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Abstract—Efficient methods for optimising expensive black-box
problems with multiple objectives can often themselves become
prohibitively expensive as the number of objectives is increased.
We propose an infill criterion based on the distance to the
summary attainment front which does not rely on the expensive
hypervolume or expected improvement computations, which are
the principal causes of poor dimensional scaling in current state-
of-the-art approaches. By evaluating performance on the well-
known Walking Fish Group problem set, we show that our
method delivers similar performance to the current state-of-the-
art. We further show that methods based on surrogate mean
predictions are more often than not superior to the widely used
expected improvement, suggesting that the additional exploration
produced by accounting for the uncertainty in the surrogate’s
prediction of the optimisation landscape is often unnecessary and
does not aid convergence towards the Pareto front.

Index Terms—Expensive optimisation, Bayesian optimisation,
infill criteria, acquisition functions.

I. INTRODUCTION

The process of optimising black-box functions relies exclu-
sively on querying the underlying objective function in order to
advance the understanding of the mapping between parameter
space and objective space — so as to aid convergence toward
an optimal solution. During the optimisation process a balance
must be struck between the exploitation of the function as
currently understood in order to find good solutions, and
further exploration of the unknown regions of its landscape
in order to advance this understanding. Extensive work has
gone into theorising how this balance should be managed,
particularly in cases where there is a high cost associated
with querying the underlying objective. Careful management
of this balance is considered essential if a suitable solution is
to be found as efficiently as possible. Bayesian optimisation
[1], which constructs a probabilistic surrogate model of the
objective function, has emerged as an effective means of
solving such problems, and has been widely applied to many
problems with success.

In the field of multi-objective optimisation (MO), accurately
modelling the multi-dimensional objective function is more
challenging, as many techniques used in single-objective op-
timisation require (hyper-) volume measurements and integra-

tion, which are complex in higher dimensions. One widely
used technique is to calculate and the expected improve-
ment (EI) [1] in the dominated hypervolume to manage the
exploitation/exploration trade-off. However, recent work has
shown that in single objective problems with high-dimensional
parameter spaces, the low fidelity between the commonly
used surrogate models and the underlying function reduces the
need to actively explore the function. Instead purely exploita-
tive methods have been demonstrated to outperform methods
which balance the explore/exploit trade-off [2]. With this in
mind we investigate the use of exploitative approaches in the
multi-objective domain, anticipating the increased complexity
of modelling problems with multi-dimensional outputs will
similarly benefit from exploitative methods.

We are concerned with multi-objective problems (MOPs)
for which the cost associated with the evaluation of the
objectives for a set of parameters (also known as a design
vector) is significant, which heavily restricts the evaluation
budget during an optimisation. This can be because either
each objective is independently expensive and requires a
separate evaluation or, more commonly, all objectives are
jointly evaluated by a single expensive process. In such MOPs
the goal of the optimisation process is to find a suitable
solution in as few evaluations of the objective function(s) as
possible. Large-scale simulation and embodied optimisation,
requiring physical intervention for objective evaluation, has
emphasised the importance of these expensive problems [3]–
[7] as more traditional multi-objective evolutionary algorithms
require prohibitively large numbers of evaluations.

In this paper we explore the use of a cheap to compute
minimax infill criterion to avoid the expensive dominated
hypervolume calculation. We also investigate whether incor-
porating the surrogate model uncertainty is effective, finding
that in fact an exploitative approach is at least as effective and
computationally cheaper. The principal contributions of this
work are:
• We propose a novel, cheap to compute, infill criterion for

evaluating the suitability of candidate parameters at which
to next evaluate the true objective function, based on the
distance to the summary attainment front (SAF).

• We give an extensive empirical evaluation on the Walking
Fish Group problem set [7] and show that the SAF infill cri-978-1-7281-8393-0/21/$31.00 ©2021 IEEE
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terion yields state-of-the-art performance in Bayesian multi-
objective optimisation, equalling or surpassing the current
leading methods, with lower computational complexity.

• We show empirically that exploiting the mean prediction
of the surrogate model is usually superior to deliberately
exploring regions of uncertainty in the surrogate posterior
prediction.
In the following section we summarise the Bayesian opti-

misation approach, particularly in the multi-objective context
and discuss works related to this topic. Then in section
III we describe the novel SAF infill criterion, and describe
the optimisation process used. The experimental evaluation
process is described in section III, and findings discussed in
section IV. The work concludes with section V.

II. BACKGROUND

A. Bayesian Optimisation

Bayesian optimisation (BO) is a form of efficient global
optimisation (EGO), which searches for the global optimal
solution to an objective function f(x) for f : X ⊂ Rd 7→ R,
while making as few evaluations of the objective function as
possible. In BO, in order to limit the number of evaluations
required of the true objective function, a small number of
N initial evaluations are made, and a probabilistic surrogate
model is then generated from these evaluations. This surrogate
model, which should be cheap to evaluate, can then be used to
predict the quality of subsequent candidate solutions without
the need to frequently evaluate f . Unlike other surrogate
modelling methods, BO constructs a probabilistic surrogate
model which allows the model’s uncertainty as well as its
mean predication to be taken into account when choosing the
next design location for evaluation.

