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Abstract
The measurement of the optical transmission matrix (TM) of an opaque material is an advanced form of space-variant
aberration correction. Beyond imaging, TM-based methods are emerging in a range of fields, including optical
communications, micro-manipulation, and computing. In many cases, the TM is very sensitive to perturbations in the
configuration of the scattering medium it represents. Therefore, applications often require an up-to-the-minute
characterisation of the fragile TM, typically entailing hundreds to thousands of probe measurements. Here, we explore
how these measurement requirements can be relaxed using the framework of compressive sensing, in which the
incorporation of prior information enables accurate estimation from fewer measurements than the dimensionality of the
TM we aim to reconstruct. Examples of such priors include knowledge of a memory effect linking the input and output
fields, an approximate model of the optical system, or a recent but degraded TM measurement. We demonstrate this
concept by reconstructing the full-size TM of a multimode fibre supporting 754 modes at compression ratios down to
∼5% with good fidelity. We show that in this case, imaging is still possible using TMs reconstructed at compression
ratios down to ∼1% (eight probe measurements). This compressive TM sampling strategy is quite general and may be
applied to a variety of other scattering samples, including diffusers, thin layers of tissue, fibre optics of any refractive
profile, and reflections from opaque walls. These approaches offer a route towards the measurement of high-
dimensional TMs either quickly or with access to limited numbers of measurements.

Introduction
The scattering of light was long thought to be an

insurmountable barrier preventing imaging through
opaque materials. However, elastic scattering from static
objects is deterministic, and in the last decade, it has
been shown that it is possible to use wavefront shaping
with spatial light modulators to characterise and subse-
quently cancel out complicated scattering effects1–3.
Therefore, light that has undergone multiple scattering
can be unscrambled to see through opaque media, such

as frosted glass4, biological tissue5,6, or multimode
optical fibres (MMFs)7–9.
The measurement of the transmission matrix (TM) of

the scattering material in question is a powerful way to
achieve this light control capability10. The TM can be
understood as part of the optical response function of a
scatterer: it is a linear operator relating a set of input
‘probe’ fields incident on one side of the scatterer to a new
set of output fields leaving on the opposite side. Once the
TM has been characterised, it encodes how any linear
combination of probe fields will be scrambled and, more
importantly, how to unscramble them again11. This ver-
satile approach simplifies the task of ‘un-doing’ scattering
effects, connecting the light fields on either side of a
scatterer and thereby circumventing the need to consider
the interaction of the light with the nano-scale structure
of the scatterer itself12,13.
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Beyond imaging, the information-rich nature of the
high-dimensional TM is finding applications in a growing
number of areas. Examples include the identification
of the principal modes of MMFs to maximise spatial
coherence for high-capacity telecom applications14, the
optimisation of energy delivery inside scattering materi-
als15,16, the design of optimised optical trapping fields
through random scattering systems17,18, and the creation
of new forms of all-optical classical19 and quantum20

information processing.
The output fields emerging from complicated scat-

tering systems result from the interference of light that
has taken many different optical paths through the
scatterer. This multi-path interference typically renders
high-dimensional TMs extremely sensitive to perturba-
tions in the configurations of the systems they represent.
Even recently recorded TM measurements tend to
degrade over a period of time (e.g. minutes to hours
depending on the stability of the scatterer in question
and the optical system used to characterise it). To
maintain high fidelity, the TM of a scattering system
typically needs to be characterised regularly. The num-
ber of independent ‘pixels’ in an image that can be
transmitted through a disordered medium is con-
ventionally proportional to the number of linearly
independent probe measurements which have been
made during TM calibration—a number that can easily
extend into the thousands. Therefore, establishing new
ways to accelerate TM measurement is a useful step
towards the deployment of TM-reliant technologies in
real-world scenarios.
In this work, we explore how the number of probe

measurements needed to characterise the TM of a
scattering system can be reduced. In many cases, we
have advance knowledge of some general characteristics
of the TM we wish to measure. These priors may take
various forms, including knowledge of the existence of a
‘memory effect’ giving rise to characteristic statistical
relationships of the input and output fields21–23, access
to a model approximating the optical system24, or a
recent but degraded TM measurement of the same or a
similar object. Here, we provide a guide to the incor-
poration of these priors into TM reconstruction using
the framework of compressive sensing25. We experi-
mentally validate this technique by using it to recon-
struct the high-fidelity TM of an MMF supporting
754 spatial modes using only 38 measurements (∼5% of
the fibre’s mode capacity). Furthermore, we show that
TMs with sufficient fidelity for imaging can be recon-
structed using as few as eight measurements (∼1%
compression). These methods are universal and may be
applied to a range of other scattering systems, including
thin layers of tissue, optical diffusers, and scattering
from opaque walls.

Results
Concept
The monochromatic complex-valued N-dimensional

TM, T∈CN ×N, describes how an incident field a∈CN is
transformed via propagation through a scatterer into an
output field b∈CN, where b=Ta. Here, a and b are
complex-valued column vectors representing the vec-
torised (reshaped) 2D input and output fields at a single
wavelength and polarisation.
Experimentally, an unknown TM is often measured by

injecting a sequence of orthogonal input probe fields,
where the nth input is denoted by an, and recording how
each input field is transformed by propagation through
the scatterer into the corresponding output field bn. The
output field is typically measured with a camera, and off-
axis digital holography with a coherent reference beam
can be used to recover both its amplitude and phase from
a single image26. The TM of the scatterer, T, can then be
constructed from these measurements by assigning the
nth output field bn to the nth column of T27. In this
construction, the basis in which T is represented is
inherited from the bases in which the input and output
fields are represented—but subsequently, we are at liberty
to numerically transform its representation into any input
and output bases of our choosing. From here on, we refer
to this reconstruction technique as columnwise recon-
struction. Evidently, the number of independent mea-
surements, m, that we need to make should be equal to or
greater than the number of orthogonal modes, N, that
we wish to control—where here we have defined the
recording of an entire output field, simultaneously in a
single camera image, as an individual ‘measurement’.
Shifting our attention to an under-sampled case, let us

consider the following situation: if we have prior knowl-
edge of a basis in which the TM is perfectly diagonal, then
we need only make a single measurement to recover all of
the complex amplitudes of the elements on the diagonal.
In this case, we inject a probe field a1 consisting of a
known superposition of all of the modes represented in
the diagonal basis, and at the output, we measure the
transformed field b1. Our prior tells us that there has been
no coupling between modes, and thus, we can numerically
decompose b1 into the diagonal basis and find the com-
plex diagonal elements of the TM by inspecting how the
amplitude and phase of each mode have changed com-
pared to the known input. This example illustrates how
prior knowledge allows us to recover signals from far
fewer measurements than the dimensionality of the signal.
In this case, we can perform the absolute minimum
number of measurements (i.e. one) because we have
complete knowledge of both the sparsifying basis and the
sparsity pattern (i.e. power is found only on the diagonal).
Although our level of prior knowledge is often much
weaker than that in this example, the field of compressive
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sensing25, and more generally, the concept of inference,
provide the tools to make the best use of any priors we
have available to reconstruct high-fidelity TMs with
reduced numbers of measurements.
To proceed, we note that instead of using the column-

wise method, we can construct a linear system of equa-
tions to which t, the vectorised form of T, is the solution:

