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Abstract
Dispersal is a key process for the maintenance of intraspecific genetic diversity by ensuring gene flow within and between 
populations. Despite the ongoing expansion of large carnivores in Europe, lynx populations remain fragmented, isolated, 
and threatened by inbreeding and loss of genetic diversity. In the course of large carnivore monitoring in the Czech Republic, 
several biological samples of Eurasian lynx were collected outside the permanent occurrence of this species. Using micro-
satellite genotyping we identified these as four dispersing lynx males and applied multiple methods (Bayesian clustering in 
STRU​CTU​RE, Principal Component Analysis (PCA), frequency-based method in GENECLASS2, and machine-learning 
framework in assignPOP) to assign them to possible source populations. For this we used genotypes from five European 
lynx populations: the Bohemian-Bavarian-Austrian (N = 36), Carpathian (N = 43), Scandinavian (N = 20), Baltic (N = 15), 
and Harz (N = 23) population. All four dispersers were successfully assigned to different source populations within Europe 
and each was recorded at a distance of more than 98 km from the edge of the distribution of the source population identi-
fied. Such movements are among the longest described for lynx in Central Europe to this point. The findings indicate the 
ability of lynx males to disperse in human-dominated landscape thus facilitation of these movements via creation and/or 
protection of potential migratory corridors together with protection of dispersing individuals should be of high importance 
in conservation of this iconic predator in Central Europe.
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Introduction

Dispersal has been recognised as a key process in the 
dynamics and evolution of natural populations. Through 
the redistribution of individuals, dispersal is the main fac-
tor leading to gene flow within and between populations 
and thus maintenance of genetic diversity (Bullock et al. 
2002; Clobert et al. 2012). However, in human-dominated 
landscape, populations are often segregated to isolated 
patches surrounded by an unsuitable matrix, where move-
ment between the patches can be challenging (Fahrig 
2003; Seidler et al. 2015; Crooks et al. 2017).

Species with low densities but extensive home-ranges, 
such as large carnivores, are substantially vulnerable to 
anthropogenic changes in the landscape. A human-domi-
nated landscape may pose a serious obstacle in particular 
for long-distance dispersers, reducing the frequency of 
such dispersal movements. That said, these long-distance 
dispersal events may often remain undetected, as they are 
difficult to record, particularly in elusive species (Trakht-
enbrot et al. 2005).

Despite the ongoing expansion in numbers and dis-
tribution of large carnivores in Europe (Chapron et al. 
2014), only a few long-distance movements have been 
recorded (Bartoń et al. 2019). Grey wolves Canis lupus, 
were recorded to disperse up to 1092 km (Wabakken et al. 
2007) and brown bears Ursus arctos, up to 467 km (Støen 
et al. 2006). Compared to bear or wolf, the Eurasian lynx 
Lynx lynx, has been described as a conservative disperser 
(Zimmermann et al. 2005), although long-distance move-
ments have been recorded, with maximum up to 428 km 
in Scandinavia (Samelius et al. 2012) and up to 200 km 
in the Alps (Groff et al. 2009). While the landscapes of 
the Alps and Scandinavia are comparably remote, very 
little is known about the ability of lynx to disperse within 
human-altered landscape (Schmidt 1998; Zimmermann 
et al. 2005, 2007; Samelius et al. 2012; Herrero et al. 
2020). Generally, as many other solitary felids (Janečka 
et al. 2007; Gour et al. 2013; Fattebert et al. 2015; Wultsch 
et al. 2016), lynx seem to follow a male-biased disper-
sal pattern (Samelius et al. 2012; Krojerová-Prokešová 
et al. 2019), with males dispersing far more widely than 
females from a given source population, although this has 
not been unequivocally proven in all areas (Zimmermann 
et al. 2005, 2007; Herrero et al. 2020).

