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Abstract—Brain is the most important part in the human body
controlling muscles and nerves; Electroencephalogram (EEG)
signals record brain electric activities. EEG signals capture
important information pertinent to different physiological brain
states. In this paper, we propose an efficient framework for
evaluating the power-accuracy trade-off for EEG-based
compressive sensing and classification techniques in the context
of epileptic seizure detection in wireless tele-monitoring. The
framework incorporates compressive sensing-based energy-
efficient compression, and noisy wireless communication channel
to study the effect on the application accuracy. Discrete cosine
transform (DCT) and compressive sensing are used for EEG
signals acquisition and compression. To obtain low-complexity
energy-efficient, the best data accuracy with higher compression
ratio is sought. A reconstructed algorithm derived from DCT of
daubechie’s wavelet 6 is used to decompose the EEG signal at
different levels. DCT is combined with the best basis function
neural networks for EEG signals classification. Extensive
experimental work is conducted, utilizing four -classification
models. The obtained results show an improvement in
classification accuracies and an optimal classification rate of
about 95% is achieved when using NN classifier at 85% of CR in
the case of no SNR value. The satisfying results demonstrate the
effect of efficient compression on maximizing the sensor lifetime
without affecting the application’s accuracy.

Keywords: EEG,; DCT; wavelet compression, compressive sensing;
feature extraction; classification.

I. INTRODUCTION

Mobile and wireless devices are growing rapidly and are
estimated at 5 billion devices world-wide. A critical issue of
using such devices is the energy that can be consumed by
these devices. These devices are operating on limited power
reserves as they are battery-operated, while sensing physical
measures. Energy consumption is a major challenge in
limiting the mobile device’s form factor. Our main motivation
is to investigate the energy consumption of mobile nodes at
two levels, namely, at the compression level and at the
communication level, while keeping the overall classification
accuracy at a satisfactory level. Hence, the trade-off between
energy consumption at these two levels is studied.

Compressive sensing (CS) [1] is used to reduce the
amount of data required to send from transmitter to receiver,
hence, has been considered for efficient EEG acquisition and
compression in several application contexts [2, 3, 4]. Brain
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status information is captured by physiological EEG signals,
extensively used for the study of different brain activities. One
of these states is the epileptic seizure detection. Epilepsy or
epileptic seizure is refers to the one of the most common brain
disorders usually caused by brain injury. Approximately, one
in every 100 persons is expected to experience a seizure
disorder in their life time Iasemidis et al., 2003 [5]. Epilepsy
is categorized by the occurrence of multiple episodes of
seizures in a row. The diagnosis of epilepsy is clinical,
however, the scalp EEG is the most widely accepted test for
the diagnosis of epilepsy [6, 7].

In [2, 3], the research work has been focused on the sparse
modeling of EEG signals and evaluating the efficiency of CS-
based compression in terms of signal reconstruction errors.
The work in [4] has tried to estimate the low-power potential
of CS for portable EEG systems using datasheet-extracted
power consumption figures for the various components. It
also estimates the required amount of processing and wireless
transmission. Neural Network (NN), Support Victor Machine
(SVM), the k-nearest neighbor (k-NN) and naive Bayes
algorithms have been proposed as classification methods [8].

Wang et al. [9] have proposed an EEG classification
system for epileptic seizure detection. It consists of three main
stages, namely, 1) the best basis-based wavelet packet entropy
method is used to represent EEG signals by wavelet packet
coefficients. 2) k-NN classifier with cross validation method
in the training stage is used for hierarchical knowledge base
(HKB) construction. Lastly, 3) the top-ranked discriminative
rules from the HKB used in the testing stage to compute
classification accuracy and rejection rate. The method
proposed by Weng and Khorasani [10] uses the features
which are proposed by Gotman [11] namely, average EEG
amplitude, and average EEG duration, coefficient of variation,
dominant frequency, and average power spectrum as inputs to
an adaptive structured neural network. The method proposed
by Pradhan et al. [12] uses raw EEG signal as input to a
learning vector quantization (LVQ) network. Nigam et al.
[13] have proposed a new neural network model called
LAMSTAR network and two time-domain attributes of EEG,
namely, relative spike amplitude and spike rhythmicity. They
have been used as inputs for the purpose of epilepsy detection