The process of BO involves first selecting a set of N initial
candidate solutions, usually via Latin hypercube sampling
(LHS) [8], and evaluating the objective function for each of
these to produce a set D = {(xt, ft , f(xt))}Nt=1. A prob-
abilistic, surrogate model is then fitted to these observations,
for which Gaussian processes (GPs) are commonly used; see
[9] for a comprehensive introduction. The GP describes the
current belief about the objective function, modelling it as
a set of random variables with a joint Gaussian distribution.
The predictive probability distribution f̂(x) at a location x is
a normal distribution:

P
(
f̂(x) |x,D, θ

)
= N

(
µ(x), σ2(x)I

)
(1)

where µ and σ are mean and standard deviation predictions
given by:

µ(x) = κ(x,X)−K−1φ, (2)

σ2(x) = κ(x,x)− κ(x,X)>K−1κ(X,x). (3)

Here X is the d by t matrix of locations at which f(x) has
been previously evaluated, φ = (x1,x2, . . . ,xt). κ(x,x′) is a
predefined covariance function, or kernel, between x and x′,
and K is the covariance matrix comprised of all covariances
κ(x,x′) ∀ x,x′ ∈ X. A vector of the covariances between x

and each of the t locations in X is denoted κ(x,X) ∈ Rt. The
vector of covariances between each of the t locations in X and
x is denoted κ(X,x) ∈ Rt. The parameters of the covariance
function (and any noise model) are denoted by θ: these are
learned on receipt of each new (x, f(x)) pair by maximising
the likelihood of the data [9].

Determination of how desirable a new evaluation of the
objective function would be at a new location is achieved via
an acquisition function α(x; θ), which balances the exploita-
tion of locations predicted by the surrogate (with parameters
θ) to be good with high confidence, with the exploration of
regions that have high uncertainty and might therefore contain
the optimum. Maximisation of the acquisition function yields
the next location x′ at which to evaluate the real objective
function:

x′ = argmax
x∈X

α(x; θ). (4)

A widely used acquisition function is the Expected Improve-
ment [1]. Here the improvement of a value f , over the best
solution evaluated so far, f? = min{f(xi)}ti=1 is I(x, f?) =
max(f? − f, 0). The expected improvement at x on the basis
of the model is therefore

α(x, f?) =

∫ ∞
−∞

I(x, f?)p(f |x,D) df (5)

= σ(x) (sΦ(s)− φ(s)) (6)

where s = (f∗ − µ(x))/σ(x), and φ(·) and Φ(·) are the
Gaussian probability density function and cumulative den-
sity functions. This acquisition function is essentially the
improvement weighted by the part of the posterior predictive
distribution that lies below the evaluated minimum f∗ and thus
balances the exploitation of solutions which are very likely
to be a little better than f∗ with the exploration of others
which may, with lower probability, turn out to be much better.
Other acquisition functions, which achieve the exploration-
exploitation balance in different ways include the probability
of improvement (PI) [10], optimistic strategies such as UCB
[11], expected improvement [1], ε-greedy strategies [2], [12],
and information-theoretic approaches, e.g. [13], [14]. Under
certain conditions EI and UCB have been shown to converge
[11], [12].

Since evaluation of the acquisition function entails evaluat-
ing the model rather than f itself, it can be cheaply optimised
using methods such as an evolutionary algorithm. This process
of fitting a surrogate, and optimisation of the acquisition
function and evaluation of f is repeated, expanding D, until a
good solution is found and some stopping criteria is satisfied
or the computational budget is exhausted.

B. Multi-objective Bayesian Optimisation
In MOPs, rather than a single criterion by which the success

of a solution is assessed, a series of conflicting objectives is
employed, between which some compromise must be reached.
We denote the M conflicting objective functions by fm(x),
m = 1, . . . ,M , so that the MOP may be expressed as

argmin
x∈X

f(x), (7)



where X ⊂ Rd is the feasible space and f : X 7→ RM .
A solution x is said to dominate another x′ (denoted x ≺

x′) if fm(x) ≤ fm(x′) for m = 1, . . . ,M and fm(x) <
fm(x′) for at least one m. Since in most cases with conflicting
objectives there is no single dominating solution, the goal of
most multi-objective optimisation algorithms is to produce a
number of solutions which well represent the Pareto set, that
is the maximal set of solutions that are not dominated by any
other solutions in the feasible space:

P = {x ∈ X : x′ 6≺ x ∀x′ ∈ X}. (8)

The image of P under f is the Pareto front, F . Since P may
contain infinitely many elements, usually in multi-objective
optimisation the best we can aspire to is an approximation P̃ ,
as represented by a set of mutually non-dominating solutions.
Given a set of solutions D, we define the function nondom(D)
as the function that returns the non-dominated solutions in D;
thus P̃ = nondom(D).

