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Abstract: 9 

The inclusion of photovoltaic (PV) technologies add extra functionalities in a building by replacing 10 

the conventional structural material and harnessing benign electricity aesthetically from PV. Building 11 

integration (BI) and building attached / applied (BA) are the two techniques to include PV in a 12 

building. Currently, first, and second-generation PV technologies are already included for BIPV and 13 

BAPV application in the form of wall, roof, and window whereas third generation PVs are under 14 

rigours exploration to find their potential suitability. To alleviate enhanced temperature from both 15 

BIPV and BAPV, active and passive cooling can be introduced, however passive techniques are 16 

influential in trimming down the temperature for retrofit building. Shading from snow, dust cover and 17 

nearby building can be an obstacle for BIPV/BAPV application. The hydrophobic (icephobic) self-18 

cleaning coating is suited for snow covering PV while hydrophobic and hydrophilic are both 19 

applicable for anti-soiling. Electric vehicles, autonomous switchable glazing, low heat loss glazing 20 

and lightweight BIPV are the different future application for PV in BI and BA integration.  21 

Highlights: 22 

• A review about building integrated/ attached photovoltaic is presented 23 

• Different possible PV application in building has been discussed 24 

• Issues associated with BIPV/BAPV system has been critically reviewed 25 

• Potential future BIPV application has been introduced.  26 

 27 

Keywords: BIPV, glazing, energy, temperature, zero energy, dust, snow, shading, PCM, active, passive 28 

 29 

1. Introduction  30 

1.1. Necessity of BIPV/BAPV 31 

It is expected that in 2035 the world energy consumption can be increased up to 50% compared to 32 

1990 due to urbanization and rapid population growth, which will have an impact on the consumption 33 

of building energy. Presently buildings consume 40% energy globally due to heating, cooling and 34 

artificial lighting loads by the exploitation of fossil fuel (Belussi et al., 2019; Cao et al., 2016; Lu and 35 
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Lai, 2019; Y. Zhou et al., 2019)(Ng and Mithraratne, 2014a). Thus, the environment is greatly 36 

affected by the emitted pollutant gas during the energy generation process. Energy consumptions and 37 

greenhouse gasses (GHG) emission from building sector in megacities such as New York, San 38 

Francisco, Tokyo, Hongkong are much higher than even their transport sectors (IPCC, 2014)(Yoo, 39 

2019). International roadmaps target to convert all high energy consumed buildings to zero-energy or 40 

net-zero energy building by replacing the energy generation from green sources over fossil fuel 41 

sources (Bauer and Menrad, 2019; Jacobson et al., 2017; Taveres-Cachat et al., 2019). In Europe, to 42 

fulfil these targets, the new building will be built as near-zero energy consumption by the end of 2020. 43 

By 2050, the UK government has set the ambition of reducing national emissions by 80% (García 44 

Kerdan et al., 2016) which was later modified and aimed for a more ambitious zero-emission target 45 

(The Lancet, 2019). In Asia, Japan has set that all new public buildings by 2020 and all new 46 

residential buildings by 2030 should be zero energy. In the USA, new residential construction should 47 

be zero energy by 2020, and by 2030 all-new commercial construction should be zero energy (Hu and 48 

Qiu, 2019). To achieve this, primary energy use in buildings should be reduced by using an energy-49 

efficient building envelope (Lufkin, 2019).  50 

Photovoltaic (PV) technologies are one of the potential candidate which generates benign energy by 51 

harnessing abundant, inexhaustible, clean solar power (van Sark et al., 2010)(Jäger-Waldau et al., 52 

2020). At the end of 2018, global installed PV capacity exceeded over 500 GW (Haegel et al., 53 

2019)(Kurtz et al., 2020). The worldwide PV technology market is expected to grow at a 1.7% 54 

compound annual growth rate which shows an increment of 46700 million US$ in 2024 from 42100 55 

million US$ in 2019 (Research, 2020). In Europe, 40% electricity demand by 2020 can be achieved 56 

by 1400 TWh electricity production from 1500 GWp installed PV plant which requires 22000 km2 57 

ground floor area, 40% of existing building’s roof and 15 % of façade buildings (Hachana et al., 58 

2016). Use of PV device in a building replaces the actual dead load of the building, i.e., walls, 59 

rooftops made with concrete, generates building energy from fossil-fuel free sources which in turn 60 

offers a pollution-free environment (Norton et al., 2011). In addition, this can introduce daylighting 61 

by replacing opaque building façade which can save 50-80% artificial lighting (Bodart and De Herde, 62 

2002), 11% cooling load and 13% electricity consumption for an office building (Lam and Li, 1999). 63 

Addition of PV over a glass, steel and other common cladding material, increase the marginal extra 64 

cost only between 2-5% (Paul et al., 2010). Primarily, the inclusion of PV in a building is possible by 65 

building integration (BI) or building attached or applied (BA) techniques (Cronemberger et al., 2014). 66 

1.2. Overview of BIPV/BAPV 67 

Building integrated photovoltaic (BIPV) is an integral part of a building which substitute or replace 68 

the traditional building materials or envelopes such as roof, window, atria and shading elements, 69 

components by PV and concomitantly generates benevolent electricity at the point of use (Peng et al., 70 

2011). Glass on glass type semi-transparent type BIPV structure is attractive due to its ability to allow 71 

daylighting into indoor space and control over solar gain and offers to view from interior to the 72 

exterior (Reddy et al., 2020). Semi-transparent BIPV is also promising for large glazed façade 73 

architecture. However, damaged BIPVs have direct access to the internal function of the building 74 

(Wang et al., 2006).  75 

The building attached/applied photovoltaic (BAPV) does not replace the construction component, can 76 

be rack-mounted or standoff arrays type, opaque in nature and are only employed for power 77 

generation and do not contribute to any heat gain into building interior, rather it alleviates heat gain by 78 

generating shading the roof or wall from direct solar heat (Peng et al., 2011). Thermal regulation of 79 

BAPV systems is straightforward compared to BIPV due to available space between PV systems and 80 

building skin. Comparison between BIPV and BAPV is documented in Table 1. 81 
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Table 1: Comparison of BIPV and BAPV system (Shukla et al., 2018) 82 

Property Building integrated 
photovoltaics 

Building applied photovoltaics 

Integration  Integrated directly within the 
building structures like roof or 
façade  

Indirect integration by using 
mounting hardware and roof 
perforations 

Weight Lightweight and heavyweight Heavyweight 
Stability Durable Breakable 
Wind effect Highly resistance to winds Lift or drag is possible 
Visual impact Aesthetically pleasing Clunky looking 
 83 

BIPV and BAPV both generate onsite clean energy which reduces the transmission and distribution 84 

losses. Absence of moving part makes it silent, and no hazardous comes out during operation 85 

(Scognamiglio, 2017; Scognamiglio and Rostvik, 2013). BIPV has triple-point effect as it maintains 86 

day-lighting, controls thermal transmittance and generates electricity.  Performance of BIPV and 87 

BAPV both depends on the different selection criteria as shown in Figure 1; however, the most 88 

indispensable parameters are local meteorological conditions, the tilt angle and the type of material. 89 

To obtain electricity from BIPV and BAPV systems, a converter is required to alter direct current 90 

(DC) to alternating current (AC) for building and grid both application (Norton et al., 2011). The main 91 

component of a BIPV/BAPV system is PV devices which are made from PV cells. Other necessary 92 

components of BIPV/BAPV systems are referred as a balance of systems (BOS) which includes an 93 

inverter, storage device (battery), switches for control, electrical wiring, and support structure (Shukla 94 

et al., 2016a) (Benemann et al., 2001)(Spiliotis et al., 2019) (Saretta et al., 2020). Application 95 

possibilities of BIPV and BAPV systems are shown in Figure 2.  96 

 97 

 98 
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 99 

Figure 1: Best selection methods for BIPV. Redrwan from (Alim et al., 2019).  100 

 101 

 102 
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103 
Figure 2: Application of different BIPV and BAPV systems in building (Photo taken from 104 

(Cronemberger et al., 2014)). (Image source: SDEurope) 105 

Due to the present interest of BIPV/BAPV systems, several researchers made high-quality review 106 

work. Tripathy et.al. reviewed and mentioned the state-of-the-art of the building envelope products 107 

and their properties along with international standards and test conditions, which suggested that the 108 

roof-integrated BIPV is lucrative for experiencing uninterrupted incident solar radiation. 109 

Monocrystalline PV is responsible for generating much higher greenhouse gasses compared to other 110 

PV technologies while life cycle was considered. This work lacks abysmally from providing 111 

information on emerging new BIPV application and also shading from snow and dust accumulation 112 

(Tripathy et al., 2016). BIPV and its thermal regulation using BIPVT applications have been reviewed 113 

in terms of energy generation amount, nominal power, efficiency, type and performance assessment 114 

approaches (Biyik et al., 2017). Advancement of dye-sensitized PV based BIPV application has been 115 

reported in this work. However, emerging new BIPV technologies are missing from this work (Biyik 116 
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et al., 2017). Another BIPV and BIPVT review documented that BIPVT system is the future for less 117 

energy-hungry building application (Debbarma et al., 2016). Seretta et.al. summarised  literature 118 

review for building energy demand in urban area and retrofit rate of BIPV and predicted that these 119 

two disciplines could merge together where multifunctional BIPV element improve building’s energy 120 

performance and produce electricity from solar radiation in urban contexts (Saretta et al., 2019).  121 

Shukla et.al. reviewed the properties of BIPV products such as foil, title, module, glazing and BAPV 122 

system were investigated based on PV performance parameters (efficiency, open-circuit voltage, short 123 

circuit current, maximum power, fill factor ), and their life cycle was assessed by considering energy 124 

payback time and GHG emission (A. K. Shukla et al., 2017a). 125 

In this review, a detailed application of BIPV and BAPV system, their advantages and challenges 126 

associated with this application and solution for these obstacles are presented. Potential future 127 

application has been documented in this work which transforms this review to a unique study.  128 

2. PV technology for BIPV and BAPV 129 

PV technologies for three different generations have been included in this section where first and 130 

second generations are already exploited for BIPV, and BAPV application and third generations are 131 

under exploration for their potential integration (Nayak et al., 2019; Sinke, 2019). 132 

2.1. First-generation crystalline silicon PV cell  133 

Crystalline silicon (c-Si) (as shown in Figure 3) PV cells are produced from silicon wafers and can be 134 

subcategorized into single /monocrystalline (m-Si) and multi/polycrystalline (p-Si). c-Si PV 135 

technology is mature, non-toxic, abundant and possess long term performance (Battaglia et al., 2016; 136 

Glunz et al., 2012; Zarmai et al., 2015).  Monocrystalline cells are produced by the Czochralski 137 

process from single silicon crystals which are expensive manufacturing methods due to precise 138 

processing requirement form large single crystals. The efficiency of the monocrystalline type lies 139 

between 17%-18% (Saga, 2010; Sharma et al., 2015). Polycrystalline type of cells is produced by 140 

molten silicon solidification. The efficiency of this type of cells is between 12%-13%. c-Si PV shows 141 

20-30 years of durability under outdoor exposure (Aste et al., 2016; Rand et al., 2007). High 142 

durability and mature technology make c-Si suitable for BIPV and BAPV systems application. Silicon 143 

prices which rose steeply between 2000 to 2008 with a peak of $475/kg, also declined rapidly in the 144 

last decade having steady prices of approximately $25/kg (Fu et al., 2015). It is estimated that globally 145 

c-Si PV market would reach $163 billion by 2022, which is 11.3%  enhancement from the 2016 level. 146 

Energy payback period lies between 3-4 years for this type of technology (Luo et al., 2018; Ogbomo 147 

et al., 2017). Canadian Solar, JA Solar, JinkoSolar, Hanwha Q-CELL, LONGI, Tongwei, Trina Solar 148 

are the present leading vendor for first-generation crystalline silicon PV cells. 149 

 150 

Jo
urn

al 
Pre-

pro
of



7 

 

 151 

Figure 3: Crystalline silicon (a) mono and (b) poly type. (Image courtesy: SHINESOLAR and DH-152 

SOLAR) 153 

2.2. Second generation thin film technology  154 

Cadmium telluride (CdTe), copper indium gallium selenide sulphide (Cu (In, Ga)Se2, CIGS) and 155 

amorphous silicon (a-Si) are the second generations thin film technology which has low 156 

manufacturing cost and low-temperature coefficient compared to crystalline silicon solar cell (Tossa 157 

et al., 2016). However, low solar to electrical conversion efficiency compared to crystalline silicon 158 

PV cell and performance degradation after long-term outdoor exposure (Jordan and Kurtz, 2013; 159 

Muñoz-García et al., 2012) is the significant barrier of using this technology. Irradiance, spectrum, 160 

angle of incidence, ambient temperature and wind speed also affect the performance of thin-film 161 

technologies in a similar way to c-Si technology; however, the temperature dependence is weaker in 162 

comparison to c-Si technologies. These technologies absorb the solar spectrum much more efficiently 163 

than single crystalline or multi-crystalline and use only 1–10 µm of active material (Shukla et al., 164 

2016b, 2016a) 165 

2.2.1. Amorphous silicon (a-Si) 166 

a-Si PV absorbs a higher amount of solar radiation than c-Si because of the absence of the crystalline 167 

structure (Muñoz-García et al., 2012). Low-temperature coefficients of a-Si cells make it a potential 168 

candidate than c-Si cells in summer and warm climate (Ruther and Livingstone, 1995)(Virtuani and 169 

Strepparava, 2017). Due to the Staebler–Wronski effect, a-Si shows light-induced metastability which 170 

requires time to produce a sufficient amount of power from a-Si PV (Matsui et al., 2018; Staebler and 171 

Wronski, 1977). Spectral changes of terrestrial insolation in summer and winter remarkably 172 

influences the changes of efficiencies for a-Si (Eke et al., 2017; Polo et al., 2017; Ruther and 173 

Livingstone, 1995). Investigation in India showed that a-Si module offered 14% higher energy than p-174 

Si in summer while 6% less in winter (Sharma et al., 2013). Experiment results from Spain also 175 

supported that argument (Cañete et al., 2014). Spectral variation of external incident solar radiation 176 

has an adverse impact on fill factor (FF) (FF depends on both quality and quantity of solar radiation) 177 

of an a-Si PV cell. Blue spectra have a positive impact, while red spectra reduce the FF (Rüther et al., 178 

2002). Device flexibility, low-temperature processing, low negative temperature coefficient of a-Si 179 

has created commercial interest significantly for BIPV applications (Stuckelberger et al., 2017). To 180 

rectify a-Si’s light-induced degradation, tandem amorphous/microcrystalline silicon thin-film PVs 181 

have also been investigated (Tsai and Tsai, 2019). Figure 4 shows the a-Si PV module integrated into 182 

a building. The energy payback time and operational lifetime of a-Si PV are 2-3 years and 25 years, 183 

respectively (Peng et al., 2013a; Zhang et al., 2018; Zhou and Carbajales-Dale, 2018). Presently they 184 

have a market share of 5% (Ogbomo et al., 2017).  185 
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 186 

Figure 4:  Photograph of an a-Si integrated to a building and viewing through a-Si PV from building 187 

interior to exeterio. (Liao and Xu, 2015). 188 

2.2.2. Cadmimum teluride (CdTe) 189 

In cadmium telluride (CdTe) PV cells, consist cadmium which is a by-product of zinc and telluride. 190 

Cadmium (Cd) is a heavy metal and has a potential toxic property for human, animals and plants. 191 

CdTe contains ≤7 g of elemental Cd in per square metre of PV cell compared to average single-cell 192 

nickel-cadmium battery (Kuhn et al., 2016; Kuribayashi et al., 1983; Ogbomo et al., 2017; Rodriguez 193 

et al., 1995; Shukla et al., 2016b, 2016a). The second material, telluride (Te), is scarce and as rare as 194 

platinum in nature which increases the price of the CdTe PV cell. The limited supply of Cd and its 195 

potential environmental hazards are the main issues with this technology (Fthenakis, 2004; Raugei et 196 

al., 2012). Thus recycling and disposal of CdTe cells are expensive (Sethi et al., 2011). Although the 197 

