuition 

(4)xt = A sin(�t + �),

(5)ẋt = A𝜔 cos(𝜔t + 𝜙)

(6)ẍt = −A𝜔2 sin(𝜔t + 𝜙),

(7)ẍ = −𝜔2x.

(8)
(
ẋ

ẍ

)
=

(
0 1

−𝜔2 0

)(
x

ẋ

)

(9)� =

(
0 1

−�2 0

)

Table 1  Error metrics with 
shipborne video

Error metric Value

Mean absolute error 
(MAE)

0.31

Root mean square error 
(RMSE)

0.37

Mean absolute percent-
age error (MAPE)

9.86

Mean percentage error 
(MPE)

4.26
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for using this algorithm as it is configured here for the ampli-
tude estimation from video of the ocean. “Appendix 1” pro-
vides further information for solving the Kalman filter with 
the environment definition described here.

Least Squares Approximate Solution

With the use of the Kalman filter, for one time series of pixel 
intensity from video and one frequency from the frequency 
domain, the output is the estimate of the position of the true 
signal with the given frequency. From this, the aim next is 
to get a value of amplitude (not in metres, in an uncalibrated 
metric in this step) of the estimated signal. This is achieved 
with the use of the least squares approximate solution.

Having the signal estimate that is given as output from the 
Kalman filter, each point xi can be expressed:

and the amplitude A is to be calculated. With three position 
estimations (here labelled as i = 0, 1, 2 ) the vector form of 
their differences �� can be expressed as: �� = �.� 

where y0 = A cos� and y1 = A sin� . The amplitude is then 
equal to A =

√
y2
0
+ y2

1
.

If all points are used, vectors � and �� are extended to 
include the differences between all points:

and vector � , which includes y0 and y1 is equal to:

It should be noted that the signal amplitude estimation from 
the output of the Kalman filter is not performed for the first 
seconds of the video. This is to allow the algorithm to con-
figure its internal variables.

Wave Height Shape

Once the Kalman filter has been applied to each frequency 
in the defined domain for one pixel intensity time series, and 

(10)xi = A sin (�ti + �) i = 0, 1, 2,… ,

(11)

(
x1 − x0
x2 − x1

)
=

(
sin�t1 − sin�t0 cos�t1 − cos�t0
sin�t2 − sin�t1 cos�t2 − cos�t1

)

(
A cos�

A sin�

)

(12)

⎛⎜⎜⎜⎝

x1 − x0
x2 − x1
x3 − x2

⋮

⎞⎟⎟⎟⎠
=

⎛⎜⎜⎜⎝

sin�t1 − sin�t0 cos�t1 − cos�t0
sin�t2 − sin�t1 cos�t2 − cos�t1
sin�t3 − sin�t2 cos�t3 − cos�t2

⋮ ⋮

⎞⎟⎟⎟⎠�
A cos�

A sin�

�

(13)� = (���)
−1
����.

the least squares approximate solution used for estimating 
the amplitude, the results from all frequencies are combined 
to give an amplitude spectrum. If multiple pixel intensity 
time series are selected from each video, multiple shapes are 
averaged to extract a final averaged video amplitude spec-
trum. Example of such shapes are given in Fig. 4b, e and h, 
with the difference that until this step, the shape is given in 
an uncalibrated metric. Now useful information about the 
sea state will be derived from this shape. In the next step, the 
shape will be used to scale the results into metres (“Scaling 
to metres”) and then to estimate the significant wave height 
(“Significant wave height”).

Scaling to Metres

Based on the uncalibrated, averaged amplitude spectrum 
obtained from the previous steps, the amplitude multiplier 
variable, � , is introduced here, to scale this spectrum to 
metres. This involves the use of an empirical spectrum; no 
in situ devices are required to be present. The amplitude 
multiplier is defined as:

where apm is an amplitude value in metres from the 
Pierson–Moskowitz spectrum (“Pierson–Moskowitz spec-
trum”) and au is a value from the uncalibrated spectrum.