This paper focuses on the design of an efficient CS-based
framework for raw EEG signal acquisition and reconstruction.
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The trade-off between sensor power consumption and the
classification accuracy are addressed in the paper. In the same
ti ne, the major components of research in this area including
physiological sensing and data preprocessing, noisy wireless
communication, feature extraction, and classification accuracy
of the epileptic seizure application are also been considered.
The proposed framework compresses the raw EEG data,
transmits it over the wireless channel, showing the effect of
channel impairments on the compression requirements to
achieve target application accuracies. The proposed system
h s four phases:

1) Sampling of the original EEG signals by DCT method
with best basis for feature extraction for compression, and
then sent over wireless channel,

2) Reconstructing the down-sampled signal using inverse
DCT,

3) Cross-validation, training stage together with one of these
NN, SVM, k-NN and Bayesian classifiers was used for
hierarchical knowledge base construction. During each
validation process, the obtained optimal values with the
best classification accuracies as the discriminative rules
were stored and re-organized and

4) Testing stage, to categorize a new sample into either
epileptic or mnormal class, classifiers are using
discriminative rules from HKB was used to calculate the
similarity between the new sample and the corresponding
training process samples, respectively.

The remainder of this paper is structured as follows. In
Section II, materials and methods which include description
of EEG data, compressive sensing, and discrete cosine
transform. Section III, describes our proposed system model
which includes the feature extraction, and classification data
analysis. Results and discussions are illustrated in Section I'V.
P iper is concluded and presented at Section V.

II. MATERIALS AND METHODS
A. EEG data description

The data was originated from Andrzejak et al. [14] EEG
archive of pre-surgical diagnosis and composed for the study
to differentiate healthy subjects and epilepsy disease suffering
subjects. In this work, EEGs from five patients were selected,
all of whom had achieved complete seizure control after
resection of one of the hippocampal formations, which was
therefore correctly diagnosed to be the epileptogenic zone.
The data is for five sets indicated A—E, each one holding 100
single channel EEG segments of 23.6-sec duration. Sets A and
B both of them were relaxed in an awake situation with eyes
open and eyes closed, respectively. Segments of sets A and B
are taken from surface EEG recordings which were carried
out using a standardized electrode placement scheme on five
healthy volunteers. Segments in set C from the hippocampal
formation of the opposite hemisphere of the brain, and those
in set D were recorded from within the epileptogenic zone.
While sets C and D contained only activity measured during
seizure free intervals, set E only contained seizure activity.

Segments here were selected from all recording sites
presenting ictal activity. All EEG signals were recorded with
the same 128- channel amplifier system, [neglecting
electrodes that having strong eye movement artifacts (A and
B) or pathological activity (C, D, and E)]. The data was
written continuously onto the disk of a data acquisition
computer system at a sampling rate of 173.61 Hz. AbdulJalil
et al. [15] proposed an evidence theory-based approach for
epileptic seizure detection using time domain features and
several classifiers. [Each classifier is considered an
independent information source, and hence has its own view
of the current brain state. These local views are then
combined using the Dempster’s rule of combination. The
proposed approach achieved an overall 89.5% classification
accuracy. The objective in [16] was to differentiate recordings
from set A healthy volunteers with eyes open, set C from the
hippocampal formation of the opposite hemisphere of the
brain, and set E epilepsy patient during epileptic seizures. The
experimental results show that on the proposed method they
could be able to achieve significant improvements. In this
research, data sets A, C, and E are used as measure of interest.
Figure 1 illustrated he ideal raw EEGs signals of sets A, C,
and E.
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Fig. 1: Example of three different classes of EEG signals
taken from different subjects