St ¼ y ð1Þ

where t∈CN2
is a column vector containing the unknown

complex elements of the TM, which may be represented
in an arbitrary basis of our choosing; S∈CNm ´N2

is a
‘sensing’ matrix determined by the set of input modes
used to probe the TM; and y∈CNm is a column vector
representing the output measurements. The entries of the
known matrix S and the vector y depend on our choice of
the basis representation of t. See the ‘Methods’ for the
details of how S and y are constructed from the set of
known input and measured output fields.
If the TM is over-sampled (i.e. m >N) and S is of full

rank, then t may be found by solving Eq. 1 using standard
methods that minimise an error term η given by the
square of the Euclidean norm of the residual:
η ¼ jjSt $ yjj22, which accounts for any inconsistencies
in Eq. 1 due to noise in the measurements. If the TM is
critically sampled (i.e. m=N) and S is again of full rank,
then t may be found through direct inversion. However, if
the TM is under-sampled (i.e. m <N), then S is rank-
deficient and Eq. 1 has an infinite number of possible
solutions, only one of which represents the true TM.
Here, our task is to use any prior knowledge of the system
we may have to constrain the possible solutions to Eq. 1
and locate a solution close to the correct one. We note
that this prior knowledge could also be used to counteract
measurement noise in the over-sampled and critically
sampled cases.
A strong prior is knowledge of a basis in which each

input mode does not scatter into many output modes,
meaning that the TM is sparse. An even stronger prior is
advance knowledge of which output modes each input is
likely to scatter into. When might we have access to such
priors regarding the TM of a scattering object? There are
several situations that provide information of this sort.
First, it has recently been highlighted that if a scattering
system is known to possess a memory effect, then this is
equivalent to knowledge of a basis in which the TM of the
scatterer is quasi-diagonal—meaning that a significant
proportion of the power is found on the main diag-
onal22,23. Second, if we have access to a model approx-
imating the optical system in question, then we can use
this to find a quasi-diagonalizing basis by simulating the
TM and diagonalising it. Third, if we have performed a
recent but degraded TM measurement on the same

scatterer, then this can also be diagonalised to find a
sparse basis. We emphasise that the situation we consider
in this article is when we have advance knowledge of the
general characteristics of the TM we wish to find, but
none of the above alone reveals sufficient information to
build an accurate TM—consequently, we still need to
make some probe measurements. Our aim is to use the
available prior information, along with a small number of
new measurements, to reconstruct an accurate TM for
the scatterer in question.

Compressively sampling the TM of an MMF
We now consider the example of a MMF. The control

of light fields through MMFs has recently attracted
growing attention, as MMF-based micro-endoscopy pro-
mises video-rate imaging with sub-cellular resolution
deep within tissue at the tip of a needle28–30. MMFs have
also been used as mixing elements for classical and
quantum optical computing schemes19,20. Modal disper-
sion means that an image projected onto one end of an
MMF is scrambled into a speckle pattern at the other end,
and so, before an MMF can be deployed as a micro-
endoscope, it is necessary to first characterise its TM to
understand how to invert this scrambling process7–9.
Unfortunately, any slight bending deformations or tem-
perature fluctuations modify the TM and thus cause the
imaging performance of current fibre technology to
quickly degrade31. Therefore, in the context of emerging
MMF-based clinical imaging scenarios, these stability
constraints mean that the TMs of MMFs may need to be
regularly characterised.
The approximate cylindrical symmetry of an MMF tells

us much about the structure of the TM in advance of its
measurement. Solving the monochromatic wave equation
in an idealised straight section of a step-index fibre reveals
a set of orthogonal circularly polarised eigenmodes,
known as propagation-invariant modes (PIMs)24. The
PIMs maintain a constant spatial profile and polarisation
during propagation. This means that in the ideal case,
power does not couple between these eigenmodes, and
the TM in the PIM basis is unitary and perfectly diagonal.
This implies that ideal fibres have a 2π rotational memory
effect32 and a quasi-radial memory effect that reaches over
the entire output facet23. Although real optical fibres
differ from this idealised case, Plöschner et al. recently
showed that the TM of a short length of step-index MMF
is relatively sparse and strongly diagonal when repre-
sented in the PIM basis and that coupling between the
left- and right-handed circular polarisations is minimal24.
Details of the PIMs and how they are calculated are given,
for example, in refs. 23,24.
Figure 1a shows an example of an experimentally

measured fully sampled TM of a ~30 cm strand of step-
index MMF, represented in the circularly polarised PIM
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basis. The TM was recorded at a wavelength of 633 nm, at
which the fibre supports N= 754 modes per polarisation.
We note that this measurement was conducted for a
single input and output circular polarisation and that the
manufacturer’s quoted mean values of core diameter=
50 μm and NA= 0.22 were used to calculate the trans-
formation to the PIM basis. In our experiments, we have
typically found that ∼10% of the power is on the main
diagonal and that the power is concentrated into relatively
few elements, meaning that the TM is sparse, as antici-
pated by our model. In general, mode coupling increases
with fibre length, and accordingly, the degree of mode
coupling in the TM can be quantified by the ratio L/lf,
where L is the fibre length and lf is the effective transport
mean free path in the fibre mode (PIM) basis, i.e. lf is the
fibre length beyond which modal coupling is maximised

and the TM can be considered fully coupled33. In this
case, our experimentally measured TM corresponds to
L/lf∼ 0.02. See the ‘Methods’ for the details of how lf is
numerically estimated.
Intriguingly, the power in the TM spreads away from

