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 8 

HIGHLIGHTS 9 

 Climate experienced by organisms differs from data used in most ecological studies, which 10 

typically use data derived from weather stations. 11 

 We present an ecologically-relevant model for predicting the climate experienced by 12 

organisms. 13 

 The model uses first-principles physics and can thus be applied in any terrestrial environment. 14 

 The model was verified and validated with data from four widely geographically distributed 15 

forest sites. 16 

 The model provides reasonably accurate estimates of microclimate.  17 

 18 

ABSTRACT 19 

Climate strongly influences ecological patterns and processes at scales ranging from local to global. 20 

Studies of ecological responses to climate usually rely on data derived from weather stations, where 21 

temperature and humidity may differ substantially from that in the microenvironments in which 22 

organisms reside.  To help remedy this, we present a model that leverages first principles physics to 23 

predict microclimate above, within, and below the canopy in any terrestrial location on earth, made 24 

freely available as an R software package. The model can be run in one of two modes. In the first, heat 25 

and vapour exchange within and below canopy are modelled as transient processes, thus accounting for 26 

fine temporal-resolution changes. In the second, steady-state conditions are assumed, enabling 27 

conditions at hourly intervals or longer to be estimated with greater computational efficiency. We 28 

validated both modes of the model with empirical below-canopy thermal measurements from several 29 

locations globally, resulting in hourly predictions with mean absolute error of 2.77°C and 2.79°C for 30 

the transient and steady-state modes respectively. Alongside the microclimate model, several functions 31 

are provided to assist data assimilation, as well as different parameterizations to capture a variety of 32 
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habitats, allowing flexible application even when little is known about the study location. The model’s 33 

modular design in a programming language familiar to ecological researchers provides easy access to 34 

the modelling of site-specific climate forcing, in an attempt to more closely unify the fields of 35 

micrometeorology and ecology. 36 

Key words: temperature, climate, mechanistic model, biophysical ecology, evapotranspiration, R 37 

package. 38 

 39 

1. INTRODUCTION 40 

Temperature and water availability influence almost every ecological pattern and process, from the 41 

chemical reactions that control photosynthesis (Ingenhousz, 1779; Kumarathunge et al., 2019), to the 42 

global distribution of biomes (Gardner et al., 2020; Geiger, 1954; Köppen, 1884). Over the last two 43 

centuries thousands of ecological studies have investigated relationships between organisms and 44 

climate and one of the great challenges in modern ecology is to predict responses to climate change. A 45 

common feature of many of these studies is that the climate data used are derived or modelled from 46 

weather station data (Bramer et al., 2018; Potter et al., 2013). The microclimatic conditions experienced 47 

by organisms can differ vastly from the conditions ~1.5 m above the ground, measured inside a weather 48 

station screen (Maclean et al., 2019; Suggitt et al., 2011). Consequently, meteorological data will often 49 

incorrectly predict physical exposure to critical climate thresholds and the timing of climate-sensitive 50 

biological events (Baker, 1980; Perez and Feeley 2020). Microclimatic conditions in low-lying 51 

vegetation are also far more spatially and temporally variable than inside weather stations (Bennie et 52 

al., 2008; Lenoir et al., 2017), implying that the climatic niches of species, fundamental to predicting 53 

their distributions changes, cannot be accurately established by the methods normally used. Neglecting 54 

this variability, which can provide microrefugia or allow for thermoregulation, can also lead to 55 

overestimation of extinction rates (Suggitt et al., 2018). There is thus a clear need to develop methods 56 

that estimate microclimatic conditions of the environments in which organisms reside.  57 

 58 

In fields outside ecology, the modelling of microclimates has a long history. Many of the methods used 59 

still owe their origins to the pioneering work by Richardson (1922), who demonstrated the basic laws 60 

of turbulent mixing in the surface layer of the atmosphere. In the 1950s, Monin & Obukhov (1954), 61 

extended this platform and, building on work by Prandtl (1925), provided a generalised, universal 62 

method for characterising wind speed and temperature profiles above the surface of a vegetation canopy 63 

under non-neutral conditions. The methods developed by these earlier pioneers in microclimatology 64 

still form the basis of most models that are in use today (see e.g. Ali et al., 2018; Bruse, 2014). 65 

Ecologists, however, have been surprisingly slow to adopt these more mechanistic approaches, and 66 

there is a still a tendency to derive microclimatic surfaces using statistical approaches (Fick and 67 



Hijmans, 2017; Greiser et al., 2018; Meineri and Hylander, 2017). While potentially very good at 68 

capturing spatial variation in microclimate, the potential for models fitted using statistical inference to 69 

forecast novel conditions is somewhat questionable (Buckley et al., 2018; Evans, 2012; Nabi, 1985).  70 

 71 

Nevertheless, the last few years have witnessed renewed ecological interest in microclimatology 72 

(Bramer et al., 2018; Lembrechts et al., 2019; Potter et al., 2013), in part driven by the availability of 73 

models written using programming languages with which ecologists are familiar (Lembrechts and 74 

Lenoir, 2019). One of the most widely used microclimate models in ecology, that of Porter et al. (1973), 75 

has been incorporated into the R package ‘NicheMapR’ (Kearney and Porter, 2017). Although flexible 76 

and widely tested, it requires pre-adjustment of input forcing to account for terrain and canopy shading 77 

effects as well as mesoclimatic processes such elevation and cold air drainage. It is also designed to be 78 

run for single point locations. Building on the model of Bennie et al. (2008), Maclean et al. (2017) 79 

developed methods for modelling mesoclimatic effects, released as an R-package ‘microclima’, which 80 

is able to produce gridded estimates of microclimate (Maclean et al., 2019). Both models have 81 

subsequently been combined into a single framework (Kearney et al., 2020) and have also been 82 

developed for application in forecasting future climate (Maclean, 2020). Importantly, however, they 83 

were designed primarily for modelling above-canopy microclimate, and have principally been applied 84 

to determine microclimatic conditions over short vegetation. The environmental physics underpinning 85 

the models are associated with exchange above a vegetated surface and do not explicitly consider the 86 

microclimate within canopies. However, tropical forests alone host at least two-thirds of the worlds 87 

terrestrial biodiversity (Gardner et al., 2009), and with the exception of soil biota, the majority of 88 

remaining species spend at least some of their time among vegetated canopies (Lowman et al., 1996; 89 

Nakamura et al., 2017). In addition, thermal tolerances of plants are more sensitive to leaf temperatures 90 

than ambient air temperatures (Michaletz et al., 2016; Perez and Feeley 2020) and critical thermal 91 

thresholds can vary even within the canopy of a single tree (Curtis et al., 2019). Means of determining 92 

the microclimatic conditions across and below the canopy are therefore much needed.  93 

 94 

In contrast to above the canopy, however, the physics of microclimate below-canopy is not fully 95 

resolved. Above-canopy, the transport of heat and vapour can accurately be described from estimates 96 

of atmospheric turbulence using K-theory (i.e. using a flux gradient approach). Emerging understanding 97 

(see e.g. Baneree et al., 2017), suggests that K-theory often fails to describe turbulent transport in plant 98 

canopies. Many of its assumptions are violated because within-canopy air turbulence is an intermittent 99 

process: infrequent wind gusts sweeping downward through the trunk space from the air above are 100 

responsible for much of the exchange of heat, vapour and momentum between the canopy and the 101 

atmosphere. The 'effective diffusivity' of heat and vapour is more often a function of the vertical 102 

distribution of heat and water vapour sources or sinks within the canopy than of the turbulence level. 103 

Simulation of within-canopy turbulence is thus improved upon by using Lagrangian (e.g. Raupach, 104 



