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Abstract—Brain is the most important part in the human body 
controlling muscles and nerves; Electroencephalogram (EEG) 
signals   record brain electric activities.  EEG signals capture   
important information pertinent to different physiological brain 
states. In this paper, we propose an efficient framework for 
evaluating the power-accuracy trade-off for EEG-based 
compressive sensing and classification techniques in the context 
of epileptic seizure detection in wireless tele-monitoring. The 
framework incorporates compressive sensing-based energy-
efficient compression, and noisy wireless communication channel 
to study the effect on the application accuracy. Discrete cosine 
transform (DCT) and compressive sensing are used for EEG 
signals acquisition and compression. To obtain low-complexity 
energy-efficient, the best data accuracy with higher compression 
ratio is sought. A reconstructed algorithm derived from DCT of 
daubechie’s wavelet 6 is used to decompose the EEG signal at 
different levels. DCT is combined with the best basis function 
neural networks for EEG signals classification. Extensive 
experimental work is conducted, utilizing four classification 
models. The obtained results show an improvement in 
classification accuracies and an optimal classification rate of 
about 95% is achieved when using NN classifier at 85% of CR in 
the case of no SNR value. The satisfying results demonstrate the 
effect of efficient compression on maximizing the sensor lifetime 
without affecting the application’s accuracy. 

Keywords: EEG; DCT; wavelet compression; compressive sensing; 
feature extraction; classification. 

I. INTRODUCTION  

Mobile and wireless devices are growing rapidly and are 
estimated at 5 billion devices world-wide. A critical issue of 
using such devices is the energy that can be consumed by 
these devices. These devices are operating on limited power 
reserves as they are battery-operated, while sensing physical 
measures. Energy consumption is a major challenge in 
limiting the mobile device’s form factor. Our main motivation 
is to investigate the energy consumption of mobile nodes at 
two levels, namely, at the compression level and at the 
communication level, while keeping the overall classification 
accuracy at a satisfactory level. Hence, the trade-off between 
energy consumption at these two levels is studied.   

Compressive sensing (CS) [1] is used to reduce the 
amount of data required to send from transmitter to receiver, 
hence, has been considered for efficient EEG acquisition and 
compression in several application contexts [2, 3, 4]. Brain 

status information is captured by physiological EEG signals, 
extensively used for the study of different brain activities. One 
of these states is the epileptic seizure detection.  Epilepsy or 
epileptic seizure is refers to the one of the most common brain 
disorders usually caused by brain injury. Approximately, one 
in every 100 persons is expected to experience a seizure 
disorder in their life time Iasemidis et al., 2003 [5]. Epilepsy 
is categorized by the occurrence of multiple episodes of 
seizures in a row. The diagnosis of epilepsy is clinical, 
however, the scalp EEG is the most widely accepted test for 
the diagnosis of epilepsy [6, 7].  

In [2, 3], the research work has been focused on the sparse 
modeling of EEG signals and evaluating the efficiency of CS-
based compression in terms of signal reconstruction errors. 
The work in [4] has tried to estimate the low-power potential 
of CS for portable EEG systems using datasheet-extracted 
power consumption figures for the various components. It 
also estimates the required amount of processing and wireless 
transmission. Neural Network (NN), Support Victor Machine 
(SVM), the k-nearest neighbor (k-NN) and naive Bayes 
algorithms have been proposed as classification methods [8].  

Wang et al. [9] have proposed an EEG classification 
system for epileptic seizure detection. It consists of three main 
stages, namely, 1) the best basis-based wavelet packet entropy 
method is used to represent EEG signals by wavelet packet 
coefficients. 2) k-NN classifier with cross validation method 
in the training stage is used for hierarchical knowledge base 
(HKB) construction. Lastly, 3) the top-ranked discriminative 
rules from the HKB used in the testing stage to compute 
classification accuracy and rejection rate. The method 
proposed by Weng and Khorasani [10] uses the features 
which are proposed by Gotman [11] namely, average EEG 
amplitude, and average EEG duration, coefficient of variation, 
dominant frequency, and average power spectrum as inputs to 
an adaptive structured neural network. The method proposed 
by Pradhan et al. [12] uses raw EEG signal as input to a 
learning vector quantization (LVQ) network. Nigam et al. 
[13] have proposed a new neural network model called 
LAMSTAR network and two time-domain attributes of EEG, 
namely, relative spike amplitude and spike rhythmicity. They 
have been used as inputs for the purpose of epilepsy detection 