the diagonal in a well-structured manner, suggesting that
we should be able to derive an estimate of the sparsity
pattern. The root of this structure is revealed by con-
sidering how the PIMs couple preferentially to others of
similar azimuthal (‘) and radial (p) mode indices when
they are distorted by a small amount. For example, the
experimentally measured coupling of three input fibre
modes that have undergone propagation through our
fibre is shown in power spectrum plots in Fig. 1b, where
we see that the power is coupled only locally in this
representation. SI Movie 1 displays the experimentally
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Fig. 1 Compressive sampling of the TM of an MMF. a A fully sampled TM of an ~30 cm segment of step-index MMF supporting 754 modes at a
wavelength of 633 nm (NA= 0.22, core diameter= 50 μm). Here, represented in the PIM basis, the TM shows strong diagonal features and a well-
defined off-diagonal structure. b PIMs are indexed by an azimuthal index ‘, describing the orbital angular momentum carried by a PIM, and a radial
index p, which is related to the degree of radial momentum carried by the PIM. The heat maps in (b) show the power spectra of three input fibre
modes (a1, a2, and a3) and the three corresponding output fields (b1, b2, and b3) represented in the (‘, p)-space of the PIM basis, which also
correspond to the three columns marked in (a). The colour of pixel (‘, p) corresponds to the relative power found in the mode with indices (‘, p). We
see that each input couples only to modes with similar ‘ and p indices during propagation through the fibre (see also Movie 1 and SI Fig. S7). c A
support for the TM can be predicted by estimating the degrees of modal coupling σ‘ and σp , indicating areas that are likely to contain little to no
power (see the Methods for details); here, σ‘ = 4 and σp = 2. d Schematic showing the input modes (a focussed point swept across the input facet)
used to fully sample (top) or under-sample (bottom) the TM of the MMF. In the over-sampled case, the input focussed beam is scanned across an
overlapping Cartesian grid of points. In the under-sampled case, points are addressed in a hyper-uniform pattern. e An under-sampled TM (c= 0.25)
reconstructed using the columnwise method with no priors and then transformed into the PIM basis. In this case, the TM is evidently reconstructed
with low fidelity: it exhibits considerable off-diagonal power, and its normalised correlation with the fully sampled TM is 0.23. This correlation is
calculated as the squared modulus of the normalised overlap integral between the complex-valued reconstructed TM and the fully sampled TM. f TM
reconstructed using the same data as in (e) but using FISTA with a predicted support. In this case, the TM is reconstructed with higher fidelity,
and the normalised correlation with the fully sampled TM rises to 0.88. Note: (a) and (f) are reproduced on a larger scale in Supplementary
Information (SI) Figs. S3, S4
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measured power coupling of every input PIM (see also the
description in SI Fig. S7). Evidently, this shows that we
can directly probe the transformation of multiple input
PIMs simultaneously from a single probe measurement
and in a single output camera frame, as long as the inputs
have well-separated mode indices. Using the example
shown in Fig. 1b, the transformation experienced by each
of the three input modes can be separately measured at
the output by transforming the field into the PIM basis
and associating each ‘island’ of power with each individual
input PIM.
To make use of our local coupling prior, we can model

the coupling of PIMs as a 2D Gaussian function with
standard deviations σ‘ and σp describing the degree of
power overspill into adjacent modes. This enables the
prediction of a map capturing the off-diagonal structure
that we expect to observe in the TM, i.e. an estimate of the
amplitude of the TM, as shown in Fig. 1c. This informa-
tion can be used as an estimated ‘support’ to guide the
reconstruction of the TM. The prediction of this support
is parameterised by estimation of only two numbers (σ‘
and σp). Therefore, for short lengths of MMF (up to tens
of centimetres24) with a known core diameter and
numerical aperture, both the sparsifying PIM basis (i.e.
the transformation matrix from real space to the PIM
space) and an estimate of the support are known in
advance of any measurements and can be used in the
reconstruction of the TM. We also note that through the
judicious selection of the first few probe measurements,
reasonably accurate estimates of σ‘ and σp can be found.
For example, by injecting individual PIMs for the first few
measurements, the mode coupling of these can be directly
measured, which can then be used to estimate σ‘ and σp to
predict the shape of the support. As shown in Fig. 1b, a
single measurement of this kind is enough to estimate the
support, although more measurements will lead to greater
accuracy.
We are now equipped with strong priors regarding the

TM of the MMF in advance of its measurement. So, what
measurements should we make? As illustrated by our
example at the start of the Concept section, a good
measurement basis is incoherent with respect to the
predicted sparse basis, i.e. each of our reduced number of
probe measurements should excite many PIMs25. Ideally,
all measurements should also be orthogonal to one
another to ensure that each new measurement yields
independent information about the scatterer. To satisfy
these requirements, we perform measurements in a basis
formed by a single diffraction-limited spot that can be
focussed onto different locations across the core of the
input facet of the MMF. Each of these foci excites many
PIMs and thus has a high level of incoherence with the
sparse TM basis (see SI Fig. S1). The spot locations are
drawn from a disordered hyper-uniform array, which

ensures that they do not overlap, and thus, the inputs are
orthogonal. An example is shown in Fig. 1d, and further
details of how this array was designed are given in the
‘Methods’. This probing basis also has the advantage of
being experimentally straightforward to accurately create.
To reconstruct the full TM from our under-sampled

measurement set, we incorporate our priors by solving the
following optimisation problem:

t̂ ¼ argmin
t

1
2
jjSt $ yjj22|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Data fidelity

þ λ 1 $ wð ÞTjtj|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
Sparsity

ð2Þ

where t̂∈CN2
is the final solution and t ∈CN2

is the
decision variable, both represented in the sparse PIM
basis. Here, 1∈CN2

is a column vector of ones, and |t| is
the magnitude of the complex-valued t. Equation 2
specifies that the solution should both agree with our
under-sampled set of measurements (first term on the
right-hand side) and be sparse, with low absolute values in
regions dictated by our estimated support (second term
on the right-hand side). We minimise the square of the
Euclidean norm in the data fidelity term, as we expect
the noise to be normally distributed. The column vector
w∈ RN2

is the vectorised predicted support, with values
between 0 and 1, determined a priori through the
estimation of σ‘ and σp, as described in the Methods. It
promotes solutions with magnitudes that adhere more
closely to our predicted TM structure. The scalar λ is a
tuneable parameter that weights the relative importance
of the fidelity and sparsity terms (see the ‘Methods’ for
how the value of this parameter is chosen).
The problem defined in Eq. 2 can be solved using a

range of methods. Here, we use the fast iterative soft-
thresholding algorithm (FISTA)34, chosen because it is
capable of rapidly solving relatively large-scale problems
with low memory requirements. Psuedo-code describing
the algorithm is shown in Table 1. More details on how
this problem is solved are given in the Methods.
We aim to use an under-sampled set of measurements

to reconstruct the TM of the step-index MMF shown in
Fig. 1a, with L∼ 30 cm and N= 754 at a wavelength of
633 nm, as detailed earlier. These parameters were chosen
to reflect those used in prototype MMF-based micro-
endoscopes30. The mode capacity of the MMF means that
the TM capturing a single input and output circular
polarisation consists of 7542= 568516 complex elements
when represented in the PIM basis. Reconstructing this
TM without exploiting the use of priors requires at least
754 sequentially recorded probe measurements.
Our experimental set-up is shown in SI Fig. S2. The set-

up is similar to that in ref. 23 and is based on a Mach-
Zehnder interferometer. In brief, light from the laser
source is split into two beam paths. The signal arm of the
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interferometer contains the MMF to be characterised,
along with a digital micro-mirror device (DMD) used to
spatially modulate the complex field of the light injected
into the MMF35–38. The reference arm directs light
around the MMF to be used as a coherent reference. The
output facet of the MMF is imaged onto a high-speed
camera, where it interferes with light from the reference
arm to form an interferogram enabling measurement of
the amplitude and phase of the output field in a single
camera frame using off-axis digital holography26.
Once the TM has been reconstructed, it can be used to

create an arbitrary light field d at the distal end of the
MMF (consisting of any linear combination of the PIMs)
by calculating the required proximal field c= T†d,
where we have assumed that the TM is unitary and thus
T−1= T†. Here (.)† denotes the conjugate transpose
operation. Scanning imaging is achieved by appro-
priately shaping the input field to sweep a focussed spot
over the distal facet9. Reflectance or fluorescence images
can be captured by measuring the total reflected/fluor-
escently excited intensity that is transmitted back to the
proximal end and correlating this signal with each
known distal spot location, turning the system into a
micro-endoscope30.