Methods of Bayesian optimisation for MOPs generally fall
into one of two categories: single surrogate approaches and
multi-surrogate approaches. The mono-surrogate approach ag-
gregates the M objective functions using a scalarising function
g : RM 7→ R. Then using f(x) , g(f(x)) the standard BO
algorithm is used to optimise f and thus f . For example, the
hypervolume improvement of a modelled Pareto front over the
current P̃ might be used as an scalarising function.

In a multi-surrogate approach, each objective fm is mod-
elled individually by its own separate surrogate which models
P (fm(x | D)). These models are considered to be independent,
thus ignoring cross-correlations between the models and the
P (fm |x,D) are multiplied together to form the joint density
P (f |x,D) =

∏M
m=1 P (fm |x,D). A scalarising function or

infill criterion g : RM 7→ R is used to evaluate the quality of
any modelled solution (for notational convenience and w.l.o.g.
we assume that smaller g means better solutions). Thus an
expected improvement in g(·) may be found as:

αEI(x, g
?) =

∫ ∞
−∞

max(g? − g(f(x)), 0)P (f |x,D) df (9)

where g? = min{g(f(xi))}ti=1. Note that this integral is
multi-dimensional and, since it does not admit any closed
form solution as in the single objective case (5), must be
evaluated numerically, usually by Monte Carlo sampling from
the distribution P (f | D).

Practical experience shows that multi-surrogate methods
tend to be superior to mono-surrogate approaches because
a single GP surrogate is unable to effectively model the
highly complex function formed by the aggregated objectives,
whereas each of the GPs in a multi-surrogate approach has the
simpler task of modelling a single objective function [15].

C. Related work

Bayesian approaches to solving MOPs tend to use Gaus-
sian Process surrogates and largely differ in the acquisition
functions by which parameters for the next objective function
evaluations are selected. The acquisition functions which have

proven most effective leverage measurement of the expected
improvement to the dominated hypervolume, also known as
the S-metric [16], first suggested by Emmerich et al. [17].
The S-metric improvement to the dominated hypervolume is
the Heaviside difference between the dominated hypervolume
made over the estimated Pareto optimal solutions P̃ and the
dominated hypervolume measurement over these solutions and
the GP model posterior prediction. For those locations which
are not predicted by the model to improve the dominated
hypervolume by some margin ε, this is zero, and to these cases
a penalty function which roughly depends on the distance
from F̃ is used to overcome the resulting plateau in objective
space [16], [18]. The resulting infill criterion for an M = 2
objective space is illustrated in Fig. 1b. This approach naturally
converges towards a set of solutions which well represent the
Pareto front, as maximising the dominated hypervolume is
equivalent to finding the true Pareto set [19].

The computation required to calculate the dominated hy-
pervolume, and therefore the S-metric, scales poorly with the
number of objectives and the number of solutions forming P̃ .
As observed by Yang et al. [20], the expected hypervolume
improvement (EHVI) calculation is an NP hard problem in
M , but polynomial in |P̃| for any fixed value of M . Their
recent method for decomposition into hyperboxes for EHVI
having a complexity of O(2M−1 · |P̃|bM/2c). Furthermore
increasing M results in larger P̃ because of the increasing
proportion of objective space that is mutually non-dominating.
Nevertheless acquisition functions which compute the hyper-
volume improvement currently comprise the state-of-the art for
expensive MOPs. In addition, optimisation using dominated
hypervolume depends on the setting of a well-placed reference
point for the S-metric calculation. Positioning of this reference
vector requires some knowledge of the scales of the objectives,
and poor positioning can bias the optimisation.

Less expensive methods exist and ParEGO [21] is a well
regarded alternative without the requirement for hypervolume
computation. Throughout the optimisation ParEGO periodi-
cally generates a random weight vector which is used to weight
the objectives and the aggregated objective is optimised using
a single surrogate. Although computationally efficient ParEGO
tends to converge to a poorer approximation of the Pareto front
than S-Meric Selection EMO (SMS-EGO) [22] in most cases.

Alternatively, other simple methods which model the desir-
ability of posterior predictions by interpolating the unexplored
regions in objective-space have been implemented with suc-
cess. Keane [23] uses the signed objective-space Euclidean
distance to the nearest point in P̃ to interpolate between
observations and then the EI is computed over this to form
the acquisition function. However, this fails to preserve the
dominance relation [18], and is outperformed by SMS-EGO.
Svenson and Santner retain the dominance relation by using
the maximin distance between the GP posterior prediction
and the approximate Pareto front F̃ [24]. The EI is then
approximated using Monte-Carlo integration. In experiments
on some synthetic benchmark problems they achieve similar
performance using this infill criteria compared with directly



calculating the dominated hypervolume. Although neither of
these interpolation methods require setting of a reference point
as in SMS-EGO, they are susceptible to bias depending on
the scales of the objectives. Rahat et al. [15] compare a range
of acquisition functions arguing that, although performance
is problem dependent, their proposed inexpensive minimum
probability of improvement (MPoI) acquisition function per-
forms comparably to using the hypervolume improvement
and similarly to ParEGO. All such inexpensive acquisition
functions however are surpassed consistently by the current
state of the art, SMS-EGO.