This paper focuses on the design of an efficient CS-based 
framework for raw EEG signal acquisition and reconstruction. 
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Wavelet series expansion for ݂ሺݔሻ, where ݂ሺݔሻ ∈ ଶሺܴሻܮ

ሻݔሻ and scaling function ߮ሺݔଶሺܴሻ relative to wavelet ѱሺܮ

݂ሺݔሻ ൌ෍ ௝ܿ଴

௞

ሺ݇ሻ߮௝଴,௞ሺݔሻ ൅ ෍෍ ௝݀ሺ݇ሻ
௞

ѱ௝,௞

∞

௝ୀ௝బ

ሺݔሻ (9) 

௝ܿ଴ is the approximation coefficients. It uses scaling function 

to provide an approximation of at scale ݂ሺݔሻ	 ݆଴ [it is exact 
at	݂ሺݔሻ ∈ 	 ௝ܸబ] where ݆଴ is an arbitrary starting scale. The 
approximation coefficients ௝ܿ଴ can be calculated as: 

௝ܿబሺ݇ሻ ൌ ൻ݂ሺݔሻ, ߮௝௢,௞ሺݔሻൿ (10)

In the second sum a finer resolution is added to the 
approximation to provide increasing details and ௝݀ሺ݇ሻ called 
details coefficients and it can be calculated as: 

௝݀ሺ݇ሻ ൌ ൻ݂ሺݔሻ, ѱ௝,௞ሺݔሻൿ (11) 
The aforementioned set of wavelet families can be applied 

for the feature extraction purpose. To obtain maximum 
classification accuracy, Daubechies 6 with 7 levels of 
decomposition is utilized [24]. Classical statistics (maximum, 
minimum, mean and standard deviation) are obtained from 
each wavelet subband and combined together to devise the 
feature vector, which in turn used in the classification process. 

C. Data Classification  

Our previous survey in [25] shows that EEG detection and 
classification plays an essential role to the timely diagnosis 
and analyzes potentially fatal and chronic diseases proactively 
in clinical as well as various life settings. In this research, 
therefore, using the Rapidminer software tool [26] we 
implemented several classifiers to measure the classification 
accuracy of such EEG data. Since our concern is the trade-off 
between algorithm complexity and classification accuracy of 
the obtained features, any classifier model can be used in the 
classification process. NN, SVM, k-NN and Bays classifiers 
were used to classify the classification accuracy according to 
the compression ratio (CR). For more details about the 
comparison between NN, SVM, k-NN and Bayes which are 
used in this research as different supervised learning 
techniques please refer to [27]. 

IV. RESULTS AND DISCUSSION 

We used simulation model that Matlab with RapidMiner 
tool to conduct performance evaluation for the complexity-
accuracy trade-off study. Compressive sensing technique has 
been implemented using Matlab, with DCT basis method to 
down-sample the N raw EEG data samples to M 
measurements, composing the transmitted data y. Wireless 
channel effect is then incorporated through applying AWGN 
noise with different SNRs to evaluate the effect of physical 
layer channel impairments. We used a range of SNRs from 1 
to 10 dB, and we checked it against the noiseless channel 
case. Finally, feature extraction, and classification using the 
NN, SVM, k-NN and Bayes classifiers were performed, using 

RapidMiner to evaluate the classification accuracy as a 
function of CR. For each CR value, we conduct 20 
simulations with different values of the random measurement 
matrix, and evaluate the average to enhance the confidence of 
the obtained results. First, regarding the execution time for 
each feature file, we observe that, on the average, NN takes 
around 2.65 minutes, SVM takes one second, while both of k-
NN and Bayes times is less than a second. Most of the 
classifiers parameters were configured to the default values. 
NN, training cycles are 500, learning rate is 0.3. SVM type 
was nu-support vector classification (nu-SVC), cache size is 
80 megabyte. k-NN type is radial, k settings to 10. Eventually, 
Bayes used Laplace correction to avoid high potential impact 
zero, default: true.  