To investigate the level of compression that is experi-
mentally achievable, we probed the TM of the MMF
multiple times, in each case reducing the number of
measurements, m, drawn from the hyper-uniform input
spot basis (see the Methods). The compression ratio c is
given by c=m/N. For each data set, we compared the
performance of three different TM reconstruction algo-
rithms incorporating different levels of prior knowledge
about the MMF:

(i) No priors—columnwise method of reconstructing
the TM.

(ii) Sparsity prior—FISTA incorporating prior
knowledge of the basis in which we estimate the
TM to be sparse (i.e. the PIM basis) but no
knowledge of which modes the input light is
scattered into, i.e. no knowledge of the support,
meaning that in this case, w= 0 everywhere.

(iii) Sparsity prior and estimate of support—FISTA
incorporating prior knowledge of both a sparse
basis and a TM amplitude support estimate that
promotes a diagonal structure, an example of which
is shown in Fig. 1c. In this case, w is computed
from estimates of σ‘ and σp (see the ‘Methods’).

Figure 1e, f show under-sampled TM reconstructions
in the PIM basis (c ∼ 0.25) when no prior information is
used (Fig. 1e) and when both sparsity and support priors
are incorporated (Fig. 1f). These can both be compared
with the fully sampled TM shown in Fig. 1a. Without the
leveraging of priors, the correlation between the under-
sampled TM and the fully sampled TM is low. In fact,
this correlation is directly proportional to the compres-
sion ratio (correlation= 0.23 ∼ c). The incorporation of
priors into the reconstruction process significantly
boosts the fidelity of the under-sampled TM (correlation
of 0.88).
The fidelity of the reconstructed TMs can also be

quantified by measuring how well they can be used to
generate diffraction-limited foci at the output of the fibre.
To do this, we calculated the mean power-ratio pr, defined
as follows: for a Cartesian grid of points across the output
facet, we calculated the ratio of the power within a small
disk centred on the target focal position to the total power
transmitted through the MMF. Figure 2a shows examples
of diffraction-limited foci generated at the fibre output
using TMs reconstructed with the different methods. pr is
the average power-ratio over all point positions across the
core. Figure 2b shows the power-ratio map across the
output facet in each example case.
We first benchmarked the fidelity of the fully sampled

TM measurement with a high signal-to-noise ratio (SNR)
by over-sampling the TM with an input basis consisting of
a 41 × 41 Cartesian grid of points (see Fig. 1d). Therefore,
c= (41)2/754∼ 2.2. The output foci generated using this
over-sampled TM without the incorporation of priors

Table 1 Pseudo-code describing the algorithm used to
solve Eq. 2.

Algorithm 1 FISTA for solving Eq. 2

Input:

Initial estimate t0

Measurement vector y

Sensing matrix S
Regularisation strength λ & 0

Estimated support vector w

Step size α< 1=L (L is the Lipschitz constant of the gradient of the cost

function).

Output: t̂
1. μ ¼ 1, x0 ¼ t0

2. while not converged do

3. xk þ 1 ¼ Pαλw tk $ α Sy Stk $ y
" #" #

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
Data fidelity gradient

0

B@

1

CA

4. μk þ 1 ¼ 1
2 1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 μkð Þ2 þ 1

q% &

5. tk þ 1 ¼ xk þ 1 þ μk $ 1
" #

=μkþ 1
" #

xk þ 1 $ xk
" #

6. end while

7. Return t̂ ¼ tkþ 1

where Pτ zð Þi ¼ max 0; 1 $ τi=jzijð Þzi gives the solution to the proximal

operator for the sparsity regularisation term, with τ ¼ αλw. Here

Sy Stk $ y
" #

is the data fidelity gradient.
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yielded an experimental mean power-ratio of pr∼ 0.9,
demonstrating that the majority of the available power
can be focussed to a single point at the output. Several
factors contribute to the fact that pr < 1 even in the over-
sampled case: the accuracy with which the required input
field is generated with the DMD; any small drift of the
optical system; the hard edge of the disk inside which
power is considered in the focus; and the low-level camera
noise—which, although low, is spread over many pixels
compared to the size of the focus. Figure 2b, leftmost
panel, shows a map of the power-ratio across the distal
facet in this over-sampled case.
Figure 2c shows a graph of the mean power-ratio pr as a

function of the compression ratio c when our different
reconstruction strategies are applied. We see that without
the inclusion of any priors, pr is once again linearly pro-
portional to c, and thus, for low compression ratios, the
contrast of the spots that can be created on the distal facet

is low. This case is equivalent to partial TM measurement
and has been previously considered in, for example,
refs. 9,38,39. By incorporating prior knowledge and recon-
structing the TM by solving Eq. 2, we move to a regime
where pr > c. As the compression ratio is reduced, pr can
significantly exceed c for an under-sampled measurement
set. For example, using a sparsity prior alone yields a high-
fidelity TM reconstruction; a mean power ratio of pr > 0.8
is maintained down to a compression ratio of c ~ 0.2 in
this case. This situation is further improved by incor-
porating the predicted support of the TM, which here
yields a power-ratio approaching pr= 0.9 when c ~ 0.1,
corresponding to only 74 probe measurements. In this
case, we estimate the level of mode coupling as σ‘ = 4 and
σp= 2. SI Fig. S5 shows that at a compression ratio of c=
0.15, the reconstruction is relatively robust to variations in
these support parameters. Figure 2d shows how the level
of correlation between the under-sampled and fully
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sampled TMs varies as a function of c, which also
demonstrates a similar trend.
While the power-ratio provides a useful measure of TM

reconstruction fidelity that is directly related to scanning
imaging, it is also insensitive to minor changes in the
quality of the focus inside the small disk used to measure
it. In contrast, the correlation curves are sensitive to any
differences between the fully sampled and measured TMs.
This explains the small differences in the shapes of the
curves in Fig. 2c, d.
We next directly tested the imaging performance of the

compressively sampled TMs by imaging a resolution
target positioned at the output facet of the MMF. Figure 3
shows transmission scanning images recorded by sweep-
ing foci across the output facet that were generated using
TMs reconstructed with the three different strategies;
see the SI for details. We observe that without the use of
priors, the images of the resolution target are barely dis-
cernible at a compression ratio of c∼ 0.1 (Fig. 3a).
Incorporating a sparsity constraint enables discernible
imaging down to c∼ 0.05 (Fig. 3b). The further inclusion