Cd element is hazardous, however, the compound CdTe used in PV cells is much more 198 

environmentally benign. CdTe thin-film PV was commercialized in 2001 which had power density 199 

between 62.5 W/m2 to 76.38 W/m2 and the efficiency for this 55 Wp module had 8% (Enríquez and 200 

Mathew, 2003; Lee and Ebong, 2017). CdTe type PV cell has a theoretical efficiency limit of 29% 201 

(Dobson et al., 2000). Synthesization of CdTe became popular after the development of screen 202 

printing, vacuum evaporation and electron deposition techniques (Virtuani et al., 2011). It is 203 

recommended that the CdTe PV module should be kept under direct sunlight for four hours before 204 

taking the measurements (Muñoz-García et al., 2012). Long term (23 months) outdoor analysis in 205 

tropical climate (Delhi 28.70° N, 77.10° E, India, as shown in Figure 5) showed 2.91% open circuit 206 

voltage deviation, and no deviation was found for short circuit current (Rawat et al., 2018). The 207 

energy payback time of CdTe varies between 0.75 to 2 years while operational lifetime is 20 years 208 

(Peng et al., 2013a; Zhang et al., 2018; Zhou and Carbajales-Dale, 2018; Zidane et al., 2019). 209 

Presently they have a market share of 5% (Ogbomo et al., 2017).  210 

 211 

 212 
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Figure 5: Layer diagram and experimental test setup of CdTe module (Rawat et al., 2018) 213 

2.2.3. Copper indium gallium diselenide (CIGS) 214 

Copper indium gallium diselenide (CIGS) PV cells as shown in Figure 6 comprises of the four 215 

elements, namely: Copper, Indium, Gallium and Selenium (Dhere, 2011; Kazmerski et al., 1976). 216 

Gallium-free variants of the semiconductor material are abbreviated as CIS. The manufacturing cost is 217 

lower than the crystalline silicon PV cells but more expensive than other single-junction thin-film cell 218 

like cadmium telluride. 219 

 220 

Figure 6: Large scale CIGS PV module [taken from (Delgado-Sanchez et al., 2017)] 221 

CIGS PV technology has average production efficiencies between 12% to 15% for commercial 222 

modules and achieved a record efficiency of 22.3% in the laboratory. Degradation rates of CIGS are 223 

the most significant challenge (Theelen et al., 2015). Through the simulation process, it is predicted 224 

that CIGS modules will still yield 80% of their initial power after 20 years of field exposure. 225 

However, a real-time experiment is required to prove this (Yalçin and Öztürk, 2013) hypothesis. 226 

Results from different outdoor experiment offered a significant variation from 0.02% to 4.1% 227 

degradation (Theelen et al., 2015). The energy payback time of CIGS varies between 1.2 to 2.4 years 228 

while operational lifetime is 20 years (Peng et al., 2013a; Zhang et al., 2018; Zhou and Carbajales-229 

Dale, 2018). Presently they have a market share of 4% (Ogbomo et al., 2017). 230 

The Global thin-film PV cell market is expected to be USD 13,256.13 Million by the end of 2025 231 

with a compound annual growth rate of 12.87% from USD 5,678.13 Million in 2018. Leading vendors 232 

for global thin-film PV cell are Ascent Solar Technologies., Asia Ltd., First Solar, Global Solar, 233 

Miasole Hi-Tech Corp., US, Hankey Kaneka Corporation, Trony Solar, Mitsubishi Electric and 234 

Xunlight Kunshan Co. Ltd (Report, 2020). 235 

2.3. Third or new generation PV 236 

Sunlight can generate electricity with close to Carnot limit or 95%. However, first and second-237 

generation solar cells can only exploit 31% due to Schockley-Queisser limit. Rest of the energy for 238 

single-junction cells are lost as heat. Third-generation solar cells are free from this Schockley- 239 

Queisser limit. The aim of using third generations is to generate low-cost electricity using high-240 

efficiency conversion (Dupré et al., 2015).  241 
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2.3.1. Dye-sensitized solar cell (DSSC) 242 

A dye-sensitized solar cell (DSSC) consists four main components: mesoporous oxide layer (TiO2), 243 

dye sensitizer, an electrolyte containing redox couple, counter electrode made of platinum-coated 244 

glass as shown in Figure 7 (O’Regan and Gratzel, 1991). DSSC fabrications are simpler and low cost, 245 

environmentally benign than other PV cells as it is processable under ambient temperature. Flexible, 246 

lightweight, convenient design such as multicolour option and transparency and short energy payback 247 

time, working in cloudy weather or low-light conditions make it more viable for building integration 248 

(Gong et al., 2017, 2012) (Mathew et al., 2014). DSSC efficiency currently reached to 11.9% (Green 249 

et al., 2019). Photochemical degradation of sealants, solvents, dyes and solvent leakage is the hurdle 250 

for its promulgation. Thermal stress due to day/night cycle can also influence of intrinsic chemical 251 

degradation. Instability issue of DSSC due to leakage from a liquid electrolyte can be rectified by 252 

using solid-state hole transport material. Highly conductive and stable polymer electrolytes are better 253 

candidate for large scale DSSC manufacturing (Xia et al., 2006). Replacement of platinum catalyst 254 

with graphene can offer higher electrochemical stability  which solves the degradation of the platinum 255 

catalyst (Kavan et al., 2011) and 20 years lifetime of DSSC is possible by solving these issues 256 

(Grätzel, 2003) (Upadhyaya et al., 2013). Recently the use of uncleaned FTO glasses showed the 257 

highest efficiency for DSSC than that of cleaned FTO glasses by using water, acetone, isopropanol or 258 

ethanol. Uncleaned FTO glasses contained stains and residual dirt (Gossen and Ehrmann, 2019). 259 

Energy payback period of DSSC varies from 1.99 years to 2.63 for varying cell efficiency (Greijer et 260 

al., 2001; Mustafa et al., 2019; Parisi et al., 2014, 2011). In 2022, the market value of DSSC is 261 

expected to be USD 59.52 million, while the significant application of DSSC will be in BIPV and 262 

BAPV. Globally major DSSC companies include 3GSolar Photovoltaics, Dyesol, Exeger Sweden AB, 263 

Fujikura Ltd., G24 Power., GCell, Merck KGaA(View, 2016). 264 

 265 

Figure 7: (a) Schematic diagram of the dye-sensitized solar cell (DSSC), (b) Semi-transparent DSSC 266 

(Cornaro et al., 2018). 267 

2.3.2. Perovskite solar cells 268 

In a perovskite solar cell (PSC) perovskite structure absorbs light similar way as dye work in a DSSC.  269 

PSC offered efficiency from 3% to 22% within a very short span of less than 10 years which attracts 270 

researcher to work on it (Bi et al., 2016; Son et al., 2016). The general formula for perovskite is 271 

ABX3, where A indicates cation and B indicates anion. Figure 8 shows different perovskite 272 

architecture. Most popular PSC consists of Methyl-ammonium-lead-iodide (MAPbI3/ CH3NH3PbI3) 273 

(Asghar et al., 2017; Ku et al., 2013; Seo et al., 2014; L. Zhou et al., 2019). This type of PV cells can 274 
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offer semitransparency which is suitable for BIPV glazing and glazed façade application (Cannavale 275 

et al., 2017a, 2017b). Stability of perovskite under outdoor environment is a critical issue as exposure 276 

to moisture and oxygen; perovskite performance degrades significantly which limits its large scale 277 

production (Asghar et al., 2017). Due to the presence of moisture, the formation of CH3NH3PbX3's 278 

mono- and di-hydrates, convert to PbX. Thus airtight conditions are recommended during perovskite 279 

processing. Efficient PSCs contain toxic lead which can hamper the acceptance of this technology and 280 

could conflict with legislative barriers (Bush et al., 2016; Howard et al., 2019; Z. Wang et al., 2017). 281 

Ambient processed perovskite have also been under investigation(Bhandari et al., 2019) (Niu et al., 282 

2018; Tai et al., 2016; Wei et al., 2019; Yang et al., 2018). Two-dimensional Ruddlesden–Popper 283 

(RP) PSCs exhibited a power-conversion efficiency as high as 20.62% and with 2880 hours without 284 

encapsulation stability (Niu et al., 2018). Recently perovskite stability till 1,800 hrs at 70 to 75°C, and 285 

8% drop from peak performance after 5,200 hrs was achieved (Bai et al., 2019). Considering its lower 286 

stability, PSC still in consideration as its transparency can be tuned.  Making thinner PSC  (Della 287 

Gaspera et al., 2015) or controlling the morphology of PSC, semitransparency is achievable.  In 2017 288 

alone, over 3000 academic journal regarding perovskite indicates its popularity among the researcher 289 

(Snaith, 2018).  Work on energy payback for perovskite is less explored are however few works 290 

suggested that it can vary between 0.2 to 5 years depends on the type of material employed (Espinosa 291 

et al., 2011; Gong et al., 2015; Ludin et al., 2018). In 2017, the global perovskite market was $3.7 292 

billion and it is growing with compound annual growth rate (CAGR) of 7.0%  hence, in 2022 market 293 

value should reach $5.2 billion (B. Research, 2018). Oxford photovoltaics, OIST's Technology, 294 

Solliance, Toshiba and NEDO are currently the major perovskite PV cell developer (Roy et al., 2020). 295 

 296 

Figure 8: (a) Schematic of different perovskite PV cells architectures (Taken from (Senthilarasu et al., 297 

2015)) (b) Printed, flexible, perovskite photovoltaics by injket printing tehcnique developed by Saule 298 

Technologies, (image courtesy: Saule Tehcnologies)  299 

2.3.3. Organic PV 300 

Organic materials have the ability to absorb the entire solar spectrum due to the presence of π-bonded 301 

electrons being able to move along the delocalized π-orbitals arising from sp2-hybridization states of 302 

carbon atoms (Kippelen and Brédas, 2009). Most organic semiconductors are p-type with a relatively 303 

large optical bandgap (1.5–3 eV), reducing the production costs and the cell mass, because of the very 304 

thin layers involved. The excitons diffusion length is relatively small for organic PV cells which are a 305 

drawback compared to inorganic cells. Organic PV (OPV) is not suitable for low light condition as it 306 

affects with photon having energy level, between 1.7 to 2.1 eV; however, its open-circuit voltage 307 

rarely crosses 1.0V (Elumalai and Uddin, 2016). Open circuit voltage of OPV may have a logarithmic 308 

relation with irradiation (Bristow and Kettle, 2016) (Mulligan et al., 2014). Though it has low 309 

efficiency still possess shorter energy payback time (~2.02–0.79 years) is shorter compared to c-Si 310 
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(~4.12–2.38 years) CIGS (~2.26–2.2 years) (Darling and You, 2013)(Anctil et al., 2019). Figure 9 311 

shows a photographic view of OPV module. OPV shows lower thermal coefficient due to lower 312 

infrared absorption than silicon (Bristow and Kettle, 2018). After three years of outdoor exposure, 313 

OPV module initially degraded rapidly while secondary degradation rate was gradually, and following 314 

seasonal variation due to metastability of the solar cells (Sato et al., 2019). In 2012, the world's first 315 

grid-connected 0.2kW OPV system where nine flexible and transparent OPV modules formed of a sun 316 

sai was commissioned at Mainova AG in Frankfurt. The global market value of OPV is expected to be 317 

US$97.4 million by the end of 2020 which expanded with the phenomenal compound annual growth 318 

rate of 21.20% between 2014 and 2020. Epishine, Heliatek GmbH, Merck Group, OPVIUS GmbH, 319 

infinity PV are the major companies which manufacture organic PV cells (Report, 2018). Table 2 320 

listed comparison of different PV cells. 321 

 322 

 323 

Figure 9: Rigid organic PV (OPV) module.(Lucera et al., 2017) 324 

Table 2 : Comparative analysis of different PV cells. 325 

Type of PV cell Generaion Efficiency Advantages Disadvantages 
Mono-crystalline 
silicon (m-Si) 

1st  26.7% (Green et 
al., 2019) 

Highly 
standardized, 
highly efficient, 
commercially 
abundant  

Expensive 
manufactruing 
process and silicon 
waste is maximum 
in the production 
process 

Polycrystalline 
silicon (p-Si) 

1st  22.3(Green et al., 
2019) 

Lesser energy and 
time needed for 
production, lower 
costs, Easily 
available on the 
market, Highly 
standardized 

Relatively low 
efficiency than 
mono-crystalline 
silicon  

Copper indium 
diselenide (CIGS) 

2nd  22.9(Green et al., 
2019) 

High temperatures 
and shading have 
lower impact on 
performance, 

Higher amount of  
space is reuiqred 
for the eqaul  
amount of output 
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Highest cost-
cutting potential 

power is needed 

Cadmium telluride 
(CdTe) 

2nd  21%(Green et al., 
2019) 

Higher 
temperatures and 
shading have 
lower impact on 
performance, Less 
silicon needed for 
production 

Similar to CIGS 
degradation, 
limited supply of 
Cd and potential 
environmental 
hazards. 

Amorphous silicon 
(a-Si) 

2nd  10.2%(Green et 
al., 2019) 

Higher 
temperatures and 
shading have 
lower impact on 
performance, Less 
silicon needed for 
production 

Similar to CIGS 
and CdTe 

Perovskite 3rd  20.9%(Green et 
al., 2019) 

High efficiency 
achivable, 
transparency is 
possible   

Instability issue at 
outdoor ambient, 
Large scale 
deveice 

DSSC 3rd  11.9% (Green et 
al., 2019) 

Low cost and low 
favrication 
process, 
semitransparency 
is possible by 
tuning thickness 

Instability issue at 
outdoor ambient, 
and large scale 
fabrication 

Organic 3rd  11.2%(Green et 
al., 2019) 

Presence of π-
bonded electrons 
absorb huge range 
of soalr spectrum, 
Tempereature has 
lower impact on 
the efficiency 
degradation 

Degradation varies 
from weeks to 
about 2 years, 

Positive and 
negative both type 
temperature 
coefficients are 
possible depdns on 
the employed 
material 

 326 

3. PV for BI/BA application 327 

3.1. roof integration 328 

Inclusion of PV on the roof of a building utilizes the not productively used roof area and PV system 329 

act as a power generating roof. Roof integration includes both BIPV and BAPV(Alnaser, 2018) types. 330 

Commercially available mature silicon and thin-film technologies are the presently employed for 331 

roof-integrated BIPV and BAPV (Aaditya et al., 2013; Aste et al., 2016; Sorgato et al., 2018; Zomer 332 

et al., 2013). For BAPV system naturally ventilated are preferred for simpler installation while for 333 

BIPV technology, semitransparency is a precondition. BAPV generates higher power while BIPV 334 

enhances the overall performance of the building as semi-transparent BIPV roof renders daylight into 335 

an interior and also controls the heat gain and loss (Jelle et al., 2012; Zomer et al., 2013). For roof 336 

integration, the area available on the roof is essential parameters which can be evaluated from the 337 

ground floor (Yadav and Panda, 2020). In general, it was found that the ratio between potential PV-338 

suitable rooftop area vs. ground floor area is 0.4 (Peng and Lu, 2013). For pitched roof commercially 339 
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available standard BIPV, BAPV or solar tiles are applicable (A. K. Shukla et al., 2017a). BIPV and 340 

BAPV Roof integration with traditional PV systems are shown in Figure 10. Figure 10 (a) 3. 6 kWp 341 

BAPV roof in Australia, (b) BAPV roof integration, University of Exeter, Penryn Campus, (c, 342 

d)Typical house construction with BAPV in Southwest of England (Truro and Falmouth), (e) Typical 343 

house BAPV in South Korea (f) Rooftop BAPV application at a school in Suriname (Raghoebarsing 344 

and Reinders, 2018) (g) Typical roof-integrated semi-transparent BIPV installed in Taipei Public 345 

Library Solar LEO House BIPV, (h) shows India’s first zero energy building using BAPV, 346 

constructed in 2014 where PV panels occupy 4,600 m2 area and annual energy generation: 14 lakh 347 

($19k) Unit kWh while the cost of installation was Rs 18 crore ($2533k), (i) Semi-transparent spaced 348 

type crystalline silicon-based glass-glass BIPV for roof application having installed capacity of 349 

