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Abstract 62 

Social structure is a fundamental aspect of animal populations. In order to understand 63 

the function and evolution of animal societies, it is important to quantify how individual 64 

attributes, such as age and sex, shape social relationships. Detecting these influences 65 

in wild populations under natural conditions can be challenging, especially when social 66 

interactions are difficult to observe and broad-scale measures of association are used 67 

as a proxy. In this study, we use unoccupied aerial systems to observe association, 68 

synchronous surfacing, and physical contact within a pod of southern resident killer 69 

whales (Orcinus orca). We show that interactions do not occur randomly between 70 

associated individuals, and that interaction types are not interchangeable. While age 71 

and sex did not detectably influence association network structure, both interaction 72 

networks showed significant social homophily by age and sex, and centrality within the 73 

contact network was higher among females and young individuals. These results 74 

suggest killer whales exhibit interesting parallels in social bond formation and social 75 

life histories with primates and other terrestrial social mammals, and demonstrate how 76 

important patterns can be missed when using associations as a proxy for interactions 77 

in animal social network studies. 78 



Introduction 79 

Individual characterstics such as and sex and age often influence social relationships 80 

and underly variation in social position in animal societies. Understanding how these 81 

characteristics shape social structure under natural conditions can shed light on 82 

numerous aspects of behavioural ecology, including social life history evolution (e.g. 83 

Machanda & Rosati 2020) and the mechanisms underlying social bond formation (e.g. 84 

Gerber et al. 2020), while also providing potentially vital information about population-85 

level processes such as gene flow and disease transmission (Kurvers et al. 2014). 86 

Social network analysis has become an important tool for understanding these 87 

processes over the last two decades (Brent et al. 2011; Webber & Vander Wal 2019), 88 

however uncovering the drivers of social network structure is challenging. Studies of 89 

animal social networks require data on the rates of relevant social behaviours between 90 

identified individuals (Whitehead 2008a; Croft et al. 2008, Farine & Whitehead 2015), 91 

which often require a great deal of sampling to measure precisely (Whitehead 2008b). 92 

Furthermore, the structure of observed social networks is dependent on the 93 

behavioural definition of edges (Castles et al. 2014).  94 

While social structure fundamentally arises from the patterns of repeated interactions 95 

between individuals (Hinde 1976), social interactions are often difficult to observe in 96 

free-ranging animals, as interactions may be subtle, rare, or not visible from traditional 97 

observation platforms. Therefore, many studies of social structure in free-ranging 98 

animal populations utilize association indices, measuring the probability that 99 

individuals are found within the same group or a particular spatial proximity during a 100 

sampling period (reviewed by Webber & Vander Wal 2019). As association provides 101 

the opportunity for interaction, these associations are typically assumed to generally 102 



reflect patterns of interactions between individuals (Whitehead & Dufault 1999), 103 

however there is still debate over the degree to which associations can reflect true 104 

interactions (e.g. Farine 2015). Using behavioural proxies of relationships that are too 105 

broad or do not represent the relationships of interest may mask the influences of 106 

individual characteristics on social network structure. 107 

In this study, we quantify the influence of age and sex on social relationships in a pod 108 

of resident killer whales (Orcinus orca). Previous studies of killer whale societies have 109 

suggested that individuals do not show social homophily by age or sex (Tavares et al. 110 

2017; Esteban et al. 2015; Williams & Lusseau 2006), and analyses of individual 111 

network centrality with respect to age and sex in this species have produced mixed 112 

results (Baird & Whitehead 2000; Williams & Lusseau 2006; Tavares et al. 2017). The 113 

apparent lack of age and sex structure in killer whale social networks is somewhat 114 

surprising in the context of other well-studied dolphin species, where social networks 115 

are commonly structured by age and sex (e.g. Hawkins et al. 2019; Hartman et al. 116 

2008; Elliser & Herzing 2014; Leu et al. 2020; Webster et al. 2009). This discrepancy 117 

may be due to the definitions used to construct killer whale social networks. Because 118 

killer whales live and move in stable social units, the position of individuals and the 119 

patterns of edges within association networks are likely to primarily reflect attributes 120 

and relationships at the level of the unit, rather than the individual (e.g. Ivkovich et al. 121 

2009; Williams & Lusseau 2006). This system therefore provides an opportunity to test 122 

the degree to which the use of broad-scale association patterns can mask important 123 

effects of individual characteristics in animal societies. 124 

Here, we utilize unoccupied aerial systems (UAS) to quantify association (defined as 125 

individuals detected simultaneously, and therefore with the opportunity to be observed 126 

interacting), synchronous surfacing, and physical contact among individually identified 127 



killer whales. In delphinids, synchrony can beneficial during cooperative behaviours 128 

(Myers et al. 2017) and may be important for maintaining and establishing social 129 

relationships (Connor et al. 2006; McCue et al. 2020). Similarly, physical contact often 130 

signals social affiliation between closely bonded individuals (Connor et al. 2005; 131 