The key in this process is the calculation of au ; thereafter, 
the calculation of apm is straightforward. The au variable 
represents the peak of the uncalibrated amplitude spectrum. 
Unlike the empirical energy spectrum, which was formed by 
averaging a set of spectra for the same sea state with in situ 
devices, the peak of the uncalibrated amplitude spectrum 
from video does not necessarily represent the ocean’s domi-
nant frequency (“Ocean theory”). The value of au is found 
as the average of the amplitude of a number of selected fre-
quencies from the video uncalibrated amplitude spectrum. 
In the following text the process for acquiring the selected 
frequencies is described.

First, the amplitudes of the uncalibrated video spectrum 
are sorted in descending order and the frequency of the 
peak amplitude is selected. Then, for each next frequency, 
an intermediate variable � is calculated as:

where ap is the peak amplitude and ac is the current ampli-
tude. Then a threshold of 30% is applied: if � is below this 
threshold then the frequency associated with the current 
amplitude is selected; if it exceeds the threshold then the 
procedure ends. The amplitudes of the selected frequencies 
are then averaged to give the value of au in Eq. (13). The 

(14)� =
apm

au

(15)� =
ap − ac

ap
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threshold value is determined empirically and the purpose 
is to include additional frequencies and not determine the 
scaling based solely on the video peak frequency.

Before moving forward, a note about the intuition behind 
this method. While working with various sea states, it was 
observed that the amplitude spectrum would have bigger 
differences in amplitudes between its peak and the rest of 
the frequencies, whereas in lower sea states, the peak would 
have smaller amplitude differences than the rest. This is 
logical, as in higher sea states the amplitude of the peak 
is higher, and since the number of frequencies is fixed, the 
difference increases for higher sea states.

The presented scaling method will favour the inclusion of 
more frequencies in the averaging, and thus moving the aver-
age frequency to higher values for lower sea states, and will 
keep the average more concentrated to the peak in higher 
sea states. Additionally, the high amplitudes in the uncali-
brated video amplitude spectrum are concentrated in lower 
frequencies for higher sea states and in higher frequencies 
for lower sea states.

To continue the process, the average of the selected 
frequencies is then given as an input to Eq.  (2) of the 
Pierson–Moskowitz spectrum. This will form an energy 
spectrum. The energy value of the peak of this spectrum is 
selected. Then the amplitude value of the peak of this spec-
trum in metres apm is found with the use of Eq. (1).

Having both apm and au of Eq. (13), the peak multiplier 
� is calculated, and is used for transferring the uncalibrated 
amplitude spectrum to metres. Examples of the final scaled 
video amplitude spectrum are given in Fig. 4b, e and h.

Significant Wave Height

The significant wave height is a key descriptor of the sea 
state, and is found from the video amplitude spectrum in 
metres (i.e. after the scaling procedure) as the average wave 
height (trough to peak) of the highest one third of the sea 
waves.

If both the shape of the uncalibrated video amplitude 
spectrum and the scaling process are done in an efficient 
manner, it would be expected that this value from video is 
close to the true significant wave height, something that will 
investigated with two sets of experimental data in the fol-
lowing section.

Experimental Results

The proposed methodology is demonstrated with real video 
and with the presence of in situ buoy devices. The first set 
of videos is taken from a moving, shipborne camera (“Ship 
video data”) and the second set from live video footage from 
a tower, i.e. a fixed location (“Tower video data”).

In terms of the validation process, each video estimation 
is validated against the corresponding buoy values of the sig-
nificant wave height. No videos were excluded from the data 
collection process. The definition of the accuracy measure 
metrics used is provided in “Appendix 2”.

Sample Size

The sample size of the first data set (shipborne video) com-
prises of 71 1-min videos captured in the time span of 2–3 h 
of the same day. From these, 50 videos have corresponding 
values of significant wave height from 2 buoys, indicating 
the true sea state for validation. The frame rate of the ship-
borne videos is 15 frames per second. The significant wave 
height from the two buoys is between 3.1 and 3.4 m.

The sample size of the second data set comprises of 45 
one-minute videos captured from a tower in the time frame 
of 10 months, each video capturing the ocean surface at a 
different date. Each tower video has a corresponding value 
of significant wave height for validation from a nearby buoy. 
The frame rate of the tower video is 30 frames per second. 
The buoy significant wave height values range between 0.5 
and 3.6 m.