Figure 3 illustrates the classification accuracy against CR 
in the case of the noiseless wireless channel, using the four 
classifiers. Figure 3 also shows the results for NN, SVM, k-
NN, and Bayesian classifier accuracy for noiseless wireless 
channel. The results show that accuracy decreases 
logarithmically with the increase of CR. We can divide the 
results into three main regions, at CR = 75%, and 85% 
respectively. While accuracy remains stable above 90% for all 
classifiers in the first region, NN, and Bayesian seems to have 
significant accuracy of about 5%. The decay in accuracy 
seems to be reasonable in the second region, showing NN 
making the lead in high compression values, and then it starts 
to decay exponentially in the third region for all classifiers. 
While NN consistently outperforms the other three classifiers 
in all regions, the high classification time and complexity of 
implementation makes it prohibitive in real time wireless tele-
monitoring applications.  

Figure 3: Classification accuracy against CR for noiseless 
wireless channel 

Figure 3 illustrates the classification accuracy against CR 
in the case of the noiseless wireless channel, using the NN, 
SVM, k-NN and Bayes classifiers. 

Hence, the following figures show the results of 
classification accuracy against CR, after adding the effect of 
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physical channel impairments for SVM, k-NN, and Bayes 
classifiers. 

Fig. 4: Classification accuracy for noisy wireless channel 
using SVM classifier. 

Fig. 5: Classification accuracy for noisy wireless channel 
using Bayes classifier. 

Fig. 6: Classification accuracy for noisy wireless channel 
using k-NN classifier. 

Figure 4 shows that the accuracy decreases consistently, 
while the exponential decay starts earlier with the increase of 
channel noise. For example, the exponential decay start at 
CR~90% for the noiseless channel, while it starts at CR=85% 
when SNR=1dB. 

Figure 5 shows a slightly different behavior for Bayesian 
classifier. While the classification accuracy starts to decay 
linearly after CR=75%, the effect of noisy communication is 
more evident, causing the decrease of more than 10% when 
SNR=10dB. 

Eventually, Figure 6 shows steady decrease against both 
CR, and SNR, nominating k-NN to be the best tolerable 
classifier to wireless channel noise, and changes in CR.  

Figure 3-6 show the best compression ratio is at 85%. 
Also, the NN classifier is more accurate and gives a better 
accuracy at 95%. Bayes is less complex and uses only Laplace 
correction. However, SVM and k-NN give less accuracy than 
NN and Bayes. This is mainly because these classifier models 
use different classification strategies. For example, the Bayes 
classifier assumes that the features of the input pattern are 
independent. In the case of neural networks, the dependency 
relationship can be learned from data. For the k-NN and SVM 
models, the default parameters were used. Optimized 
parameters may lead to better classification; this can be 
investigated for future work.  

V.  CONCLUSION  

In this work, we developed an efficient framework for 
evaluating the trade-off between complexity and accuracy for 
a compressive sensing in wireless tele-monitoring used for 
EEG-based Epileptic Seizure Detection application. For the 
wireless EEG tele-monitoring system, low-complexity of 
energy-efficient compression paradigms can be achieved 
through utilizing the iDCT method for data reconstruction. 
The proposed system model uses data set A, data set C, and 
data set E of the EEG-based epileptic seizure application to 
measure the data classification accuracy. We have also 
investigated the impact of the wireless channel characteristics 
on the transmission of the compressed EEG signal, showing 
the effect of wireless channel impairments. The results 
revealed that NN with a better accuracy at 95% outperforms 
the other three classifiers, namely SVM, k-NN, and Bayes. 
However, the implementation complexity, and classification 
latency makes NN prohibitive for real-time tele-monitoring 
applications. The results show that k-NN is the most stable 
classifier as it tolerates to the imperfection of data due to 
channel noise, and high compression values. The 
accomplished results are basis for deriving an analytical 
model of compression at the transmitter, which can be used to 
adapt and predict the classifier performance when the 
transmitter changes compression to respond to potential 
wireless channel degradation. 
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