Dudzinski et al. 2017) and may be important for reconciliation after aggressive 132 

interactions (Weaver 2003). We hypothesized that both of these interactions would 133 

occur non-randomly between associated individuals, and that any influence of age and 134 

sex on social structure, both in terms of social homophily and individual centrality 135 

within the social network, would be more clear when analysing these interactions than 136 

when analysing associations. 137 

 138 

Methods 139 

Study population 140 

The southern resident killer whales are a small (< 80 individuals), closed population 141 

inhabiting the coastal waters of the northeastern Pacific, with their core habitat being 142 

the inland waters of Washington, USA and British Columbia, Canada. This population 143 

has been subject to a complete annual census carried out by the Center for Whale 144 

Research since 1976. All individuals can be visually identified using unique markings, 145 

body shapes and sizes, and scarring. 146 

The southern residents exhibit lifelong bisexual philopatry to maternal social groups. 147 

The basic social unit is the matriline, composed of close relatives with a recent 148 

common maternal ancestor. Closely related matrilines form pods, larger semi-stable 149 

social groups with a shared vocal dialect (Bigg, et al., 1990; Parsons et al. 2009). This 150 



population contains three pods, designated J, K, and L pod, which at the time of the 151 

study contained 22, 18 and 32 individuals, respectively. 152 

 153 

Field observations 154 

During the summer of 2019, we collected video observations using a small UAS (DJI 155 

Phantom 4 Pro V2) launched from a small motorized vessel (21 ft. Grady White), or 156 

using a larger aircraft (DJI Matrice 600) launched from shore. Focal subgroups (sets 157 

of whales in close physical proximity to each other which could be captured 158 

simultaneously on video) were located by observers prior to launching the aircraft. 159 

Subgroups were primarily chosen for follows based on logistical factors, such as 160 

distance from the launch point and the presence of whale watch and research vessels. 161 

Preference was typically given to larger subgroups to maximize the possible number 162 

of interactions observed over a given observation period. We correct for potential 163 

biases introduced by this preference in our permutation analysis (see below). During 164 

on-water operations, the vessel maintained a low speed (< 7 kts) when within 1 km of 165 

whales. The vessel was usually positioned behind groups of whales, at a distance of 166 

200-400 m (see Ayers et al., (2012) for details on vessel maneuvering). 167 

When in the air, one crew member piloted the aircraft, while another served as a visual 168 

observer to aid in maintaining visual line-of-sight and situational awareness. A third 169 

team member was designated as a general observer, tasked with monitoring whale 170 

behaviour during research flights and assisting with operations. The aircraft 171 

maintained an altitude between 30 and 120 meters while above whales, and was 172 

typically positioned to the side of or behind the animals. The angle of the camera and 173 

position of the aircraft were adjusted to ensure a clear view of the full subgroup. 174 



Operations were limited to conditions conducive to the safe operation of the UAS and 175 

clear observation of animals below the water (no rain, wind below 10 kts, sea state 176 

less than Beaufort 3). We collected footage of southern residents over 13 days. For 177 

most of these days (10/13), only members of J pod were present. To avoid spurious 178 

inferences about relationships involving K or L pod, we chose to restrict our analysis 179 

to days in which only J pod was present. 180 

All data was collected under research permits issues by the US National Marine 181 

Fisheries Service (NMFS permits 21238 and 22141) and all pilots were licensed under 182 

Federal Aviation Administration Part 1077. Research was approved by the University 183 

of Exeter College of Life and Environmental Sciences ethics committee. During flights, 184 

we monitored focal groups to determine if behavioural responses occurred as the UAS 185 

approached, however no behavioural responses were observed during the study. 186 

 187 

Video analysis 188 

We analyse all video in BORIS software (Friard & Gamba, 2016). Analysis of each 189 

video clip proceeded by first identifying all whales that were visible at any point during 190 

the video by their unique markings, body shapes and size, and scarring. Then, in 191 

random order, each whale was followed for the entirety of the video. We coded a state 192 

variable for individual visibility, indicating when each individual was on screen and 193 

identifiable. We considered individuals to be associated when they were 194 

simultaneously visible in the video (Figure 1). 195 

We code physical contact as an undirected point event, recorded when individuals 196 

initially come into contact. As we were interested in patterns of affiliative social 197 

relationships, we excluded aggressive interactions such as fluke strikes and biting. We 198 



also exclude observations of nursing. Potential sexual contacts were not excluded, as 199 

affiliative socialization often includes sexual behaviour in this population (Noren & 200 

Hauser, 2016; Osborne, 1986). 201 

Synchronous surfacing was also coded as an undirected point event. Individuals were 202 

considered to have breathed in synchrony if they surfaced within one adult female 203 

body length (approx. 6 m) and at some point during their surfacing both individuals’ 204 

blowholes were simultaneously above the water’s surface. Individuals could be 205 

recorded synchronously surfacing with multiple partners in a single surfacing, however 206 

we did not use a chain-rule, and therefore synchronous surfacings were not transitive. 207 

As both interactions were coded as point events, they did not preclude one another. 208 

Our sequential follow protocol generates two records of each interaction, potentially at 209 

slightly different time points. We ensured all interactions were recorded for both 210 

individuals and that all individuals were coded as visible during all of their interactions, 211 

with errors corrected by re-analyzing the video. We set the interaction time as the 212 

midpoint between the two records. The median difference in time between the two 213 

records was 0.203 seconds (IQR = 0.23) for synchronous surfacing and 0.439 seconds 214 