B. Compressive Sensing

An N-dimensional EEG signals x is considered to illustrate
the CS compression and reconstruction. Assume that this
signal is represented by a projection on to a different bases set
Y:

x = Z?‘zlxoi‘}’i or x= Y¥x, (1)
where x, is N*] bases function vector and ¥ is N*N bases
matrix. The sparse vector x, can be calculated from the inner
product of x and V¥:

Xoi =<x,‘Pi > (2)

The basis (¥) can be Gabor, Fourier, or Discrete Cosine
Transform (DCT), Mexican hat, Linear Spline, Cubic Spline,
Linear B-spline, and Cubic B-spline basis. In compressive
sensing, V¥ is chosen such that x, is sparse. The vector x; is k-
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sparse if it has k£ non-zero entries and the remaining ( —k)
entries are all zeros. In addition to the projection above, it is
assumed that X can be related to another signal y:

y= Ox 3)

where @ is a measurement matrix (also called sensing matrix)
of dimensions M*N and y is the compressively sensed version
of x. Matrix y has dimensions M*/ and if M < N data
compression is achieved. It can be shown that this technique
is possible if ® and W are incoherent. To satisfy this
condition, @ is chosen as a random matrix. The Compression
Ratio (CR) is then defined as:

CR = (1 - %) * 100 4

where x is the original signal, and x, is the reconstructed
signal. Given a compressed measurement y at the receiver, the
sparse signal x,, can be reconstructed.

C. DCT algorithm

Discrete cosine transform (DCT) in particular is a Fourier-
related transform like the discrete Fourier transform (DFT),
however, it is using only real numbers, and low computational
complexity. In order to obtain the signal x(n) in the DCT
domain, that will lead to the definition of the (N + 1)x(N+1)
DCT transform matrix, whose elements are given by:

[Clon = \/% {kmknCOS (T;E)},m,n =01,.,N (5

ki =1
=1/V2
This matrix is unitary and when it is applied to a data

vector x of length N + 1, it produces a vector X, X, = [C] *
x whose elements are given by,

for i#0 or N
for i=0 or N.

mnm
N

X (m) = %kaknCOS( )x(n) (6)

II1. SYSTEM MODEL

A. System Model

The system model consists of two main parts, the
transmitter and receiver. The transmitter has 4096 raw
electroencephalography (EEG) represented by (x), and uses
CS technique to down-sample the data based on the
¢ mpression ratio (CR). The CS bases that can be used are
Wavelet families include Haar, Daubechies, Symlets, Coiflets,
Biorthogonal, = Reverse  biorthogonal and  discrete
approximation of Meyer wavelet. In this paper we opted to
using DCT and basis ¥ for different quantities of M, to get the
compressed data X that will be transmitted over the noiseless
channel (i.e., Radio Frequency (RF) or Bluetooth). On the
other hand, transmitting the same data on noisy wireless
channel, we added an Additive White Gaussian Noise
(AWGN) to enforce SNR with 1dB, 5dB and 10dB values.

While the receiver, which receives the compressed signal
M size, reconstruct back the EEG data using inverse DCT
(iDCT) and basis pursuit to get the x,.. The iDCT
reconstruction algorithm is for the DCT or an optimization
problem with certain constraints is solved for the CS [17, 18,
19]. For example, the following is given a compressed
measurement y at the receiver, the signal x can be
reconstructed by solving one of the following optimization
proble as.

Min || Xy, Subject to y; = < &;, ¥x0; > @)

Using a trick of basis Pursuit, finds the vector x, with the
lowest L2 norm that satisfies the observations made. For N-
dimensional EEG signal x:

x=Y¥a«a ®)
where ¥ is the wavelet family basis and a is the wavelet both
are domain coefficients. At the receiver side, once we
detect o, iDCT will be utilized to reconstruct it back into the
original signal. Figure 1 showed the model of compressed
sensing EEG-based epileptic seizure.
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Figure 2: Compressed Sensing EEG-Based Epileptic Seizure
Framework.