168kWp (Image courtesy: HHV Solar Bangalore, India. Roof integration of PV is beneficial if they 350 

are not shaded by nearby trees, tall buildings. 351 

 352 

Figure 10: (a) 3. 6 kWp BAPV on equatorial facing roof in Australia (taken from (Miller et al., 353 

2018)), (b) BAPV roof integration, University of Exeter, Penryn Campus, Figure (c, d)Typical house 354 

construction with BAPV in Southwest of England (Truro and Falmouth), (e) Typical house BAPV in 355 

South Korea, (f) Rooftop BAPV application at a school in Suriname (Raghoebarsing and Reinders, 356 

2018), (g) Taipei Public Library Solar LEO House BIPV (no copyright was required), (h) Indira 357 

Paryavaran Bhawan India (Jaymin, 2018), (i) semi-transparent spaced type crystalline-silicon based 358 

glass-glass BIPV for roof application (Image courtesy : HHV Solar Bangalore , India 359 

Solar tiles replace the  conventional ‘roof tiles’ with solar PV tiles which are elegance in looking, 360 

aesthetics for roof and also eliminate existing utility costs, easy for installation and highly durable 361 
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(Huang et al., 2014). Presently Dow Chemical, CertainTeed (Apollo line), SunTegra, Atlantis Energy 362 

(SunSlates), and Tesla are the provider of solar shingles. CertainTeed product contains14 high-363 

efficiency monocrystalline silicon solar cells in a single solar shingle which produce 60W. For Luma 364 

Solar product, airflows are allowed underneath the shingle, which shows 21% solar-to-electricity 365 

conversion efficiency, even higher than rack-mounted panels. SunTegra's solar shingles are 366 

lightweight and use 50% less wiring than rack-mounted solar panels. Powerhouse 60-Watt shingles 367 

will have an energy conversion efficiency factor of 17.1. Figure 11 shows the presently available 368 

different solar shingles. In 2016, the global BIPV roofing market value was US$ 2.4 billion, which is 369 

expected to grow with a compound annual growth rate of 14.65 % over the between 2019 - 2027. In 370 

2027, BIPV roof market values are expected to be US$ 37.26 billion (Analysis, 2020). 371 

 372 

Figure 11 : Different Solar Shingles (image courtesy : CertainTeed, Suntegra, LumaSolar, 373 

Powerhouse, Sunflare)(Guess, 2018) 374 

3.2. Wall integration 375 

PV systems for wall application includes (Peng et al., 2013b) (1) mounting of PV module on the 376 

existing wall as BAPV systems and (2) direct integration of PV module on the building wall to 377 

replace the external wall or glass as BIPV system and. PV cladding is the common BAPV wall 378 

application where between building envelope and PV, gaps are maintained to enhance the PV 379 

performance (Yang et al., 2000) (Peng et al., 2013b). The external wall of a black-painted Trombe 380 

wall can be replaced by a bluish PV system to transform it aesthetically in nature (Sun et al., 2011).  381 

Performance of the PV Trombe wall depends on the PV coverage as opaque PV cells restrict the 382 

incident solar radiation to reach the Trombe wall and the wall thickness can vary between 0.3-0.4 m to 383 

minimize the thermal swing inside the room and zero thermal heating (Taffesse et al., 2016) (Sun et 384 

al., 2011).  385 

Investigation on retrofit building in Italy using c-Si, a-Si and CIGS based BIPV exhibited 45% and 386 

20% less power generation from a-Si and CIGS respectively than c-Si. This was due to a higher 387 

operating temperature of a-Si and CIGS as they had lower NOCT than c-Si. Semi-transparent a-Si 388 

thin-film based BIPV wall is shown in Figure 12a. The performance showed that PV power 389 

generation was almost half of that in the rated values. The possible reason was predicted that the 390 
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building was tilted to 50° to the southwest and also was affected due to the self-shading created from 391 

its own building mass (Yoon et al., 2011). (Evola and Margani, 2016). Ventilated a-Si based BIPV 392 

wall at Zhuhai, China ( Latitude 22.37 N, 113.54 E) showed 0.5∼1.5°C lower operating temperature 393 

and 0.2%∼0.4% higher power generation compared to non-ventilated counterpart. Annual energy 394 

output difference between both the system was 0.41% (shown in Figure 12b) (Zhang et al., 2014). 395 

 396 

Figure 12: (a) Photograph of wall integrated completed building of R&D Institute, Kolon Engineering 397 

and Construction, Yongin city, Gyeonggi, the central region of Korea (latitude 37°17′ N, longitude of 398 

127°12′ E)(Yoon et al., 2011), (b) The two amorphous silicon PV walls under experiment Zhuhai, 399 

China ( Latitude 22.37 N, longitude113.54 E) (Zhang et al., 2014), (c) BIPV wall made of dye-400 

sensitized cell (DSSC) technology; System provider: Konarka Technology* (Heinstein et al., 2013).* 401 
Konarka Technology was spin out company from University of Massachusetts, Lowell, USA, presently out of operation (d) Ekoviikki Sustainable 402 

City Projects, Finland (image courtesy: SOLPROS), (e) External elevator glass was integrated with 403 

OPV. (Image courtesy: OPVIUS GmbH), (f) energy-efficient ETFE façade installed using printed 404 
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Organic Photovoltaic implemented it as part of the rebuilding work on the premises of Merck KGaA 405 

in Darmstadt (Image courtesy: OPVIUS GmbH). 406 

First and second-generation PVs are predominant for wall application whilst third-generation PV cell-407 

based BIPV/BAPV wall is rare. Figure 12c shows DSSC based wall, which was developed by 408 

Konarka Technology (Heinstein et al., 2013). OPV based BIPV for cladding application was 409 

investigated using indoor experimental data which was scaled for simulation of commercial size OPV 410 

BIPV cladding. The system simulations compare typical energy demand profiles of small commercial 411 

buildings and illustrate that OPV arrays show strong potential to be used with excess energy 412 

generation for 8 months of the year based upon a 4.22 kWp OPV system and can adequately meet the 413 

energy demand in spring, summer and autumn for a small commercial building in Northern Europe 414 

(Stoichkov et al., 2019). Installing PV in balcony also another approach where obstacle for viewing is 415 

negligible. Total 240 m2 of photovoltaic modules were installed for balcony glazing on the south and 416 

west sides of the house in a residential building in Finland, as shown in Figure 12d. Figure 12 e and 417 

Figure 12f show external elevator glass were integrated with OPV and first energy-efficient ETFE 418 

façade installed using printed OPVwhich was implemented as part of the rebuilding work on the 419 

premises of Merck KGaA in Darmstadt. 420 

3.3. Grid integration 421 

Grid-connected BI/BAPV reduces the necessity of storage device and generated electricity to supply 422 

both building and grid or grid only (Benemann et al., 2001; Eltawil and Zhao, 2010; Gorgolis and 423 

Karamanis, 2016; Hagemann, 1996; Leon and Vinnikov, 2015). Figure 13 shows the schematic of the 424 

grid-connected BIPV and BAPV system. 425 

 426 

 427 

Figure 13: Schematic view of grid-connected BIPV and BAPV system (Taken from(N. M. Kumar et 428 

al., 2019)) 429 

Energy from grid-connected BAPV and BIPV both depends on rated characteristics of a PV system, 430 

the geographical location of the systems while the reliability of control systems also play an essential 431 

role. For grid connection, employed different types of inverters are central, string, multi-string, AC-432 

module and microinverter (Kjaer et al., 2005) (Allouhi et al., 2016; Aristizábal and Gordillo, 2008; 433 

Kazem and Khatib, 2013; Liu et al., 2012; Yang et al., 2004)(Elavarasan et al., 2019). To use string 434 

inverter, BA/BIPV modules are connected in series, and the string is connected to one inverter which 435 

can lead to a lower PV energy yield during partial shading conditions, thereby degrading the overall 436 

system performance. Especially when different sizes and types of PV are used, stringing becomes 437 
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extremely challenging (Ravyts et al., 2019). Microinverters are attached to the back of each PV 438 

module and beneficial for partial shading condition and different types and sizes of PV systems (R. 439 

Hasan et al., 2017). To obtain maximum power from PV-inverter combination, the power rating of 440 

inverter should match the power rating of the PV system (Mondol et al., 2006). Except inverter to 441 

convert the generated DC power output from PV to AC, filters are required between PV and grid to 442 

reduce the inverter’s harmonics and minimize or neutralize the spikes from the grid (Liserre et al., 443 

2004; Milan Pradanovic and Timothy Green, 2003). Voltage level fluctuation, voltage flicker and 444 

unintentional islanding is the major issue occur for PV and grid connection (Shivashankar et al., 445 

2016). Intermittent nature of PV changes the voltage level, which creates trouble for grid connection. 446 

The magnitude of cloud cover is independent of the voltage fluctuation (Woyte et al., 2006). Voltage 447 

harmonics in grid mainly the effect of generated current harmonics due to PV inverters. Harmonics 448 

are the biggest reason for losses in the distribution system. PV power output changes also create 449 

frequency fluctuations which can not be nullified by the PV system due to its lack of inertia. Voltage 450 

flicker and fluctuation of the PV system can be reduced if the size of the PV arrays is big enough. 451 

Larger the size of the PV array lowers the fluctuations (Marcos et al., 2011). Inverter selection and 452 

design of new inverter are required for grid-tie PV as inverter converts DC power to AC, controls 453 

power factor, regulates reactive power (Tsengenes and Adamidis, 2011)(Yan et al., 2019).  454 

 455 

  456 

3.4. Window application 457 

BIPV window plays a vital role in the overall building energy performance of retrofitted or new 458 

buildings. A window of a building is responsible for viewing while it allows daylight and higher heat 459 

to flow from interior to exterior and admits solar heat gain (Ghosh and Norton, 2018). BIPV window 460 

controls the entering daylight and solar energy transmission while can also reduce the heat flow from 461 

building interior to the exterior (Ng and Mithraratne, 2014a; Yoon et al., 2013). BIPV for window 462 

application should be transparent or semi-transparent in nature (Alrashidi et al., 2020a, 2020b). For 463 

BIPV glazed window the most indispensable fact is to maintain a balance between the visible light 464 

transmission and power conversion efficiency, in addition, considering colour comfort and thermal 465 

comfort (Wheeler and Wheeler, 2019). To achieve BIPV window, spaced type structure by 466 

maintaining gaps between PV cells (Sánchez-palencia et al., 2019) (Park et al., 2010) or by tuning the 467 

PV material thickness, transparency is achievable. Spaced type structure is popular for first-generation 468 

opaque crystalline silicon which has higher absorption and low transmittance (Riverola et al., 2018; 469 

Santbergen and van Zolingen, 2008). The percentage of PV area coverage offers the semi-470 

transparency of this type window as depicted in Figure 14a.  Thus, solar heat gain, indoor 471 

illuminance, daylight factor for spaced BIPV window depends on the glazing area covered by PV 472 

whereas efficiency and thickness of PV have less impact on those parameters (Chau et al., 2010; Fung 473 

and Yang, 2008; Karthick et al., 2018; Park et al., 2010; Peng et al., 2019). This spaced type semi-474 

transparent BIPV window offers similar quality of daylight as the light passes through only the glass 475 

materials (Ghosh et al., 2019b).  476 

Tuning the material thickness, semi-transparency is achievable from second-generation thin film and 477 

third-generation emerging PV technologies. For this type of BIPV window, transmittance or material 478 

thickness  is directly  related to PV power generation where thinner material posses higher 479 

transmittance and generates low power (Chow et al., 2007; Miyazaki et al., 2005; Takeoka et al., 480 

1993). The solar factor is directly related to transmittance, while U-value has no impact on the 481 

window transmittance (Alrashidi et al., 2019; Barman et al., 2018). a-Si type has temperature 482 
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enhancement issue which can be reduced by creating airflow in a double pane window while tilted 483 

always showed higher operating temperature than horizontal or vertical orientation (Han et al., 2009) 484 

(Yoon et al., 2013)(Chatzipanagi et al., 2016). Recently, highly insulated a- si based BIPV window 485 

was fabricated which showed 79% absorption, 7% visible transmittance, 100% UV blockage, 95% 486 

restriction of undesired thermal radiation, 24.9% better daylighting performance compared to ordinary 487 

glazing while U-value was 1.10 W/m2K (Cuce et al., 2015a, 2015b). The energetic performance of 488 

CdTe and Perovskite-based window was evaluated which recommended that for higher transmission 489 

window to wall ratio needs to be high to generate higher power than low transmission material (Sun et 490 

al., 2018) (Cannavale et al., 2017b, 2017a). Organic PV (OPV) based BIPV window (OBIPV) also 491 

currently under investigation (shown in Figure 17 b). The efficiency of this OPV system varies 492 

between 4%-10% (Chemisana et al., 2019; Chen et al., 2012; Duan et al., 2019; Yan et al., 2012). In 493 

another work one 20% transmittance, 15% reflectance and 65% absorptance OPV glazing overall heat 494 

transfer coefficient was about 6.0 Wm−2 K−1(Friman Peretz et al., 2019). 495 

Visual comfort gets higher priority for BIPV window. DSSC based BIPV window (Figure 14 d) 496 

where dye colour can be anything, colour property analysis is essential before installing them (Kang 497 

et al., 2003)(Aritra Ghosh et al., 2018c). Material degradation often enhances the transmissivity which 498 

may enhance the visual perception and colour render (Roy et al., 2019; Selvaraj et al., 2019). Carbon 499 

counter electrode based mesoscopic Perovskite was investigated for BIPV window where this PV 500 

device had 20% visible transmission, 0.33 solar heat gain coefficient and 5.6 W/m2K overall heat 501 

transfer coefficient (Ghosh et al., 2020). 25% visible transmittance and CRI close to 100 (Chen et al., 502 

2012) while in another work CRI close to 90.7  was possible for and visual transmittance 16.3%, 503 

suitable for semi-transparent BIPV window integration (Duan and Yi, 2019). 504 

Currently, BIPV glass providers are Asahi Glass Co., Ltd., Ascent Solar, Canadian Solar, Centrosolar 505 

Group AG, DuPont, EMMVEE Solar Systems Private Limited, First Solar, Hanergy, Hanwha Solar 506 

One, Onyx Solar, Power Film, Inc Sun Power, GE, Pythagoras Solar, Suntech Power Co., Ltd , Solar 507 

Frontier Pilkington (Z. M. Research, 2018). 508 

 509 
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510 
  511 

Figure 14: (a) Overview of crystalline silicon based semi-trasnparent BIPV installation in a sunroom, 512 

Republic of Korea (Park et al., 2010) (b) amorphous-silicon BIPV single window (He et al., 2011) (c) 513 

Photographs of three different CdTe glazing (Alrashidi et al., 2019) (d) Viewing through Organic 514 

BIPV window (Yan et al., 2012), (e) DSSC glazing for outdoor experiment (Lee and Yoon, 2018) (f) 515 

14.24% conversion efficiency record for a large-area (200×800 cm2) perovskite solar module (image 516 

source: microquanta) 517 

3.5. Low concentrating façade  518 

Use of concentrator in the PV system reduces the expensive PV material cost by reducing the use of 519 

expensive and toxic product involved in the production of PV material, better use of space, ease of 520 

recycling of constituent materials (Baig et al., 2015, 2014, 2013, 2012). The concentrator includes low 521 

(<10), medium and high (>100) type based on the concentration ratio (Chemisana, 2011)(G. Li et al., 522 

2020)(Chong et al., 2013). Low concentration is suitable for BIPV application, as no coolant is 523 

required to cool down an enhanced PV system temperature (Amanlou et al., 2016). Low concentrator 524 
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for BIPV application includes compound parabolic concentrator (CPC) (Tian et al., 2018)(Jaaz et al., 525 

2017), luminescent solar concentrator (LSC) (Meinardi et al., 2017; Rafiee et al., 2019) and 526 

holographic solar concentrator (HSC) (Collados et al., 2016). 527 

Mirror-based or dielectric-filled compound symmetric (Muhammad-Sukki et al., 2014) and 528 

asymmetric (Sarmah et al., 2014) parabolic concentrators have a prospect for BIPV application. Due 529 

to non-imaging nature, this type of concentrator can collect both direct and diffuse solar radiation. 530 