Ship Video Data

Experiments were conducted in 2014 in the North Atlantic 
sea. A single camera was placed onboard a ship, and during 
the times the ship was not moving towards a destination, 
that is the movement of the ship is the rotational (pitch, yaw, 
roll), the video was isolated and split into one minute videos. 
During the experiments, two buoys recorded concurrently 
the wave elevation at a nearby location.

Preprocessing

A preprocessing step was performed for the ship data, to 
overcome the ship’s rotational movement and the perspec-
tive scale problem. To stabilize the ship video, the software 
Adobe After Effects [2] was used. The rotational tracker was 
used with two tracking points, which form a line that in ideal 
conditions is exactly the line of the horizon. To achieve this, 
two rectangles are drawn as in Fig. 1a and the tracking points 
are selected as in Fig. 1b.

Next, for fixing the scale problem, trapezoidal shaped 
areas are selected to be perpendicular to the horizon and 
perspective transformation is performed. Figure 1c shows 
the result after this process. From a video, image sequences 
in the form of image Fig. 1c are given as output from the pre-
processing step. A single row of pixel locations is used for 
computational efficiency. Perspective transformation enables 
us to use all pixels if this is desired.
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Main Methodology

The shipborne data results are presented in Fig. 2. All videos 
were captured on the same day, which is 24/11/2014. The 
buoys were on the sea surface after 9:15 a.m., and thus the 
sea state is not validated for videos of previous times.

Table 1 presents the error metrics from the shipborne 
data, i.e. the difference between the proposed method’s esti-
mation of the significant wave height and that obtained from 
the buoys. It only includes the videos with corresponding 
buoy sea state. Although some fluctuations do exist from 
video estimations around the buoy sea state, the metrics of 
MAE of 0.31 m and RMSE of 0.37 m for a sea state of sig-
nificant wave height 3.1 m, as well as MAPE of 9.86% indi-
cate that the methodology is promising. The small positive 
value of MPE indicate that the results are underestimating 
the buoy measurements, but not in a large degree.

With ship data, multiple videos with approximately the 
same sea state are examined. In the following text the per-
formance of the video method will be examined for a variety 
of sea states.

Tower Video Data

To examine the performance of the methodology for a vari-
ety of sea states, video captured from the Frying Pan Ocean 
tower located 85ft above the Atlantic ocean was used. This is 
a lighthouse located on the Frying Pan Shoals approximately 
39 miles southeast of Southport, North Carolina. A 24 hour 
live video footage is available online from that tower [11] 
that captures the ocean surface. Sea state information is also 

available in the tower’s website [10]. A buoy device ‘Station 
41013’, owned and maintained by the National Data Buoy 
Center [19], provides detailed sea state information, and 
is located close to the tower. Figure 1d shows an example 
frame from the tower video.

Although the tower camera is panning from side to side 
most of the time, showing a panoramic view of the area, for 
some time intervals the camera remains still, and one minute 
videos were captured throughout many days. In cases of high 
local wind being present, the shaking of the camera was 
fixed with the stabilisation features of Adobe After Effects. 
In a similar manner as before, perspective transformation is 
performed and the result is shown in Fig. 1d, which is what 
is given in the input of the methodology.

The tower video results are presented in Fig. 3. In each of 
these dates, one video is used, the significant wave height is 
estimated and is compared with the buoy’s significant wave 
height of the same time. As the videos are captured in dif-
ferent dates, the proposed method is tested in a variety of 
sea states.

From Fig. 3b it can be observed how closely the video 
estimations are to the buoy measurements. This correlation 
between video estimations and buoy measurements is valid 
for both lower and higher sea states. From Fig. 3a it can be 
observed that the video methodology works across a signifi-
cant time period in different sea states.

Figure 4 shows the buoy energy spectrum from three days 
with different sea states and the scaled video amplitude spec-
tra. From these it can be observed that the shape of the buoy 
energy spectrum is similar to the video energy spectrum, 
converted from the video amplitude spectrum. Additionally, 

Fig. 2  Shipborne video showing stability of video estimations of a 
similar sea state and correlation of the significant wave height esti-
mation between video and buoys. The buoys were measuring at 9:15 

a.m. It is a well known assumption that the sea state will not change 
significantly in the period shown in this graph [16]
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as the sea state decreases, the peak from both the buoy and 
video energy spectra is located in higher frequencies.