B. Feature extraction

EEG Feature Extraction plays a significant role in
diagnosing most of the brain diseases. After reconstructing the
original signal x,, we implement feature extraction technique
to using DWT to obtain a set of features to be used for
epileptic seizure detection. Recently, numerous research and
techniques have been developed for analyzing the EEG signal.
Discrete wavelet transform (DWT) is an excellent candidate
for feature extraction from such data since the EEG is time-
varying and space-varying non-stationary signal [9].

DWT, like the Fourier transform, is a localized linear
decomposition of the signal with different basis function,
which is translated and scaled in time [21]. DWT has a key
advantage over Fourier transform [20, 21, 22, 23] that, it
captures both frequency and time location information.
Different families of DWT can be used like Haar, Daubechies,
and symlets, Coiflets, Biorthogonal, Reverse biorthogonal and
discrete approximation of Meyer wavelet.
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Wavelet series expansion for f(x), where f(x) € L?(R)
L?(R) relative to wavelet Y(x) and scaling function ¢ (x)

F6) =) 6o (0ejort)+ ) > iU (©9)

ke j=jo k

Cjo is the approximation coefficients. It uses scaling function
to provide an approximation of f(x) at scale j, [it is exact
at f(x) € V;,] where j, is an arbitrary starting scale. The
approximation coefficients c;, can be calculated as:

¢j, (k) = (f (), 9jo e (x))

In the second sum a finer resolution is added to the
approximation to provide increasing details and d;(k) called
details coefficients and it can be calculated as:

dj(k) = (f(x)' wj,k(x)) (11)

The aforementioned set of wavelet families can be applied
for the feature extraction purpose. To obtain maximum
classification accuracy, Daubechies 6 with 7 levels of
decomposition is utilized [24]. Classical statistics (maximum,
minimum, mean and standard deviation) are obtained from
each wavelet subband and combined together to devise the
feature vector, which in turn used in the classification process.

(10)

C. Data Classification

Our previous survey in [25] shows that EEG detection and
classification plays an essential role to the timely diagnosis
and analyzes potentially fatal and chronic diseases proactively
in clinical as well as various life settings. In this research,
therefore, using the Rapidminer software tool [26] we
implemented several classifiers to measure the classification
accuracy of such EEG data. Since our concern is the trade-off
between algorithm complexity and classification accuracy of
the obtained features, any classifier model can be used in the
classification process. NN, SVM, i-NN and Bays classifiers
were used to classify the classification accuracy according to
the compression ratio (CR). For more details about the
comparison between NN, SVM, i-NN and Bayes which are
used in this research as different supervised learning
techniques please refer to [27].

IV. RESULTS AND DISCUSSION

We used simulation model that Matlab with RapidMiner
tool to conduct performance evaluation for the complexity-
accuracy trade-off study. Compressive sensing technique has
been implemented using Matlab, with DCT basis method to
down-sample the N raw EEG data samples to M
measurements, composing the transmitted data y. Wireless
channel effect is then incorporated through applying AWGN
noise with different SNRs to evaluate the effect of physical
layer channel impairments. We used a range of SNRs from 1
to 10 dB, and we checked it against the noiseless channel
case. Finally, feature extraction, and classification using the
NN, SVM, k-NN and Bayes classifiers were performed, using

RapidMiner to evaluate the classification accuracy as a
function of CR. For each CR value, we conduct 20
simulations with different values of the random measurement
matrix, and evaluate the average to enhance the confidence of
the obtained results. First, regarding the execution time for
each feature file, we observe that, on the average, NN takes
around 2.65 minutes, SVM takes one second, while both of k-
NN and Bayes times is less than a second. Most of the
classifiers parameters were configured to the default values.
NN, training cycles are 500, learning rate is 0.3. SVM type
was nu-support vector classification (nu-SVC), cache size is
80 megabyte. k&-NN type is radial, k settings to 10. Eventually,
Bayes used Laplace correction to avoid high potential impact
zero, default: true.