In Central Europe native populations of lynx occur only 
in the Western Carpathians and in north-eastern Poland, on 
the edge of the distribution range of the Baltic population. 
Besides these native populations, several populations have 
been established in central, western and southern Europe 
based on reintroduction of lynx mainly of West-Carpathian 
origin (Dinaric, Bohemian-Bavarian-Austrian (BBA), 

Jura, Alpine, and Vosges-Palatinian populations; Kaczen-
sky et al. 2013; Fig. 1). The population in the Harz Moun-
tains in Germany and that in the Kampinoski National 
Park in central Poland were both based on the release of 
lynx of captive origin. Although reintroduction in Cen-
tral Europe has already started in the 1970s (Kaczensky 
et al. 2013), established populations are mostly isolated 
and of small size (fewer than 200 or even less than 100 
individuals; Chapron et al. 2014). Further, in each case, 
the number of released animals was low and in some cases 
the animals were even closely related. This has inevitably 
resulted in low levels of genetic diversity and an increased 
risk of inbreeding depression (Breitenmoser-Würsten and 
Obexer-Ruff 2003; Sindičić et al. 2013; Bull et al. 2016; 
Mueller et al. 2020). However, it has been shown that even 
single dispersing individuals may considerably enhance 
the genepool and population viability in small populations 
(Frankham et al. 2002; Bull et al. 2016; Åkesson et al. 
2016).

In this study we thus focused on the detection of potential 
long-distance dispersers of Eurasian lynx within a Central 
European region, namely the Czech Republic. The country is 
occupied by the native Carpathian population in the north-east 
and the reintroduced BBA population in the south-west. The 
majority of the Czech landscape is highly urbanised with large 
open areas of agricultural land, dissected by busy motorways. 
The forested mountain areas, characteristically associated with 
species such as lynx, are located mainly around the borders. 
During extensive monitoring of large carnivore populations, 
biological samples of Eurasian lynx were collected outside 
the known areas of permanent occurrence of the lynx in the 
Czech Republic. Knowledge about the origin of these lynx 
individuals is important for understanding movement pat-
terns within such a fragmented landscape towards reviewing 
the future conservation strategy for lynx in the entire Central 
European region as well as for planning for improvements in 
landscape permeability using mitigation measures like green 
bridges or underpasses/overpasses. The aim of this study was 
thus to assign the lynx samples of unknown origin to their pos-
sible source populations. We genotyped individuals recorded 
outside the main distribution range and lynx from potential 
source populations. We then applied a variety of assignment 
methods to determine the origin of the focal lynx individuals. 
Based on our findings, we discuss the conservation implica-
tions and potential for long-term natural connectivity of native 
and reintroduced lynx populations in a single Central Euro-
pean metapopulation.
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Materials and methods

Sampling and genotyping

Evidence for the presence of lynx individuals of unknown 
origin (‘dispersers’) were found outside the permanent dis-
tribution range of the lynx in the Czech Republic (Fig. 1; 
Table 1). Five non-invasive scat samples (two in Jizera 
Mts, two in the Moravian Karst, one in Ore Mts) were 

collected during extensive monitoring of large carnivores, 
especially wolf. One blood sample was collected during 
immobilisation of lynx in the Moravian Karst and one tis-
sue sample was taken from the carcass found after traffic 
collision on the D1 motorway. These samples were geno-
typed as described below.

Tissue, blood, and scat samples were stored in 96% etha-
nol. DNA from tissue and blood samples was extracted using 
the Genomic DNA Mini kit Tissue (Geneaid Biotech Ltd., 
New Taipei City, Taiwan). The QIAamp DNA Stool Mini 

Fig. 1   Sampling sites of four individuals of unknown origin (L1 – 
D1 motorway, L2 – Jizera Mts, L3 – Moravian Karst, L4 – Ore Mts). 
Locations of two samples in Jizera Mts as well as locations of three 
samples in the Moravian Karst are overlapping as the samples were 
found close to each other. Permanent occurrence (brown squares) and 
sporadic occurrence (orange squares) of the Eurasian lynx in Central 