Asymmetric two dimensional (2d) compound parabolic concentrator (CPC) can improve the 531 

maximum power point by 62% compared to its non-concentrating counterpart (Mallick et al., 2004). 532 

In another work, asymmetrical dielectric-filled 2dCPC based PV generated 2.27 times higher 533 

electrical power than a system without concentrator which could bring the solar panel cost down by 534 

20% per kWp (Sarmah et al., 2014). The circular entry and exit apertures in 2d CPC create hindrance 535 

for placing with the most available square and rectangular PV cells in the market. Thus, three 536 

dimensional (3d) CPCs were proposed which is formed by the rotation of 2d CPC. 3d CPC geometry 537 

can be improved by intersecting two symmetrical 2d CPCs orthogonally and this new shape is called 538 

crossed compound parabolic concentrator (CCPC) (Sellami and Mallick, 2013a). Reflective type 539 

3dCCPC achieved three times higher power output than similar non-concentrating PV panel. 540 

Dielectric material filled CPC (dCPC) is an alternative to the mirror CPC. Refraction on air–dielectric 541 

interface allows it to collect solar radiation from a wider angle. Using 2d dCPC 40% cost reduction 542 

possibilities have been reported earlier (Mallick and Eames, 2007). Square elliptical hyperboloid 543 

shape dielectric-filled 3d CPC was investigated for static window application. The geometrical 544 

concentration ratio of this system was 6× while optical efficiency was 55% (Sellami and Mallick, 545 

2013b). It was found that the CCPC with a concentration ratio of 3.6× represents an improved 546 

geometry compared to a 3-D CPC for the use as a static solar concentrator. In another work, 547 

mimicking of V-shaped posture of basking white butterflies as V-trough concentrator to a solar cell 548 

increased its output power by 42.3% (Shanks et al., 2015). However, the experimental work is still 549 

requiring to validate this hypothesis. Recently CPC-perovskite combination offered 10.73 times 550 

higher short circuit current than non-concentrating counterpart (Baig et al., 2020). In northern latitude 551 

due to cloud cover, solar irradiance is mostly the diffuse type whose spectral characteristics are 552 

different and lower in intensity than direct irradiance. Thus, the inclusion of low concentrating CPC 553 

window, as shown in Figure 15 is potential which collects both direct and diffuse solar radiation. 554 

 555 

  556 

Figure 15: Semi transparency effect of the square elliptical hyperboloid concentrator for BIPV 557 

window application (taken from Sellami and Mallick 2013).  558 
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Luminescent solar concentrator (LSC) is another suitable low concentrator and promising for 559 

transparent solar BIPV window application, as shown in Figure 16. LSC harvest both diffuse and 560 

direct sunlight was proposed in late 1970 for PV applications (Hermann, 1982; van Sark, 2013). An 561 

LSC consists of a transparent polymer sheet, doped with a low concentration luminescent particles 562 

(Luminophore) which can be organic dyes (Reisfeld et al., 1994), quantum dot (Chandra et al., 2015, 563 

2012) (AbouElhamd et al., 2019) or rare-earth material (Day et al., 2019). These particles absorb a 564 

fraction of the incident sunlight and emit photons with a near-unity quantum yield. If the refractive 565 

index of the carrier material is higher than that of the surrounding medium (in this context, air), a 566 

large proportion of the emitted photons will reach the edges following total internal reflection. LSCs 567 

are less sensitive to their orientation angle compared to silicon PV modules; however, LSCs are 568 

unaffected by efficiency losses and electrical stresses due to shadow effects, often occur in bulk and 569 

thin-film PVs. The prime advantages of LSC-BIPV window are they can be the shaped to any size 570 

and its, transparency, colour and flexibility is fully controlled depends on occupant needs (Meinardi et 571 

al., 2017). Using double-glazed LSC may offer lower electrical performance than an LSC plate 572 

without glass due to higher reflection losses (Aste et al., 2015a). They can also behave as a spectrally 573 

selective window where UV spectrum can be shifted to the visible spectrum and directed to the edge 574 

of the window where PV cells are mounted. Thus building interior can be protected from the adverse 575 

effect of UV and will generate benign electricity from them concomitantly (Fathi et al., 2017). High 576 

power generation from an LSC window depends on the higher percentage of coloration of the film or 577 

glass, however, for visual performance a lower percentage of colored glass is required (Vossen et al., 578 

2016). At the Netherlands location, 25% window covered by an LSC was found soothing than that of 579 

a traditional clear glass window (Vossen et al., 2016). It is expected that concentrating PV market will 580 

reach USD 2,710.6 Million by 2023 (Future, 2018). However, this includes low, medium and high all 581 

three types of the concentrator. 582 

 583 

Figure 16: (a) Diagram of the incident photons and of the photons emitted by a dye molecules inside 584 

the LSC (b) LSC window (Aste et al., 2015b) 585 

Holographic solar concentrator technology employs holographic optical elements (HOE) to enable the 586 

solar spectrum incident on the PV cell (Collados et al., 2016). Dichromated gelatin, photoresists, 587 

photopolymers, photochromic, silver halide photographic emulsions are the different types of HOE 588 

recording material(Abhijit Ghosh et al., 2018, 2015; Naydenova et al., 2013). Due to the spectral 589 

selectivity, HOE allows only those solar spectra similar to PV cell to incident on it and rejects above 590 

and lower spectrum band of solar radiation. Hence overheating of PV cells can be avoided (Brooks et 591 

al., 2012; Hull et al., 1987; Müller, 1994; Zhang, 2011). Holographic solar concentrator (HSC) are 592 

Jo
urn

al 
Pre-

pro
of



23 

 

diffractive structures that are constructed holographically by the interference of two beams of light. 593 

HOE diffracts light due to the ability of angular selectivity which makes it a see-through building 594 

envelop suitable for window and transparent facade application. HOEs are classified based on 595 

recording geometry, thickness, and method of modulation of optical properties. Based on recording 596 

geometry hologram can be transmission or reflection types. The thickness of hologram can be thick 597 

and thin. Modulation during recoding of hologram can be amplitude and phase type. Because of the 598 

low efficiency thin amplitude and phase, both holograms are not, are not suitable for solar 599 

applications. Ludman in 1982 for the first time proposed the use of holographic solar concentrator for 600 

PV power generation. HOE with a concentration ratio of 1.23 (holographic cylindrical lens and c-Si 601 

PV) (Chemisana et al., 2013), 1.27 (holographic spherical lens and a p-Si PV) (Aswathy et al., 602 

2018),1.80 ( holographic spherical lens, an array of two holographic cylindrical lenses and an array of 603 

two holographic spherical lenses with c-Si PV ) (Akbari et al., 2017), 1.90 (two holographic gratings 604 

and a dye-sensitized PV cell) (Sreebha et al., 2018), 3.48 (cylindrical holographic lenses and c-Si 605 

PV)(Marín-Sáez et al., 2019) were investigated and found to be an excellent result. 606 

4. Technical challenges associate with BI/BAPV  607 

 608 

4.1. PV performance degradation at elevated temperature 609 

PV cells convert a certain wavelength of the incoming irradiation that contributes to the direct 610 

conversion of light into electricity, while the rest is dissipated as heat. Only 15–20% of incident solar 611 

energy is converted into electricity. The remaining part of the solar energy is converted into heat, 612 

which causes heating of the solar cells in PV panels (Agathokleous and Kalogirou, 2016). Figure 17 613 

shows the linear power drops of c-Si, a-Si, CdTe, CIGS PV for enhanced temperature. Maximum 614 

power drop occurred for c-Si and minimum was for a-Si. Minimum drop for a-Si was found because 615 

of annealing of a-Si cells, which promotes regenerative effect (Stabler-Wronsky effect) and  an 616 

intrinsic drop of the cell’s conversion efficiency at a higher temperature. With elevated temperature, 617 

reverse saturation current and open-circuit voltage of c-Si, a-Si, CdTe and CIGS PV increase and 618 

decrease respectively which in turn decrease the fill factor and thus the overall PV cell efficiency 619 

becomes lower than its standard test condition (STC) value (Singh and Ravindra, 2012). c-Si PV cell 620 

has temperature coefficients around 0.4%/K, whereas for a-Si, this value is approximately −0.1% K 621 

(Bücher, 1997). PV temperature for first and second-generation can reach as high as 80 °C, 622 

particularly in hot arid regions (Reddy et al., 2015). Long term thermal stress on PV cells  also can 623 

damage the PV module (Chow, 2010) (B. J. Huang et al., 2011).  624 

 625 
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Figure 17: (a) Effect of temperature on different PV materials,(Özkul et al., 2018) (b) The maximum 626 

power output of the mono-crystalline Si-PV modules (Jiang et al., 2012) 627 

Temperature impact on third-generation PV cells is not similar to the first- or second-generation type. 628 

DSSC PVs show temperature coefficient of 0.1% between the temperatures from 30° to 50°. After 629 

that temperature, the generated vapour pressure from the liquid electrolyte may crack the cells (Tian 630 

et al., 2012). Increased FF was also found for DSSC PV at a higher temperature (Selvaraj et al., 631 

2018).  Also DSSC temperature coefficient shows positive and negative such as oscillatory behaviour 632 

which can be from the different velocities of the redox processes occurring at the electrolyte/counter 633 

electrode TiO2/dye, dye/electrolyte interfaces of a DSSC stack (Sebastián et al., 2004; Selvaraj et al., 634 

2018). Ruthenium based DSSC showed that efficiency decreased at a rate of 0.05%°C (Parisi et al., 635 

2017). Another work reported that DSSC efficiency first increased from -7°C to 40°C and after 40°C 636 

it’s started decreasing due to accelerated recombination (Raga and Fabregat-Santiago, 2013).  637 

Under the real operating condition, perovskite solar cells temperature can easily reach up to 45 °C. 638 

Effect of temperature on the performance of Perovskite was explored by exposing the PV cells in a 639 

range of temperatures between −5 °C and 80 °C. The performance perovskite cells at -50C displayed 640 

approximately 5 % less power conversion efficiency than at 22 °C. At 80 °C, a significant decrease 641 

occurred for open-circuit voltage and short circuit current which leads to a decrease of 36.0±5.5 % 642 

(Mesquita et al., 2019). Table 3 listed the temperature coefficients of different PV devices. 643 

 644 

Table 3: Details of temperature coefficient of different PV technologies. 645 

PV types Temperature coefficient (K-1) 
c-Si -(0.2-0.3) 
CdTe -0.25 (Lee and Ebong, 2017) 
CIGS −0.33 to −0.50 
a-Si −0.10 to −0.30 
Perovskite Not available 
DSSC  
Organic +0.7 
 646 

4.2. Thermal regulation of BI/BAPV using active and passive approach 647 

 648 

Dissipation of heat from BIPV/BAPV systems is possible by active or passive heat removal methods 649 

to improve PV performance similar or better than STC. The passive systems depend on convection, 650 

conduction and radiation while active methods utilize pumps or fans to maintain a flow of air or water 651 

over the front or at the back of the PV panel for cooling purposes (Baljit et al., 2016) as shown in 652 

Figure 18a.  Thus, the inclusion of thermally regulated PV system produces electricity and thermal 653 

energy simultaneously which enhances 15–30% higher annual exergy output than that of the similar 654 

non-thermally regulated PV system (Agrawal and Tiwari, 2010a, 2010b; Chow, 2010; Hasanuzzaman 655 

et al., 2016; Lamnatou and Chemisana, 2017; Prakash, 1994). Temperature regulation of crystalline 656 

PV is the most economical compared to organic or thin film due to the detrimental effect on the 657 

efficiency of the silicon PV (Browne et al., 2015). 658 

The gap between PV and building façade element should be between 10 to 15 cm to allow the 659 

ventilation (natural air flow) that can reduce the PV device temperature and enhance the electrical 660 
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power output producibility.  No gap between PV and building skin creates a thermal bridge and 661 

conductive heat flow allow unwanted solar heat gain into the building space and degrades the PV 662 

efficiency(Agathokleous and Kalogirou, 2016; Fossa et al., 2008; Wang et al., 2006). No 663 

maintenance, low initial cost, no noise, no electricity consumption, simpler integration are the 664 

advantages of natural air flow for reduction of elevated temperature of PV panels (A. Shukla et al., 665 

2017). However, natural airflow offers limited gain on PV performance due to low thermal 666 

conductivity, low density, low volumetric heat capacity and low mass flow rate of air. As wind speed 667 

is influential for this system, higher wind speed can reduce PV temperature significantly whereas 668 

lower wind speed restricts to lose heat (A. Shukla et al., 2017). 669 

To regulate the PV temperature using active forced airflow circulation requires an auxiliary pump and 670 

the warm air can be used for end-users to supply space heating demand, agriculture/herb drying, 671 

increased ventilation, as well as the electricity generation (Kamthania et al., 2011). Using 672 

duct/collector behind the PV panel dissipates heat due to airflow buoyancy created from warm air at 673 

the rear of the panel (Brinkworth et al., 1997)(Phiraphat et al., 2017). Increase the rate of uniform 674 

airflow, collector diameter and collector length enhance the thermal and electrical efficiency for a PV 675 

system (Garg and Adhikari, 1999; Ghani et al., 2012; Hegazy, 2000; Solanki et al., 2009; Vats and 676 

Tiwari, 2012; Yang and Athienitis, 2014). For BIPV system air cooling are most investigated than 677 

water cooling (Joshi and Dhoble, 2018) while they offer energy payback period around 1 to 14 years 678 

(Lamnatou and Chemisana, 2017). 679 

Using water flow on the top or rear of the PV device can maintain a PV device’s STC temperature and 680 

water has higher heat capacity than air (Gil-Lopez and Gimenez-Molina, 2013a, 2013b). This water 681 

can be employed for the building hot water application (Krauter et al., 1999; Shyam et al., 2015; 682 

Tomar et al., 2017; Tripanagnostopoulos et al., 2002; Wilson, 2009). Depends on location water flow 683 

rate varies to offer best results such as 0.003 kg/s water flow was suitable to obtain the optimum based 684 

result for polycrystalline silicon solar cell based BIPV in Hong Kong (Chow et al., 2009) whereas 0.2 685 

kg/s  in Älvkarleö, in the central part of Sweden (Davidsson et al., 2012). Natural circulation water 686 

type PVT systems are more economical as compared to forced circulation systems (Joshi and Dhoble, 687 

2018). Investigation of BAPVT using water is higher than BIPVT system (Lamnatou and Chemisana, 688 

2017). Depends on the technology this BPAVT water system energy payback time varies between 1 689 

to 4 years (Lamnatou and Chemisana, 2017). Addition of water and air both can serve the seasonal 690 

energy demand of the building where air mode will provide hot air in winter to reduce space heating 691 

load and water will work for the rest of the year (Xu et al., 2020). 692 

To enhance further PV performance by dissipating elevated heat, fluids with less than 100 nm size 693 

metallic nanoparticles of copper (Agarwal et al., 2016), aluminium  (Rejeb et al., 2016), zinc (K.S. et 694 

al., 2016), silicon (Singh et al., 2009), iron (Ghadiri et al., 2015), titanium (Sardarabadi and 695 

Passandideh-Fard, 2016), gold (Wang et al., 2019), silver (Stephen et al., 2019) and non-metallic 696 

nanoparticles of aluminium oxide (Al2O3), copper oxide (CuO), silicon carbide (SiC), carbon 697 

nanotubes (SWCNT, DWCNT and MWCNT)(Mizuno et al., 2009; Said et al., 2014; Shende and 698 

Ramaprabhu, 2016) can be used while ethylene glycols, engine oil, distilled water, glycerol can be the 699 

base fluid (Farhana et al., 2019). The mass fraction of nanoparticles influence the thermal 700 

performance of the combined PV thermal system significantly and slightly on electrical performance. 701 

The phase change material (PCM) has the ability to reduce the elevated PV temperature by absorbing 702 

a large amount of heat at a constant temperature (Alagar Karthick et al., 2020) (Kant et al., 2019; A. 703 