(IQR = 0.656) for contact. 215 

 216 

Determining age, sex, and kinship 217 

In 2019, all surviving members of J pod were born after the study began in 1976, and 218 

thus their ages (in years) are known with certainty. The sexes of all individuals in this 219 

pod were determined based on obvious sexual dimorphism in mature individuals and 220 

from genital coloration in young individuals. 221 



Maternal kinship was estimated based on behaviourally defined mother-calf dyads. 222 

These relationships have been universally supported by subsequent genetic sampling 223 

(Ford et al. 2018). From known mother-calf relationships, we constructed a maternal 224 

pedigree and estimated a maternal relatedness matrix using the kinship2 R package 225 

(Sinnwel & Therneu 2020). 226 

 227 

Social network construction 228 

We constructed interaction networks by dividing each dyad’s total interaction by their 229 

total observation time. Initial analysis suggested interactions did not occur in bouts 230 

(see supplementary materials), so each interactions was treated as independent. Each 231 

dyad’s observation time was summarized as the total amount of time that one or both 232 

of the individuals was visible. 233 

𝑟𝑎𝑡𝑒𝑖𝑗 =  
𝑥𝑖𝑗

𝑡𝑖+ 𝑡𝑗− 𝑡𝑖𝑗
        (1) 234 

Here, xij is the number of interactions observed between individuals i and j, ti and tj are 235 

the total time (in seconds) i and j were visible, respectively, and tij is the amount of 236 

time both i and j were visible simultaneously. We calculate interaction rates separately 237 

for synchronous surfacings and contacts. We quantify the reliability of our interaction 238 

networks by estimating the correlation between true and observed interaction rates 239 

following Whitehead (2008b) (see supplementary materials for details). 240 

We construct an association network representing the proportion of sampling time in 241 

which individuals co-occurred in our observations: 242 

𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑜𝑛𝑖𝑗 =  
𝑡𝑖𝑗

𝑡𝑖+ 𝑡𝑗− 𝑡𝑖𝑗
       (2) 243 



where the variable definitions are the same as in equation 1. This index is comparable 244 

to the “simple ratio index” commonly used in animal social network analysis (Cairns & 245 

Schwager, 1987). Like other association indices, the edges in this network range from 246 

0 (never co-occurred) to 1 (always observed together). This index represents the 247 

proportion of time that individuals were detected together, not the amount of time they 248 

truly spent together; Individuals could fail to be detected while in association if they 249 

were outside of the camera’s field of view, or if they submerged to a depth where they 250 

were no longer visible. During data collection, the camera captured an area with a 251 

median maximum distance between any two recorded points of 85 m (IQR = 30; see 252 

supplementary materials for methods). This distance is comparable to previous killer 253 

whale studies where a cutoff of 10 body lengths (roughly 70 m) has been used (e.g. 254 

Williams & Lusseau 2006). Social networks construction and all further analysis was 255 

carried out in R (R Core Team 2020). 256 

 257 

Comparing associations and interaction rates 258 

We first tested whether the structure of the two interaction networks could be explained 259 

solely by dyadic association and sampling. We construct a null model for our 260 

interaction networks that maintains both individual detection history and temporal 261 

variation in the observed overall rate of interactions. For each observed interaction, 262 

we randomly sample two individuals coded as visible at the time of the interaction as 263 

the new interaction partners. We repeat this procedure 10,000 times, re-calculating 264 

interaction rates for each randomisation to generate 10,000 randomised networks. 265 

We first test whether interaction rates are more variable than expected given 266 

associations. We do this by using the coefficient of variation (CV) as a test statistic. 267 



The CV is a measure of the variation in interaction rates. When individuals have 268 

strongly preferred and avoided interaction partners, the CV of interaction rates will be 269 

higher than when individuals interact at random (Whitehead 2008a). We reject the null 270 

hypothesis that interactions occurred randomly between associates if the observed 271 

CV is greater than the upper 95% confidence interval of CVs from the randomised 272 

networks. 273 

We additionally test whether the correlations between associations and interactions 274 

are different from expected if interactions occurred randomly by calculating 275 

Spearman’s rank correlation (rs) between interaction rates and association indices in 276 

both the observed and randomised interaction networks. If rs in the observed data lies 277 

within the 95% CI of rs values from the randomised networks, we do not reject the null 278 

hypothesis that interaction patterns match those expected given random interactions 279 

between associates. If the observed rs is lower than the lower 95% CI of the 280 

randomised values, the rates of social interaction between individuals cannot be 281 

directly inferred from patterns of association. We additionally compare these 282 

correlations to the null hypothesis of no correlation between the networks using Mantel 283 

tests, using the vegan package in R (Oksanen et al. 2019). Note that the Mantel test 284 

has a different null hypothesis than the randomization of the raw data. While our 285 

randomization of the raw data represents the null hypothesis that interactions occur 286 

randomly between associated individually (and thus associations reflect interactions), 287 

the Mantel test proposes the null hypothesis that association and interaction rates are 288 

independent. 289 

 290 



Comparing surfacing and contact networks 291 

Next, we investigated whether there were structural differences in the two interaction 292 

networks. We again use randomizations to test the null hypothesis that interaction 293 

types are interchangeable, using the procedure proposed by Franz & Alberts (2015). 294 