Table 2 presents the error metrics for the results of the 
tower video. The low values 0.20 m and 0.24 m of MAE 
and RMSE respectively indicate the relativeness between 
the video estimation and the true sea state. The 16% MAPE 
further validates the possible applicability of the video meth-
odology. Contrarily to the results from the shipborne video, 
the negative value of MPE from the tower video indicate an 
overestimation. Possible reason for this difference between 
overestimation and underestimation could be the different 
environmental setup of these two data sets.

The value of the MAPE from the tower video (16%) 
is larger than the value of the error from the shipborne 
video (9%). Possible reason for this increase of error 
with the tower video data set is the nature of the MAPE 

metric. Specifically, this metric gives higher error values 
as the estimated-true pairs decrease in value. Since with 
the tower video the methodology is tested for a range of 
sea states that also includes lower states (e.g. significant 
wave height of 0.5 m), it is expected that the MAPE value 
would be larger. Although a 16% MAPE still shows that 
the methodology performs well, the values from the MAE 
metric (0.2 m) and the RMSE metric (0.24 m) are more 
representative of the good performance of the methodol-
ogy, as they are not affected by the decrease of values of 
the true-estimated pairs.

With values of significant wave height between 0.5 and 
3.6 m, the results are very promising. With the ship data 
it was possible to check the variability of the estimations 
across multiple videos with approximately the same sea 
state, but this option is not available with the tower video 
due to the nature of the way the data are recorded.

Fig. 3  Tower video results showing correlation of the significant 
wave height estimation between video and buoy across a variety of 
sea states. The dashed lines in a present the upper and lower limits of 

wave height of Beaufort scale. Each space between dashed lines rep-
resents a different sea state according to the Beaufort scale. The blue 
line in b is the diagonal
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Complexity

In terms of time complexity, the runtime duration increases 
linearly with the increase of number of frames and the num-
ber of pixel locations utilised. That is, the present methodol-
ogy runs in linear time. In terms of space complexity, the 
memory allocation increases in a similar manner.

Experimental Details

In terms of the hyperparameter configuration, the results 
shown here are retrieved with a standard deviation of the 
measurement noise of the Kalman filter equal to 1. For 
sensor data, the value for this hyperparameter is usually 
selected arbitrarily by users to be equal to values near 0 
[21]. The range of values considered in this work for this 
hyperparameter is between 0.5 and 20. Larger values were 
not considered as the noise would be too large in the con-
text of this work. From these values, the results were found 
to be consistently the same. That is, the video estimations 
are not sensitive to the selection of the value of this hyper-
parameter in the specified range.

Very large values are set on the main diagonal of the 
initial covariance matrix of the Kalman filter to reflect 
the uncertainty of the initial state values (the variance of 
each variable). The process noise could be used to reflect 
uncertainty in the frequency of the signal, or to reflect the 

Table 2  Error metrics with 
tower video

Error metric Value

Mean absolute error 
(MAE)

0.20

Root mean square 
error (RMSE)

0.24

Mean absolute 
percentage error 
(MAPE)

16.14

Mean percentage error 
(MPE)

− 10.35

Fig. 4  Tower video energy and amplitude spectra comparison with buoy energy spectra from [19], showing a correspondence between the peaks 
of video and buoy across a variety of sea states



 SN Computer Science           (2021) 2:328   328  Page 10 of 13

SN Computer Science

change in the sea state with the passage of time. Here, with 
videos of approximately a minute, the sea is approximately 
statistically stationary, and thus initial values are not used 
in the process noise matrix.

Experiments were ran in Matlab R2017b on a standard 
office laptop with Windows 10 and Intel Core i5 processor. 
With these specifications, the average runtime is approxi-
mately 5 min.

Conclusion

The applicability of the method for higher sea states is not 
known at this point. It is likely that it will be adversely 
affected by, for example, white-capping, which is common 
in high sea states. However, being able to track sea state 
information continuously, and being able to identify when 
the high sea states are being observed, is very useful infor-
mation for deciding whether key maritime operations can 
safely be completed.