In single-objective Bayesian optimisation, it has recently
been suggested by De Ath et al. [2] that exploitative opti-
misation methods are preferable to those which balance ex-
ploitation with exploration in problems where the complexity
of the problem causes low fidelity between the surrogate
models and the objective function. They argue that exploitative
methods are sufficiently fortuitously exploitative in their nature
without the need for active exploration. Their work showed
that deploying an exploitative, ‘ε-greedy’ optimisation strategy
was often preferable for high-dimensional, complex problems.

III. EXPLOITATIVE SAF

We propose using a signed maximin distance, in the ob-
jective space, from the summary attainment front (SAF),
similar to that used by Svenson and Santer [24] as the infill
criterion for a multi-surrogate assisted EMO optimisation
process with GP surrogates as proposed by Emmerich et al.
[17]. In addition to using this SAF infill criterion with the
expected improvement, we explore the use of using only the
surrogate posterior mean prediction. This disregards the model
uncertainty and therefore explores less, embodying a more
exploitative approach as suggested by De Ath et al. [2].

A. Infill criterion

Similarly to Svenson and Santer [24] we measure the quality
of a solution f ′ in relation to the current approximation to the
Pareto front P̃ = nondom(D) as the maximin distance of
f ′ to the summary attainment front. The attainment front AF
is a conservative interpolation of the elements of the non-
dominated set F , so that every element of AF is weakly
dominated by an element of F . More formally, the attain-
ment front is the boundary of the region in objective space
which is dominated by the elements of F . If u,v ∈ RM ,
we say that u properly dominates v (denoted u C v) iff
um < vm ∀m = 1, . . . ,M . Then if

H = {y |u ≺ y for some u ∈ F} (10)
U = {y |uC y for some u ∈ F} (11)

the attainment front is AF = H \ U = ∂U [25]. Let F̃ =
{f(x) |x ∈ P̃} be the approximate Pareto front corresponding
to the evaluations of f . Then the summary attainment front
infill criterion is defined as:

SAF(y, F̃) = max
m=1,...,M

min
y′∈F̃

(ym − y′m) . (12)
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Fig. 1: Visualisation of infill criteria of a two objective
problem, M = 2. The color scale shows the value of the SAFµ
infill criterion (left) and the SMS-EGO infill criterion (right)
based on the set of points shown, of which 3 are not dominated
and form F̃ . The red curve shows contour where the infill
criterion is zero and for SAFµ corresponds to the attainment
front AF̃ . A uniform uncertainly of σ = 0.05 has been
applied to the SMS-EGO predictions, with ε = [0.058, 0.058]
and a reference point for the hypervolume computation of
R = (2, 2).

An image of the resultant SAF distance generated by 3 non-
dominated locations in a two-dimensional objective space is
shown in Fig. 1a. The attainment front AF̃ is shown in red
and corresponds to the SAF(y, F̃) = 0 contour. The SAF infill
criterion is positive behind F̃ (i.e. for locations dominated by
F̃) and negative in front of F̃ . The figure also shows the
infill criterion corresponding to SMS-EGO, which depends on
the dominated hypervolume. As can be seen, the two share
broadly similar characteristics, although the infill criterion
derived from the hypervolume is smoother. We note however,
that the hypervolume is much more expensive to calculate and
scales poorly with the number of objectives.

We compare two multi-objective Bayesian optimisation al-
gorithms based on the SAF infill criterion. In the first (denoted
by SAFEI ), we use the SAF infill criterion in conjunction with
the expected improvement acquisition function. The expected
improvement was calculated using 3000M samples from the
posterior distribution p(f(x) | D) for each proposed x. In
single-objective Bayesian optimisation it has recently been
suggested that purely exploitative methods (or ones that devote
very little computational resource to deliberate exploration)
are preferable over those which deliberately explore more
such as the EI [2]. The reason advanced for this is that
exploitative methods are sufficiently fortuitously exploitative
in their nature without the need for active exploration. Their
work showed that deploying an exploitative, ε-greedy optimi-
sation strategy was often preferable in problems where the
parameter space was high-dimensional and thus the objective
function complex. For this reason, we also use the SAF
infill criterion, but only use the mean posterior prediction
µ(x) = (µ1(x), µ2(x), . . . , µM (x))> where the µm(x) are



Algorithm 1: Multi-objective Bayesian optimisation
with SAF

Result: Approximation to the Pareto set for f(x)
Input : N - number of initial evaluations
Input : B - evaluation budget

1 X ← LHS(X , N) Generate initial samples
2 for t = 1 −→ N do
3 ft ← f(xt) Expensively evaluate initial samples
4 end
5 D ← {(xt, ft)}Nt=1

6 for t = N + 1 −→ B do
7 for j = 1 −→M do
8 θj ← train GP(D) Train GP for each objective
9 end