Karthick et al., 2020) Thus, it behaves isothermally during charging and discharging process (Browne 704 

et al., 2016, 2015; Huang et al., 2006, 2004; M. J. Huang et al., 2011). The energy flow of a typical 705 
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BIPV-PCM system is shown in Figure 18b. The paraffin waxes, salt hydrates, fatty acids and eutectic 706 

organic/non-organic compounds are different types of PCM used for thermal regulation from PV 707 

(Baetens et al., 2010; Kalnæs and Jelle, 2015; Pielichowska and Pielichowski, 2014). BAPV-PCM is 708 

able to improve 2-6% electrical efficiency compared to without PCM-PV(A. Hasan et al., 2017; Park 709 

et al., 2014; Smith et al., 2014). PCM can reduce the c-Si PV cell temperature up to 10 °C in 710 

temperate climate while can reduce up to16-21°C at a hot and humid climate (Hasan et al., 2015, 711 

2014) and 10°C for CIGS PV in a temperate climate (Curpek et al., 2019; Čurpek and Čekon, 2020). 712 

BIPV cooling using PCM for high ambient temperatures are effective, however, for low ambient 713 

temperature PCM may reduce heating effect if the stored heat is not dissipated by introducing another 714 

facility (metal matrix, conductive particle) (Chandrasekar et al., 2015). PCM based BI/BAPV system 715 

shows a payback time of 14.5 years (Panayiotou et al., 2016). Table 4 summarises the comparison of 716 

different thermal regulation techniques. 717 

 718 

Figure 18: (a) Cross section of PV/Water, PV/Water+Glazing, PV/Air, and PV/Air+Glazing 719 

experimental models (Tripanagnostopoulos et al., 2002) (b) Schematics of the energy flow in the 720 

BIPV–PCM system (taken from (A. Hasan et al., 2017) )  721 

Table 4: Comparison of different thermal regulation techniques.(Chandrasekar et al., 2015)(Hasan et 722 

al., 2010)  723 

Thermal 
regulation 

Types Advantages  Disadvantages 

Natural Air Passive • low initial cost,  
• no maintenance,  
• no noise,   
• no electricity 

consumption, 
• longer life 

Low -thermal conductivity 
          -heat capacity,  
          -heat transfer rates,  
           -mass flow rates 
Depends on – wind direction and 
speed, dusty air reduces heat transfer,  
 
Not useful for low latitude location 
where ambient temperature is higher 
than 20 0C 

Forced air Active • higher heat transfer 
rates compared to 
natural circulation of 

high initial cost for fans and ducts to 
handle large mass flow rates, high 
electrical consumption, maintenance 
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air 
• independent of wind 

direction and speed,  
• higher mass flow rates 

than natural air 
circulation achieving 
high heat transfer rates,  

• higher temperature 
reduction compared to 
natural air circulation 

cost 
noisy system,  
difficult integration compared to 
natural air circulation system 

Forced 
Water 

Active • Similar to forces air in 
addition higher thermal 
conductivity than air.  

• Tank is required to store water 
and also needs pump and pipes.  

• Electricity requires to operate 
pumps. in case of roof 
integration overall system 
increase the weight of the 
installation 

• Pumping power requirement is 
higher than forced air 

Nano fluid Active • high thermal 
conductive metal nano 
particle enhances the 
heat transfer 

• Long term stability of nano 
particles in nano fluid is a 
complex work 

PCM passive • higher heat transfer rate 
compared to both 
forced air and water 
circulation,  

• higher heat absorption 
due to latent heating,  

• no electricity 
consumption/ noise/ 
maintenance cost, on 
demand heat deliver 

• Choice of suitable melting 
temperature is essential.  

• If PCM is not able to release heat 
to ambient, combined system 
will be heat up further, PCM will 
behave as insulator. 

• higher cost, toxic nature, fire 
safety issues, strongly corrosive, 
disposal problem after 
completion of life cycle  

 724 

It should be noteworthy that major thermal regulation work of BIPV/BAPV system was based on c-Si 725 

(Jia et al., 2019; Joshi and Dhoble, 2018; A. Shukla et al., 2017) while 2nd generation system is 726 

significantly less (Kalogirou and Tripanagnostopoulos, 2006; Ren et al., 2019), and third-generation is 727 

rare or no work has been performed. Large scale development using third-generation PV for 728 

BIPV/BAPV is the biggest challenge which limits the exploration of thermal regulation work. Also, 729 

thermal performance knowledge of third-generation PV is not well established. 730 

4.3. Shading on BIPV and BAPV  731 

Depending on the local climate BIPV and BAPV both can suffer from wind-driven dust, snow and 732 

shading from other building or construction or trees (Ilse et al., 2019). Deposited dust particle sizes 733 

vary between 1 to 50 μm which causes shielding effect on PV and thus decrease solar transmission 734 

through the PV surface glass which in turn decreases the power output (Appels et al., 2013; Toth et 735 

al., 2018; Weber et al., 2014). Curtailment of transmission also varies with dust deposition density, 736 

wind speed and humidity, particle diameter and PV tilt angle (Smestad et al., 2020). Dust particles 737 

include chemical, biological, electrostatic types, whereas its size shape and density are indispensable 738 

(Micheli et al., 2019, 2018b, 2018a; Micheli and Muller, 2017). A rough surface accumulates a higher 739 

amount of dust than a smoother one (Yusuf N Chanchangi et al., 2020). Electrostatically attracted 740 
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inorganic materials are common in the desert location and salts and rain-driven dirt are common in a 741 

coastal area. Industrial and cooler location is subject to windblown organic dirt, deposits from 742 

evaporated rain and atmospheric pollutants from fossil fuels (Yusuf N. Chanchangi et al., 743 

2020)(Ghosh, 2020a). The Middle East and North Africa have the worst dust accumulation zones in 744 

the world (Ghazi et al., 2014). Even in the cleanest region of the world UK, dust effect reduces the 745 

solar intensity by 5–6% after one- month continuous exposure (Ghazi et al., 2013). For a fixed period 746 

of exposure, the rise of tilt angle reduces the dust deposition density. For a constant tilt angle, dust 747 

deposition density increase with the number of exposure days (Hegazy, 2001; Xu et al., 2017). Wind 748 

directions and orientation of collector have an influential impact on dust deposition (Goossens et al., 749 

1993). In Greece, the effect of 0.4 mg/cm2 ash deposition reduced 30% of power output than a similar 750 

clear PV panel. Relatively small ash deposition (i.e. 0.06 mg/cm2) reduced 2.5% of the generated 751 

power output (Kaldellis and Fragos, 2011). In another work, PV module efficiency drops by 33% for 752 

each 1 g/m2 of dust accumulation (Al-hasan and Ghoneim, 2005). Heavy rainfall in any location 753 

reduces the soiling effect (Lopez-Garcia et al., 2016). Exposed PV on the third floor in the Politeknik 754 

Elektronika Negeri building in Surabaya, Indonesia (longitude of 112.533° and latitude of 7.2361°) 755 

during the dry season and the beginning of the rainy season in 2014, showed 2.05% power output 756 

reduction which increased to 87.29% compared to a clean module after a short period of drizzle 757 

(Ramli et al., 2016). Figure 19a shows the uneven soiling on PV array in Doha, and Figure 19b shows 758 

the heavily soiled modules on the Gran Canaria Island. Accumulated dust on PV enhances the 759 

electricity cost (Tanesab et al., 2018). 760 

 761 

 762 

Figure 19: (a) Uneven soiling on a PV array following a sandstorm in Doha, Qatar (Figgis et al., 763 

2017), (b) Heavily soiled modules on the Gran Canaria Island (Schill et al., 2015). 764 

Snow accumulation on the top of the PV modules (as shown in Figure 20) reduces the power 765 

generation due to a low transmission of incident solar radiation on the PV (Gullbrekken et al., 766 

2015)(Borrebæk et al., 2020). When snow covering is light, and it melts easily, the generation losses 767 

are less; however, the impact is adverse when snow is heavy and does not quickly melt or shed 768 

(Brench, 1979). Snow is highly scattering optical medium at the visible range, which makes it white. 769 

Even a thin layer of snow is a bright and white colour, reflect the entire solar spectrum at the visible 770 

wavelength and transmit little (Perovich, 2007). Little 2 cm thick snow can reduce 90% of visible 771 

transmission whereas 95% reduction of visible and 99% reduction infrared transmission is possible 772 

from 10 cm thick layer (Perovich, 2007). However, some light still can penetrate through the 773 

snowpack. 2 cm snow can allow 20% of incident solar radiation whereas 10 cm thick allow 3-4%. 774 

Annual production losses from a snow-covered PVs are directly proportional to the amount of snow 775 
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received and proportional to the squared cosine of the tilt angle of the panels (Powers et al., 2010). 776 

Annual losses from a snow-covered photovoltaic array in Ontario, Canada, varied from 1 to 3.5% 777 

(Andrews et al., 2013). Snow-covered BIPV can be considered as PV under low light condition.  778 

Mapped PV efficiency for irradiance levels as low as 2.9 W/m2, were investigated which indicated a 779 

logarithmic correlation between incident solar radiation and efficiency for crystalline silicon cells, 780 

whereas the efficiency of amorphous silicon and gallium arsenide cells are less affected by this weak 781 

irradiance (Reich et al., 2005). However, snow-covered ground, in reality, enhance the reflection of 782 

solar radiation which in turn increase the total incident solar radiation on PV and thus yield of PV 783 

panels when tilt angles are optimal. Snow can increase local yield by 10% at snowy Switzerland 784 

location (Kahl et al., 2019). Mono-, poly-crystalline silicon, CdTe, CIS and CIGS modules (shown in 785 

Figure 20 c, d) were mounted on a platform at temperate mountain climate in Brasov, Romania 786 

(45.65°N, 25.65°E, 600 m above the sea level) where winters are snowy, and summers are warm. The 787 

best performing modules were of poly-crystalline silicon, whereas CIGS was the best thin-film 788 

modules having the highest output power and  CdTe had the steadiest efficiency (Visa et al., 2016). 789 

Trees, tall buildings, bird droppings and passing clouds are the other most common shading on BIPV 790 

and BAPV systems. Tilted PV panels in a parallel row also limit solar radiation due to self-shading. 791 

Das et al classified shading as static and dynamic and soft and hard. Slow change soft solar angles are 792 

static shading while fast change due to moving clouds are dynamic shading. Shading due to flying 793 

birds or nearby trees is soft shading, whereas PV modules are blocked completely due to hard shading 794 

(Das et al., 2017). 795 

 796 

 797 
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 798 

  799 

Figure 20: (a) Snow covering a solar cell panel at an inclination angle of 70°(Jelle, 2013) (b) Snow on 800 

photovoltaic modules mounted on pitched roofs (Andenæs et al., 2018),  Mono, poly-crystalline 801 

silicon, CdTe, CIS and CIGS modules on platform (c) without snow covered, (d) with snow covered 802 

at Brasov, in Romania (45.65°N, 25.65°E, 600 m above the sea level) (Visa et al., 2016). 803 

Cleaning off the dust from BIPV/BAPV module surfaces is possible by natural rainfall, wind or 804 

gravity, mechanical, electromechanical, electrostatic and self-cleaning methods (Said et al., 2018). 805 

Table 5 listed the cleaning cycle and mitigation method based on different climate conditions and 806 

characteristics. Rainfalls are free of charge but seasonally volatile, thus highly unreliable when soiling 807 

is intensive, and rainfall is not enough either in quantity or in intensity to clean off the soil. Brushing, 808 

blowing, vibrating and ultrasonic driving are the mechanical methods to remove dust from PV. Broom 809 

or brush is generally used for brushing method which is driven by some machine. For small size and 810 

the strong adhesivity of the dust, this method is not very efficient. In a blowing method, wind from the 811 

blower is employed which needs high energy to operate. Electromechanical methods encompass 812 

shakes or vibrates the PV module array and use subsonic or ultrasonic waves to break the dust 813 

particle. The electrostatic approach has been proposed by NASA to mitigate the negative effects of 814 

dust on lunar-solar panels. Attached parallel or spiral transparent UV- radiation resistant plastic sheets 815 

repel the dust particle when a single- or multiple-phase AC voltage supply produces an 816 

electromagnetic field on the surface (Calle et al., 2009; Sharma et al., 2009; Sun et al., 2012). 817 
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Table 5 :Cleaning cycle and mitigation method based on different climate conditions and 818 

characteristics (Ghazi et al., 2014) 819 

Climate 
condition 

Cleaning 
cycle 

Mitigation 

Humid cold 
temperature  

Every six 
months 

Wet type cleaning methods by using soap and warm water 

Humid hot 
temperature 

Every three 
months 

Surface coating, self-cleaning hydrophobic 

Humid 
equator 

Monthly Automatic cleaning systems for wiping snow and dust 
Use a plastic mesh over PV panels to reduce the problem of bird 
droppings 

Dry Weekly Dry type cleaning methods such as rotary brush, automated 
robotic device 

 820 

Self-cleaning methods can be categorized into hydrophobic and the photocatalytic hydrophilic (Ahuja 821 

et al., 2017) (Mehmood et al., 2016). Hydrophobic and hydrophilic are understood by water contact 822 

angle experiment where contact angle greater than 900 possess hydrophobic and higher than 1500 823 

possess superhydrophobic. On the other hand, the water contact angle less than 900 are known as 824 

hydrophilic and less than 50 superhydrophilic (Jang et al., 2019). Presence of hydrophobic coating, the 825 

water drops roll off the surface quickly due to the water repellent which also removes the 826 

contaminants from the surface. In the case of superhydrophobic which is also known as the lotus 827 

effect, ball-shaped water droplet, runs down the surface and collects the dirt with small sliding angle 828 

(Zhang and Lv, 2015). It is worth mentioning that superhydrophobic and hydrophobic are applicable 829 

for snow (A. Kim et al., 2015) and superhydrophilic and hydrophilic are suitable to clean dust covered 830 

BIPV/BAPV (Nundy et al., 2020). Superhydrophobic coatings include fluorocarbons, silicones, 831 

carbon nanotubes (Hanaei et al., 2016), polymeric materials such as polystyrene, polyurethane urea 832 

copolymer, poly (methyl methacrylate), polycarbonate, poly (vinyl chloride), organic materials and 833 

inorganic materials zinc oxide (ZnO) and titanium dioxide (TiO2). Using UV treatment super 834 

hydrophobic and hydrophobic can be made as hydrophilic or super hydrophilic. TiO2 is the most 835 

common super hydrophilic self-coating layer. Superhydrophobic fluorinated ethylene propylene 836 

(FEP) into a silicon PV enhanced the short circuit current density by 1.1% and 93.6% recovery ratio 837 

of short circuit current (Roslizar et al., 2019) (Vüllers et al., 2018). Superhydrophobic coating can 838 

improve 10% maximum power of c-Si-based PV module (Z. Huang et al., 2018). Addition of TiO2 839 

and KH550 superhydrophilic coated PV provided maximum 4.3% efficiency improvement (Zhong et 840 

al., 2017). Superhydrophobic nanostructure glass surface allowed only 1.39 efficiency drop while bare 841 

glass reduced 7.7% efficiency (Son et al., 2012). Potential of self-cleaning coating for PV surface 842 

cleaning is well documented elsewhere and shows its supreme applicability (Gullbrekken et al., 2015; 843 

Liu et al., 2019; Loh et al., 2013).  844 

Further improvement from snow and ice challenges can be addressed by using icephobic surface 845 

coatings (Fillion et al., 2014; Hejazi et al., 2013). Icephobicity is related to superhydrophobicity, but 846 

superhydrophobic surfaces are not necessarily icephobic (Kulinich et al., 2011; Nosonovsky and 847 

Hejazi, 2012). Specific materials and coatings have achieved degrees of icephobicity, however, 848 

opaque nature makes them ineligible for BI/BAPV applications. Table 6 summarised the advantages 849 

and disadvantages of different cleaning methods. 850 

Table 6: Advantages and disadvantages of different cleaning methods  851 
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Cleaning methods Advantages Disadvantages 
Manual  Restoration of standard PV 

performance is possible. 
Needs constant manpower, as 
frequent cleaning cycles require. 
Depends on location and dust 
intensity, intense cleaning needs 
weekly or monthly. 