1989) or Eulerian (e.g. Katul and Albertson, 1999) advection-diffusion models. The utility of such 105 

models for ecological applications, however, is severely limited by their need to specify length and time 106 

scales for the wind field. K-theory models are least valid when they are used to estimate within-canopy 107 

water vapour and heat exchange, but it is by virtue of this fact that it is still possible to simulate realistic 108 

in-canopy microclimates using K-theory. This apparent inconsistency arises for two reasons. First, 109 

although the source-sink strengths and hence the distribution of heat and momentum fluxes are 110 

extremely sensitive to the shape of measured profiles (Finnigan, 2000; Raupach and Thom, 1981), the 111 

converse relationship means that shape of the temperature and wind profiles are insensitive to flux 112 

uncertainties and can be generated by integration of an appropriate distribution of sources. Second, both 113 

temperature and humidity are related strongly to latent heat fluxes, which in turn are more strongly 114 

controlled by stomatal conductance than by turbulence within the canopy (Jarvis and McNaughton, 115 

1986). In consequence, a realistic representation of the distribution of foliage density, net radiation and 116 

stomatal conductance in various layers of a canopy, coupled with a relatively uncertain model of 117 

atmospheric transfer within the canopy, will tend to adequately reproduce temperature, vapour and wind 118 

profiles (Monteith and Unsworth, 2013).  119 

 120 

Thus, despite evolving views of the processes driving turbulence within plant canopies, different models 121 

developed over several decades (e.g. Bailey et al., 2016; Baldocchi and Meyers, 1998; Goudriaan, 1977; 122 

McNaughton and Van den Hurk, 1995; Waggoner et al., 1969) have all used a similar approach. First, 123 

the vertical distribution of radiant energy within the canopy is quantified from foliage density and 124 

radiation transmission. Second, the net radiation absorbed by each leaf is divided up into sensible and 125 

latent heat, making appropriate assumptions about stomatal and leaf boundary layer conductance. Last, 126 

the transfer of air within different layers of the canopy is modelled using a variety of different 127 

approaches (e.g. K-theory, Langrangian or Eularian models) and have all been shown to perform in a 128 

similar fashion and relatively well (Bache, 1986; Dolman and Wallace, 1991). Nevertheless, a practical, 129 

‘off-the-shelf’ model that can be used by ecologists to estimate microclimate conditions is still lacking.  130 

Here we develop an integrated above/below-canopy and soil microclimate model, in the R programming 131 

environment, for application in ecological research. The model, based on first principles physics, is 132 

designed to be flexible, enabling application in almost any terrestrial environment though its intended 133 

focus is primarily to estimate within-canopy temperatures. Through its modular design, and careful 134 

selection of vegetation parameters typical of a given vegetation derived from literature, it can be applied 135 

with little knowledge of the particular study location (as a minimum, just a user-specified broad habitat 136 

type). However, the option to alter parameters (for example, stomatal conductance, or leaf area at 137 

varying heights in the canopy) is included to enable more complex, bespoke parametrisations where 138 

possible. The model can also be run using freely available climate data using tools that we have 139 

previously developed for downloading (Duffy, 2020; Kearney et al., 2020). 140 



 141 

2. MODEL DESCRIPTION 142 

2.1 Overall model structure 143 

The model is designed to be run at single-point locations, using a time-series of climate forcing data 144 

(temperature, humidity, wind speed, atmospheric pressure and incoming solar radiation). It can be run 145 

in two modes at time-increments ranging from seconds to days. For application where very fine-146 

temporal resolution data might be needed, heat and vapour exchange are modelled as transient 147 

processes, and heat storage by the canopy, and the exchange of heat between different layers of the 148 

canopy, are considered explicitly, with the capacity to simulate wind gusts thus bi-passing limitations 149 

associated with K-theory. Alternatively, for application at time increments of an hour or longer, below-150 

canopy heat and vapour exchange are assumed to attain steady state, and the temperatures and soil 151 

moisture are determined using energy balance equations that sum to zero. In this latter mode, the model 152 

has been integrated with `NicheMapR` package (Kearney and Porter, 2017) and uses the rapid 153 

processing capacity of Fortran routines therein to compute soil moisture and temperature. It also enables 154 

explicit modelling of snow.  155 

In the transient mode, the canopy and soil profiles are divided into a user-specified number of layers 156 

(with a default of 20). For each layer, the user specifies canopy properties (e.g. leaf area, leaf angle 157 

distribution, leaf reflectance and maximum stomatal conductance) and soil (e.g. bulk density, mineral, 158 

organic, quartz and clay content, Campbell 1985), or alternatively these are estimated for each layer by 159 

specifying habitat or soil type or providing single values for the entire canopy and soil profile. In the 160 

steady-state mode, the user specifies a height below ground or above/within the canopy, and the leaf 161 

area above this point and for the canopy in total must be specified (although the option to estimate these 162 

by specifying a habitat type is also included). In both modes, above-canopy temperature, humidity and 163 

wind profiles are calculated using K-theory with estimates of bulk aerodynamic resistance derived from 164 

canopy properties. Within the canopy, radiation transmission and wind profiles are also estimated from 165 

canopy properties. These, in turn, are used to estimate turbulent transfer within the canopy and boundary 166 

layer and stomatal conductance for each canopy layer. Heat balance equations for each canopy layer 167 

are then linearized, enabling simultaneous calculation of leaf and air temperatures. Time-dependent 168 

differential equations for each canopy and soil node are then specified and storage and simultaneous 169 

exchanges of heat and vapour between each layer then computed. In the transient mode, storage is 170 

considered both for soil and the canopy, but in the steady-state mode, only storage in the soil is 171 

considered. The model returns a time-series of temperature, humidity and wind speeds at user-specified 172 

heights or depths.  173 



Below we provide a general overview of the equations used in the model. All symbols and their units 174 

are described in Table 1, and further details of these equations and their derivation are provided in 175 