Each observed interaction is labelled according to which type of interaction it 295 

represented in the original data. Over 10,000 permutations, these labels are shuffled 296 

and the two resulting networks are calculated. We determine whether there are 297 

differences in the CV between the networks by comparing the observed difference in 298 

CV to the distribution of differences from the randomised networks as above. We test 299 

whether the networks are less correlated than expected if interaction types were 300 

interchangeable by comparing the rs between the observed networks to a distribution 301 

of rs values generated from the randomised networks, as above. We also test the 302 

correlation between these two networks against the null hypothesis of no relationship 303 

using a Mantel test. 304 

 305 

Effects of age, sex, and kinship on edge strength 306 

We next test the role of kinship, age, and sex in the structuring of edges in the 307 

association, contact, and synchronous surfacing networks. To quantify the relationship 308 

between both synchronous surfacing and contact rates and our predictors, we use 309 

generalised linear models (GLMs), with a negative binomial error structure. These 310 

models can be expressed as: 311 

𝑥𝑖𝑗  ~ NB(𝜆𝑖𝑗 , 𝜃)          (3) 312 

log (𝜆𝑖𝑗)  =  𝛽0 + 𝛽1𝑅𝑖𝑗 + 𝛽2(−|𝑎𝑖 − 𝑎𝑗|) + 𝛽3(1 − |𝑠𝑖 − 𝑠𝑗|) + log (𝑡𝑖 + 𝑡𝑗 − 𝑡𝑖𝑗)  313 



where 𝜆𝑖,𝑗 and 𝜃 are the mean and dispersion parameters for the negative binomial 314 

distribution, respectively, Rij is the estimated maternal kinship between i and j, ai is 315 

individual i’s age in years, si is the sex of individual i (0 = female, 1= male), and the 𝛽 316 

are estimated regression parameters and the term log(ti + tj - tij) is an exposure term. 317 

Similarly, we quantify the relationship between our predictors and association patterns 318 

with a beta regression model: 319 

𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑜𝑛𝑖𝑗  ~ Beta(𝜇𝑖𝑗 , 𝜙)        (4) 320 

logit(𝜇𝑖𝑗)  =  𝛽0 + 𝛽1𝑅𝑖𝑗 + 𝛽2(−|𝑎𝑖 − 𝑎𝑗|) + 𝛽3(1 − |𝑠𝑖 − 𝑠𝑗|)  321 

where 𝜇𝑖𝑗 and 𝜙 are the mean and precision parameter of the beta distribution. In this 322 

model, dyadic sampling effort was included as a proportional weight in the fitting 323 

process. As there were zeros in the association data, we transformed these values 324 

following Smithson & Verkuilen (2006): 325 

𝑦′ =  
𝑦(𝑁−1)+0.5

𝑁
         (5) 326 

Here, y are the original values, y’ are the transformed values, and N is the sample size 327 

(here, the number of dyads). We fit these models in R, using the MASS package for 328 

negative binomial regression (Venables & Ripley 2002) and the betareg package for 329 

beta regression (Cribari-Neto & Zeileis, 2010). 330 

We use a permutation procedure to determine the statistical significance of regression 331 

coefficients. We use the double-semi-partialling method developed by Dekker et al., 332 

(2007) with 10,000 randomizations, using the Wald’s Z as our test statistics. Our 333 

method is equivalent to multiple regression quadratic assignment procedure 334 

(MRQAP), but fitting GLMs instead of least squares regression. We therefore refer to 335 



this procedure as a generalised linear model quadratic assignment procedure 336 

(GLMQAP). 337 

 338 

Effects of age and sex on network centrality 339 

Finally, we determine the influence of age and sex on network centrality in our three 340 

networks. As using a large number of centrality measures can lead to false positives 341 

in statistical analyses (Webber et al. 2020), we choose just one index: eigenvector 342 

centrality. Eigenvector centrality depends on direct and indirect connectivity in the 343 

network; individuals with high eigenvector centrality have numerous, strong 344 

connections to individuals that are also well connected. In the remainder of the 345 

manuscript, we refer to eigenvector centrality scores simply as individuals’ 346 

“centrality”. 347 

We fit linear mixed effects models to identify the relationship between centrality and 348 

individual attributes. These models had the form: 349 

 log(𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦𝑖) ~ 𝑁(𝜇𝑖, 𝜎𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙)        (6) 350 

 𝜇𝑖 =  𝛽0 +  𝛽1𝑠𝑖 +  𝛽2𝑎𝑖 + 𝛽3log (𝑡𝑖) + 𝜀𝑚𝑖
 351 

𝜀 ~ 𝑁(0, 𝜎𝑚𝑎𝑡𝑟𝑖𝑙𝑖𝑛𝑒)  352 

Here ε is a matriline-level random effect (with mi indicating matriline membership), 353 

controlling for correlations in social network positions between matriline members 354 