Europe is delineated according to Chapron et  al. (2014) and for the 
Czech Republic updated according to Kutal et  al. (2017). Dashed 
arrows show the possible course of the dispersal based on the results 
of genetic assignments. As a background we used the forest type 
cover layer from © Copernicus Land Monitoring Service 2018, Euro-
pean Environment Agency (EEA), European Union

Table 1   Information about the 
four lynx dispersers of unknown 
origin

Current status of the animal: † = dead; ? = unknown

ID Date Locality Sample type Sex Age (years) Status

L1 07.10.2013 Czech-Moravian Highlands Tissue Male 2–3 †
(D1 motorway)

L2 22.03.2016
30.04.2016

Jizera Mountains Scat
Scat

Male ? ?

L3 11.01.2017
12.01.2017
15.06.2017

Moravian Karst Scat
Scat
Blood

Male 2–3 ?

L4 06.12.2017 Ore Mountains Scat Male ? ?
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Kit (Qiagen GmbH, Hilden, Germany) was used to extract 
DNA from faecal samples. Dedicated laboratories for DNA 
extraction and PCR setup were used and we followed strict 
rules and procedures to prevent contamination. In total, 15 
microsatellite loci and the amelogenin marker for sex deter-
mination were used. PCR amplification of non-invasive sam-
ples was repeated in independent multiple parallels accord-
ing to Taberlet et al. (1996) and Adams and Waits (2007) 
with requirements of a minimum of three positive ampli-
fications for homozygotes and two for heterozygotes. We 
followed the same protocols for isolation, genotyping, PCR 
conditions and fragment analysis as are given in Krojerová-
Prokešová et al. (2019).

To be able to assign the origin of possible dispersers, a 
reference dataset of 137 unique individual genotypes from 
five European populations (Fig. 1; Table S1; Table S2) was 
used. The reference samples were genotyped on the same 
microsatellite set of loci following the same protocols as 
described in Krojerová-Prokešová et al. (2019). The refer-
ence populations included the BBA (N = 36), Carpathian 
(the Czech Republic and Slovakia, N = 43), Scandinavian 
(Norway, N = 20), Baltic (Latvia, N = 15), and Harz (N = 23) 
population. Tissue samples (77) were taken from individuals 
found dead, poached, or legally hunted. Non-invasive sam-
ples (60; 42 scat, 17 hair, 1 blood samples) were collected 
during regular monitoring in the Bohemian Forest, the Car-
pathians, and the Harz Mountains (Table S1).

Analysis of population structure and individual 
assignment

Differentiation between comparative populations, neces-
sary for correct assignment of dispersers, was quantified 
by pairwise FST based on Weir and Cockerham (1984) in 
the hierfstat package (Goudet 2005) in R software (R Core 
Team 2013). Confidence intervals of FST values (97.5% CI) 
were estimated using 999 bootstrap replicates in the same 
R package.

To infer the structure of populations and origin of dispers-
ers, we used the Bayesian clustering analysis implemented 
in STRU​CTU​RE v2.3.4 (Pritchard et al. 2000). The program 
was run with 10 independent runs for each value of K from 
1 to 10, with 1 000 000 MCMC iterations and initial burn-in 
of 100 000. An admixture ancestry model with a correlated 
allele frequency model, without using sampling locations as 
prior information, was applied. The most optimal number 
of genetically distinct clusters was estimated using the ΔK 
method of Evanno et al. (2005) and evaluated also with the 
aid of estimators accounting for uneven sampling and hier-
archical structure (Puechmaille 2016) in online application 
StructureSelector (Li and Liu 2018). The same application, 
integrating Clumpak program (Kopelman et al. 2015), was 
used to generate graphical representations for specific K.

As an alternative approach for investigation of population 
divergence and assignment of dispersers to potential source 
populations we performed a Principal Component Analysis 
(PCA) using package adegenet v.2.0.0 (Jombart 2008) in R 
software.