Appendix A. 176 

 177 

Table 1. List of symbols used in equations. 178 

Term Definition Units 

a Wind attenuation coefficient - 

𝑏 Exponent for water release from soil - 

cd Drag coefficient - 

𝐶𝐷 Volumetric specific heat capacity of vegetation J·m-3·K-1 

𝐶𝐻 Volumetric specific heat capacity of soil J·m-3·K-1 

𝑐𝑝 Specific heat of air at constant pressure J·mol-1·K-1 

𝑑 Zero plane displacement m 

𝐷𝐻 Thermal diffusivity m2·s-1 

𝑒 Vapour pressure Pa 

𝑒𝐿  Vapour pressure of leaf Pa 

𝑒𝑠 Saturated vapour pressure Pa 

𝐸 Evaporation rate of water mol·m-2·s-1 

𝑔 Molar conductance mol·m-2·s-1 

𝑔𝑐 Stomatal conductance mol·m-2·s-1 

𝑔𝑐𝑚𝑥 Maximum stomatal conductance mol·m-2·s-1 

𝑔𝐻𝑎 Leaf boundary layer conductance for heat mol·m-2·s-1 

𝐺𝑟 Grashof number - 

𝑔𝑣 Leaf conductance for vapour mol·m-2·s-1 

𝑔𝑡 Conductance for heat by turbulent transfer mol·m-2·s-1 

ℎ Canopy height m 

𝐻 Sensible heat flux density W·m-2 

iw Relative turbulence intensity - 

𝑙𝑚 Mixing length m 
𝑙𝑡𝑟 Transmission fraction of longwave radiation through 

the canopy 

- 

𝑘 Thermal conductivity W·m-1·K-1 

𝐾 Extinction coefficient for canopy radiation 

transmission 

- 

𝑚𝑖 Ratio of radiation incident on inclined leaves in each 

canopy layer relative to the horizontal 

- 

n Thomas algorithm forward-backward weighting factor - 

𝑝𝑎 Atmospheric pressure Pa 

𝑝𝑠 Fraction of sunlit leaves - 

𝑃𝐴𝐼  Plant area index - 

𝑃𝑟 Prandtl number - 

Pv Fractional foliage volume - 

𝑄𝑎 Photosynthetically active radiation absorbed by a leaf mol·m-2 s-1 

𝑄𝑎50 Value of Qa
 when gv is at 50% of maximum mol·m-2 s-1 

𝑅𝑎𝑏𝑠 Total radiation absorbed by canopy layer W·m-2 

𝑅𝑒𝑚 Total radiation emitted by canopy layer W·m-2 

𝑅𝑏
0 Flux density of beam radiation on a horizontal surface 

above the canopy 

W·m-2 



Term Definition Units 

𝑅𝑏
𝑃𝐴𝐼 Flux density of beam radiation below plant area PAI W·m-2 

𝑅𝑑
0 Flux density of diffuse radiation above the canopy W·m-2 

𝑅𝑑
𝑃𝐴𝐼 Flux density of diffuse radiation below plant area PAI W·m-2 

𝑅𝑒 Reynolds number - 

𝑟𝑙 Leaf reflectivity (longwave radiation) - 

𝑅𝑙
𝑎𝑏𝑠 Longwave radiation absorbed by canopy layer W·m-2 

𝑅𝑙
𝑐𝑎𝑛 Longwave radiation emitted by canopy to each layer W·m-2 

𝑅𝑙
𝑒𝑚 Emitted longwave radiation W·m-2 

𝑅𝑙
𝑠𝑘𝑦 Longwave radiation emitted by sky W·m-2 

𝑟𝑠 Leaf reflectivity (shortwave radiation) - 
𝑅𝑠

𝑎𝑏𝑠 Shortwave radiation absorbed by canopy layer W·m-2 

𝑅𝑠
𝑃𝐴𝐼 Flux density of shortwave radiation below plant area 

PAI 

W·m-2 

t Time step s 
𝑇𝑑+𝑧𝐻

 Temperature at heat exchange surface of canopy K 

𝑇𝑗  Temperature at time j K 

𝑇𝑧  Temperature at height z K 

𝑇𝐿 Leaf temperature K 

𝑢∗ Friction velocity of wind m·s-1 

𝑢ℎ Wind speed at top of canopy m ·s-1 

𝑢𝑧  Wind speed at height z m· s-1 

𝑉𝑑 Volumetric density of vegetation kg·m-3 

w Mean leaf width m 

𝑥 Ratio of vertical to horizontal projections of a 

representative volume of foliage 

 

𝑥𝑑 Characteristic dimension of leaf m 

𝑧 Height m 

𝑍 Solar zenith angle ° 

𝑧𝐻 Roughness length for heat m 

𝑧𝐿𝐴 Mean leaf-air distance m 

𝑧𝑀 Roughness length for momentum m 

𝜆 Latent heat of vaporization of water J·mol-1 

𝜃 Volumetric soil moisture fraction - 

𝜃𝑠 Saturated volumetric soil moisture fraction - 

𝜌̂ Molar density of air mol·m-3 

𝜎 Stefan-Boltzman constant W·m-2·K-4 

𝜓𝑒 Air entry water potential J·kg-1 

𝜓𝐻 Diabatic correction for heat - 

𝜓𝑀 Diabatic correction for momentum - 

𝛺 Canopy clumping factor - 

 179 

2.2 Solar radiation 180 

Radiation is the key source of heat within a canopy and has a major bearing on rates of 181 

evapotranspiration. The net radiation flux is determined by the balance of incoming shortwave radiation 182 

and emitted longwave radiation, a portion of the latter of which is also absorbed by leaves. Direct 183 

radiation is partitioned into direct (beam) and diffuse components, both of which are attenuated by the 184 



canopy. Following Campbell (1986) and Campbell & Norman (2012), the flux density of beam radiation 185 

𝑅𝑏
𝑃𝐴𝐼  under plant area 𝑃𝐴𝐼 is described as follows: 186 

𝑅𝑏
𝑃𝐴𝐼 = 𝑅𝑏

0 {(1 − 𝛺)exp (−√1 − 𝑟𝑠𝐾𝑃𝐴𝐼 (
1

1 − 𝛺
)) + 𝛺} 

 

(1a) 

where 𝑅𝑏
0 is the flux density of beam radiation on a horizontal surface above the canopy, 𝑟𝑠 is the 187 

reflectance of leaves to shortwave radiation, 𝛺 (scaled between 0 and 1) describes how clumped the 188 

canopy is such that some radiation passes directly though canopy gaps. K, the extinction coefficient of 189 

light,  represents the area of shadow cast on a horizontal surface by the canopy divided by the plant area 190 

of the canopy, and depends on the ratio of vertical to horizontal projections of a representative volume 191 

of foliage, x: 192 

𝐾 =
√𝑥2 + tan2 𝑍

1.774(𝑥 + 1.182)−0.733 193 

where Z is the solar zenith angle. For diffuse radiation, the leaf angle distribution is unimportant, and 194 

(1a) becomes 195 

𝑅𝑑
𝑃𝐴𝐼 = 𝑅𝑑

0 {(1 − 𝛺)exp (−√1 − 𝑟𝑠𝑃𝐴𝐼 (
1

1 − 𝛺
)) + 𝛺} 

 

(1b) 

where 𝑅𝑑
0 is the flux density of diffuse radiation above the canopy, 𝑅𝑑

𝑃𝐴𝐼 is the flux density of below 196 

plant area 𝑃𝐴𝐼. The temperature of leaves is dependent on the amount of radiation absorbed. Assuming 197 

the canopy to be made up of n layers, each with a plant area, 𝑃𝐴𝐼[𝑖], such that 𝑃𝐴𝐼 represents the plant 198 

area above any given layer, then the flux density of solar radiation absorbed (𝑅𝑠
𝑎𝑏𝑠) by each layer is 199 

𝑅𝑠
𝑎𝑏𝑠 = 𝑃𝐴𝐼[𝑖](1 − 𝑟𝑠)(𝑝𝑠𝑚𝑖𝑅𝑠

𝑃𝐴𝐼 + (1 − 𝑝𝑠)𝑅𝑠
𝑃𝐴𝐼) (2) 

 200 

where 𝑅𝑠
𝑃𝐴𝐼 is the flux density of solar radiation below plant area 𝑃𝐴𝐼 given by 𝑅𝑏

𝑃𝐴𝐼+𝑅𝑑
𝑃𝐴𝐼 and 𝑝𝑠 is the 201 

fraction of sunlit leaves given by 202 

𝑝𝑠 = (1 − 𝛺) (
1 − exp (−𝐾𝑃𝐴𝐼

1
1 − 𝛺

)

𝑃𝐴𝐼𝐾
) + 𝛺 203 

and 𝑚𝑖 is the ratio of radiation incident on inclined leaves in each canopy layer relative to the horizontal, 204 

which from Campbell (1990) is approximated as follows: 205 

 206 

𝑚𝑖 = exp{1.206𝑥0.407 − 4.89 − (0.412𝑥0.317 + 1.324) log(90 − 𝑍)}−1 207 

2.3 Longwave radiation 208 



From the Stefan–Boltzman law, the flux density of longwave radiation emitted by vegetation, 𝑅𝑙
𝑒𝑚, with 209 

plant area 𝑃𝐴𝐼[𝑖] is 210 

𝑅𝑙
𝑒𝑚 = 𝑃𝐴𝐼[𝑖](1 − 𝑟𝑙)𝜎𝑇𝐿

4 (2a) 

where 𝑟𝑙 is reflectance to longwave radiation, 𝜎 is the Stefan-Boltzman constant and 𝑇𝐿 is the 211 

temperature of the leaf. A portion of emitted radiation is then reabsorbed. The absorbed longwave 212 

radiation, 𝑅𝑙
𝑎𝑏𝑠, depends on sky emissivity and upwards and downwards transmission through the 213 

canopy 214 

 𝑅𝑙
𝑎𝑏𝑠 = 𝑃𝐴𝐼[𝑖](1 − 𝑟𝑙)(𝑅𝑙

𝑠𝑘𝑦
+ 𝑅𝑙

𝑐𝑎𝑛) (2b) 

where 𝑅𝑙
𝑠𝑘𝑦

 is longwave radiation absorbed and re-emitted downward from the sky, given by  215 