Mechanical  Less productive compared to 
manual cleaning 

Requires electrical power, due to 
initial and maintenance cost suitable 
for large systems,  
 

Electrodynamic 
screens (Bock and 
Robinson, 2008) 

Removes 90% of soiling 
Less power consumption; as low 
as 0.003% of generated power 

Doesn’t work properly under rainy 
condition and requires dry 
conditions for effective work.  

Stowing of PV arrays Protects from soiling when not in 
use (nighttime; dust storms) 

Ineffective during daytime if sudden 
dust storm approaches (insufficient 
stowage time 

Self-cleaning Passive self–cleaning, no 
manpower, electrical supplies are 
required. 

Depends on rainfall and long-term 
stability  

 852 

4.4. Scale up issues and lack of standard  853 

Large-scale development for three different generations PV has its own issue. First-generation silicon-854 

based crystalline-silicon-wafer PV modules have more than 90% of market share. First generation-855 

commercial PV panels consume 100 mg/cell silver (ITRPV, 2015). Reduction in silver use for the rear 856 

contact of silicon PV cells with partial substitution by using aluminium is already standard practice 857 

but not for the frontal part yet. The rate of decrease in silver paste use in PV cells contacts 858 

metallization and the rate of increase in first-generation PV installed capacity can possess 70% of the 859 

variance of the yearly silver demand in the year 2050 (Lo Piano et al., 2019). Thus, the reduction in 860 

silver paste use for contact metallization needs meaningful pace, to ensure smooth deployment of PV 861 

power generation at a sustained pace. 862 

Large scale deployment of CdTe PV technology requires two key elements which are cadmium and 863 

tellurium, by products of zinc and copper, respectively. CdTe is the fifth most expensive 864 

semiconductor material based on future extraction costs among 23 semiconductor materials (Wadia et 865 

al., 2009). Available tellurium reserves can support CdTe-based solar power production of 1438 GWp 866 

in 2020, 19149 GWp in 2050, and 20211 GWp in 2075 (Fthenakis, 2009). 867 

Third generation type PV cells are particularly gaining interest in BIPV application due to their ability 868 

to tune the transparency. However, presently they are facing issue to fabricate in large scale primarily 869 

due to the material degradation under ambient exposure and drop of efficiency. Dyesol is working on 870 

large-scale DSSC installations in collaboration with Tata Steel in North Wales, UK. Exeger received a 871 

USD 20 million investment to build a 20 MW DSSC production line in Stockholm, Sweden (View, 872 

2016). 873 

Serially interconnecting different numbers (five, eight, or ten) of Perovskite PV cells (each cell made 874 

by a triple layer of mesoporous TiO2, ZrO2 and carbon as a scaffold for mixed cation lead halide) 875 

fabricated a large-area 100 cm2 module (active area of 49 cm2 ) that exhibited a PCE of 10.4% and 876 

stability till 1000 h. Later printable perovskite PV panel having 7 m2 active area was fabricated for 877 

BIPV application (Hu et al., 2017). Recently scaled up perovskite (shown in Figure 8c) was achieved 878 

which had 108 cm2 active area and 13.4% power conversion efficiency, stability till 1000hrs at 65°C 879 
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(Agresti et al., 2019) as shown in Figure 21a. Based on the techniques applied on the 5 × 5 cm2 880 

Perovskite cells 10.6% efficiency were used to increase the module size to 45 × 65 cm2.  A 881 

demonstration power station was made of 32 perovskite panels. No significant degradation was found 882 

after 140 days of outdoors testing as shown in Figure 21c (Cai et al., 2017). Presently perovskite 883 

based BIPV which was manufactured by Saule Technologies and installed in Skanska’s Spark 884 

building in Warsaw (Wojciechowski et al., 2019), is shown in Figure 21b. The system consists of 52 885 

perovskite modules, and its performance is monitored by a maximum power point tracker.  886 

 887 

Figure 21 : (a) Photograph of a representative large-area Perovskite (108 cm2 active area, 156.25 cm2 888 

substrate area (“Reprinted (adapted) with permission from, (Agresti et al., 2019) Copyright (2019) 889 

American Chemical Society”) (b) Flexible perovskite solar modules laminated into a glass facade 890 

element and integrated into the Skanska’s Spark building in Warsaw, Poland. Reproduced with 891 

permission. Copyright 2019, Skanska and Saule Technologies (c) Large area perovskite solar cell 892 

module Longhua (Cai et al., 2017) © 2017 Chinese Institute of Electronics 893 

Standards, codes or guidelines for inclusion of PV in buildings are not available. Integration of the 894 

BIPV system into the building requires a large number of cable connections which may penetrate 895 

through the roof or under the layer of the roof (Agathokleous and Kalogirou, 2019). Thus, installation 896 

barriers, such as the cabling and connections, failure of fixings, islanding can create an issue after 897 

integration of PV into the building. Particularly replacement of BIPV system is more critical than 898 
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BAPV. Improper silicone waterproofing, can posses water penetration which is a serious drawback 899 

for a building. Thus, health and safety which can cover the cases of fire, electricity shortcut, wires 900 

failures play a major role while codes will be prepared. Noise control should be under examination as 901 

well. Standards for noise protection by integrating PV in buildings are not clear in the building codes. 902 

Lack of allowance of extra loads on BIPV from snow, ice, wind can cause BIPV system bending and 903 

this will lead to various failures requiring repairs or replacement (Yang, 2015; Yang and Zou, 2016). 904 

Thus standard test method is essential which can explain all details of the requirement for the 905 

combined building structure and BIPV cable connection (Gullbrekken et al., 2015). Ubiquitous 906 

standards are available for PV system but not for BIPV/BAPV systems (A. K. Shukla et al., 2017a). 907 

However, recently, for BIPV, only one standard EN 50583 is initiated (Ferrara et al., 2017).   908 

 909 

4.5. Colour comfort evaluation 910 

Presence of BIPV in a retrofit or new building has a significant impact on the behaviour of occupants. 911 

However, occupant comfort analysis for BIPV is the most underestimated area.  In a building, 912 

occupant behaviour is complex and stochastic nature and primarily depends on comfort level at indoor 913 

space (Andargie et al., 2019). Occupant comfort hugely influences the cognitive activity of occupant, 914 

mental health, controls physiological reactions by maintaining  melatonin production, core body 915 

temperature, heart rate, and cortisol production (Biswas et al., 2016). Occupant comfort includes 916 

visual and thermal both. For visual comfort glare and daylight analysis and for thermal indoor 917 

temperature and PPD-PVD methods are considered. However, for visual comfort, quality and quantity 918 

of light both are equally important (Smolders and de Kort, 2014). Daylight and glare analysis quantify 919 

the quantity of light where is colour properties indicates the quality of light. Thus, for BIPV glazed 920 

façade application evaluation of colour properties which includes colour rendering index (CRI) and 921 

correlated colour temperature (CCT) are essential to understand the visual comfort of building 922 

occupants. CCT and CRI provide the details of the quality and quantity of daylight (Hernández-923 

Andrés et al., 1999; Prathap et al., 2016; Valencia et al., 2013). CCT near 6500 K and CRI above 95 924 

indicates the comfortable daylight into space(Ghosh and Norton, 2017a)  (Ghosh and Mallick, 2018). 925 

Variations of these may generate different CCT and CRI values that may not be suitable for indoor 926 

comfort. PV materials filter external ambient daylight while it is passing through it. Thus, penetrated 927 

daylight through a window in an indoor space has different wavelength dependent spectrum than the 928 

original daylight available outside. CCT and CRI both depend on full spectral than one single 929 

transmittance value (Ghosh and Norton, 2017a; Gunde et al., 2005). Similar average transmittance c-930 

Si, a-Si, CdTe, CIGS, DSSC and perovskite PV will generate different CCT and CRI. Thus, before 931 

applying PV material for glazing or glazed façade, evaluation of CCT and CRI are equally essential.  932 

5. Potential future application of BIPV and BAPV  933 

5.1. Source for switchable window 934 

Traditional static/ constant transparent windows are not thermally insulated and need shading device 935 

to control the daylight. Semi-transparent BIPV windows can replace those traditional ones but 936 

transparency cannot be modulated. Thus, rather integrating BIPV window, a switchable window can 937 

be introduced where BIPV can power those switchable windows (Gorgolis and Karamanis, 2016; 938 

Rezaei et al., 2017; Saifullah et al., 2016). Switchable windows include electrically and non-939 

electrically actuated (Ghosh and Norton, 2018) types. However, electrically actuated switchable 940 

glazings are preferred for building application due to its controllable transmission (Ghosh et al., 941 

2016a). Electrically actuated glazing includes AC powered suspended particle device (SPD)(Aritra 942 
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Ghosh et al., 2015)(Ghosh et al., 2017a) (Barrios et al., 2015) (As shown in Figure 22a) and liquid 943 

crystal (LC) (shown in Figure 22b)(Aritra Ghosh et al., 2018a) (S. Kumar et al., 2019)(Ghosh and 944 

Mallick, 2017) and DC powered electrochromic (EC) (Granqvist et al., 2017; Xiong et al., 2017). 945 

 946 

Figure 22: (a) Electrically actuated switchable glazing (PDLC type) (Taken from (Aritra Ghosh et al., 947 

2018b) (b) Electrically actuated switchable glazing (SPD type) (Taken from(Ghosh et al., 2016b) ) 948 

Mitigation of external power requirement of those electrically activated glazings is possible by using 949 

PV devices which are shown in Figure 23. This novel system can be termed as self-powered glazing, 950 

switchable BIPV (Wheeler et al., n.d.), autonomous switchable glazing, photoelectrochromic 951 

(Cannavale et al., 2016) or photo-voltachromic which are suitable for less energy-hungry building. 952 

These combinations find solutions for seemingly impossible building problems. Powering from PV 953 

for AC powered SPD (Ghosh and Norton, 2017b) and LC(Hemaida et al., 2020) window needs an 954 

inverter for conversion as shown in Figure 24a (Ghosh et al., 2016b). An inverter increases the power 955 

losses which increase the required PV compared to EC powered glazing (Ghosh and Norton, 2019). 956 

However instant switching speed and no power requirement to control the solar heat gain can 957 

encourage using this type of combination (Ghosh et al., 2016b). Thus, building for hot arid climate 958 

SPD or LC type glazing is advantageous where power generation from BIPV or BAPV can be stored 959 

for night-time use(Ghosh et al., 2016c). PV powered EC glazing system has two-fold advantages. 960 

Firstly, EC glazing works with direct current (DC) power supply and PV produces DC power, thus 961 

direct coupling between EC and PV is possible where no need for power electronic conversion (Deb 962 
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et al., 2001; Gao et al., 2000; Ma and Chen, 2012). Secondly, EC at high surface temperature requires 963 

less power to switch and PV at high ambient temperature generates less power than its standard rating 964 

(Bell and Matthews, 2001; Matthews et al., 2001). These two advantages make BIPV/BAPV power 965 

EC switchable glazing a potential candidate for future building integration. Dye-sensitized solar cell 966 

and silicon-based PV-EC device had already been investigated and found to be promising (Ahn et al., 967 

2007; Santa-Nokki et al., 2007). Investigation showed that one 3.7% efficient perovskite PV powered 968 

an EC device which had an average visible transmittance of 26% (Cannavale et al., 2017a, 2017b). 969 

Solution type PV-EC material has been reported (Huang et al., 2012b, 2012a) where the 970 

electrochromic solution is located between the transparent non-conductive substrate and the silicon 971 

thin-film solar cell (Si-TFSC) substrate. The planarly distributed electrodes create a uniform electric 972 

field and due to solution type EC, the transparency of the overall device increase.  973 

 974 

 975 

Figure 23: Types of PV powered switchable glazing. (Taken from (Ghosh et al., 2016b)) 976 

 977 
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 978 

Figure 24: (a) Photographic view of PV powered SPD switchable glazing (Taken from (Ghosh et al., 979 

2016b)) (b) 200 mm × 200 mm PDLC was powered by concentrator-type solar window used four 980 

parallel-connected edge-mounted CuInSe2 modules of size 198 mm × 25 mm (Vasiliev et al., 2019) 981 

Currently, LC-based glazing was also powered by DSSC based PV. However, the investigation was 982 

performed for a small scale, but the promising result confirms that PV integrated switchable glazing is 983 

future building architecture material (Kwon et al., 2015). Powering of PDLC glazing by a 13 nm thick 984 

a-Si PV cells was investigated for low (<0.8 mW/cm2) intensity (Murray et al., 2017). Recently 985 

perovskite PV and a liquid crystal-based window were investigated where LC window switched from 986 

3% to 79% transparent in the presence of 55V supply. Performance of perovskite was dependent on 987 

the thickness of the material. Higher thickness reduced the overall system transparency while reduced 988 

thickness enhanced the power conversion ratio (Xia et al., 2019). A PDLC size of a 200 mm × 200 989 

mm was electrically driven using by concentrator-type solar window used four parallel-connected 990 
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edge-mounted CuInSe2 modules of size198 mm × 25 mm in Edith Cowan University (ECU), October 991 

2014 shown in Figure 24b. This is a patent work and not yet fully published academically (Vasiliev et 992 

al., 2019). 993 

 994 

5.2. BIPV for highly insulating glazing 995 

Available BIPV glazings are two glass sheets where PV materials are sandwiched between them. 996 

However, this double glazing has an overall heat transfer coefficient (U-value) which is near 2 997 

W/m2K. For less energy-hungry building, heat loss from window needs to be reduced and this is not 998 

achievable using double pane BIPV for cold climate. Highly insulating vacuum glazing has the 999 

potential to reduce the indoor heat by reducing the heat flow from indoor space to outdoor ambient 1000 

(Fang et al., 2014)(Ghosh et al., 2016d). Vacuum glazing is two glass sheets where inside the space, 1001 

the vacuum is created by using high-pressure air extraction (Ghosh et al., 2016e). To counteract the 1002 

pressure from external ambient, small pillars are placed in regular order in the internal space (Figure 1003 

25a and b). Presence of vacuum reduces the conductive and convective heat flow and radiative heat 1004 

flow is reduced by using low emission coating (Ghosh et al., 2017b). Low-e coatings are metals or 1005 

metallic oxide based, transmit visible light in the solar spectrum and reflect the infrared (2000 nm -1006 

50,000 nm)(Ghosh et al., 2017c). For double glazing, presence of a low-e coating on the internal 1007 

surface of the inside glass pane reduces the heat loss from the interior room to an exterior 1008 

environment (Jelle et al., 2015). Integration of vacuum glazing with BIPV (shown in Figure 25 c) can 1009 

thus offer electricity generation, reduction of heat loss and control over admitting heat gain. Spaced 1010 

type crystalline silicon attached with highly insulated vacuum glazing was also investigated for the 1011 

temperate and cold climate which showed U-value of  0.8 W/m2K (Aritra Ghosh et al., 2018d). Also, 1012 

the light penetrated through space between cells allowed to maintain the external daylight at indoor 1013 

space (Ghosh et al., 2019b). a-Si based BIPV-vacuum system (Figure 25 b) having U-value of 0.5 1014 

W/m2K reduced up to 31.94% heat loss which saves net energy savings of 37.79% in cooling 1015 

dominated Hong Kong (J. Huang et al., 2018). 1016 

 1017 
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Figure 25: (a) Schematic of crystalline spaced type BIPV vacuum glazing (taken from (Ghosh et al., 1018 

2019b)), (b) a-Si based BIPV -vacuum glazing (taken from (Zhang et al., 2017)), (c) details of BIPV-1019 

vacuum glazing (taken from (Ghosh and Norton, 2018)). 1020 

In another work, BIPV-vacuum glazing’s U-value was found to be 1.5 W/m2K and SHGC 0.14 from 1021 

an indoor experiment. Combined these effects were employed in Energy Plus and WINDOW software 1022 

and observed that cooling electricity reduction up to 25.4% and 16.5% was possible compared to 1023 

single and double glazing (Qiu et al., 2019). Currently insulated BIPV was designed by using spaced 1024 

c-Si and low e coated glass, as shown in Figure 19. The SHGC of the highly insulated BIPV was 0.25 1025 

and U-value was 3.5 W/ m2 K.  Low e coating was present in the third surface from exterior to 1026 

interior, could not reflect longwave radiation into indoor space. Presence of low -e coating in the 1027 

fourth surface could improve the result (Peng et al., 2019).  Indoor thermal comfort using BIPV-1028 

vacuum system showed 39% enhancement than that of BIPV double glazing (Ghosh et al., 2019a). 1029 