Further, solely for individual assignment we applied the 
frequency-based method of Paetkau et al. (1995) within the 
program GENECLASS2 (Piry et al. 2004). Genotypes of all 
individuals from reference populations were used within one 
file while genotypes of dispersers were inputted separately. 
Probability of assignment was performed by simulating 100 
000 individuals with Monte Carlo resampling method (Paet-
kau et al. 2004) and setting the type I errors to 0.05 (Piry 
et al. 2004).

Finally, to investigate the origin of the dispersers we 
applied a machine-learning approach in the R package 
assignPOP v1.1.4 (Chen et al. 2018). The program assign-
POP was developed to overcome issues associated with non-
independence and imbalance of datasets (Chen et al. 2018). 
The assignPOP approach included data evaluation, where 
all individuals from reference populations were randomly 
divided into training and test sets and the assignment accura-
cies were estimated via Monte-Carlo cross-validation based 
on the following parameters: proportion of individuals used 
in training set: 0.5, 0.7, and 0.9; proportion of loci used in 
training set: 0.1, 0.25, 0.5, and 1; loci sample method: FST; 
iterations: 1000; and model: linear discriminant analysis 
(LDA). Simulations performed best when all loci and indi-
viduals were used (Fig. S1). Therefore, for assignment test 
we used all individuals from reference populations and all 
microsatellite loci with chosen model LDA.

Results

Microsatellite genotyping

DNA isolation and subsequent genotyping was successful 
for all seven samples collected outside the ‘permanent’ dis-
tribution of lynx in the Czech Republic. Within these sam-
ples we identified four lynx males (Table 1; Fig. 1).

Structure of populations

The pairwise FST values confirmed differentiation among 
all possible source populations sampled (Table 2) with the 
lowest difference apparent between the BBA and Carpathian 
populations (FST = 0.13) and highest value between the BBA 
and Harz populations (FST = 0.40).

The Bayesian clustering analysis detected the most 
probable number of clusters at K = 2 and then at K = 5 
(Fig. S2a). The best model for K = 5 was supported also 
by Puechmaille approach (Fig. S2b). Structure of two 
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clusters was in concordance with delineation of two lynx 
subspecies: the Northern lynx (Lynx lynx lynx) and the 
Carpathian lynx (Lynx lynx carpathicus). Further cluster-
ing at K = 5 corresponded to presumed structure of the five 
populations sampled (Fig. 2).

PCA analysis likewise clearly distinguished the five 
possible source populations (Fig. 3), although the differ-
entiation between the Carpathian and the BBA popula-
tions (itself founded by lynx from the Carpathians) became 
clearer when PCA was repeated using only the samples 
from these two populations (Fig. S3).

Assignment of dispersers

Lynx L3 and L4 were unequivocally assigned to the same 
probable population of origin by all four methodological 
approaches – L3 to the Carpathian population (confirmed 
also by parentage analysis, Appendix 1) and L4 to the Harz 
population. L1 was classified as of BBA origin except for 
GENECLASS2 approach, where it had the highest prob-
ability to be of Carpathian origin (0.84); an origin from the 
BBA population however also received relatively high sup-
port (0.52). L2 was identified as Baltic lynx by majority 

Table 2   Pairwise FST (97.5% 
CI) for five lynx populations

BBA Bohemian-Bavarian-Austrian population, CAR​ Carpathian population, SCA Scandinavian population, 
BAL Baltic population, HAR Harz population

BBA CAR​ SCA BAL

CAR​ 0.13 (0.07–0.18)
SCA 0.39 (0.29–0.50) 0.26 (0.19–0.33)
BAL 0.35 (0.30–0.42) 0.22 (0.16–0.27) 0.22 (0.14–0.31)
HAR 0.40 (0.30–0.49) 0.27 (0.19–0.36) 0.33 (0.26–0.41) 0.16 (0.10–0.22)

Fig. 2   Proportional membership of lynx dispersers (L1–L4) and lynx from five reference populations (N = 137) to K = 2 and K = 5 genetic clus-
ters

Fig. 3   Principal Component 
Analysis (PCA) of four dispers-
ers and 137 comparative lynx 
samples. Principal component 
axis 1 and axis 2 are shown, 
explaining 13.34% and 9.54% of 
the total variance, respectively
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of approaches. The only exception was the result obtained 
in assignPOP showing almost equal probability for this 
individual to be assigned to the Baltic or Harz populations 
(Figs. 2, 3, 4; Table 3). All individuals were sampled at a 
distance of more than 98 km (98–456 km) from the border 
of the distribution range of the identified source population, 
indicating long-distance dispersal (Table 3). 