10 F̃ ← nondom(D) Approximate Pareto front
11 if exploitative then
12 xt ← argmax

x∈X
SAF(µ(x), F̃ , θ1:M ) SAFµ

13 else
14 xt ← argmax

x∈X
EI(x, F̃ , θ1:M ) SAFEI

15 end
16 ft ← f(xt) Expensively evaluate xt
17 D ← D ∪ {(xt, ft)} Augment data
18 end
19 P̃ ← nondom(D)

output: P̃

given by (2). Thus

α(x, F̃) , SAF(µ(x), F̃ , θ1:M ). (13)

We denote this algorithm by SAFµ. Use of only the mean
prediction has the computational advantage of not requiring
a Monte Carlo integration to approximate the EI. In addition
we have noticed that the posterior uncertainty is often so great
that model predictions are made well beyond the actual Pareto
front. These predictions can carry significant weight in the EI
estimation leading to the optimisation focusing on regions,
which although apparently promising, are in fact infeasible.
This effect is reduced if only the mean prediction is used. We
also note that since the posterior uncertainty is not required, a
wider range of surrogates (e.g. random forests, support vector
machines) could be employed.

Algorithm 1 summarises the multi-objective optimisation
procedure using SAF. Initially a series of N evaluations of
the objective function are made via Latin hypercube sampling,
These initial samples are then expensively evaluated by the
objective function to produce a set of observed function values
D = {(xt, ft)}Nt=1 (line 5). Separate GP surrogates are then
fitted, one for each of the M objectives (line 8). Here we
use the Matérn 5/2 kernel (as recommended for modelling
realistic functions [26]) and the parameters of these GPs
are learned by maximising the marginal log likelihood. The
location xt for the next expensive evaluation is found by

maximising either the SAF infill criterion using the mean
predictions from the surrogate model or the EI calculated
via Monte Carlo sampling from the posterior prediction using
the well-known known CMA-ES optimiser [27]; lines 12 and
14. The objective function is then evaluated at xt and the
process repeated until the evaluation budget B is exhausted or
satisfactory convergence has been obtained. The best estimate
of the Pareto set is, at each stage of the algorithm, the maximal
non-dominated set of locations that have been expensively
evaluated.

IV. EXPERIMENTAL EVALUATION

A. Process

In this section an analysis is conducted of the performance
of SAFµ over 150 evaluations of a set of challenging, syn-
thetic MOPs. For comparison we benchmark the state-of-the-
art SMS-EGO [22] and the competitive, yet computationally
efficient ParEGO [21]. We also compare the, cheap-to-evaluate
minimum probability of improvement (MPoI) infill criterion
proposed by Rahat et al. [15]. For SMS-EGO we include the
later improvements to the treatment of the objective space ε-
dominated by the attainment surface described by Wagner et
al. [18]. The prior knowledge of the objective space required
to set the reference point for the hypervolume calculation
is assumed to be unknown. Instead the reference point R
is updated at each evaluation to the maximum value of the
function observed in each objective, plus an offset of 1, as in
the original work Rm = maxf∈F̃ (fm) + 1. In order to test
whether more a exploitative search will be beneficial, we also
include the EI based maximin model proposed by Svenson and
Santner [24], (hereby denoted as SAFEI ), and also a version
of SMS-EGO, where the uncertainty from the GP is ignored,
instead using mean prediction only, with no ε in the dominance
relation (denoted SMS-EGOµ). Finally, we also compared with
Latin hypercube sampling (LHS) as a pseudo random search
of the parameter space.

Each optimisation was started from 10 initial LHS samples,
over 31 repeat optimisations of each test function. To ensure
comparability the repeats are structured so that the same
random seed and LHS samples are used for all optimisation
methods within each repeat. The dominated hypervolume is
calculated using the Fonseca et al. method [28].

The chosen objective functions for the benchmark tests
are a subset the Walking Fish Group problems [7] WFG1-
WFG6, which include deceptive functions and functions in
which the parameters determining distance from, and position
along the Pareto front are not separable. The dimension of the
parameter-space d for the WFG problems is scalable, as is the
number of objectives M . We tested each function over three
configurations of each problem in WFG1-WFG6, with 2, 3
and 4 objectives, and d ranging from 3-12 dimensions. More
details of the test functions can be seen in Table I.

Two metrics were used to quantify the performance of each
optimiser. The first was the dominated hypervolume or S-

1Multi-modal in only the first objective f1, uni-modal in f2 · · · fM .



Function (M,d) X Comment
WFG1 (2, 3), (3, 4), (4, 5) [0, 2d]d separable, uni-modal
WFG2 (2, 6), (3, 6), (4, 10) [0, 2d]d non-separable, multi-modal1, F is discontinuous.
WFG3 (2, 6), (3, 6), (4, 10) [0, 2d]d non-separable, uni-modal
WFG4 (2, 6), (3, 8), (4, 8) [0, 2d]d separable, multi-modal
WFG5 (2, 6), (3, 8), (4, 10) [0, 2d]d separable, deceptive
WFG6 (2, 10), (3, 6), (4, 12) [0, 2d]d non-separable, uni-modal

TABLE I: Walking Fish Group functions, showing the 18
(M,d) combinations tested.
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Fig. 2: IGD+ reference points, for 3 objective WFG problems.