The present work has the advantage of forming the shape 
of the ocean video amplitude spectrum that is localised to 
each video in the input and does not use the shape of a gener-
alised empirical ocean spectrum for the sea state estimation. 
The empirical energy spectrum is used only for calibrating 
the specific ocean video amplitude spectrum to metres. Since 
the shape used is not a general one but specific formed from 
the video information, it is expected to provide more accu-
rate results. It is expected that a localised shape of spectrum 
formed from the ocean surface information would describe 
more accurately the ocean than a generalised spectrum. 
Localised energy spectrum of the ocean can be measured 
reliably with wave buoys. However, these devices require 
funds for their acquisition, maintenance and deployment. 
Additionally, extreme weather conditions may cause dam-
ages to these devices. Cameras for capturing ocean video 
require less funds and their deployment is a more straight-
forward task.

This work also has the advantage of using ocean theory 
instead of in situ devices (in comparison to e.g. [7]) for cali-
bration and it focuses on video in real environments, expand-
ing the possibilities for practical utilisation of the proposed 
methodology. The use of in  situ devices (such as wave 
gauges) for calibration introduces some challenges, such as 
the identification of the pixel locations where these devices 
are located in the video, since the video is not capturing the 
ocean at the same time as the in situ devices.

The dependence of the calibration process on the local-
ised ocean video amplitude spectrum can be considered a 
drawback in cases where the estimated shape does not reflect 
the actual ocean amplitude spectrum. From the experimen-
tal results of this work however we observe that the video 

estimations are close to the buoy measurements, which is 
interpreted as the calibration process working correctly and 
the shape of the ocean video amplitude spectrum being close 
enough to the shape of the true ocean.

As mentioned in the introduction, the estimation of the 
sea state is important for the construction of offshore struc-
tures, sea vessels and platforms, and the execution of criti-
cal maritime operations. It is also useful for improving the 
performance of wave energy converters. Thus, oceanogra-
phers and other scientists in these fields are interested in 
the acquisition of the sea state from the ocean surface in 
specific locations. Compared to the in situ measurement of 
the ocean (with e.g. wave buoys), the use of remote sensing 
has the advantage of measuring the ocean in a non-intrusive 
way. Additionally, the utilisation of a monoscopic camera for 
measuring the ocean surface requires less funds for acquisi-
tion and maintenance than buoys.

The present work can be helpful for decision-making in 
marginal sea states. For example, if information is required 
for the execution of maritime operations, a mariner can 
observe a sea state of Beaufort 10 (very high sea state) and 
know that the operation cannot take place due to the very 
rough surface of the ocean. Equally, simply by observation a 
mariner is able to verify the calmness of the sea in a sea state 
of Beaufort 1 (very low sea state) and provide information 
for allowing the execution of the maritime operation. The 
challenging decisions are to be made where the sea state is 
marginal. In such a case, when it is not certain whether it 
is safe to execute the operation by simple observation, the 
presented technique can be used as a useful guide.

Some of the practical applications mentioned (e.g. build-
ing of offshore structures) require a continuous measure-
ment of the sea state over extended periods of time. In these 
cases, a camera measuring the ocean surface can be installed 
on a more permanent basis and methodologies such as the 
one presented in this work can be used for translating the 
streaming information from video to an approximation of 
the sea state.

This work proposes the modelling of the ocean surface in 
real environments from video with the ocean video ampli-
tude spectrum and the use of this structure with ocean theory 
to get the significant wave height. Future work will investi-
gate improvements to the development of the ocean video 
amplitude spectrum so that the similarity between video 
spectrum and true ocean spectrum is increased. Future work 
will also investigate possible improvements in the calibra-
tion process. Specifically, different processes than the one 
presented here (that uses the position of the peak and the 
distance between the amplitude of the peak from the ampli-
tude of waves with lower amplitude) are to be investigated 
with the goal of acquiring smaller values of error metrics. 
Although already the values of the error metrics are in a 
satisfactory degree showing that the methodology is doing 
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something meaningful, there are always opportunities for 
improvement.