𝑅𝑙
𝑠𝑘𝑦

= 𝜀𝑠(𝑙𝑡𝑟)2𝑅𝑙
𝑒𝑚 and 𝑅𝑙

𝑐𝑎𝑛 is radiation absorbed and re-emitted downward from the canopy, given by  216 

𝑅𝑙
𝑐𝑎𝑛 = (1 − 𝑙𝑡𝑟)𝑅𝑙

𝑒𝑚, where 𝜀𝑠 is sky emissivity and 𝑙𝑡𝑟 is transmission of longwave radiation through the 217 

canopy given by 𝑙𝑡𝑟 = (1 − 𝛺)exp (−√1 − 𝑟𝑙𝑃𝐴𝐼 (
1

1−𝛺
)) + 𝛺. 218 

2.4 Wind, conductance and temperature above-canopy 219 

Wind profiles above the canopy dictate heat and vapour exchange between the canopy and air above it, 220 

and therefore ultimately determine temperature and vapour profiles. It can generally be assumed that 221 

radiative fluxes have a negligible effect on air temperature directly. However, the canopy itself acts as 222 

a heat exchange surface, enabling exchange of heat with surrounding air via a process of eddy diffusion. 223 

Following Campbell and Norman (2012) the wind profile is describe as follows: 224 

𝑢𝑧 =
𝑢∗

0.4
ln

𝑧 − 𝑑

𝑧𝑀
+ 𝜓𝑀 

 

(3) 

where uz is wind speed at height z, d is the height above ground within the canopy where the wind 225 

profile extrapolates to zero, zm  the roughness length for momentum, 𝜓𝑀 is a diabatic correction for 226 

momentum (see Appendix A) and u* is the friction velocity, which gives the wind speed at height 𝑑 +227 

𝑧𝑚.  228 

The equation that describes the temperature profile is given as follows: 229 

𝑇𝑧 = 𝑇𝑑+𝑧𝐻
−

𝐻

0.4𝜌̂𝑐𝑝𝑢∗ (ln
𝑧 − 𝑑

𝑧𝐻
+ 𝜓𝐻) 

 

(4) 

where Tz is temperature at height z, 𝑇𝑑+𝑧𝐻
 is the temperature at the height of the exchange surface d + 230 

zH, zH is the roughness length for heat transfer, 𝜓𝐻 the diabatic correction for heat and  𝜌̂ and 𝑐𝑝 the 231 

specific heat and molar density of air respectively. The sensible heat flux H is, in effect, the net heat 232 

supplied to the canopy surface as determined from the balance of radiative, latent and ground heat 233 

fluxes. Coefficients d, zM and zH can be derived through empirical measurement of temperature and wind 234 

profiles, but the model includes more general expressions of these derived by Shaw & Pereira (1982) 235 



as functions PAI and canopy height (h). The diabatic correction factors account for the fact that strong 236 

surface heating causes overturning of the air layers, with resultant increases in turbulence and mixing 237 

and vis-versa. Further details of how these are calculated are provided in Appendix A.  238 

Heat conductance, 𝑔𝑡 (mol·m-2·s-1) between any two heights z1 and z0 above-canopy, expressed in molar 239 

form is then given by 240 

𝑔𝑡 =
0.4𝜌̂𝑢∗

ln (
𝑧1 − 𝑑
𝑧0 − 𝑑

) + 𝜓𝐻

 
(5) 

2.5 Wind, and heat conductance below-canopy 241 

From Inoue (1963), Cionco (1972) and Goudriaan (1977), a wind profile within the canopy can be 242 

derived as follows: 243 

𝑢𝑧 = 𝑢ℎ exp (𝑎 (
𝑧

ℎ
− 1)) 

(6) 

 

where uz is wind speed at height z within the canopy, uh is wind speed at the top of the canopy at height 244 

h, and a is a wind attenuation coefficient given by 𝑎 =
𝑐𝑑𝑃𝐴𝐼ℎ

2𝑙𝑚𝑖𝑤
, where cd is a drag coefficient that varies 245 

with leaf inclination and shape, iw is a coefficient describing relative turbulence intensity and lm is the 246 

mean mixing length, equivalent to the free space between the leaves and stems. From Goudriaan (1977)  247 

𝑙𝑚 = √
4𝑤ℎ

𝜋𝑃𝐴𝐼
, for vegetation that is long and narrow, or 𝑙𝑚 = √

6𝑤2ℎ

𝜋𝑃𝐴𝐼

3
 for leaves shaped more like squares, 248 

where w is the mean width of leaves and stems.  Within-canopy heat conductance between any two 249 

heights z1 and z0 below-canopy is then given by 250 

𝑔𝑡 =
𝑢ℎ𝑙𝑚𝑖𝑤𝑎

(exp (
−𝑎𝑧0

ℎ − 1
) − exp (

−𝑎𝑧1
ℎ − 1

)) 𝜓𝐻

 

 

(7) 

where 𝜓𝐻 is a within-canopy diabatic correction factor for heat (see Appendix A). It is also necessary 251 

to calculate conductance, gHa, between the leaf and air. When wind speeds are moderate to high, 252 

conduction is predominantly under laminar forced convection and from e.g. Campbell & Norman 253 

(2012) is given by 254 

𝑔𝐻𝑎 =
0.664𝜌̂𝐷𝐻𝑅𝑒

0.5𝑃𝑟
0.5

𝑥𝑑
 

(8a) 

where 𝐷𝐻 is thermal diffusivity, 𝑥𝑑 is the characteristic dimension of the leaf (𝑥𝑑 ≈  0.7w), 𝑅𝑒 is the 255 

Reynolds number, and 𝑃𝑟 is the Prandtl number. When wind speeds are low, an expression that is 256 

adequate for leaves is given by (Campbell and Norman, 2012) 257 

𝑔𝐻𝑎 =
0.54𝜌̂𝐷𝐻(𝐺𝑟𝑃𝑟)0.25

𝑥𝑑
 

(8b) 



where 𝐺𝑟 is the Grashof number. When the leaf is cooler than the air, the heat transfer is only half as 258 

efficient so the constant 0.54 becomes 0.26. Equations (8a & b) describe conductance one would 259 

measure under minimal turbulence. Based on measurements by Mitchell (1976), and following 260 

Campbell & Norman (2012), turbulence is accounted for by using an enhancement factor of 1.4. 261 

Formulae for computing the Reynolds, Prandtl and Grashof numbers are provided in Appendix A.  262 

2.6 Vapour and latent heat fluxes 263 

Vapour gradients control both evapotranspiration rates and latent heat fluxes and thus have a significant 264 

bearing on temperature and humidity. From Fick’s law, the transport of vapour is given by 265 

𝜆𝐸 = 𝑔
𝜕𝑒

𝑝𝑎
 

(10) 

where 𝜆𝐸 is latent heat, comprising the latent heat of vapourization of water (𝜆) and the evaporation 266 

rate (E), 𝜕𝑒 is the vapour pressure gradient and 𝑝𝑎 is atmospheric pressure. For vapour exchange above 267 

the canopy or between layers of air within the canopy, the conductance is the same as that for heat. The 268 

conductance for vapour loss from leaves (gv), however, also depends on stomatal conductance (𝑔𝑐) 269 

𝑔𝑣 = 1 (1 𝑔𝐻𝑎 + 1/𝑔𝑐⁄ )⁄  270 

Under ample root water supply, non-extreme temperatures and low humidity deficit, 𝑔𝑐varies through 271 

the canopy only in response to variation in photosynthetically active radiation. The stomatal response 272 

to the photosynthetically active radiation by an individual leaf (Ql)
,, can be assumed (Kelliher et al., 273 