of the support boosts the imaging contrast at c∼ 0.05 and
enables lower-contrast imaging down to c∼ 0.01, corre-
sponding to only eight probe measurements (Fig. 3c, d).
In addition to scanning imaging, accurate TM recon-

structions also enable the projection of arbitrary patterns
onto the distal facet. The projection of extended patterns
is a more challenging test than the creation of focussed
spots, as even small inaccuracies in the TM introduce
strong speckling effects (i.e. extended patterns are more
susceptible to perturbations). Figure 4 shows a compar-
ison of the pattern projection capabilities of TMs recon-
structed with full sampling (Fig. 4a), at a compression
ratio of c∼ 0.2 without priors (Fig. 4b), and using sparsity
and support priors (Fig. 4c). We tested the system by
generating the Chinese character for light, a 7 × 7 array of
points, and a Laguerre–Gaussian beam. Evidently, at a
compression ratio of c∼ 0.2, it is virtually impossible to
project patterns through the fibre without the use of
priors when reconstructing the TM.
Clearly, the compression ratios that may be achieved

greatly depend on the strength of the available prior
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information. To investigate how the compression ratio
scales with the level of modal coupling in a fibre, we
conducted a series of numerical simulations, the results
of which are shown in Fig. 5. We simulated a set of fibre
TMs with increasing levels of modal coupling, quantified
by L/lf, and assessed the performance of our recon-
struction algorithms for a range of compression ratios.
Figure 5a shows the fidelity of TM reconstruction using a
sparsity prior only. Figure 5c shows the region of the
parameter space in which compressive TM reconstruc-
tion outperforms the columnwise method. Figure 5b, d
show the improvement achieved by also exploiting
knowledge of the TM support. In this latter case, com-
pressive reconstruction outperforms the columnwise
method for compression ratios down to c= 0.05 for
modal coupling up to L/lf= 0.2. Figure 5e–h show
examples of the absolute values of the simulated TMs
over the coupling range studied. We note that for longer
fibres, adopting a support that integrates prior knowledge
of the anticipated levels of modal loss, in addition to
modal coupling, may extend the range over which
compressive TM reconstruction offers an advantage.

Discussion
In this article, we have shown how the framework of

compressive sensing can be employed to reduce the

number of measurements required to reconstruct high-
dimensional optical transmission matrices. Here, we have
demonstrated this approach to measure the TM of an
MMF, but the method is applicable to any scattering
system for which we have access to some prior knowledge
about the basis in which the TM is likely to be sparse. For
example, diffusers, thin layers of biological tissue, and
opaque walls all exhibit a tilt-tilt memory effect21,23 and
thus have a quasi-diagonal TM in the real-space basis if
the input and output planes are placed immediately
adjacent to the scattering object itself (we note that if the
planes are elsewhere, then as long as the distances from
the scatterer to the chosen input and output planes are
known, the input and output planes can be digitally
transformed to planes adjacent to the object). Therefore,
in these cases, compressive TM measurement can be
achieved by performing an under-sampled set of Fourier
basis probe measurements (i.e. plane waves incident from
a range of different angles) and then iteratively recon-
structing the TM while enforcing sparsity in the real-
space basis. For a diffusive medium, the real-space spar-
sity pattern can be estimated, for example, by predicting
the degree of lateral modal cross-talk based on the level of
diffusion expected through a sample of a known transport
mean free path and thickness. Interestingly, some thin
anisotropically scattering samples exhibit quasi-diagonal
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TMs in both the real-space basis and the Fourier
basis22,40. In this case, our algorithm could be extended to
enforce sparsity in both of these bases—with the greater
level of prior knowledge potentially leading to higher
compression ratios.
In our proof-of-principle demonstration, we have

assumed the following prior knowledge about the fibre
under test: the manufacturer’s quoted values of the NA
and core diameter and the approximate length. We do not
need to know the bending configuration, as the majority
of the observed modal cross-talk is due to the misalign-
ment of the input and output24. Using a sparsity prior

only, the level of compression we can expect is governed
by c∼ slog(N)25, where s is the level of sparsity of the TM,
i.e. the proportion of the TM elements that contain
appreciable power. As we have shown, the achievable
compression level is further improved with additional
information about the sparsity pattern. Here, we have
focussed on short lengths (∼30 cm) of MMF, which have
attracted increasing attention recently for applications in
micro-endoscopy28–30 and in emerging classical and
quantum optical computing schemes19,20. However, we
envisage that our compressive sampling strategy may also
be extended to longer segments of MMF, in which case
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higher levels of modal and polarisation coupling may
reduce the extent of compression possible, as demon-
strated in Fig. 5. We note that as long as an MMF is in
the weak coupling regime, i.e. the power in the TM of the
MMF is biased towards the main diagonal in the PIM
basis, compressive sampling may still be leveraged. For
example, ref. 14 has demonstrated that few-mode MMFs
of up to 100 m in length are still in the weak coupling
regime, with power found in predictable regions of
the TM.
In our experiment, a key factor in accurately estimating

the basis in which the TM is diagonal is alignment of the
input to and output from the MMF. This alignment is
non-trivial, as there are six degrees of freedom to consider
at each end: the position of the objective lens with respect
to the fibre in the x, y and z directions and the tip, tilt and
defocus. Previous work has shown that a coarse indication
of the level of misalignment of these degrees of freedom
can be extracted from the fully sampled TM of the MMF
itself and, hence, digitally corrected; see the SI of ref. 24. In
this work, we have found that compressively sampled
TMs, when represented in the real-space basis, also pro-
vide coarse information on the level of misalignment.
Therefore, to accurately estimate the PIM basis, we
manually aligned the experimental system (see SI Fig. S2)
and performed an under-sampled set of measurements.
We then analysed the raw data to extract coarse estimates
of the input and output misalignments. These misalign-
ments were then digitally corrected by absorbing them
into the real-space-to-PIM matrices used to transform
from the TM basis into the PIM basis for TM recon-
struction to commence23,24.
The time taken to perform iterative TM reconstruction

is also worth considering. In this work, the FISTA pro-
cessing typically took ∼45 s; however, we note that there is
a route to significantly reduce this optimisation time to
<1 s (see the Methods). We also tested the performance of
a faster reconstruction method based on Tikhonov reg-
ularisation that exhibited lower fidelity but took only ~4 s
to complete (see SI Fig. S6). One area in which we expect
the compressive sampling of TMs to be particularly
advantageous is situations in which measurements cannot
be made rapidly, for example, when using phase-only
spatial light modulators of a relatively low modulation
rate or in the case of a low SNR. Compressive sampling
also has potential in higher-dimensional cases, such as the
measurement of multispectral TMs, for which the num-
ber of measurements can run into the hundreds of
thousands41–44.
We note that previous work has also implied the use of