metric measure. This is a commonly used convergence mea-
sure, but as it is also the principal quantity driving SMS-EGO.
We also compared algorithms using the Inverted Generational
Distance plus (IGD+) [29] in order to identify any undue bias
in favour of the SMS-EGO and SMS-EGOµ methods. Given
a set of reference points Z on the true Pareto front, IGD+ is

IGD+(F̃ ,Z) =
1

|Z|
∑
z∈Z

min
f∈F̃

d+(f , z) (14)

where d+ is the modified Euclidean distance given by:

d+(z, f) =

√√√√ M∑
m=1

max(fm − zm, 0)2 (15)

Measurements using IGD+ rely on a set of reference points
Z on the problem’s Pareto front. In order to ensure no bias
toward solutions found in localised regions of this surface it
is important that the points be distributed evenly across the
front. The non-linearity of the objective functions means that
the images of uniformly distributed samples from the Pareto
set in parameter space are not uniformly distributed on F .
In order to achieve an approximately uniform distribution, we
first sampled a non-uniform, but dense population of points on
this Pareto front. We then uniformly sampled the attainment
surface using the methods described by Smith et al. [25].
Attainment surface points which did not lie on the Pareto front
were then discarded if their distance to the nearest neighbour
in the set of Pareto optimal points, was greater than a certain
threshold. This sampling method was used for all functions
with the exception of WFG3, for which the Pareto surface is
straightforward to compute and sample uniformly. Example
reference points are shown in Fig. 2a.

B. Results

The results of the optimisations, as measured by dominated
hypervolume and IGD+, are shown in table II. These tables
show the median result and interquartile range (IQR) for each
optimiser over the 31 repeated runs on each test problem. The
best median performance is shaded in dark grey, with any
statistically similar results, as assessed by paired Wilcoxon
signed-rank test with Holm-Bonferroni correction (p > 0.05)
shaded in light grey. Space constraints preclude the inclusion
of detailed convergence plots for individual algorithms and
each problem, but code implementing these ideas and detailed
plots may be found in the Supplementary Material2, and an
exemplar convergence plot is shown in figure 4.

After the 150 budgeted evaluations of the objective func-
tions, SAFµ produced either the best median dominated
hypervolume performance, or was statistically equivalent to
the best median performance in 12 out of the 18 tested
problem configurations. This was the most out of any of
the considered alternatives, with SMS-EGO giving best or
equivalent performance on 8 objective functions. The results
as measured by IGD+ were similar, with SAFµ again offering
the best or equivalent performance in 12 out of 18 functions,
and SMS-EGO in 10. The sets of non-dominated solutions
produced by each method were not characteristically different,
and both generally produced good coverage of the Pareto front.
For examples of this please see the supplementary materials.

As may be expected, performance of the optimisers varies
between problems. The purely exploratory LHS method was
not the best strategy for any problem, and in fact was the worst
performer on all problems aside from the difficult WFG2 prob-
lem. While ParEGO and LHS excelled here relative to their
performances on other objective functions (beating SMS-EGO,
SMS-EGOµ and SAFEI in the two-objective configuration),
few solutions were found in much of the attainable objective
space.

The measurements in Table II only consider a slice of
the optimisation process, when the algorithms have largely
converged. Figure 3 shows average ranked performance at
each step of the optimisation over all 31 repeats and all 18
test function and (M,d) combinations. Where the difference
between optimisations of similar rank were not statistically
significant (according to Wilcoxon signed-rank test) the two
were assigned the mid-point between their respective ranks.
From this it is clearer that over the full range of test problems
SAFµ shows the best overall performance in the final stages
whether measuring by IGD+ or dominated hypervolume, but
also shows competitive performance throughout the process.
SMS-EGO and SMS-EGOµ rank similarly and competitively
with SAFµ, but SAFEI falls well behind after a few initial,
favourable evaluations. This is surprising as one might expect
SAFEI to find better solutions in the later stages, when a more
complete representation of the optimised function has been
formed by the surrogate [2]. However, we speculate that even

2https://github.com/FinleyGibson/SAF EMO.git

https://github.com/FinleyGibson/SAF_EMO.git


WFG1 2M3d WFG1 3M4d WFG1 4M5d WFG2 2M6d WFG2 3M6d WFG2 4M10d
Median IQR Median IQR Median IQR Median IQR Median IQR Median IQR

LHS 0.134 0.015 0.107 0.015 0.097 0.013 0.699 0.026 0.665 0.042 0.58 0.031
MPoI 0.261 0.074 0.216 0.052 0.172 0.047 0.664 0.12 0.738 0.065 0.65 0.061
ParEGO 0.326 0.043 0.281 0.053 0.228 0.03 0.751 0.039 0.734 0.043 0.676 0.056
SMS-EGO 0.295 0.026 0.284 0.045 0.234 0.067 0.678 0.08 0.675 0.052 0.609 0.034
SMS-EGOµ 0.293 0.038 0.281 0.035 0.239 0.072 0.688 0.059 0.665 0.085 0.614 0.06
SAFEI 0.23 0.028 0.2 0.035 0.186 0.021 0.681 0.049 0.7 0.042 0.631 0.059
SAFµ 0.319 0.038 0.276 0.064 0.241 0.054 0.7 0.038 0.712 0.068 0.612 0.094