Discussion

Population origin of dispersers

Except for two cases, all four genetic approaches provided 
consistent assignment for all dispersers. In the first case, 

GENECLASS2 software was unable to distinguish between 
BBA and Carpathian origin of lynx L1. In the second case, 
program assignPOP assigned individual L2 both to Baltic 
and Harz population with almost the same probability. Dif-
ferentiation between these two pairs of populations is in 
any case the most problematic (Table 2) as the BBA popu-
lation originated from the Carpathian population and the 
Harz population was based on the release of captive lynx of 
mixed origin (von Arx et al. 2009), potentially including also 
ancestors from the Baltic region.

According to the majority of approaches, male L1, found 
dead on the D1 motorway in Central Bohemia, originated 
from the BBA population (103 km straight line distance 
from the BBA distribution range) from where it is presumed 
he was unsuccessfully trying to disperse. D1 motorway (the 

Fig. 4   Probabilities of individual assignment test in assignPOP for all four dispersers (L1–L4)

Table 3   Comparison of four approaches for the assignment of dispersers to their putative population of origin

*Estimated minimum distance is the distance between sampling site and the border of the distribution range of the presumed source population 
measured in ArcGIS 9.3.1 as a straight-line distance to the centroid of the nearest EEA square with continuous lynx occurrence. In the case of 
L2 a distance of 337 km corresponds to the population in Kampinoski NP, 456 km to the Baltic population and 283 km to the Harz population. 
For L3, a distance of 122 km corresponds to the distance to the nearest EEA square of its maternal home range (Appendix 1)

Individual ID Sampling site STRU​CTU​RE
q ≥ 0.95

PCA GENECLASS2
(P-value)

assignPOP 
(Pvalue)

The most likely 
population 
origin

Estimated minimum 
dispersal distance* 
(km)

L1 Czech-Moravian 
Highlands

BBA BBA CAR (0.84) BBA 
(0.52)

BBA (0.97) BBA  ~ 103

L2 Jizera Mountains BAL BAL BAL (0.39) BAL (0.53) HAR 
(0.44)

BAL  ~ 337 (456/283)

L3 Moravian Karst CAR​ CAR​ CAR (0.41) CAR (0.98) CAR​  ~ 98 (122)
L4 Ore Mountains HAR HAR HAR (0.63) HAR (0.96) HAR  ~ 169
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main motorway of the Czech Republic) is known to rep-
resent an important migration barrier for large mammals 
(Anděl et al. 2010).