(Williams & Lusseau 2006), and the terms a, s, and t are as in equation 3. The term 355 

for log(ti) is used here to correct for the effect of sampling intensity on centrality 356 

measures (Franks & Weiss et al. 2021). Using the logarithm of centrality improved 357 

the data’s adherence to the model’s assumptions of normally distributed residuals 358 

and linearity, and initial visual examination suggested a log-log relationship between 359 



centrality and sampling intensity was appropriate across all three networks. These 360 

models were fit using the lme4 R package (Bates et al. 2015). 361 

We test our regression coefficients using a double-semi-partialling permutation 362 

procedure (Dekker et al. 2007), with permutation constrained within matrilines. We 363 

compare the observed t-values to 10,000 permutations to derive p-values. We do not 364 

test for interactions between age and sex, as double semi-partialling cannot test 365 

interaction effects. 366 

 367 

Data accessibility 368 

The processed contact, surfacing, and association networks, measures of dyadic 369 

sampling effort, estimated maternal kinship, individual attributes, and functions to 370 

conduct GLMQAP and general double-semi-partialling are included in the “aninet” R 371 

package on GitHub (https://github.com/MNWeiss/aninet). The raw time-series of 372 

detections and interactions, and R code necessary to reproduce all analyses, are 373 

available in the online supplementary material. 374 

 375 

Results 376 

Data description 377 

Over 10 days of sampling, we collected a total of 651 minutes of video. During this 378 

footage, a median of 4 individuals were visible at any given time (interquartile range = 379 

3). All individuals were observed on at least 3 different days, and each individual whale 380 

was videoed for a mean of 125.96 minutes (SD = 57.65). Each pair of animals was 381 

observed for an average of 213.68 minutes total (SD = 58.17). While a relatively short 382 

https://github.com/MNWeiss/aninet


period, this is an increase in sampling relative to the only other study using UAS to 383 

construct cetacean social networks (Hartman et al. 2020). We estimate that the 384 

observed interaction rates were strongly correlated with the true interaction rates 385 

(contact rest = 0.98; surfacing rest = 0.98). During our observations, we recorded 831 386 

instances of physical contact between individuals, and 1617 synchronous surfacing 387 

interactions (Table S1). Contact and synchronous surfacing behaviours did not tend 388 

to occur simultaneously; 1.5% of contacts occurred within one second of the same 389 

pair synchronously surfacing. Pairs of whales were visible simultaneously for an 390 

average of 38.24 minutes (SD = 30.61). 391 

 392 

Comparing interactions to association patterns 393 

Rates of both interaction types were significantly more varied than expected given 394 

random interactions between associates (surfacing: Observed = 2.31, 95% CI 395 

Random = [1.09, 1.23], p < 0.001; contact: Observed = 2.46, 95% CI Random = [1.27, 396 

1.47], p < 0.001). Both interaction networks were significantly positively correlated with 397 

the association network under the null hypothesis of no relationship (surfacing: rs = 398 

0.79, p < 0.001; contact: rs = 0.59, p < 0.001). The interaction networks were, however, 399 

significantly less strongly correlated with the association network than expected if 400 

interactions occurred randomly between associates (surfacing: 95% CI random rs = 401 

[0.85, 0.90], p < 0.001; contact: 95% CI random rs = [0.70, 0.78], p < 0.001). 402 

 403 

Comparison of interaction types 404 

Rates of the two interaction types did not have statistically significant differences in 405 

their coefficients of variation. (Observed difference in CV = 0.23, 95% CI Random = [-406 



0.17, 0.24], p = 0.07). The two networks were more correlated than expected under 407 

the null hypothesis of no relationship between contact and surfacing rates (rs = 0.72, 408 

p < 0.001), but significantly less correlated than expected if the two interaction types 409 

were interchangeable (95% CI Random = [0.80,  0.87], p < 0.001). 410 

 411 

Influence of age, sex, and kinship on edge strength 412 

As expected, maternal kinship was an important predictor of association and 413 

interaction rates across all three networks (all p < 0.001; Table S3). In the 414 

association network, neither age similarity nor sex similarity predicted edge weights. 415 

In both interaction networks, however, interaction rates were significantly related to 416 

age similarity (surfacing: β = 0.06 ± 0.01, Z = 5.32, p = 0.005; contact: β = 0.12 ± 417 

0.02, Z = 6.82, p < 0.001) and sex similarity (surfacing: β = 0.60 ± 0.20, Z = 2.98, p = 418 

0.02; contact: β = 1.27 ± 0.28, Z = 4.58, p = 0.002). 419 

 420 

Influence of age and sex on social centrality 421 

Across all three networks, increased sampling intensity was related to greater 422 

observed centrality (all p < 0.04, Table S4). In the synchronous surfacing and 423 

association network, we found no evidence that age or sex influenced centrality (all p 424 

> 0.05; Table S4). However, in the contact network, we found statistically significant 425 

effects of age and sex on centrality. There was a negative correlation between age 426 

and centrality (β = -0.03 ± 0.01, t = -3.30, p = 0.006), and males were less central 427 

than females (β = -0.58 ± 0.16, t = -3.59, p = 0.004). 428 

 429 



Discussion 430 

In this study, we observed direct social interactions in a killer whale pod to better 431 

understand the role of age and sex in structuring social relationships. Associations 432 

were not strongly organized by age or sex, but were primarily structured by matrilineal 433 

kinship. In contrast, both synchronous surfacing rates and physical contact rates 434 

showed significant assortment by age and sex. In addition, we found evidence that 435 

younger individuals and females were particularly central in the contact network, 436 

suggesting age and sex related variation in social strategies, a pattern that was not 437 

clear in the association or synchronous surfacing networks. 438 

The potential issues with using association to quantify social structure have been 439 

extensively debated in the methodological literature (Whitehead & Dufault 1999; 440 