1995) to be given by a hyperbolic function: 274 

𝑔𝑐 =
𝑄𝑎

𝑄𝑎 + 𝑄𝑎50
𝑔𝑐𝑚𝑥 

(11) 

where 𝑔𝑐𝑚𝑥 is maximum stomatal conductance and 𝑄𝑎50 is the value of 𝑄𝑎 when 𝑔𝑣 = 𝑔𝑣𝑚𝑥 2⁄ .  Körner 275 

(1995) gives values of 𝑔𝑐𝑚𝑥 for most major vegetation types in the world. 276 

It can generally be assumed that the water potential of leaves is such that vapour concentration at the 277 

evaporating surface is equal to the saturated vapour concentration at surface temperature, such that  es 278 

can be determined from leaf temperature (TL). For the soil surface, an equivalent to vapour pressure 279 

can, from Campbell & Norman (2012), be calculated as 𝑒𝑎 = 𝑒𝑠 exp ((𝜃 𝜃𝑠⁄ )−𝑏(0.018𝜓𝑒 8.31𝑇0⁄ )), 280 

where 𝑒𝑠 is calculated using soil surface temperature (𝑇0),  𝜃 is soil volumetric water content, 𝜃𝑠 the 281 

saturated water content, 𝜓𝑒 the air entry water potential and b the exponent for water release. The 282 

parameters 𝜃𝑠, 𝜓𝑒 and b depend on soil type, but are otherwise constant.  283 

2.7 Below-canopy temperature and humidity 284 

Under steady-state, the heat balance equation for the leaves in each canopy layer is as follows: 285 



𝑅̅𝑎𝑏𝑠 − 𝑅̅𝑒𝑚 − 𝐻̅ − 𝜆𝐸̅̅̅̅ = 𝑅̅𝑎𝑏𝑠 − 𝜀𝑠𝜎𝑇̅𝐿
4

− 𝑐𝑝𝑔̅𝐻𝑎(𝑇̅𝐿 − 𝑇̅𝐴) − 𝜆𝑔̅𝑣

𝑒𝐿 − 𝑒̅𝐴

𝑝̅𝑎
= 0 

(12) 

Where 𝑅̅𝑎𝑏𝑠 is absorbed radiation, 𝑅̅𝑒𝑚emitted radiation, 𝐻̅ the sensible heat flux, 𝜆𝐸̅̅̅̅  the latent heat 286 

flux, 𝜀𝑠 the emissivity of the leaf, 𝜎 the Stefan-Boltzmann constant, 𝑇̅𝐿 the absolute temperature of the 287 

leaf, 𝑇̅𝐴 the absolute temperature of the air surrounding the leaf, 𝜆 the latent heat of vaporisation of 288 

water, 𝑒𝐿 the effective vapour pressure of the leaf, 𝑒̅𝑎 the vapour pressure of air and 𝑝̅𝑎 atmospheric 289 

pressure. Throughout, overbars denote a mean over the duration of the time-step.  290 

A challenge in solving this equation is the dependency of latent heat and emitted radiation on leaf 291 

temperature. The emitted radiation term can be solved readily by linearisation using binomial expansion 292 

(see Appendix A). The latent heat term is usually solved algebraically through linearization using the 293 

Penman-Monteith equation (Monteith, 1965; Penman, 1948), by assuming that air temperature 294 

surrounding a leaf is closely coupled to the air above and uninfluenced by leaf temperature. We 295 

explicitly consider the effects of leaf temperature on air temperature, and also the degree of coupling 296 

with the soil and air above canopy. Defining a term, ∆𝑇𝐿, such that 𝑇𝐿 = 𝑇𝐴 − ∆𝑇𝐿 and a linear 297 

expression for air temperature such that 𝑇𝐴 = 𝑎𝐴 + 𝑏𝐴∆𝑇𝐿, it can be shown (see Appendix A) that  298 

∆𝑇𝐿 =
𝑅𝑎𝑏𝑠 − 𝑎𝑅 − 𝑎𝐿

1 + 𝑏𝑅 + 𝑏𝐿 + 𝑏𝐻
 299 

Where equations for each a and b term are provided in Table 2. Under transient conditions the heat 300 

storage of each canopy layer is sufficient to prevent equilibrium. If superscript j denotes present time, 301 

and j+1 is one time-step in the future it can reasonably be assumed that e.g. 𝑇̅ = 0.5(𝑇𝑗 + 𝑇𝑗+1). 302 

Defining 𝑚𝐿 as the flux density required to heat a m3 of vegetation by one degree K, given by 303 

𝑧𝐿𝐴𝐶𝑑𝑉𝑑/𝑡𝑃𝐴𝐼, where zLA is the mean leaf-air distance (equivalent to half the average distance between 304 

leaves), Cd the specific heat capacity of vegetation with volumetric density Vd, t the duration of each 305 

model time step and PAI 
 the total one-sided plant area per m2 ground area, an equivalent expression for 306 

the transient leaf temperature change is given as follows: 307 

𝑇𝐿
𝑗+1

= 𝑇𝐿
𝑗

+
𝑅̅𝑎𝑏𝑠 − 𝑎𝑅 − 𝑎𝐻 − 𝑎𝐿

𝑚𝐿(1 + 𝑏𝑅 + 𝑏𝐻 + 𝑏𝐿)
 

 

(13) 

Expressions for each a and b under transient conditions are also given in Table 2 and derivation of the 308 

equation is in Appendix A. 309 

2.8 Soil temperature 310 

In the soil, heat storage is almost always significant, and Fourier’s Law is combined with the continuity 311 

equation to obtain a time dependent differential equation that describes soil temperature as a function 312 

of depth and time: 𝐶ℎ 𝜕𝑇 𝜕𝑡⁄ = 𝜕(𝑘 𝜕𝑇 𝜕𝑧⁄ )𝜕𝑧, where 𝐶ℎ is volumetric specific heat and k thermal 313 

conductivity in W·m-1·K-1 (𝑘 = 𝑐𝑝𝜕𝑧𝑔), determined from soil properties and volumetric water content 314 



(Appendix A). A closed-form solution to this time-dependent differential equation that extends beyond 315 

simple sets of soil properties and boundary conditions is not possible. Following Campbell (1985), a 316 

numerical solution is achieved by dividing the soil into layers. Each layer is assigned a node, i, at depth, 317 

𝑧𝑖, and with heat storage, 𝐶ℎ𝑖, and nodes are numbered sequentially downward such that node i+1 318 

represents the node for the soil layer immediately below. Conductivity, 𝑘𝑖, represents conductivity 319 

between nodes i and i+1. The energy balance equation for node i is then given by 320 

𝜅̅𝑖(𝑇̅𝑖+1 − 𝑇̅𝑖) − 𝜅̅𝑖−1(𝑇̅𝑖 − 𝑇̅𝑖−1) =
𝐶ℎ𝑖

(𝑇𝑖
𝑗+1

− 𝑇𝑖
𝑗
)(𝑧𝑖+1 − 𝑧𝑖−1)

2∆𝑡
 

 

(14) 

where ∆𝑡 is the time increment, conductance, 𝜅𝑖 = 𝑘𝑖 (𝑧𝑖+1 − 𝑧𝑖)⁄ , superscript j indicates the time at 321 

which temperature is determined and overbars indicate means during the time increment.  322 

2.9 Within-canopy heat and vapour exchange 323 

Under transient conditions, the approach described for soil can readily be extended to account for the 324 

exchange of heat between different layers of the canopy, with two notable exceptions.  First, heat storage 325 

in the air is substantially lower than in the soil and prior to computing heat exchange between layers, 326 

air layers are merged when the total flux over the time increment exceeds heat capacity. Second, the 327 

latent and sensible heat fluxes from the leaf to the air are also considered 328 

𝑔̅𝐻𝑎𝑐𝑝(𝑇̅𝐿 − 𝑇̅𝑖) +
𝜆𝑔̅𝑣

𝑝̅𝑎

(𝑒̅𝐿 − 𝑒̅𝑎) + 𝑔̅𝑖𝑐𝑝(𝑇̅𝑖+1 − 𝑇̅𝑖) − 𝑔̅𝑖−1𝑐𝑝(𝑇̅𝑖 − 𝑇̅𝑖−1) =
𝑐𝑝𝜌̂(1 − 𝑃𝑣)(𝑇𝑖

𝑗+1
− 𝑇𝑖

𝑗
)(𝑧𝑖+1 − 𝑧𝑖−1)