Figure 3 illustrates the classification accuracy against CR
in the case of the noiseless wireless channel, using the four
classifiers. Figure 3 also shows the results for NN, SVM, &-
NN, and Bayesian classifier accuracy for noiseless wireless
channel. The results show that accuracy decreases
logarithmically with the increase of CR. We can divide the
results into three main regions, at CR = 75%, and 85%
respectively. While accuracy remains stable above 90% for all
classifiers in the first region, NN, and Bayesian seems to have
significant accuracy of about 5%. The decay in accuracy
seems to be reasonable in the second region, showing NN
making the lead in high compression values, and then it starts
to decay exponentially in the third region for all classifiers.
While NN consistently outperforms the other three classifiers
in all regions, the high classification time and complexity of
implementation makes it prohibitive in real time wireless tele-
monitoring applications.
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Figure 3: Classification accuracy against CR for noiseless
wireless channel

Figure 3 illustrates the classification accuracy against CR
in the case of the noiseless wireless channel, using the NN,
SVM, k-NN and Bayes classifiers.

Hence, the following figures show the results of
classification accuracy against CR, after adding the effect of
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physical channel impairments for SVM, k-NN, and Bayes
classifiers.
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Fig. 4: Classification accuracy for noisy wireless channel

using SVM classifier.
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Fig. 5: Classification accuracy for noisy wireless channel
using Bayes classifier.
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Fig. 6: Classification accuracy for noisy wireless channel
using k-NN classifier.

Figure 4 shows that the accuracy decreases consistently,
while the exponential decay starts earlier with the increase of
channel noise. For example, the exponential decay start at
CR~90% for the noiseless channel, while it starts at CR=85%
when SNR=1dB.

Figure 5 shows a slightly different behavior for Bayesian
classifier. While the classification accuracy starts to decay
linearly after CR=75%, the effect of noisy communication is
more evident, causing the decrease of more than 10% when
SNR=10dB.

Eventually, Figure 6 shows steady decrease against both
CR, and SNR, nominating k-NN to be the best tolerable
classifier to wireless channel noise, and changes in CR.

Figure 3-6 show the best compression ratio is at 85%.
Also, the NN classifier is more accurate and gives a better
accuracy at 95%. Bayes is less complex and uses only Laplace
correction. However, SVM and £-NN give less accuracy than
NN and Bayes. This is mainly because these classifier models
use different classification strategies. For example, the Bayes
classifier assumes that the features of the input pattern are
independent. In the case of neural networks, the dependency
relationship can be learned from data. For the k-NN and SVM
models, the default parameters were used. Optimized
parameters may lead to better classification; this can be
investigated for future work.

V. CONCLUSION

In this work, we developed an efficient framework for
evaluating the trade-off between complexity and accuracy for
a compressive sensing in wireless tele-monitoring used for
EEG-based Epileptic Seizure Detection application. For the
wireless EEG tele-monitoring system, low-complexity of
energy-efficient compression paradigms can be achieved
through utilizing the iDCT method for data reconstruction.
The proposed system model uses data set A, data set C, and
data set E of the EEG-based epileptic seizure application to
measure the data classification accuracy. We have also
investigated the impact of the wireless channel characteristics
on the transmission of the compressed EEG signal, showing
the effect of wireless channel impairments. The results
revealed that NN with a better accuracy at 95% outperforms
the other three classifiers, namely SVM, k-NN, and Bayes.
However, the implementation complexity, and classification
latency makes NN prohibitive for real-time tele-monitoring
applications. The results show that k~-NN is the most stable
classifier as it tolerates to the imperfection of data due to
channel noise, and high compression values. The
accomplished results are basis for deriving an analytical
model of compression at the transmitter, which can be used to
adapt and predict the classifier performance when the
transmitter changes compression to respond to potential
wireless channel degradation.
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