 1030 

5.3. Powering electric vehicle (EV) 1031 

One of the major applications of BIPV/BAPV can be in the field of transport which consumes 40% of 1032 

fossil fuel energy worldwide and 90% transport sector is powered by oil-derived fuel (Chandra Mouli 1033 

et al., 2019; Nunes et al., 2015). Consumption of expensive petrol and diesel for vehicles produces 1034 

GHG, volatile organic air pollutant, PM10 and NOx (Van Vliet et al., 2011). The transport sector 1035 

accounts for around 25% of EU greenhouse gas emissions. In Ireland, CO2 emissions increased by 1036 

181% between 1990 to 2007 (Smith, 2010). In Switzerland, transport accounts for 31% GHG yearly 1037 

(Smith, 2010). Deployment of electric vehicles (EV) over oil-powered vehicles can improve the 1038 

situation. Electrically powered EV contains an electric battery that supplies the required energy to 1039 

drive the car engine. Plug-in hybrid electric vehicles (PHEV), and battery-powered electric vehicles 1040 

(BEV) are presently most investigated EV (Van Vliet et al., 2011) (Das et al., 2020; Tie and Tan, 1041 

2013; Yong et al., 2015). The conventional car uses gasoline or diesel fuel that create mechanical 1042 

energy to move forward a vehicle. In a hybrid electric vehicle (HEV), small electric battery supply 1043 

electricity to the drive train to optimize combustion engine’s operating efficiency (Yong et al., 2015). 1044 

HEVs are more fuel-efficient than conventional internal combustion engine (ICE) vehicle, but 1045 

ultimately the vehicle is fully powered by liquid fuels. PHEV type works with the same principle to 1046 

HEV, but they have large area high capacity battery that can be charged with a direct connection to 1047 

the grid (Shamshirband et al., 2018). The high capacity battery also allows a car to drive the longer 1048 

distance. Car model named PHEV 20 or 40 indicates car can travel with only the fully charged battery 1049 

to 20 or 40 miles (Richardson, 2013). A battery electric vehicle (BEV) is fully powered by grid 1050 

electricity stored in a large on-board battery. A lithium battery is the most used EV battery as they 1051 

offer power density, energy efficiency and light and compact weight (Mahmoudzadeh Andwari et al., 1052 

2017; Zhou et al., 2020). The lead-acid battery is not preferable due to poor thermal performance, low 1053 

specific energy and chemical leakage. BEV and HEV face a huge challenge as 45.3% of the EV cost 1054 

is the battery's cost (Petersen, 2011). 1055 

EV can increase a household electricity consumption of an industrialised country by 50% (Van Vliet 1056 

et al., 2011) which can be neutralized by powering EVs from PVs. Netherlands sets its targets to 1057 

penetrate 200,000 EV in 2020 (Chandra Mouli et al., 2016). Nordic countries of Denmark, Finland, 1058 

Norway and Sweden have planned to 100% penetration of passenger cars by 2050 (Graabak et al., 1059 

2016). Thus, the EV charging station can be powered from PV (Ghotge et al., 2020; Ma et al., 2014). 1060 

Considering the potential of PV powered EV, currently, feasibility study using local solar radiation 1061 

has been conducted in New Jersey (Birnie, 2009), Canada (Li et al., 2009), Brazil (Sorgato et al., 1062 
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2018), Dublin (Esfandyari et al., 2019) and Australia (Islam and Mithulananthan, 2018). PV-grid and 1063 

PV-standalone are the two most popular charging station. PV grid charging station gets supply during 1064 

the insufficient sunshine while PV- standalone rely on PV only (Ghosh, 2020b). However, they are 1065 

suitable for the remote area where utility supply is not convenient or costly or not available. A 6.5 kW 1066 

PV standalone charging infrastructure, accommodated four EVs (Nissan Leaf), travelling 50 km 1067 

throughout the day in Galway in Ireland. The control strategy was adopted to maximize the PV energy 1068 

usage while meeting the demand of the EV batteries (Kineavy and Duffy, 2014). The parking area of 1069 

any residential or commercial building can be covered with PV to form PV powered EV charging 1070 

station, which will charge the battery of EV directly for the car during daytime as shown in Figure 1071 

26a (Fattori et al., 2014). These overhead canopies are built by PV and commonly referred to as solar 1072 

carport. Due to variation of solar intensity in the summer and winter season, battery storage and 1073 

provision for grid supply when requires are also suggested (Birnie, 2009; Codani et al., 2016; 1074 

Esfandyari et al., 2019; Igualada et al., 2014; Li et al., 2009). Figure 26b shows India's largest carport 1075 

in India, solarized by Tata Power Solar having 2.67 MW spread across 20289.9 m2 area which Offsets 1076 

1868 tonnes of CO2 annually (Power, 2019). Figure 26c shows solar carport for 22-vehicles at the 1077 

parking lot located in Fort Lauderdale, Florida. This solar carport solution can produce up to 88, 357 1078 

kWh of clean energy with an average energy saving of $10,000 per year respectively. This charging 1079 

while parking is a potential future option (Van Roy et al., 2014). Charging the EV directly from BIPV 1080 

is possible for a commercial building where cars are parked during the peak office time and it matches 1081 

with the sunshine period (Richardson, 2013).  1082 

 1083 

 1084 

Figure 26: (a) Design of solar powered EV charging station (Taken from (Birnie, 2009)]; (b) Solar 1085 

Car port In Cochin International airport (9.93606° N, 76.26145° E) India. Image Source ((Power, 1086 

2019) (c) 22-vehicles at their headquarters parking lot located in Fort Lauderdale, Florida. (Source & 1087 
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image courtesy: solar carport installation at MOSS Construction by Advanced Green Technologies) 1088 

(d) RV EV car roof-mounted PV module, (image courtesy: Giantour Corp Ltd) 1089 

Vehicle integrated PV (VIPV) is another elegant approach to power EV from PV (Bhatti et al., 2016; 1090 

Richardson, 2013). Thin films or traditional c-Si based PVs (shown in Figure 26d) are attractive for 1091 

VIPV to mount on the roof of the EV and converter fitted battery will be there for back up. VIPV 1092 

using brushless permanent magnetic DC motor was also proposed (Rattankumar and Gopinath, 2012). 1093 

This integrated can also be used for the air conditioning or heating purpose inside the car. Thus, VIPV 1094 

systems can be suitable to run an auxiliary device such as fan, audio players, and switchable window 1095 

or for racing cars. A mixture of silicon crystal with fixed quantum points can be painted on the car 1096 

body for VIPV application (Kadar and Varga, 2013). Despite the low efficiency (less than 2%), the 1097 

future of this technology is exciting. 1098 

5.4. Emerging future BIPV/BAPV technology  1099 

Light weight BIPV- BIPV and BAPV both are often installed or integrate on an existing building 1100 

which can affect the building structure as the weight of glass-blacken sheet PV modules vary from 12 1101 

to 16 kg/m2 and glass-glass modules vary from 16 to 20 kg/m2. This extra load was not taken into 1102 

account during the building design phase which crates obstacle. Therefore, for BIPV application, 1103 

specific power (power/weight =W/kg) gets higher priority than conversion efficiency. Flexible 1104 

amorphous silicon and c-Si have a specific power of 16 Wp/kg and 12-17 Wp/kg respectively 1105 

(Ransome, 2009).  Flexible and lightweight, emerging PV technologies enable novel building 1106 

applications over traditional type PV modules (Ramanujam et al., 2020). Flexible type PV modules do 1107 

not need any ballast which makes easy integration. PV module with a weight of 5 kg/m2 substitutes 1108 

the typical front glass with a thin polymer sheet and the standard back sheet by a composite sandwich 1109 

structure using stiff ionomer (Martins et al., 2018a) adhesive and polyolefin (Martins et al., 2018b). 1110 

Varying substrates for CIGS PV, specific power can be achieved between 0.2-0.4 kW/kg (steel, 1111 

titanium and polyimide foil) for light weight BIPV integration (Feurer et al., 2017). First 250 m2 
1112 

flexible OPV fabricated by a roll to roll process had 4.3% average efficiency was installed in the solar 1113 

trees at German pavilion in 2015 Universal Expo in Milan for investigation of future BIPV (Berny et 1114 

al., 2015). Figure 27 shows that higher specific power is possible from emerging technologies which 1115 

broke the myth that the highest efficiencies are necessary for BIPV application (Reese et al., 2018). 1116 

Third-generation PV technology offers further lightweight high power generation because of their 1117 

low-temperature solution-processable fabrication (Xie et al., 2019). 1118 

 1119 

 1120 

 1121 

 1122 

 1123 
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 1124 

Figure 27: Specific power as a function of AM1.5G module efficiency (Redrawn from (Reese et al., 1125 

2018)) 1126 

Coloured or invisible BIPV 1127 

Coloured BIPV is a new technological solution for the inclusion of coloured PV in modern and 1128 

heritage type building. Coloured PV technology includes traditional and new all new type of PV e.g. 1129 

blueish silicon, DSSC, Organic type while they can be installed as façade, roofing shading or balcony 1130 

glazing (Eder et al., 2019). The prime target is to hide the PV functionality from and treat them as 1131 

invisible PV. Bare c-Si (both monocrystalline and multi-crystalline) offers reflectance around 30 %, 1132 

which can be  reduced by introducing antireflective (AR) coatings on their surfaces (Soman and 1133 

Antony, 2019). Varying AR coating thickness gives blue or other colour to the PV cells which also 1134 

influence the PV cell efficiency. AR coated modified colour-based PV cells can be purchased directly 1135 

from the cell manufacturer. Presently few developers are in the market with coloured BIPV. Kameron 1136 

Solar produce Sparkling Gold, Disco Pink, Emerald Green, Stone Elegance, Diamond Blue type 1137 

coloured PV (as shown in Figure 28a). LOF solar built a residence with balcony glazing in Black 1138 

forest Germany where this colour blends seamlessly with surrounding forest and trees as shown in 1139 

Figure 28b. In addition, coloured BIPV is possible to achieve from any semi-transparent type a-Si, 1140 

CdTe, CIGS and third generation DSSC (as shown in Figure 28d), perovskite, organic PV and LSC 1141 

(as shown in Figure 28e) technology.  1142 

A certain colour/pattern-based interlayer can be sandwiched as an encapsulant layer between upper 1143 

glass and module or can be introduced at the back also produce coloured BIPV. Such system is 1144 

commercialized by the Centre Suisse d'Electronique et de Microtechnique commercialized (CSEM) 1145 

by Solaxess SA where an elective filter on the front of the glass cover reflects and diffuses solar 1146 

radiation within the visible spectrum, offering a white appearance (Figure 31f), whilst the transmitted 1147 

infrared part is converted into benign electricity. Kaleo-Solar developed (Figure 31g) an integrating 1148 

coloured BIPV system where high-resolution photo printed on a film with special inks is laminated 1149 

between cells and the cover glass. After the module lamination, only the printed photo is visible while 1150 

PV cells are no longer visible. Amorphous silicon technology can be combined with coloured 1151 

polyvinyl butyral as the back encapsulant is shown in Figure 33h for coloured a-Si technology. 1152 

Lucerne University of Applied Sciences developed multi-coloured ceramic digital printing on BIPV 1153 
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glass (shown in Figure 28i) where ceramic paste can be introduced to the glass prior to the tempering 1154 

of the glass which bonds strongly to the glass. The printed dotted pattern allows sufficient light to 1155 

reach the PV cells; offers inhomogeneous shading and losses up to 20% (Mertin et al., 2014, 2011). 1156 

Use of coloured BIPV requires optimization of colour perception, as mentioned in section 4.4. Also, it 1157 

must be kept in mind that reduced PV efficiency is achievable from coloured BIPV since there is a 1158 

reduction of the incident light on the PV cells. 1159 

 1160 

Figure 28: (a) Colourd PV (Image courtesy: KameleonSolar), (b) Blacony glazing by LOFT solar, (c) 1161 

Black BIPV façade on a children’s day-care centre in Marburg; project realized by ertex-solar (d) 1162 

SwissTech convention centre at EPFL campus, Lausanne Switzerland (Image courtesy: EPFL), (e) 1163 

Striking facade of the Palais des Congrès in Montreal, Canada,(Debije, 2015) (f) Elective filter based 1164 

white BIPV (image courtesy: CSEM)   (g) High resolution photo integrated coloured BIPV (Image 1165 

courtesy: Kaleo-Solar (h) Amorphous silicon with coloured polyvinyl butyral (Image courtesy: 1166 

AppleSun) (i) Multi coloured BIPV modules developed by the University of Lucerne (Image 1167 

courtesy: Envelopes and Solar Energy Competence Centre within the Hochschule Luzern) 1168 

Sensor application-BIPV can act as a sensor for an intelligent building energy management system. 1169 

Voltage is proportional to the temperature and current directly depends on the solar intensity. 1170 

Mapping the response of a specific PV power- generating BIPV is attractive as over a variety of 1171 

illumination and temperature condition, output parameters from it can be engaged as input data for 1172 

intelligent building energy management system. Most often PV arrays incorporate a large number of 1173 

PV module which can replace the engagement of a large number of sensors. Installed BIPV for a 1174 

smaller area can also work as sensor and can offset a smaller amount of building energy needs by 1175 
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producing modest power. BIPV window sensor can inform how to operate the HVAC system which is 1176 

necessary to operate electrically actuated shading or electrically actuated chromic window(Abe et al., 1177 

2020) (John and Conklin, 2017). 1178 

Emerging product- 1179 

Solar squared is a product from BuildSolar, spin-out company from the solar lab, University of 1180 

Exeter. In this product, the spaced typed structure is present. Low concentrator CPC on crystalline 1181 

silicon generates power while they are sandwiched between transparent glass blocks. One block is 1182 

able to produce 1 W DC power while U-value is 1 W/m2K (Baig and Mallick, 2018). This product 1183 

(shown in Figure 29a) has prodigious potential for building integration specially for less-energy 1184 

hungry, zero energy, sustainable, green, and aesthetic building integration. 1185 

 1186 

Figure 29: Solar squared (Image courtesy Build Solar (taken with permission)) (b) Pythagoras Solar 1187 

(Image courtesy: Pythagoras Solar) (c) CuInS2 Quantum dot LSC BIPV Window (taken with 1188 

permission (Bergren et al., 2018) (d) Transparent PV- window module (17 cm2) for LED lightning 1189 

application (Chau et al., 2010). 1190 

Pythagoras Solar as shown in Figure 29 b was conceived in Petach Tikva, Israel, with offices in 1191 

Taipei, Taiwan and San Mateo, California, specializes energy efficient building by harnessing energy 1192 

from the sun, generate power directly from it. This aesthetically pleasing BIPV product was employed 1193 

in Chicago’s Willis Tower, formerly known as the Sears Tower. It was founded in 2007, however 1194 

currently not in operation (Closed from Apr 2013). Figure 29c shows LSC-BIPV window which has 1195 
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high quantum yield (>90%), NIR-emitting CuInS2/ZnS quantum dots into the polymer interlayer 1196 

between two sheets of low iron float glass, a record optical efficiency of 8.1%.  A 10 cm × 10 cm 1197 

device is ∼44% transparent is the visible spectrum and with silicon solar cells this device converts 1198 

2.2% and 2.9% solar to electrical power conversion while substrates are a black background and 1199 

reflective type respectively (Bergren et al., 2018). Presently it is commercialized and ready for sale in 1200 

the brand name of UbiQD. Figure 29d shows a 17 cm2 transparent PV based window for LED lighting 1201 

application which was fabricated by integrating traditional silicon PV cells and organic–inorganic 1202 

nanocomposite material. A window having 8 cm2 active area had an efficiency of 3.4% while 1203 

measured under AM1.5 conditions (Chau et al., 2010).  1204 

5.5. BIM embedded BIPV/BAPV performance  1205 

Optimized building design, construction and operation are required to obtain an energy-efficient less-1206 

energy hungry building. For a new building, this task can be performed before the construction phase 1207 