Castles et al. 2014; Farine 2015; Carter et al. 2015), however they have rarely been 441 

addressed in cetaceans and other aquatic species (but see Leu et al. 2020 and 442 

Lusseau 2007) or in the context of detecting the influence of individual attributes on 443 

network structure. Our results demonstrate how inferences about network structure in 444 

relation to individual characteristics can be missed when using association indices as 445 

a proxy for interaction rates. The effects of age and sex on the strength of network 446 

edges were only clear when analysing interaction rates, rather than associations, 447 

supporting previous studies which found no assortment by age or sex in killer whale 448 

association networks across multiple populations (Williams & Lusseau 2006; Esteban 449 

et al. 2015; Tavares et al. 2017). This suggests that while age and sex are important 450 

determinants of social interactions, these effects are difficult or impossible to detect 451 

from association patterns. While physical contact and synchronous surfacing were 452 

highly correlated, they were not interchangeable, and age and sex effects on social 453 

centrality were only found in the contact network. This suggests that physical contacts, 454 



which can only be consistently observed from the air in this system, may provide 455 

greater power for analysing individual social affiliations. This result adds to a growing 456 

body of work demonstrating the power of UAS for studying cetacean sociality 457 

(Hartman et al. 2020; Nielsen et al. 2019; Ramos et al. 2020). 458 

There are several mechanisms that could drive the observed correlations between 459 

age, sex, and social structure. One hypothesis relates to energetics and behavioural 460 

budget, a factor that has frequently been proposed to explain sexual segregation in 461 

terrestrial ungulates (Ruckstuhl 2007). Adult male killer whales are considerably larger 462 

than females, and thus have greater energetic requirements (Noren 2011) and spend 463 

more time foraging (Tennessen et al. 2019), which may drive males’ lower social 464 

centrality. This may also lead to decoupled behavioural states between the sexes, 465 

contributing to assortment by sex in the interaction networks. Similarly, young 466 

individuals have a large portion of their energetic needs met by nursing (Newsome et 467 

al. 2009) or from prey sharing (Wright et al. 2016), which may lead to greater time 468 

spent socializing, primarily with other young individuals. Further work may shed light 469 

on how killer whale groups, which are composed of individuals with highly 470 

heterogenous energetic requirements, maintain cohesion. 471 

The finding that killer whales become less social as they age aligns with social life 472 

histories found in other social mammals. In humans and non-human primates, 473 

individuals become less social and maintain fewer relationships as they age, 474 

potentially due to adaptive social selectivity or senescence (Machanda & Rosati 2020; 475 

Wrzus et al. 2013). Our results suggest that decreased sociality with age may be more 476 

widespread among social mammals, including killer whales. This apparent simiarlity 477 

between primate and killer whale social life history is particularly interesting given the 478 

convergent reproductive life histories in killer whales and humans (Johnstone & Cant 479 



2010). Individuals may also actively form important relationships and social skills at a 480 

young age, as in other matrilineal societies (Chiyo et al. 2010; Goldenberg et al. 2016). 481 

While further work is needed to explore these and other possible mechanisms, our 482 

results demonstrate that killer whales may be a powerful system for testing hypotheses 483 

about the evolution of sex differences in sociality and social life histories in mammals. 484 

These results may also have conservation implications for this population. Previous 485 

studies have highlighted the potential role of infectious disease risk in killer whale 486 

population dynamics (Gaydos et al. 2004; Raverty et al. 2017), and both contact and 487 

synchronous surfacing have been identified as disease transmission pathways in 488 

cetaceans (Leu et al. 2020). Our results suggest that young, female individuals may 489 

be at greater risk of exposure to skin-borne pathogens, such as cetacean poxvirus 490 

(Van Bressem et al. 1999). The assortment of both synchronous surfacing and 491 

physical contact by age and sex suggests that the impacts of any given disease 492 

outbreak may be spread unevenly between demographic classes, spreading to 493 

individuals of similar age and sex of the initially infected whale. 494 

A limitation of the current study and method is that social interactions can only be 495 

observed by UAS when they occur relatively close to the surface. In addition, only a 496 

single social group was studied. Further studies using animal-borne devices may 497 

provide additional data on interactions that occur deeper in the water column, and 498 

analysing the full population may reveal further patterns. 499 

Our results demonstrate how potentially important patterns in social relationships may 500 

only emerge at very fine scales. As association-based social networks are ubiquitous 501 

in studies of numerous terrestrial and aquatic systems, our results strongly suggest 502 

that, where possible, association data should be combined with analyses of relevant 503 



social interactions when analysing social relationships. In particular, when individual 504 

movement patterns are primarily governed by membership to stable social units, 505 

analysing direct interactions may be crucial for uncovering individual level drivers of 506 