Future work will investigate the applicability of the meth-
odology for higher sea states. Due to the fact that this work 
utilises videos of the ocean surface in real environments, this 
requires the capture of the ocean with video in these higher 
sea states, while also having concurrent knowledge of the 
sea state from in situ devices to validate the estimations.

Future work will also include the installation of a camera 
in a stable location (e.g. a pier) and the deployment of a buoy 
device in a nearby location to acquire additional video data. 
This will allow a more thorough testing of the methodol-
ogy with an additional data set, where multiple consecutive 
short videos (e.g. 60 one-minute videos in a time frame of 
an hour) can be used for testing the variability of the results 
from multiple videos of approximately the same sea state. 
Although this is already achieved with the use of the ship-
borne data, it would be interesting to test that this behaviour 
of providing good approximations for consecutive videos 
of the same sea state is applicable for lower and higher sea 
states.

Appendix 1: Kalman filter solution

This section provides a further elaboration and solution to 
the Kalman filter algorithm with the environment definition 
described in “Kalman Filter”.

The continuous fundamental matrix is found through the 
inverse Laplace transform and the transition matrix. The 
discrete fundamental matrix �k is equal to the continuous 
by substituting time with the time between two successive 
measurements Δt and is equal to:

From the environment definition, the measurement matrix 
is found to be:

The measurements are related to the states according to:

where z is the measurement vector, and � is the measurement 
noise, which is zero-mean Gaussian.

The noise matrices are equal to:

where � is the process noise and � is the measurement noise.

(16)�k =

(
cos�Δt

sin�Δt

�

−� sin�Δt cos�Δt

)
.

(17)H =
(
1 0

)
.

(18)zk = Hxk + � ,

(19)W = E[���]

(20)V = E[���],

The process noise could be used to reflect uncertainty 
in the frequency of the signal, or to reflect the change in 
the sea state with the passage of time. Here, with videos of 
approximately a minute, the sea is approximately statistically 
stationary, and thus initial values are not used in the process 
noise matrix. [3] provides further general information for 
solving the Kalman filter with the environment definition 
described here.

Appendix 2: Estimation Accuracy Measures

The following measures are used in the experimental results 
(“Experimental results”) for the evaluation of the accuracy 
of the proposed methodology against the sea state measure-
ments of buoy devices.

The buoy data are considered to indicate the true sea 
state. In the following text, predicted or estimated value yp 
indicates the estimation from video and true value yt indi-
cates the measurement from buoys.

Mean Absolute Error (MAE)

This metric is the average of the absolute difference of pairs 
of estimated and true values. It is calculated as:

where n is the number of data points, yt is the true value 
and yp is the predicted or estimated value. This metric has 
the advantage of having the output in the same scale as the 
input values.

Root Mean Square Error (RMSE)

This metric indicates the square root of the average of the 
squared differences of pairs of estimated and true values. 
Compared to the MAE, this metric has a larger increase in 
the presence of outliers due to the squared terms. Addition-
ally, presence of larger differences causes more increase to 
this metric compared to the MAE. Compared to the mean 
square error (MSE), which is the average of the squared 
differences of pairs of estimated and true values, this metric 
has the advantage of having the output in the same scale as 
the input values. It is calculated as:

(21)MAE =
1

n

n∑
i=1

|||yt − yp
|||,

(22)RMSE =

√√√√1

n

n∑
i=1

(yt − yp)
2.
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Mean Absolute Percentage Error (MAPE)

This metric provides as output a percentage of accuracy 
between estimated and true values based on the formula:

The fact that the output is given as a percentage makes 
the metric more easily interpretable in some cases. However, 
the metric has some disadvantages. The output is higher for 
pairs of true and estimated values with lower values. Addi-
tionally, it favours estimation values that are lower than the 
true values. That is, for the same difference between esti-
mated and true values, the output is smaller if there is an 
underestimation instead of an overestimation.

Mean Percentage Error (MPE)

The equation of the MPE is similar to the equation of the 
MAPE. Here, the absolute value operation is not used. This 
is useful for showing whether the approximations are overes-
timating (negative error) or underestimating (positive error). 
The equation is:

Since the absolute value operation is not used, positive 
and negative values of MPE can offset each other. Thus, it is 
useful for showing overestimation or underestimation rather 
than the absolute percentage error value.
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