2∆𝑡
 

 

(15) 

where gi is the molar conductance between canopy layers (7) and Pv is the fractional foliage volume 329 

given by 𝑉𝑡[𝑖]𝑃𝐴𝐼[𝑖] 𝑧𝑡[𝑖]⁄ , where 𝑉𝑡[𝑖] is the mean thickness of foliage and 𝑧𝑡[𝑖] the thickness of each 330 

canopy layer i.   331 

The system of equations for each canopy layer can be combined with those for the soil layers to form a 332 

single set of equations. Assuming 𝑇̅ = 𝑛𝑇𝑗+1 + (1 − 𝑛)𝑇𝑗, where n is a weighting factor in the range 333 

0 to 1. Equations (14) and (15) can be re-arranged and solved for 𝑇𝑗+1 by Gaussian elimination using 334 

the Thomas algorithm (Thomas, 1949), when boundary conditions are used to reduce the number of 335 

unknowns by two. The upper boundary condition is the conductance 𝑔̅0 between the top of the canopy 336 

and the air at reference height determined from (5). A boundary condition at the bottom of the soil 337 

profile is set by assuming that temperatures are stable and, in the absence of a user-provided value, 338 

equivalent to mean air temperature over the duration the model is run. 339 

Vapour exchange can be handled in a similar way, expect that here, water exchange in the soil is user-340 

specified, or in the steady-state mode, calculated using NicheMapR (see running the model) and the 341 

exchange between air layers is given by 342 



𝑔̅𝑣

𝑝̅𝑎

(𝑒̅𝐿 − 𝑒̅𝑎) +
𝑔̅𝑖

𝑝̅𝑎

(𝑒̅𝑖+1 − 𝑒̅𝑖) − 𝑔̅𝑖−1𝑐𝑝(𝑒̅𝑖 − 𝑒̅𝑖−1) =
𝜌̂(1 − 𝑃𝑣)(𝑒𝑖

𝑗+1
− 𝑒𝑖

𝑗)(𝑧𝑖+1 − 𝑧𝑖−1)

2∆𝑡
 

 

(16) 

Again, the system of equations is solved by Gaussian elimination using the Thomas algorithm (see 343 

Appendix A). 344 

 345 

3. RUNNING THE MODEL 346 

The model is split into two R packages. The package `microctools` contains a series of `worker` 347 

functions needed to run the model, such as those needed to compute conductance and radiation 348 

transmission. It also contains useful functions not directly needed to run the model, such as for 349 

estimating the diffuse fraction of total incoming solar radiation and converting between different 350 

humidity measures. The `microclimc` package contains the higher-level functions needed to compute 351 

individual elements of microclimate (for example leaf temperature), to run the model in its entirety over 352 

a single time increment (returning the full suite of microclimate variables for all layers in the canopy), 353 

or to run the model for a time-series to return temperature, humidity and wind speed at user-specified 354 

heights above or below ground. Package `microctools` is automatically installed when installing 355 

`microclimc` and is available on Github: https://github.com/ilyamaclean/microclimc. 356 

There are two model run modes. Function `runmodel` runs the full model in transient mode, but in this 357 

mode, there are checks to establish whether conditions are steady state or transient, and the model 358 

automatically performs calculations accordingly. Function `runmodelS` runs the model in steady-state 359 

mode for cases in which predictions for a single height is desired. However, it is encouraged to conduct 360 

steady state modelling using the wrapper function `runwithNMR`, which invokes the `NicheMapR` 361 

package to calculate soil moisture from rainfall and evapotranspiration. In alternative modes, soil 362 

moisture must be specified by the user.  363 

Two sets of parameters are needed to drive the model: (1) vegetation parameters, describing canopy 364 

properties for multiple layers within the canopy and (2) soil parameters, enabling heat capacity and 365 

conductances within the soil to be calculated. However, a key goal in the development of this model is 366 

to enable estimates of microclimate with varying amounts of information available. The `microctools` 367 

package therefore includes functions that will reproduce reasonable approximations of soil properties 368 

simply by specifying a soil type and seasonal variation in and the vertical distribution of foliage and 369 

leaf angles from habitat types. Alternatively, where multi-layer information on foliage is available, such 370 

as might be derived using a plant canopy analyser or from a series of digital hemispherical photographs 371 

taken at different heights in the canopy (see e.g. Thimonier et al., 2010), these data can be used instead.  372 

https://github.com/ilyamaclean/microclimc


Table 2. Full equations for terms in equation 13 used to simultaneously estimate leaf and air temperatures. Terms are defined in Table 1. Overbars denote means 373 
during the time increment. Definitions for both steady-state and transient heat exchange are provided. Derivation of the equations is provided in Appendix A.  374 

Steady-state Transient 

𝑎𝐸 =
𝑔̅𝑡𝑅𝑒̅𝑅 + 𝑔̅𝑡0𝑒̅0 + 𝑔̅𝑣𝑒𝑠[𝑇̅𝑅]

𝑔̅𝑡𝑅 + 𝑔̅𝑡0 + 𝑔̅𝑣
 

 
𝑎𝐸 =

0.5𝑡𝑔̅𝑣
𝑧𝐿𝐴

∆𝑉[𝑇𝐿
𝑗
]∆𝑇𝐿

1 + 0.5𝑡 (
𝑔̅𝑡𝑅

𝑧𝑅 − 𝑧𝑖
+

𝑔̅𝑡0
𝑧𝑖

+
𝑔̅𝑣
𝑧𝐿𝐴

)
 

𝑏𝐸 =
∆𝑉[𝑇̅𝑅]

𝑔̅𝑡𝑅 + 𝑔̅𝑡0 + 𝑔̅𝑣
 

𝑏𝐸 =

0.5𝑡𝑔̅𝑣
𝑧𝐿𝐴

∆𝑉[𝑇𝐿
𝑗
]∆𝑇𝐿

1 + 0.5𝑡 (
𝑔̅𝑡𝑅

𝑧𝑅 − 𝑧𝑖
+

𝑔̅𝑡0
𝑧𝑖

+
𝑔̅𝑣
𝑧𝐿𝐴

)
 

𝑎𝑅 = 𝜀𝑠𝜎𝑎𝐴
4 𝑎𝑅 = 𝜀𝑠𝜎𝑇𝐿

𝑗4
 

𝑏𝑅 = 4𝜀𝑠𝜎 (𝑎𝐴
3𝑏𝐴 + 𝑇̅𝑅

3
) 𝑏𝑅 = 𝜀𝑠𝜎2𝑇𝐿

𝑗3
 

𝑎𝐻 = 0 𝑎𝐻 = 𝑐𝑝𝑔̅𝐻𝑎(𝑇𝐿
𝑗

− 𝑎𝐴) 

𝑏𝐻 = 𝑐𝑝𝑔̅𝐻𝑎 𝑏𝐻𝑐𝑝𝑔̅𝐻𝑎(0.5 − 0.5𝑏𝐴) 

𝑎𝐿 =
𝜆𝑔̅𝑣

𝑝̅𝑎

(𝑒𝑠[𝑇̅𝑅] − 𝑎𝑒) 𝑎𝐿 =
𝜆𝑔̅𝑣

𝑝̅𝑎
(𝑒𝑠[𝑇𝐿

𝑗
] − 𝑎𝑒) 

𝑏𝐿 =
𝜆𝑔𝑣

𝑝̅𝑎

(∆𝑉[𝑇̅𝑅] − 𝑏𝐸) 𝑏𝐿 =
𝜆𝑔𝑣

𝑝̅𝑎
(0.5∆𝑉[𝑇𝐿

𝑗
] − 𝑏𝐸) 