During the seventeenth and eighteenth century lynx were 
believed to be exterminated in Jizera Mts and in adjacent 
Krkonoše Mts, but single individuals were spotted there 
again in 2002 and 2006, respectively (Flousek et al. 2014). 
Similarly, on the other side of the border with Poland, single 
lynx have been recorded between 2000 and 2018 (Mysłajek 
et al. 2019). Due to the mountain wildlife corridor with suit-
able habitat from the Western Carpathians to this area, it was 
believed that these lynx are dispersers from the Carpathi-
ans (Kratochvíl and Vala 1968). Similarly, lynx L2 sampled 
in Jizera Mts in the northern part of the Czech Republic 
was expected to be of Carpathian origin. Surprisingly, our 
genetic data do not support this presumption as lynx L2 was 
classified as a Baltic lynx. The edge of the native Baltic 
population in the north-eastern Poland is 456 km far away 
from the sampling site of the L2 and to reach the Jizera 
Mts, the individual would have had to cross highly urbanised 
central Poland with disrupted migration corridors and many 
barriers. As an alternative, it is perhaps possible that the 
smaller population occurring in Kampinoski National Park 
in central Poland (337 km straight line distance), could have 
been the possible source of this lynx. This population was 
founded between 1993 and 2000 (Böer et al. 2000), when 31 
individuals from zoos and wildlife parks in Germany, Swe-
den and Finland were released there. Unfortunately, more 
detailed information about their ancestry is missing (Böer 
et al. 2000), thus we can only speculate if lynx of the Baltic 
origin may have been released there. An origin of L2 from 
within the Kampinoski National Park may, however, be sup-
ported by observations of the high dispersal ability of the 
original lynx released in that area. Soon after their release 
some of the lynx dispersed between 10–50 km to adjacent 
nature reserves (Böer et al. 2000), single individuals even 
up to 160 km (Reklewski 2006).

There is also a possibility that lynx L2 could come from 
the Harz population, as was indicated in assignPOP, but 
this is not the most parsimonious explanation and 3/4 of 
used approaches do not support this hypothesis. The problem 
with the correct assignment of L2 in assignPOP may also be 
influenced by the reference samples used for the Baltic popu-
lation. We used 15 samples from Latvia, but recent genetic 
analyses revealed slight differentiation of the Baltic popula-
tion in Poland to that in the central part of the distribution 
range (Ratkiewicz et al. 2014; Lucena-Perez et al. 2020).

Lynx L3 in the Moravian Karst was firstly recorded in 
September 2016. After that the lynx was captured there, fit-
ted with a GPS collar and radio-tracked from June 2017 till 
June 2018 (Duľa and Krofel 2020). During autumn 2018, 
after losing his GPS collar, he disappeared from all mon-
itoring sites established in the whole area, where he was 

previously regularly observed using camera traps (Duľa, 
pers. comm.). Our results showed that lynx L3 was of Car-
pathian origin (minimum dispersal distance 98 km), who, 
after dispersal, had settled in an area halfway between the 
Carpathian and BBA populations, suggesting this area might 
constitute a possible stepping-stone population between 
these two isolated populations. The results of the genetic 
assignment were further supported by parentage analysis 
(Appendix 1), which identified the parent pair of L3 in the 
Moravian-Silesian Beskids in the Western Carpathians. The 
pair of lynx identified as the parents is one of a few pairs 
who gave birth to the majority of juveniles in this area dur-
ing 2011–2017 (Krojerová-Prokešová et al. 2019) and the 
centre of its maternal home range was in the straight line dis-
tance of 122 km from the site in the Moravian Karst where 
L3 had been recorded.

There are just a few documented records of lynx since 
2017 in Ore Mountains, where the non-invasive sample 
from L4 was collected. It was initially expected the lynx 
would have come from the BBA population along the for-
ested borderland between the Czech Republic and Germany, 
but genetic assignment suggested its origin in the Harz Mts 
in Germany (169 km distant). This movement shows the 
potential for gene flow between the BBA and the Harz popu-
lation, both isolated populations with low (Bull et al. 2016), 
or declining levels of genetic diversity (Mueller et al. 2020). 
Admixture between different subspecies could pose a risk 
because it can lead to low or in an extreme case zero fit-
ness of progeny through loss of local adaptations (Lynch 
1991). On the other hand, fitness can be enhanced due to 
new genetic combinations and increased adaptive potential 
(i.e., heterosis), especially in inbred populations (Anderson 
1949; Abbott et al. 2013; Frankham 2015). In any case, the 
effect of potential future crossbreeding of the expanding 
Harz population and neighbouring BBA population, should 
be closely monitored, since of all the populations included 
in this study these are the most genetically distinct from one 
another (FST = 0.4).