(during the design phase), and for retrofit building, this is possible using the historical data of the 1208 

building. Building energy modelling is currently gaining high importance which can compare the 1209 

different building components and prescribe the efficient and suitable components for a particular 1210 

location complying with the energy standards. Incorporating of PV particularly BIPV/BAPV is now 1211 

common practice for analysing the self-sufficiency of less-energy hungry/low energy/ zero energy/ 1212 

adaptive building (Gao et al., 2019; J. Li et al., 2020). 1213 

Successful integration of PV into a building (BIPV/BAPV) requires architectural building design, and 1214 

engineering knowledge to integrate the photovoltaic suitably. Both architecture and engineer need 1215 

software tools to perform the design and analysis of the overall results. Building information model 1216 

(BIM) gives a platform where architecture, engineer and construction people gets benefitted by 1217 

solving the multiphase complex building scenario. BIM contains parametric computable data, such as 1218 

building geometric descriptions, construction typology, and thermal properties which are required for 1219 

building project and particularly applicable for rapid design, generation, planning, and decision-1220 

making, document creation, cost estimation, and vital project data in a digital format through the 1221 

course of a building life cycle (Sanhudo et al., 2018). For the architectural design, required software 1222 

tools are AutoCAD, MyArchiCAD, Auto Desk Revit and Sketchup while for PV design PVSYST. 1223 

However, for building energy model (BEM), a complete package is required where this drawing 1224 

software will provide the 3d building geometry, PV design will provide the PV parameters for 1225 

particular location and properties of building envelopes e.g. window, roof, wall, door. Currently 1226 

building energy software includes DOE-2, eQuest, DesignBuilder, Ecotect, Energy-10, Green 1227 

Building Studio, IESVE, HEED, and EnergyPlus (J. B. Kim et al., 2015). For EnergyPlus graphical 1228 

user interfaces (GUI) are AECOsim, CYPE-Building Services, DesignBuilder, Demand Response 1229 

Quick Assessment Tool, Easy EnergyPlus, EFEN, Hevacomp, OpenStudio, Simergy, and SMART 1230 

ENERGY. OpenStudio uses SketchUp plug-in to create building geometry editor; an OpenStudio 1231 

application as a main energy modelling interface; RunManager as a simulation interface; and the 1232 

ResultsViewer. BIM based building energy model (BEM) is a potential tool for less energy hungry 1233 

building simulation. Information data stored in BIM need a seamless translation from BIM to BEM. 1234 

However, BIM information does not always need to be translated into BEM or all the required 1235 

parameter always come from BIM. For example, a room in an architectural model does not always 1236 

indicate a zone in an energy simulation model and neither boundary conditions nor thermal zone 1237 

information is stored in BIM. 1238 

Input parameters of BIM-BEM for BAPV are different from BIPV. For BAPV, the required input 1239 

parameters include location, PV specification (efficiency, rated power), tilt angle and inverter details. 1240 

For BIPV technology, including the previously mentioned parameters, the additional requirements are 1241 
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the transmission of PV, daylight transmission, solar heat gain factor or solar energy transmission, 1242 

thermal transmission, or overall heat transfer coefficient. EnergyPlus (Buildings energy simulation 1243 

tool)  requires input parameters of PV module area, efficiency, open circuit voltage, short circuit 1244 

current, voltage at the maximum power point, current at the maximum power point, power 1245 

temperature coefficient, thermal conductivity, infrared emittance, U-value, solar heat gain coefficient, 1246 

and visible light transmission, daylight illuminance inside a room due to BIPV, (Ng et al., 2013) (M. 1247 

Wang et al., 2017)(Peng et al., 2016)(Jakica, 2018). BIM for optimizing BIPV tilt angle (Xuan, 2011) 1248 

and BIM API program in Autodesk Revit (Dixit and Yan, 2012) (Kuo et al., 2016) was previously 1249 

employed to simulate production of PV electricity (Gupta et al., 2014). 1250 

6. Discussion and perspective 1251 

6.1. Environmental, economic and societal viability of BIPV/BAPV 1252 

Environmental benefits from BIPV/BAPV is the essential study as during the processing, purification 1253 

and production of raw PV materials, PV system and other BOS fabrication, operation and 1254 

maintenance, and also during the dismantle of BIPV system there is a provision of power 1255 

consumption which come from traditional fuel sources (Parida et al., 2011). Life cycle analysis (LCA) 1256 

of PV system reveals the benefits of using a PV system. LCA analysis indicates for 1kWh energy 1257 

generation, PV emits only 35 gCO2eq while 1138.8 gCO2eq for coal. This data clearly indicates the 1258 

positive environmental impact of PV (Sierra et al., 2020). PV system’s energy payback time (EPBT) 1259 

indicates the electricity balance or net zero gain from PV over its lifetime. Adaptive BIPV window 1260 

system has ability to enhance the environmental impact up to 50% higher than traditional window 1261 

(Jayathissa et al., 2016). EPBT of c-Si based BIPV window for Singapore climate was 1.98 years (Ng 1262 

and Mithraratne, 2014b) while 2.1 kWp domestic BIPV in Southern England showed EPBT of 4.5 1263 

years (Hammond et al., 2012). In Hongkong climate, roof top BAPV system’s EPBT was 7.3 years 1264 

however variation of azimuthal and inclinational angle this time changes. However, greenhouse 1265 

payback time was only 5.2 when PV faced south direction and kept an optimal angle (Lu and Yang, 1266 

2010). Low concentrating BIPV system showed 13% improvement of an environmental impact 1267 

compared to without concentrating BIPV system (Menoufi et al., 2013). In another work, asymmetric 1268 

lens-walled compound parabolic concentrator based BIPV showed EPBT which varied between 2.82–1269 

4.74 years depends on the different location in China (Li et al., 2018). For BIPVT system EPBT 1270 

varies between 7.3 to 16.9 years. Cost of energy production for BIPVT varies from 1.61 to 3.61 1271 

US$/kWh (Tripathy et al., 2017). For Taiwan climate, EPBT took 10 years (Wu et al., 2018). Hence it 1272 

is clear that EPBT within 10 years is possible for BIPV/BAPV integration in less energy-hungry 1273 

building.  1274 

Building’s construction cost reduction potential using BIPV/BAPV system is one of the most 1275 

engrossing topics of discussion. It is evident from reported work that cost of BIPV building envelop is 1276 

higher than the cost of the traditional building envelope. BIPV tiles can increase 2% cost than 1277 

conventional tiles (Hammond et al., 2012), BIPV window can add $350‒500 per m2 (Benemann et al., 1278 

2001), while in a commercial building, BIPV can add 2-5% of overall construction cost (Eiffert, 1279 

2003). Also, in some cases, it was found that BIPV façade can reduce 20% cost than polished stone 1280 

facades (Koinegg et al., 2013). For BIPV tiles, standing seam products and shingles, require 1281 

additional adhesives and framing and flashing material while for BAPV roof, PV is attached on the 1282 

existing construction materials. Thus, BIPV actually offset the construction cost of a building. Hence, 1283 

the higher cost can be expected for BAPV compared to BIPV (Verberne et al., 2014). Other costs for 1284 

BIPV/BAPV systems arise from BOS and transportation and installation. Most often, this BOS counts 1285 

only 10-16% from the overall project cost, where inverter and storage systems are the leading cause of 1286 
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this cost during installation and operation time. Transportation cost is very dynamic, and few reports 1287 

are available for information.  In Italy, transport and installation cost was 19% (Cucchiella et al., 1288 

2012) while in Greece mounting cost was only 2.5% and 3% transportation cost (Bakos et al., 2003). 1289 

However, for BIPV, cost should include building envelope cost and additional benefits from 1290 

electricity generation (Oliver and Jackson, 2000)(Pagliaro et al., 2010; Sozer and Elnimeiri, 2007). 1291 

BIPV/BAPV has potential to satisfy the building energy demand by generating the green electricity 1292 

and reducing the electricity consumption by lowering heating, cooling, and lighting load, and excess 1293 

energy can be exported to the grid. Thus BIPV/BAPV shows a positive cost-effective over traditional 1294 

construction cost. 1295 

Deployment of BIPV/BAPV has high societal impact and benefits to wider society. Currently, 1296 

because of the rapid urbanization, 55% of the world population lives in urban areas and it is projected 1297 

that in 2050 this will be 68% (Sampson et al., 2020). This urbanization consumes a considerable 1298 

amount of electricity while most of the country depends on the imported fossil fuel energy sources to 1299 

generate that electricity (Foster et al., 2020; Luo et al., 2020; Su, 2019; Xie et al., 2020). Also, the 1300 

economic growth of a nation increases with urbanization (Gasimli et al., 2019). Hence, to maintain 1301 

economic growth and urbanization, and to become an energy secured country, BIPV is the key 1302 

solution. Traditional coal based power plant emits particulate matter (PM) which has a dimension 1303 

between 2.5 micrometre (PM2.5) to 10 micrometre (PM10) and also SO2 and NOx, CO2 and CO (Clark 1304 

et al., 2020; Karplus et al., 2018; Song et al., 2020). While these gasses create a greenhouse effect, 1305 

PM also has a direct adverse impact on human health as PM2.5 influences asthma. In 2015, 24.6 1306 

million people had asthma represented nearly 8% of the population in the USA. In the USA, between 1307 

2008 and 2013, per head asthma treatment cost was $3266 annually (Williams et al., 2019). 1308 

Replacement of the coal plant with BIPV can displace this PM2.5 and save the medical cost, which 1309 

can be employed for countries development and also help the growth of the energy economy without 1310 

polluting the environment. Also, transmission and distribution losses reduction gives an opportunity 1311 

to the energy provider to reduce electricity tariff (Byrnes et al., 2013) (Yang and Zou, 2016).  1312 

6.2. Limitation and progress towards BIPV/BAPV 1313 

Inclusion of PV in building still is not excitingly triggered due to several factors such as lack of public 1314 

awareness, missing professional knowledge, low communication between designers and engineers, no 1315 

proper knowledge of maintenance. End-users of BIPV technologies are still in the dark about the 1316 

capital and installation cost, ongoing repairing and maintenance cost for BIPV/BAPV systems 1317 

throughout the lifetime of buildings. They have knowledge about the cost of the system but have no 1318 

knowledge about the long-term benefits. Hence, a clear cost-benefit analysis should be there to make 1319 

helpful for users. Although since 1980, 10 fold price dropped for PV modules but concrete data of 1320 

energy payback time is rare (Yang and Zou, 2016). In addition, long payback period, high upfront 1321 

capital cost, low efficiency of BIPV may possess high electricity tariff. BIPV policies are not well 1322 

documents and government supports particularly for small industries are not available in the same 1323 

order (Biyik et al., 2017; Jelle, 2016; Osseweijer et al., 2018; A. K. Shukla et al., 2017b; Shukla et al., 1324 

2016b, 2016a). Low PV cell efficiency is also another barrier for widespread BIPV/BAPV adoption. 1325 

Low efficiency decreases the power conversion which increases the capital cost and delays the EPBT. 1326 

Lower electricity price from fossil fuel energy sources also creates a barrier for BIPV technology 1327 

(Alnaser and Flanagan, 2007). Hence to promote BIPV technology, an incentive for PV and increase 1328 

the traditional electricity should be implemented. At the end of 2017, global installed PV capacity was 1329 

400 GW which is expected to reach 4500 GW by 2050. If the average PV panel lifetime is considered 1330 

to be 25 years, the worldwide solar PV waste is anticipated at around 78 million tonnes by 2050. 1331 
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Therefore, the disposal of PV panels, by using environmentally benign waste recycling, recycling 1332 

technology, recycling policies are also pertinent (Bogacka et al., 2017)(Chowdhury et al., 2020). 1333 

Though the presence of so many barriers, many countries including UK, USA, Asia and EU’s zero-1334 

carbon or decarbonisation in 2050 has escalated the BIPV penetration in the building sector. This is 1335 

envisaged because of the attractive aesthetic and flexible nature of BIPV (Osseweijer et al., 2018; A. 1336 

K. Shukla et al., 2017b).  Specific region wise BIPV growth is listed in Table 7. Present global BIPV 1337 

market size is about 2.3 GW where Europe constitute the largest market size (42% of global market ), 1338 

particularly because of attractive incentive in Germany, Italy, and France. Globally, Europe and the 1339 

USA dominate the BIPV market than that of Asia. The continuous growth of global BIPV market is 1340 

happening while compounded annual growth rate (CAGR) is higher for ASIA pacific (Osseweijer et 1341 

al., 2018). Incentive plan has already been taken by different countries. In Germany, “The thousand 1342 

Solar Roofs Program” was initiated in 1995 to promote BIPV/BAPV, while in the USA, “Ten Million 1343 

Solar Roofs Program” was started in 2010 and in China, “enforcement advice for promoting solar 1344 

energy applications in buildings” and “interim procedures” was started to promote the BIPV/BAPV 1345 

technologies (Zhang et al., 2018). Indian government has also set target to achieve 40 GW rooftop 1346 

solar PV integration by 2022 (Reddy et al., 2020). Because of these initiatives, present market growth 1347 

of BIPV is very promising which shows close to 40% per year in the next decade, from US$1.1 1348 

billion in 2017 to over US$2.7 billion in 2021 shown in Figure 30 (Ballif et al., 2018). Later on, the 1349 

BIPV market average annual growth rate for 2023 is expected to reach 11200 million $. Positive 1350 

media coverage regarding environmental and economic benefits from BIPV/BAPV can increase 1351 

public awareness as without public support, the whole concept and project will be in jeopardy 1352 

(Azadian and Radzi, 2013). 1353 

 1354 

 1355 

Figure 30: Worldwide annual revenue from BIPV (Reprinted with permission from (Ballif et al., 1356 

2018) Copyright © 2018, Springer Nature). 1357 
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Table 7: Global BIPV market development and forecast for 2020 in MW and compounded annual 1358 

growth rate  1359 

         

Region/Country 2014 2015 2016 2017 2018 2019 2020 Compound 
annual growth 

rate (CAGR %) 
Asia/Pacific* 300 492 772 1159 1672 2329 3134 47.8 
Europe 650 967 1441 2103 2929 3807 4838 39.7 
Rest of world 81 125 184 263 355 451 561 37.9 
USA 319 476 675 917 1200 1491 1766 33.0 
Canada 42 61 86 119 157 190 228 32.6 
Japan 143 201 268 349 434 520 612 27.5 
Total (GW) 1.5 2.3 3.4 4.9 6.7 8.8 11.1  
*Asia/Pacific excluding Japan 1360 

 1361 

Hence a smooth entry of BIPV in energy market of any country needs a support from all BIPV 1362 

stakeholder which includes government (central/national government, energy Review Committees), 1363 

BIPV industry (BIPV manufacturers/suppliers/wholesale), construction industry (contractors; material 1364 

suppliers; PV-module installation; architects); academia (Universities; Research institutes), end users 1365 

(Housing associations and their tenants; Business Rental (office spaces); private homeowners 1366 

(Osseweijer et al., 2018). 1367 

7. Conclusions: 1368 

The work reviews the available and future application potential of PV systems in a building being part 1369 

of building-integrated (BI) PV (BIPV) or building attached (BA) PV (BAPV) while they are separated 1370 

by their integration and purpose of uses. Building wall, roof and window application using semi-1371 

transparent PV types are gaining interest because of their multifunctional behaviour such as replacing 1372 

structural material, provides high insulation, allows daylight, and generates power. To enable BIPV in 1373 

a colder climate, vacuum integrated BIPV is suitable. BIPV and BAPV both can also be a source for 1374 

autonomous switchable glazing to change its state based on occupant’s requirement. BIPV/BAPV has 1375 

the ability to be a source of power supply for an electric vehicle (EV). Along with this advantageous, 1376 

BIPV/BAPV both suffer from temperature issues, dust, and snow accumulation on the devices. 1377 

Elevated temperature effect can be minimised by using active or passive thermal regulation while 1378 

shading effect requires a cleaning mechanism. Gaining the interest of photovoltaic technology 1379 

integration in the building, forced to impose an international standard or country wise standard for 1380 

installation.  In future BIPV and BAPV has a possible application in mainly three application, 1381 

autonomous switchable glazing, low heat loss glazing and BIPV as a source of EV. 1382 
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