social structure. 507 
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 726 

Figures 727 

 728 

Figure 1. Observing killer whale social interactions using UAS. A-B: The aircraft is 729 
flown over focal killer whale sub-groups (A). All individuals detected simultaneously 730 
were considered to be associated, and both synchronous surfacing and physical 731 
contact interactions were recorded between identified individuals (B). C-D: Example 732 
video stills of synchronous surfacing between individuals J36 and J47 (C) and physical 733 
contact between individuals J44 and J53 (D). Killer whale side profiles based on 734 
illustration by Chris Huh, used under a CC BY-SA 3.0 license 735 
(https://creativecommons.org/licenses/by-sa/3.0/). 736 

https://creativecommons.org/licenses/by-sa/3.0/


 737 

Figure 2. Network structure and social centrality in a resident killer whale pod. Panels 738 
show sociograms (top) and eigenvector centrality measures (bottom) for (from left to 739 
right) association, synchronous surfacing, and physical contact networks. Edge 740 
thicknesses in the sociograms are proportional to association or interaction rate, and 741 
nodes are placed according to the ForceAtlas2 algorithm (Jacomy et al. 2014). Across 742 
all plots, node shape indicates sex and node color indicates matriline membership, 743 
and node size in the sociograms indicates individual age (as shown in the legend). 744 
Note the log scale for the y-axis in the lower plots.  745 
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Supplemental materials for: 754 

Age and sex influence social interactions, 755 

but not associations, within a killer whale 756 

pod 757 

Supplementary methods 758 

Estimating maximum distance captured 759 

We use the field of view of the camera lens and the flight records stored by the UAS 760 

to estimate the maximum distance between any two points in the video. Given the 761 

drone’s vertical field of view θ and horizontal field of view ϕ (in degrees), the drone’s 762 

altitude w (in meters), and the camera gimbal’s pitch p (in degrees from a straight 763 

down view), we estimate the locations of the corners of the frame relative to the 764 

drone, which we set as the origin. 765 

We first calculate the distance to the top of the screen y1 and the bottom of the 766 

screen y2: 767 

𝑦1 = tan (𝑝 +  
𝜃

2
) 𝑤  768 

𝑦2 = tan (𝑝 −  
𝜃

2
) 𝑤  769 

The widths of the top of the frame (a) and the bottom of the frame (b) can then be 770 

calculated as: 771 

𝑎 = 2 ∙ tan (
𝜙

2
) √𝑦1

2 + 𝑤2  772 

𝑏 = 2 ∙ tan (
𝜙

2
) √𝑦2

2 + 𝑤2  773 



The x coordinates for the top two corners of the frame are then {-a/2, a/2}, while the 774 

x coordinates of the bottom two corners are {-b/2, b/2}. We then have our four points 775 

x = {-a/2, a/2, -b/2, b/2}, y = {y1, y1, y2, y2}. We measure the distances between all 776 

four points, recording the maximum distance. We record this for all flight records 777 

during the study period during which the video was active, and report the median 778 

along with the 25% and 75% quantiles. 779 

 780 

Bout analysis 781 

In order to test whether interactions could be broken into bouts, we measured the 782 

waiting times between observed interactions between dyads in each video clip. If 783 

interactions between dyads occurred in bouts, we would expect these waiting times 784 

to arise from a mixture of two exponential distributions, one representing the waiting 785 

time within bouts, and the other representing waiting times between bouts. In 786 

contrast, if interactions did not occur in bouts, we expect these waiting times to fit a 787 

single exponential distribution (Langton et al. 1995). We fit these two models in the 788 

flexmix package in R (Gruen & Leisch 2008). For both interaction types, we then 789 

compare these models using the Bayesian information criteria (BIC). Lower values of 790 

BIC indicate that the model is a better fit to the data, penalized for model complexity. 791 

In both interaction types, model comparisons suggested that the mixture of two 792 

exponential distributions fit the data less well than the single exponential distribution, 793 

with differences in BIC > 10 (Table S2). We therefore analysed each interaction as 794 

an independent event, rather than measuring bouts of interaction. 795 

 796 

 797 

 798 



Table S2. Model selection for exponential mixtures 799 

Interaction type Model BIC 

Synchronous surfacing 
Single exponential 6679.487 
Two exponentials 6692.541 

Physical contact 
Single exponential 3806.613 
Two exponentials 3818.561 

 800 

 801 

Estimating reliability of interaction networks 802 

We assume that our observed interaction counts x are drawn from a Poisson 803 

distribution where the rates themselves are drawn from a gamma distribution with 804 

shape parameter k and scale parameter θ. The expected number of observed 805 

interactions is then the true rate multiplied by the sampling time (tij). 806 

𝑥𝑖𝑗  ~ Poisson(𝜆𝑖𝑗𝑡𝑖𝑗)  807 

𝜆𝑖𝑗 ~ Gamma(𝑘, 𝜃)  808 

We are interested in estimating the correlation between the true rates λij and the 809 