compressive TM recovery in some specific cases. For
example, Gordon et al. recently showed that the TM of a
fibre bundle can be recovered using fewer output images
than the number of fibres by noting that fibres couple

only to their neighbours (i.e. the TM is sparse in real
space)45. Antipa et al. have demonstrated the measure-
ment of the incoherent 3D intensity TM of a diffuser
using a single image, under the assumption that the
diffuser is a thin phase screen with an infinite memory
effect46. Carpenter et al. have previously highlighted that
the TM of a graded-index MMF can be approximately
represented as a block-diagonal structure, which means
it is necessary only to measure coupling within the
blocks47. Our aim here is to highlight that compressive
sampling may be applied to reconstruct TMs that are
sparse in any known basis, with a number of camera
frames that is lower than the mode capacity of the sys-
tem. We have also shown how knowledge of the sparsity
pattern can be leveraged and have presented the first
experimental demonstration (to our knowledge) of
compressively sampling the TM of an MMF using this
technique.
Recently, machine learning (ML) approaches, such as

deep neural networks, have been employed to learn the
non-linear relationship between coherent fields pro-
jected onto one end of a fibre and the resulting speckle
intensity patterns transmitted from the other end48.
These methods have shown greater levels of robustness
to small changes in fibre configuration than TM
approaches, as they rely on a large number of mea-
surements (typically many times more than the number
of supported fibre modes) and thus incorporate infor-
mation about the fibre in a range of states. However, we
note that there is a key difference between the ML-based
methods that have been demonstrated so far and TM-
based approaches: knowledge of the TM permits scan-
ning imaging of arbitrary scenes at the distal facet, while
ML approaches, to maintain tractability, are typically
trained to recognise only a subset of the possible
coherent light fields at the distal facet—often with either
the phase or the amplitude of the incident fields in the
training data being held constant. This is because there
are many possible fields at the distal facet that could
result in the same intensity speckle pattern at the
proximal facet, so the set of possible fields must be
constrained in some way. Therefore, current ML-based
methods are limited to imaging artificially synthesised
light fields that possess the same general characteristics
as the training set49. Nonetheless, ML techniques
represent a novel approach and an intriguing avenue for
further investigation. In this context, our compressive
TM sampling strategy may have the potential to reduce
the number of physical measurements that need to be
performed and thus significantly speed up the training of
ML algorithms. For example, a series of TMs could be
rapidly compressively acquired as a fibre moves through
a number of different configurations50. This set of TMs
could then be used to numerically simulate large
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collections of ML training data much more quickly than
they could be measured experimentally51.
Finally, we highlight that the concept of compressive

TM reconstruction may be interpreted as constrained
phase retrieval in a large number of dimensions. In
phase retrieval, the objective is typically to estimate
unknown phase components of a complex field with
access only to the intensity of the field and some con-
straints52,53. Here, we have access to both the intensity
and phase of an under-sampled set of measurements
that are linked through a high-dimensional linear system
of equations (i.e. the TM), and the iterative approach we
have used to solve this problem is similar to those used
in phase retrieval problems54,55. More broadly, the
concept of compressive sensing has been combined with
the high-dimensional transformations enacted by scat-
tering systems in several other ways in the past. Most
notably, compressive sensing has been applied to reduce
the number of measurements required to recover ima-
ges through scattering systems by drawing on priors
relating to the form of the images56–58. Our work
complements these previous studies by highlighting that
it is also possible to draw on priors concerning the
scatterer itself during the calibration phase. In the
future, we hope that the concept of compressive TM
reconstruction can be combined with the ultra-fast
modulators currently under development59,60, unlocking
the potential to characterise and image objects through
even dynamically changing scattering systems as effi-
ciently as possible.

Materials and methods
Constructing the sensing matrix
Consider an MMF with a mode capacity of N modes

per polarisation, with an unknown TM T∈CN ×N,
represented in the PIM basis. In our work, the PIM basis
is the natural choice, as it is the basis in which the sparsity
priors are enforced.
To fully sample the N ×N-element TM, we inject

N orthogonal probe modes, a1, a2,…, aN∈CN, also
expressed in the PIM basis. The transformation of these
inputs by the MMF produces the following outputs:

b1 ¼ Ta1
b2 ¼ Ta2

..

.

bN ¼ TaN

Horizontally concatenating the corresponding sides of
each of the above equations and taking the transpose of
the resulting matrix, we obtain the following matrix

product:

b1; b2; ¼ ; bN½ (T ¼ Ta1; Ta2; ¼ ; TaN½ (T

¼ T a1; a2; ¼ ; aN½ (ð ÞT

¼ a1; a2; ¼ ; aN½ (TTT

¼ ATT

ð3Þ

where (·)T denotes the matrix transpose operator.
Vectorising both sides of the above equation gives an
equivalent matrix-vector form:

vec b1; b2; ¼ ; bN½ (T
' (

¼ vec ATT" #

¼ IN ) Að Þ vec TT
" # ð4Þ

where vec(·) denotes the vectorisation operator, IN is the
N ×N identity matrix, and the symbol ) denotes the
Kronecker matrix product between two matrices. The last
equality in Eqn. 4 follows from the vectorisation-Kronecker
product identity: vec(PXQ)= (QT ) P) vec(X). Finally, by
letting:

y ¼def vec b1; b2; ¼ ; bN½ (T
' (

S ¼def IN ) Að Þ; and

t ¼def vec TT
" #

we obtain the desired form given in Eq. 1.
Since S= (IN ) A), it is an N2 ×N2-block-diagonal

matrix, with A repeated along the diagonal. Each row
of A corresponds to a single probe mode, here expressed
in the PIM basis. Therefore, reducing the number of
measurements is equivalent to reducing the number of
rows in A and, consequently, to reducing the numbers
of rows in S and elements in y. When the TM is under-
sampled, S has fewer rows than columns. Therefore,
the application of priors within the framework of com-
pressive sensing is necessary to uniquely solve Eq. 1. We
also note that the block-diagonal nature of S means that
the reconstruction of each column of the TM can be
carried out independently and in parallel, facilitating rapid
TM reconstruction if necessary.

Estimating the support
To construct the nth column of the predicted TM

support, we numerically define a discretised 2D Gaussian
function fin (‘, p)-space within the bounds of the power
spectrum grid representing the indices of the allowed
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PIMs (see Fig. 2b):

f ‘; pð Þ ¼ exp $ ‘ $ ‘0ð Þ2

2σ2‘
$ p $ p0ð Þ2

2σ2
p

" #

ð5Þ

Centred on the nth PIM corresponding to indices ‘0 and
p0. Here, σ‘ and σp are standard deviations representing
our estimated level of coupling. This 2D function is then
reshaped into a column vector to form the nth column of
the predicted TM support. This process is repeated while
moving the centre of the Gaussian function over each
PIM index to build up the entire predicted support, such
as that shown in Fig. 1. The ordering of the PIMs of
indices ‘ and p into a 1D list is arbitrary but must be self-
consistent. Here, we follow the ordering used in refs. 23,24.
Finally, the predicted support is vectorised to generate the
w that is used in Eq. 2.