WFG3 2M6d WFG3 3M10d WFG3 4M10d WFG4 2M6d WFG4 3M8d WFG4 4M8d
Median IQR Median IQR Median IQR Median IQR Median IQR Median IQR

LHS 0.725 0.024 0.7 0.021 0.727 0.022 0.686 0.043 0.485 0.048 0.402 0.024
MPoI 0.807 0.077 0.815 0.102 0.882 0.049 0.737 0.056 0.633 0.058 0.572 0.191
ParEGO 0.852 0.029 0.864 0.05 0.873 0.035 0.834 0.037 0.674 0.115 0.625 0.168
SMS-EGO 0.976 0.005 0.942 0.025 0.906 0.056 0.854 0.046 0.674 0.113 0.662 0.069
SMS-EGOµ 0.973 0.006 0.947 0.014 0.899 0.053 0.852 0.043 0.736 0.076 0.716 0.117
SAFEI 0.927 0.014 0.912 0.018 0.938 0.019 0.838 0.044 0.724 0.04 0.684 0.058
SAFµ 0.968 0.005 0.93 0.02 0.932 0.028 0.846 0.057 0.715 0.038 0.714 0.045

WFG5 2M6d WFG5 3M8d WFG5 4M10d WFG6 2M10d WFG6 3M6d WFG6 4M12d
Median IQR Median IQR Median IQR Median IQR Median IQR Median IQR

LHS 0.617 0.024 0.478 0.027 0.376 0.022 0.518 0.038 0.572 0.033 0.376 0.016
MPoI 0.75 0.066 0.624 0.098 0.462 0.105 0.724 0.054 0.78 0.072 0.51 0.09
ParEGO 0.846 0.043 0.636 0.086 0.492 0.081 0.812 0.042 0.701 0.036 0.536 0.079
SMS-EGO 0.834 0.078 0.69 0.087 0.496 0.09 0.802 0.082 0.828 0.066 0.637 0.041
SMS-EGOµ 0.774 0.07 0.678 0.056 0.495 0.099 0.784 0.098 0.818 0.091 0.642 0.04
SAFEI 0.682 0.047 0.573 0.069 0.46 0.059 0.836 0.033 0.82 0.056 0.564 0.024
SAFµ 0.793 0.05 0.673 0.058 0.572 0.065 0.882 0.049 0.887 0.023 0.58 0.042

WFG1 2M3d WFG1 3M4d WFG1 4M5d WFG2 2M6d WFG2 3M6d WFG2 4M10d
Median IQR Median IQR Median IQR Median IQR Median IQR Median IQR

LHS 1.563 0.034 1.981 0.058 2.26 0.078 0.508 0.069 0.749 0.159 0.635 0.081
MPoI 1.063 0.269 1.483 0.231 1.883 0.187 0.563 0.213 0.653 0.162 0.652 0.177
ParEGO 0.969 0.036 1.318 0.113 1.655 0.146 0.433 0.086 0.746 0.201 0.55 0.16
SMS-EGO 0.993 0.035 1.314 0.114 1.634 0.248 0.57 0.15 0.878 0.188 0.567 0.089
SMS-EGOµ 0.992 0.035 1.297 0.092 1.614 0.286 0.538 0.129 0.895 0.248 0.54 0.082
SAFEI 1.324 0.067 1.636 0.1 1.814 0.128 0.553 0.094 0.891 0.212 0.646 0.209
SAFµ 1.014 0.035 1.343 0.184 1.621 0.187 0.53 0.094 0.818 0.258 0.641 0.229

WFG3 2M6d WFG3 3M10d WFG3 4M10d WFG4 2M6d WFG4 3M8d WFG4 4M8d
Median IQR Median IQR Median IQR Median IQR Median IQR Median IQR

LHS 0.418 0.042 0.61 0.065 0.635 0.07 0.326 0.06 0.917 0.151 1.689 0.218
MPoI 0.28 0.13 0.402 0.221 0.293 0.139 0.306 0.076 0.554 0.085 0.889 0.591
ParEGO 0.242 0.052 0.336 0.213 0.408 0.108 0.19 0.049 0.547 0.166 0.863 0.388
SMS-EGO 0.038 0.006 0.136 0.053 0.298 0.086 0.162 0.046 0.493 0.193 0.782 0.149
SMS-EGOµ 0.043 0.012 0.131 0.04 0.303 0.109 0.168 0.038 0.415 0.113 0.637 0.231
SAFEI 0.112 0.031 0.222 0.065 0.274 0.053 0.17 0.033 0.404 0.044 0.661 0.142
SAFµ 0.047 0.01 0.164 0.042 0.242 0.072 0.166 0.054 0.411 0.053 0.623 0.096

WFG5 2M6d WFG5 3M8d WFG5 4M10d WFG6 2M10d WFG6 3M6d WFG6 4M12d
Median IQR Median IQR Median IQR Median IQR Median IQR Median IQR