estimated interaction rates 
𝑥𝑖𝑗

𝑡𝑖𝑗
. 810 

We estimate the parameters of the underlying Gamma distribution by fitting a 811 

negative-binomial distribution with mean μ and dispersion ф to the observed 812 

interaction counts: 813 

𝑥𝑖𝑗  ~ NB(𝜇𝑡𝑖𝑗 , 𝜙)  814 

We use our negative binomial fit to extract the estimated shape and scale 815 

parameters of the underlying Gamma distribution: 816 

𝑝 =  
𝜙

𝜙+ 𝜇
  817 



𝜃 =  
1−𝑝

𝑝
  818 

𝑘 =  𝜙  819 

The mean and variance of the underlying Gamma distribution are then 820 

Mean(𝜆) = 𝑘𝜃  821 

Var(𝜆) = 𝑘𝜃2  822 

Therefore, the coefficient of variation of the true interaction rates (social 823 

differentiation, S) is: 824 

𝑆 =  
√𝑘𝜃2

𝑘𝜃
=  

1

√𝑘
  825 

Following equation 4 in Whitehead (2008), we then estimate the correlation between 826 

the observed and estimated interaction rates (rest) as 827 

𝑟𝑒𝑠𝑡 =  √
1

1+ 
1

𝑆2×𝐺

  828 

where 829 

𝐺 =  
∑ ∑ 𝑥𝑖𝑗𝑗𝑖

𝑁(𝑁−1)
  830 

In order to assess whether this a reasonable estimate, we plot the empirical 831 

distribution of interaction rates against the estimated gamma distributions. For both 832 

interaction rates, the fitted Gamma distributions appear to be reasonable 833 

approximations of the empirical interaction rates, allowing for sampling noise (Figure 834 

S1). 835 

 836 

 837 



 838 

Figure S1. Empirical distributions of interaction rates compared to fitted gamma 839 

distributions. Grey histograms indicate the observed distribution of estimated 840 

interaction rates, and the red lines are the estimated density of the Gamma distribution 841 

fit using maximum likelihood. 842 

 843 

Permutation analysis for centrality in mixed effect models. 844 

We adopt a double-semi-partialling approach for testing the fixed effects in our mixed 845 

effect models of social centrality. For each fixed predictor X, we partial out the 846 

covariance between X and all other fixed predictors Z by fitting the linear model 847 

𝑋 =  𝛽𝑍 +  𝜀  848 

and extracting the residuals ε. We then replace X with ε in the original model, and 849 

carry out 10000 permutations of these residuals. To account for matriline 850 

membership, we permute these residuals within matriline. We repeat this procedure 851 

for each predictor, using the t-value as the test statistic to derive p-values for all fixed 852 

predictors. 853 
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Supplementary results 855 

 856 

Table S1 Summary of attributes and observation effort for each individual in J pod in 857 
the summer of 2019. 858 

Matriline ID Birth Year Sex 
Observation 
time (min) 

Sync. 
surfacings 

Contacts 

J11 

J27 1991 M 85 63 4 

J31 1995 F 206 315 91 

J39 2003 M 121 77 45 

J56 2019 F 203 302 141 

J14 

J37 2001 F 137 232 119 

J40 2004 F 173 218 114 

J45 2009 M 134 134 58 

J49 2012 M 163 195 95 

J16 

J16 1972 F 28 18 9 

J26 1991 M 46 14 17 

J36 1999 F 37 29 28 

J42 2007 F 34 20 20 

J17 

J35 1998 F 166 227 105 

J44 2009 M 159 139 75 

J46 2009 F 219 259 190 

J47 2010 M 145 163 99 

J53 2015 F 181 223 190 

J19 

J19 1979 F 86 50 15 

J41 2005 F 131 219 120 

J51 2015 M 140 176 78 

J22 
J22 1985 F 77 93 30 

J38 2003 M 99 68 32 
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 864 



Table S3. GLMQAP results for each response network. 865 

Response Family Predictor Estimate Std. Error Z p* 

Association 
 
Beta 
 

Kinship 3.54 0.48 7.38 <0.001 

Age similarity 0.02 0.01 4.00 0.071 

Sex similarity 0.14 0.11 1.33 0.188 

Synchronous 
surfacing 

Negative 
binomial 

Kinship 6.40 0.46 13.91 <0.001 

Age similarity 0.06 0.01 5.32 0.005 

Sex similarity 0.60 0.20 2.98 0.020 

Physical 
contact 

 
Negative 
binomial 
 

Kinship 8.91 1.12 7.97 <0.001 

Age similarity 0.12 0.02 6.82 <0.001 

Sex similarity 1.27 0.28 4.58 0.002 

*p-values derived from 10,000 permutations of predictor residuals 866 

 867 

Table S4. Regression analysis of eigenvector centrality. 868 

Network Predictor Estimate Std. Error t p* 

Association 

Sampling 0.44 0.14 3.15 0.038 

Age 0.00 0.003 0.09 0.965 

Sex -0.01 0.06 -0.11 0.808 

Synchronous 
surfacing 

Sampling 1.68 0.21 7.89 0.011 

Age -0.01 0.01 -0.94 0.300 

Sex -0.34 0.17 -2.01 0.066 

Physical contact 

Sampling 1.88 0.35 5.40 < 0.001 

Age -0.03 0.01 -3.30 0.006 

Sex -0.58 0.16 -3.59 0.004 

*p-values derived from 10,000 permutations of predictor residuals within matrilines 869 
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