Design of the hyper-uniform input basis
To ensure that the input facet is approximately evenly

sampled, the locations of m points are selected by creating
a hyper-uniform array. We first randomly distribute the m
points across a disk representing the core of the fibre. To
prevent the clustering that naturally occurs when the
locations are randomly chosen, we iteratively update
the positions of the points to evenly spread them across
the core. This is achieved by defining a repulsive ‘force’
acting along the line that joins two points, the magnitude
of which is inversely proportional to the distance between
the points. The total resulting force vector acting on an
individual point is the vector sum of the repulsive forces
from all nearby points. In each iteration, we move each
point in the direction of the total force vector acting on it.
The size of the movement is a small distance (on the order
of one one-hundredth of the core radius) proportional to
the magnitude of the total force acting on each point. An
additional force pointing radially inward is applied to
points near the edge of the core to prevent the points
from repelling each other beyond the radius of the core.
The positions of the points are updated until no appre-
ciable changes are observed. The resulting set of points
then specifies the locations of the foci of the under-
sampled input probe measurements.

Solving the optimisation problem
Algorithm 1 describes the fast iterative soft-thresholding

steps used to solve the problem in Eq. 2. This is also
known as an accelerated proximal gradient descent algo-
rithm. We implemented Algorithm 1 in MATLAB. λ was
manually tuned once by testing the reconstruction per-
formance for a range of choices for λ before choosing λ=
0.25. This value of λ was used for all reconstructions,
irrespective of the compression ratio. The Lipschitz con-
stant used as a bound for the choice of the step size was

calculated by computing the singular value decomposition
of the sensing matrix, which took ∼35 s at the outset.
Alternatively, a simple back-tracking scheme could be
used to perform automatic step size selection. t0 was
initialised using the solution obtained from the column-
wise method; for an example, see Fig. 1e. On a laptop with
a quad core (8 threads) Intel i7-8565U CPU and 8 GB of
RAM, it typically took ∼45 s to solve Eq. 1 with a com-
pression ratio of c∼ 0.15 at a fixed step size.
In Algorithm 1, the number of multiplications per itera-

tion scales as the number of non-zero elements of the
sensing matrix, which is equal to mN2. The time taken to
perform these matrix multiplications represents the major
time-limiting factor in the algorithm. Therefore, when the
problem is solved as a single matrix equation, the time per
iteration, t, increases as t∝mN2. In the present case, the
reconstruction time is longer than the time taken to record
the fully sampled TM using a fast DMD and a high-speed
camera (∼10 s, excluding the pattern loading time). How-
ever, we note that this reconstruction time could be sig-
nificantly reduced by specifically tailoring the optimisation
algorithm to take advantage of the structure of the sampling
matrix S. Here, we treated Eq. 2 as a single sparse matrix
equation, but as mentioned above, the block-diagonal
structure of S means that Eq. 2 is separable into, in this
case, N= 754 smaller equations that can, in principle, be
solved in parallel to recover each column of the TM inde-
pendently. In this case, the number of multiplications
required for a single iteration of each of these individual
matrix equations is mN, and thus, the time per iteration for
these equations also scales as t∝mN. We estimate that for
our present case, for N= 754, this would reduce the
reconstruction time to less than a second. We note that for
larger N, the TM and the predicted support become sparser,
and therefore, we expect the compression ratio to improve
as N increases, i.e. the fraction of probe measurements
required, m/N, will decrease with increasing N.

Estimation of the transport mean free path in the PIM basis
The level of off-diagonal coupling in the fibre TM, when

represented in the PIM basis, can be quantified by the
ratio L/lf, where L is the fibre length and lf is the transport
mean free path in the PIM basis, i.e. the length of the fibre
beyond which an arbitrary input mode statistically cou-
ples to all output modes. The fibre TM is considered fully
coupled when L/lf > 1.
We estimated lf by numerically simulating the TMs of

many short sections of fibre, each possessing a small
degree of coupling, generated by randomly misaligning
the inputs and outputs to/from each segment. We then
modelled these sections of fibre connected end to end by
calculating the product of their TMs. As more sections
were included, the level of coupling in the TM increased,
representing the ensemble of connected fibre sections.
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We numerically quantified the level of off-diagonal power
in this TM by calculating Iw, the weighted sum of the
normalised power in the TM T, with each element
weighted by its perpendicular distance to the diagonal:

Iw ¼ 1ffiffiffi
2

p
XN

i¼ 1

XN

j¼ 1

Ti;jT*
i;jji $ jj ð6Þ

where i and jindex the rows and columns, respectively; Ti,j

refers to the element in row i and column jof T; and T∗ is
the complex conjugate of T. In each case, the TM was
normalised such that:

XN

i¼ 1

XN

j¼ 1

Ti;jT*
i;j ¼ 1 ð7Þ

We plotted Iw as a function of the fibre length. Iw
initially increases as the power spreads gradually farther
from the diagonal and then plateaus once L= lf, enabling
lf to be estimated. We could also use this model to esti-
mate the value of L/lf observed in our experiment by
finding the length of fibre in our model that would result
in the same degree of coupling observed in our
experiment.
While this model provides a way to estimate lf and to

quantify the level of coupling in the TM, we note that the
way this model scales with L assumes that the coupling is
solely due to the mixing of light during propagation
through the fibre and under-estimates the cross-talk due
to misalignment of the input and output. In our experi-
ment, a major source of the observed coupling was the
misalignment of the light input to and output from
the fibre.
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FIG. S1: Transformation matrix from spots to PIMs: Here columns represent spot locations, and rows represent PIMs. Therefore the pixel
at row i, col. j represents the amplitude (brightness) and phase (colour) of the overlap between a spot focussed at location j on the input facet,
with PIM i. We see that the majority of spot locations excite many PIMs – showing that the spot input basis is relatively incoherent with the
PIM basis as required in our compressive sampling protocol.
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FIG. S2: Schematic of the experimental set-up: The optical system is based on a Mach-Zehnder interferometer. A laser beam is generated
by a 1 mW Helium-Neon laser source operating at a wavelength of 633 nm. The beam is split into target and reference arms using a polarising
beamsplitter (PBS2). In the target arm, the beam is spatially filtered and expanded to fill a digital micro-mirror device (DMD) (ViALUX
V-7001). The first diffraction order of the DMD is selected by an iris which blocks all other diffraction orders. The DMD chip plane is imaged
onto the pupil of an objective lens (OBJ1, 20X magnification). The input facet of the MMF is placed at the front focal plane of the objective
lens. The MMF output facet is imaged onto a high-speed camera (CCD3, Basler Pilot GigE, resolution 648x488), where it interferes with the
coherent reference beam. The plane wave of the reference beam arrives at the camera at a small tilt angle with respect to the camera chip normal,
enabling single-shot digital holography to reconstruct the intensity and phase of the target field. CCD1 and CCD2 are alignment cameras (also
Basler Pilot GigE). They are in the image plane of the proximal facet of the MMF. CCD1 images the incident laser beam, enabling aberration
correction of the part of the optical set-up before the MMF if necessary, using, for example, the methods described in ref. [? ]. This correction
need only take place once and is unchanged regardless of the test scattering object that is placed in the TM measurement system. A red LED
illuminator is used to illuminate the proximal facet of the fibre to aid alignment. Transmission imaging was achieved by scanning a focussed
beam over a transmissive resolution target placed ⇠ 40µm from the distal facet of the fibre. The TM under question was used to calculate
the input field required to generate a focussed spot on the output distal facet of the MMF. This was then refocussed from the distal fibre facet
to the plane of the resolution target by adding a quadratic Fresnel lens phase function to the hologram displayed on the DMD, as described
in ref. [? ]. To reconstruct an image, the total transmitted intensity arriving at CCD3 was recorded for each spot location at the distal facet.
Reflection imaging is also possible (as would be necessary for the MMF to be deployed in a real application), but in our case the low power of
the laser used for the experiment, coupled with low collection efficiency for MMFs meant the returning signals were small, which introduced
additional noise and so we did not use reflection images to test the performance of the reconstructed TMs.
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FIG. S3: Fully-sampled TM in PIM basis reconstructed using the column-wise method: This is a larger scale reproduction of main text
Fig. 1(a). The TM is over-sampled using c = 2.2 as explained in the main text.