𝑎𝐴 =
𝑔̅𝑡𝑅𝑇̅𝑅 + 𝑔̅𝑡0𝑇̅0

𝑔̅𝑡𝑅 + 𝑔̅𝑡0
 

𝑎𝐴 =
𝑇𝑎

𝑗
+

0.5
𝑚𝑎

{
𝑔̅𝑡𝑅

𝑧𝑅 − 𝑧𝑖
𝑇̅𝑅 +

𝑔̅𝑡0
𝑧𝑖

𝑇̅0 +
𝑔̅𝐻𝑎
𝑧𝐿𝐴

𝑇𝐿
𝑗

+
𝜆𝑔̅𝑣

𝑧𝐿𝐴𝑝̅𝑎
(𝑒𝐿

𝑗
+ 0.5𝑒𝑠[𝑇𝐿

𝑗
]) −

𝜆𝑔̅𝑣
𝑧𝐿𝐴𝑝̅𝑎

𝑎𝐸 +
𝜆𝑔̅𝑡0
𝑧𝑖𝑝̅𝑎

𝑒̅0 −
𝜆𝑔̅𝑡0
𝑧𝑖𝑝̅𝑎

𝑎𝐸}

1 +
0.5
𝑚𝑎

(
𝜆𝑔̅𝑡0
𝑧𝑖𝑝̅𝑎

+
𝑔̅𝑡0
𝑧𝑖

+
𝑔̅𝐻𝑎
𝑧𝐿𝐴

)
 

𝑏𝐴 =
𝑔̅𝐻𝑎

𝑔̅𝑡𝑅 + 𝑔̅𝑡0
 𝑏𝐴 =

0.5

𝑚𝑎
{0.5

𝑔̅𝐻𝑎
𝑧𝐿𝐴

+
𝜆𝑔̅𝑣

𝑧𝐿𝐴𝑝̅𝑎
(0.5∆𝑉[𝑇𝐿

𝑗
]−𝑏𝐸)+

𝜆𝑔̅𝑡0
𝑧𝑖𝑝̅𝑎

𝑏𝐸}

1+
0.5

𝑚𝑎
(

𝜆𝑔̅𝑡0
𝑧𝑖𝑝̅𝑎

+
𝑔̅𝑡0
𝑧𝑖

+
𝑔̅𝐻𝑎
𝑧𝐿𝐴

)
, where 𝑚𝑎 = 𝑐𝑝𝜌̂(1 − 𝑉𝑑) 𝑡𝑃𝐴𝐼⁄  

375 



A similar ethos is used with regards to input weather data. The standard input is a data file of 376 

temperature, humidity, wind speed, air pressure, sky emissivity and incoming solar radiation, but where 377 

one or more of these variables are unavailable, we point the users to options for retrieving them. The R 378 

package `microclima’ (Kearney et al., 2020; Maclean et al., 2019) contains functions for downloading, 379 

and interpolating to hourly, the required climate data from the NOAA-NCEP reanalyses programme 380 

(Kanamitsu et al., 2002). Similarly, the R-package ‘mcera5’ (Duffy, 2020) contains similar functions 381 

for retrieving data from the ECMWF ERA5 reanalysis programme (Hersbach, 2016). Full instructions 382 

for running the model are available as a vignette included with the package, provided in Appendix B. 383 

The model can be run in time-steps ranging from one second to daily, with the time-increment controlled 384 

by the climate forcing data provided.  385 

4. MODEL VALIDATION 386 

Both steady-state and transient modes of the model were validated using hourly empirical temperature 387 

measurements from four sites representing temperate deciduous and coniferous forests (Table 3; Lee et 388 

al., 1999; Munger and Hadley 2020; Templer et al., 2019; Teramoto et al., 2019)). Only validation data 389 

sampled according to best practices for micrometeorological observation (i.e. use of ultrafine-wire 390 

thermocouples; de Podesta et al., 2018; Rebmann et al., 2018) were used. Heights at which temperature 391 

was measured varied between sites (between 1.0 and 10.0 metres) but were always below the uppermost 392 

layers of the forest canopy; predictions were made for the same heights as measurements. The model 393 

was parameterized using biome-specific estimates of vegetation and soil profile parameters that are 394 

built into the package (see package details and vignette in Appendix B for details and the full list of 395 

parameters and default estimates).  396 

We provided ERA5 hourly reanalysis data (Hersbach, 2016) as reference macroclimate and climate 397 

forcing to the microclimate model, corresponding to the times and points modelled. For the steady-state 398 

mode, daily resolution NCEP-DOE Reanalysis II precipitation estimates were provided for the soil 399 

moisture module (Kanamitsu et al. 2002). Because proper handling of snow cover and sub-freezing 400 

temperatures in the model is still under active development for the transient model, we constricted input 401 

data and predictions to only spring, summer and autumn months. For the purposes of this manuscript 402 

only air temperature predictions are validated (Figs. 1 and 2). 403 

In the steady-state mode of the model, calculations are conducted simultaneously for all temporal 404 

timesteps, and therefore running the model for one year of data took an average of 5.28 seconds (on a 405 

single 2.2 GHz Intel i7 core with 4.0 GB of total memory). The transient mode, accessed via the function 406 

`runmodel`, must be run in sequence for each timestep, and so took an average of 194.9 seconds for the 407 

same time period. The steady-state and transient mode predicted below-canopy temperatures with 408 

similar accuracy (Mean absolute error 2.77 (transient) and 2.79 (steady-state); root mean square error 409 



3.48 (both); 80.0% of variance explained (transient) and 79% (steady-state); Table 4). It should be noted 410 

that some of the error is likely due to errors associated with climate data used to drive the models.  411 

Below-canopy temperatures were typically less variable than macroclimate temperatures, which was 412 

generally captured by the model in both of its modes. Both the steady-state and transient model 413 

underestimated forest temperature to a moderate degree (empirical SD: 5.93; steady-state estimate SD: 414 

5.44; transient estimate SD: 4.67). At the Fuji Hokuroku and Hubbard Brook site there is also evidence 415 

of a fairly consistent over-estimation of temperatures. This may in part be attributable to altitudinal 416 

differences between validation sites and the coarse-resolution ERA5 data, which differ on average by 417 

111 meters from the mean elevation across the ~25-kilmetre ERA5 grid cells. For the purpose of 418 

reproducibility by users, and so as to provide a conservative estimate of model performance, we did not 419 

attempt to correct for these elevation differences. 420 

 421 

5. MICROCLIMATE PROFILES 422 

5.1 Thermal Profiles 423 

Typical profiles obtained by the model are shown in Figures 3 and 4 and highlight the magnitude of 424 

differences in climatic conditions within the soil and above or below canopy. Here temperature and 425 

humidity profiles were predicted for a location in Cornwall, United Kingdom (50.2178°N, 5.32656°W) 426 

for a deciduous forest (Fig. 3) and short grassland (Fig. 4). In both instances, vegetation parameters 427 

were derived automatically by specifying a habitat type. In forest, under both dry and humid warm 428 

daytime conditions, air temperature averaged over one hour were predicted to have a maximum in mid-429 

canopy. These findings are consistent with those of other studies (e.g. Finnigan, 2000), and indicative 430 

of a zone of high radiation absorption associated with high foliage density and reduced heat exchange 431 

with air above-canopy caused by greater distance and reduced wind speed. In contrast, leaf temperatures 432 

were predicted to be highest near the top of the canopy, where self-shading is lowest. At night, leaf 433 

temperatures are lowest near the top of the canopy, particularly under clear-sky conditions. Here a lower 434 

proportion of the radiation emitted by a leaf would be expected to be absorbed and re-emitted by the 435 

canopy. In contrast, differences in canopy air temperatures were predicted to be modest. The cooling 436 

effect of leaves is offset by greater heat exchange with air above the canopy. The relative humidity 437 

profile reflects three factors. On the one hand, relative humidity would be expected to be lowest where 438 

temperatures are higher, as for a given vapour pressure relative humidity is primarily a function of 439 

temperature. However, evapotranspiration from leaves and vapour exchange with air above the canopy 440 

are also important. Despite limitations in the extent to which K-theory accurately captures canopy 441 

turbulence, the predicted wind profiles are remarkably similar to empirically-derived profiles reported 442 

in other studies (e.g. Raupach and Thom, 1981). 443 



 444 

Table 3. Descriptions of sites and empirical temperature measurements used for model validation. 445 