LHS 0.436 0.043 0.768 0.064 1.262 0.144 0.622 0.08 0.69 0.052 1.357 0.075
MPoI 0.229 0.099 0.584 0.204 1.182 0.369 0.365 0.094 0.355 0.122 0.897 0.204
ParEGO 0.141 0.044 0.539 0.128 1.09 0.295 0.252 0.066 0.558 0.078 1.034 0.214
SMS-EGO 0.131 0.073 0.434 0.15 1.2 0.446 0.232 0.129 0.351 0.13 0.781 0.095
SMS-EGOµ 0.19 0.092 0.443 0.115 1.132 0.452 0.238 0.131 0.364 0.172 0.774 0.091
SAFEI 0.325 0.069 0.69 0.212 1.252 0.341 0.202 0.064 0.319 0.091 0.929 0.06
SAFµ 0.178 0.064 0.458 0.122 0.875 0.189 0.123 0.063 0.205 0.043 0.809 0.09

TABLE II: The median relative dominated hypervolume (left) and IGD+ (right) measured after 150 function evaluations and the
associated interquartile ranges (IQR), over 31 repeated optimisations of the WFG test functions. The best median performance
is shaded in dark grey, while performances which are statistically equivalent are shaded light grey. The theoretical optimum
for each is 0, however the limited cardinality of Z and F̃ prohibit attaining this in practice.

after 150 evaluations the surrogate is insufficiently faithful that
deliberate exploratory evaluations are required.

Neither MPoI or SAFEI , which account for the surrogate’s
uncertainty, are competitive over the broad range of functions
tested, with both falling well short of the exploitative SAFµ
approach in the majority of functions tested. In problems
where SAFEI failed to match the results obtained by SAFµ
the solutions found were similar, but there were fewer non-
dominated solutions produced after 150 evaluations; for exam-
ple, SAFEI , finds an average of 98 non-dominated in WFG5
(M = 3 and d = 8) compared to 128 found by SAFµ.

As measured by dominated hypervolume SAFµ is never sur-
passed in a statistically significant manner by any of the com-
putationally inexpensive alternatives (LHS, MPoI, ParEGO &
SAFEI ), with the exception of two of the WFG2 benchmarks,
which present a particularly difficult challenge and were poorly
optimised by all methods. SAFµ is also better when measured
by IGD+ in the majority of cases, and its average ranked
performance is better than any of these methods beyond the
initial 10 steps of the optimisation, whichever measurement
method is used (Figure 3).

The two methods which utilise hypervolume calculations
in their infill criteria, SMS-EGO and SMS-EGOµ, did not
demonstrate better overall performance than the cheap SAFµ
method, nor did the posterior uncertainty information lever-
aged by SMS-EGO benefit it significantly over SMS-EGOµ.
SMS-EGO had slightly more winning results, being the best
or equivalent in 10 out of 18 experiments compared to 8 by
SMS-EGOµ when measured by dominated hypervolume (both
with 10 by IGD+), but the average ranked performances were
very similar. SMS-EGO represents the state of the art, and
was inferior in the majority functions tested in this set of
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Fig. 3: Average ranked performance of optimisers over all
18 test function and (M,d) combinations shown in Table II;
dominated hypervolume (above) and IGD+ (below).

experiments to the proposed SAFµ method.

V. CONCLUSION

When optimising expensive, multi-objective problems effi-
cient use of objective evaluations is critical to convergence
within a constrained budget. Current state-of-the-art methods
for optimising such problems in few evaluations rely on dom-
inated hypervolume based infill criteria, which can themselves
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Fig. 4: Convergence on WFG5 (M = 3, d = 8) over 150
evaluations, starting from 10 LHS samples. Solid lines show
median values over 31 repeats, shaded regions show the IQR.

become prohibitively costly as the number of objectives grows
and the number of solutions increases.

The novel summary attainment front infill criterion was
empirically shown to produce state-of-the-art results over a
range of optimisation problems. Both SMS-EGO and the
SAF infill criterion require the Pareto set of solutions to be
determined from the evaluated solutions, which can take O(t2)
time after t iterations. Determining the SAF infill criterion for
a single putative solution takes O(|P̃|), that is O(t) worst case.
On the other hand SMS-EGO, using an efficient hypervolume
calculation, requires O(2M−1 · |P̃|bM/2c) [20]. The SAF infill
criterion is thus much cheaper to compute than SMS-EGO.
This theoretical analysis is borne out by empirically: with
|P̃| = 100 and M = 2, SAF is approximately 40 times faster
to compute than SMS-EGO; when M = 9 the ratio is ≈ 1750.
Detailed timings are given in the Supplementary Materials.

We also demonstrated that there is often no need for
deliberately exploratory evaluations of the objective function,
and that exploitative evaluation of candidates with the best
mean performance predicted by the surrogate leads to better
convergence towards an approximation of the Pareto set in
the majority of cases. This finding invites the exploration
of alternative surrogates which may be better able to model
complex objective functions, but do not provide uncertainty
estimates for posterior prediction, such as support vector
machines or random forests.
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