FIG. S4: Under-sampled TM in PIM basis reconstructed using FISTA with sparsity and support priors: This is a larger scale reproduc-
tion of main text Fig. 1(f). The TM is under-sampled using c = 0.25. The correlation with the fully sampled TM is 0.88.
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FIG. S5: Reconstruction with variation in the estimated support: (a) Here we experimentally reconstruct a TM with a compression ratio of
c = 0.15 and investigate the variation in reconstruction fidelity when the parameters of the estimated support are varied. We trial nine different
estimated supports, with �` = 2 : 2 : 6, and �p = 1 : 1 : 3. The mean power-ratio of foci generated at the output using TMs reconstructed
with the nine different supports is annotated. In this case we find that even when the extent of the anticipated off-diagonal power coupling in the
TM is over-estimated or under-estimated, the fidelity of the reconstructed TM is always higher than without using a support: pr > 0.8 in every
case tested here. This illustrates that the FISTA reconstruction is robust to inaccurate estimates of the support within the demonstrated range.
(b) Here we simulate the TM reconstruction fidelity over a wider range of support parameters for the same compression ratio as (a). We find
that the reconstruction can tolerate a significant overestimation in mask parameters in this case, with only gradual reduction in reconstruction
fidelity. The white contour at 0.6 indicates the fidelity of the reconstruction using sparsity priors only.
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FIG. S6: TM reconstruction using Tikhonov regularisation: In addition to the three reconstruction methods presented in the main paper, we
also investigated a reconstruction method based on Tikhonov regularisation. In this case the estimated TM amplitude support was thresholded
to create a binary mask: containing 0 in regions in which we expect there to be minimal power in the reconstructed TM, and 1 otherwise. To
promote solutions that have low absolute values in regions specified by the predicted mask, the information about which regions of the TM we
expect to be zero can be inserted into Eqn. 1 (main text), by adding extra rows to S and y. For example, to specify that the nth entry in t is 0,
we vertically concatenate S with an extra row consisting of all elements set to 0 except for the nth element which is set to 1. We also vertically
concatenate y with an extra element set to 0. This can be repeated for every element of the TM that we expect to be 0 according to the predicted
binary mask. Note that the memory requirements are low for this approach as the extra rows are mainly zeros and can be represented using
sparse matrices. As long as enough additional information has been inserted into Eqn. 1 (main text) to render it full-rank, then it can be solved
using standard fast methods that minimise an error term ⌘ given by the square of the Euclidean norm of the residual: ⌘ = kSt � yk22, which
attempts to account for any inconsistencies due to inaccuracies in the estimation of the support or noise in the measurements. Additionally,
the strength of the predicted support priors can be weighted with respect to the probe measurements by a factor �Tik, for example, using the
methods described in the SI of ref. [? ]. This method is a form of Tikhonov regularisation: to demonstrate this, let � represent the matrix formed
from the extra rows vertically concatenated with S as described above, and 0 is a column vector representing the extra rows of zeros vertically

concatenated with y. Therefore the new matrix-vector equation becomes:


S

�1/2
Tik�

�
t =


y
0

�
, where �1/2

Tik is the weighting factor. In this

case the square of the Euclidean norm of the residual is given by
����


S

�1/2
Tik�

�
t�


y
0

�����
2

2

=

����


St� y

�1/2
Tik�t

�����
2

2

= kSt� yk22 + �Tik k�tk22,

which is equivalent to Tikhonov regularisation with a Tikhonov matrix � and weighting factor �Tik. Here we set �Tik = 1. (a) and (b)
show the performance of Tikhonov regularisation (diamonds) in comparison with the other three reconstruction strategies (data shown in grey
equivalent that in main text Figs.2(c,d)). In this case for compression ratios of c > 0.25, the performance of Tikhonov regularisation is
equivalent to FISTA using sparsity and support priors, but the solution is returned approximately an order of magnitude faster. However, the
solution is sensitive to under-estimations of the level of off-diagonal power spread in the TM. Additionally, for lower compression ratios of
c < 0.2, the above matrix equation is not full-rank, and since no sparsity priors are invoked the Tikhonov reconstruction undergoes catastrophic
failure: the number of probe measurements must be large enough to render the matrix equation full rank for an accurate solution to be found.
In comparison, all other reconstruction strategies undergo graceful failure as c is reduced. Therefore, although relatively fast to perform,
Tikhonov reconstruction can only be successfully applied for mild compression ratios in circumstances where the level of off-diagonal power
spread can be safely over-estimated.
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FIG. S7: Movie 1: Experimentally measured coupling of PIMs: The figure depicts a frame from supplementary movie 1 showing the level
of coupling each input PIM undergoes due to propagation through the MMF. The left hand panel shows the measured TM. The vertical green
line highlights a single TM column. The nth column corresponds to the nth input mode. Each row captures the degree of coupling with all
other PIMs experienced by the nth input PIM after propagating through the MMF. The upper right hand plot highlights the nth input PIM in
(`,p)-space with a bright point. The lower right hand plot shows the level of power coupling of the nth PIM at the fibre output. We see that
power couples locally in (`,p)-space. We exploit this to predict the support of the TM. We also note that PIMs with low p-indices tend to couple
more broadly to the neighbouring PIMs, as the values of the phase velocities of these PIMs are closer. There is potential for this observation
to be exploited as more detailed prior knowledge about the structure of the TM in the future.
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