Name 

Latitude, 

Longitude Vegetation 

Temperature 

sensor 

Measurement 

height (m) Time start Time end 

Borden Forest 

Research 

Station, 

Ontario, Canada 

44°19′N, 

79°56′W 

Mixed 

hardwood/coniferous 

forest dominated by red 

maple and eastern white 

pine, 22 m canopy height 

Aspirated 

copper–

constantan 

thermocouples 1.7 1/04/1998 29/10/1998 

Harvard Forest 

Hemlock 

Tower, 

Massachusetts, 

United States 

42°32′N, 

72°11′W 

Hemlock-dominated 

temperate forest with 

mixed maple, oak, and 

pine, 23 m canopy height 

Campbell 

Scientific CS215 

sensor with 

aspirated 

radiation shield 1 4/04/2017 31/10/2017 

Fuji Hokuroku 

Flux 

Observation 

Site, 

Yamanashi, 

Japan 

 

35°27′N, 

138°46′W 

 

Deciduous and evergreen 

needleleaf forest, 

predominantly Japanese 

larch. 23 m canopy 

height 

 

Vaisala 

HMP45A, 

platinum 

resistance 

thermometer 

 10 3/05/2019 30/09/2019 

Hubbard Brook 

Experimental 

Forest 

43°57′N, 

71°42′W 

Red maple-dominated 

mixed temperate forest, 

22 m canopy height 

Campbell 

Scientific CS215 

sensor with 

aspirated 

radiation shield 6 1/04/2013 30/09/2013 

 446 



 447 

 448 

Fig. 1. Steady-state model predictions of temperature plotted across empirical measurements at four forested sites. Measurements were taken at heights ranging 449 
from 1.0 m to 10.0, but all below the uppermost layers of canopy. Both thermal measurements and predictions were taken at hourly time-steps for 5-7 months 450 
per site, and here subsets of time series are plotted to demonstrate diel variability. 451 



 452 

Fig. 2. Transient model predictions of temperature plotted across empirical measurements at four forested sites. Transient predictions had moderately lower 453 
error than steady-state predictions (fig. 1), although the model did not accurately predict temperatures near freezing. 454 



Warm, dry and sunny (1995-08-21 09:00) 
Temperature Relative humidity Wind speed 

   
Warm, humid, partially overcast (1995-05-05 11:00) 

   
Cold, dry, clear, pre-dawn (1995-03-20 06:00) 

   
Mild, heavily-overcast, post-dusk (1995-10-05 19:00) 

   
Fig 3. Modelled temperature (left), relative humidity (middle) and wind profiles (right) above, below 455 
and within a 15 m tall deciduous forest canopy on four days with contrasting weather conditions.  Dotted 456 
lines in temperature profiles represent leaf temperatures, solid lines air temperature 457 



Warm, dry and sunny (1995-08-21 09:00) 
Temperature Relative humidity Wind speed 

   
Warm, humid, partially overcast (1995-05-05 11:00) 

   
Cold, dry, clear, pre-dawn (1995-03-20 06:00) 

   
Mild, heavily-overcast, post-dusk (1995-10-05 19:00) 

   
Fig 4. Modelled temperature (left), relative humidity (middle) and wind profiles (right) above, below 458 
and within a 25 cm height grassland on four days with contrasting weather conditions. Dotted lines in 459 
temperature profiles represent leaf temperatures, solid lines air temperature 460 



Table 4. Microclimate model average performance in steady-state and transient modes. Mean absolute 461 
error, root mean square error, and Pearson’s correlation coefficients reported are relative to the 462 
empirical temperature measurements. 463 

Variable Steady-State Transient 

Avg. run time (1 year 

timeseries) 5.28 s 187.80 s 

MAE 3.3 2.77 

RMSE 4.15 3.48 

r2 0.803 0.8 

 464 

In the grassland, particularly in sunny conditions, air temperature decreases with height above-canopy 465 

and is highest at points near the top of the canopy. Temperatures in the soil decrease with depth. At 466 

night, under cold, clear-sky conditions when air temperature is lower than that of the deepest soil layer, 467 

the profile is reversed. Under overcast conditions, when air temperatures are similar to ground 468 

temperatures, variation in temperature with height is minimal, though there is a distinct zone close to 469 

the soil surface where temperatures are lower. Leaf temperature profiles are broadly similar to air 470 

temperature profiles within the canopy. As with deciduous forest, relative humidity profiles partially 471 

reflect the temperature profiles, being lowest where temperatures are higher. However, is noticeable 472 

that during dry sunny conditions relative humidity is highest within the vegetation itself, despite warmer 473 

temperatures, reflecting the zone of evapotranspiration. Wind profiles are typical of those empirically 474 

observed (Campbell and Norman, 2012), and, though partially affected by diabatic turbulence, are 475 

broadly consistent irrespective of conditions.  476 

 477 

6. CONCLUDING REMARKS 478 

Our model, written for the R programming environment, complements existing R packages for 479 

modelling microclimate (Kearney and Porter, 2017; Maclean et al., 2019), but extends the utility of 480 

these packages by enabling ecologists to predict adequately the microclimate above, within, and below 481 

dense canopies, such as those of forests. Since many organisms live in forest environments, this is likely 482 

to be particularly useful. A key goal in developing our model was to enable estimates of microclimate 483 

with varying amounts of information available. In consequence, default parameters drawn from 484 

literature are provided for broad habitat and soil types, but in circumstances where more detailed site-485 

specific information, this can be readily incorporated. Estimates of snow cover and its effects on 486 

temperature can be accounted for by invoking the snow subroutine within the `NicheMapR` package, 487 

which builds nodes of snow above the surface conditional on the amount of precipitation, and thereby 488 

influencing albedo and surface-air heat exchange. Accounting for snow would be especially valuable 489 

for improved predictions near freezing, a current limitation of our model. Predictions of below-canopy 490 

soil temperatures are currently provided by the model, yet these are primarily to estimate heat exchange 491 



with the air. Accurate soil temperature predictions are contingent upon capturing dynamic soil moisture, 492 

which in the steady-state mode can be achieved via integration with `NicheMapR`.  493 

Time series of sub-canopy temperatures from four forest locations globally are used to test the model. 494 

The results indicate that temperatures can be estimate with a moderate degree of accuracy. A degree of 495 

error is to be expected, however, as the climate forcing datasets used to drive the model are themselves 496 

imperfect and used we used default vegetation parameters associated with the broad habitat types of 497 

these sites rather than quantifying vegetation structure in situ. Improvements in model fit would be 498 

expected with finer-tuning of model parameters to account for local conditions and by correcting the 499 

climate forcing data, for example by accounting for elevation effects (see e.g. Maclean et al. 2019). 500 

Nevertheless, even without doing so, the mean error of temperature measurements is only in the order 501 

of 2.5-3°C. 502 

Though there are still uncertainties in understanding of the microclimatic processes operating below 503 

canopy, many of the fundamental principles of microclimate modelling have been resolved decades. 504 

However, few of these insights have diffused into the field of ecology and the lack of integration 505 

between ecology and micrometeorology is perhaps one of the most remarkable examples of a 506 

disciplinary division. While many of the principles of microclimate modelling were resolved decades 507 

ago, in the very situations in which such models are much needed, they are rarely utilised. Here we 508 

utilised principles of environmental physics to provide a step forward in bridging this gap.  509 
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