Factors affecting dispersal

Assuming the origins of the four lynx individuals sam-
pled in the Czech Republic are accurately identified, the 
distances travelled from the population of presumed ori-
gin (98–456 km) are among the longest described, so far, 
for lynx dispersal events in Central Europe. For Jura and 
Alpine populations, the mean dispersal length of subadult 
lynx is reported at 26–63 km (max. 129 km; Zimmermann 
et al. 2005). Long-distance dispersals (up to 124 km) are 
known from the central part of the Baltic population (Lat-
via, Estonia). The longest dispersal distances, with mean 
47–148 km (up to 428 km), have been recorded in Scan-
dinavia, where prey density is lower and home ranges are 
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larger in comparison to other European populations (Same-
lius et al. 2012).

All four dispersers were males, which is consistent with 
the general expectation of male-biased dispersal in polygy-
nous mammals (Greenwood 1980; Dobson 1982) and has 
previously been reported in the Eurasian lynx (Samelius 
et al. 2012; Krojerová-Prokešová et al. 2019) as well as 
in other felids, e.g., leopard (Fattebert et al. 2015), jaguar 
(Wultsch et al. 2016), bobcat (Janečka et al. 2007), and tiger 
(Gour et al. 2013). Female lynx seem to disperse less fre-
quently and for shorter distances than males, even though 
male-biased dispersal was not confirmed in some areas 
(Zimmermann et al. 2005, 2007; Herrero et al. 2020). Except 
for Northern Europe (Fennoscandia, Baltic states), where 
dispersal distances are generally longer (Samelius et al. 
2012; Bagrade et al. 2016; Herrero et al. 2020), there seem 
to be no published records about female dispersal longer 
than 100 km (see more details given in the supplementary 
material of the review of Bartoń et al. (2019)). The reluc-
tance of female lynx to disperse over longer distances, par-
ticularly in fragmented landscapes, thus reduces the species 
ability to colonise new areas (Port et al. 2020).

Reported expansion of the distributional range of large 
carnivores in Europe relates primarily to distribution of 
wolves and bears (Chapron et al. 2014); by comparison, 
lynx populations are mostly stable or decreasing and only 
three populations are slowly increasing in numbers and 
range (Alpine, Jura and Harz population; Large Carnivore 
Initiative for Europe 2020). Except for the recent sporadic 
occurrence of a lynx in the military area Libavá (Kutal et al. 
2017), lynx L3 represents the only well-documented expan-
sion of lynx westwards from the Carpathians despite the 
presence of suitable habitats in neighbouring areas, e.g. 
mountains along the Czech-Polish border – Jeseníky Mts, 
the Orlické Mts, Krkonoše Mts and Jizera Mts. Human 
intervention (traffic mortality, poaching) at the population 
periphery probably plays a considerable role in limiting the 
West-Carpathian lynx expansion (Krojerová-Prokešová et al. 
2019).

Conservation implications

To facilitate natural movement between lynx populations 
and to maintain the viability of these populations, there 
is an urgent need to ensure landscape permeability via 
creation and/or protection of potential migratory corri-
dors together with protection of dispersing individuals. 
Establishment of transboundary conservation strategies 
including appropriate population monitoring focusing on 
genetic diversity, inbreeding status and demography of 
the populations will help to form and protect exchange of 
individuals between the various European lynx popula-
tions. Source populations should be large enough and in 

favourable status to supply enough dispersers to facilitate 
gene flow; it has been shown, that if there is a contact 
with a larger population and there are suitable vacant ter-
ritories and prey availability, the population can success-
fully expand and retain gene flow even between the areas 
with potential barriers to movement (Chapron et al. 2014; 
Bagrade et al. 2016).

The human-mediated translocation of animals between 
the populations and founding of new small or medium-
sized populations in suitable areas in Central Europe, 
which may act as stepping-stone populations, is another 
option in reconnecting isolated lynx populations in dif-
ferent areas into one viable metapopulation. Moreover, 
as suggested by Port et al. (2020), consideration should 
be given to the translocation of a few females into areas 
accessible by male dispersers, or regularly visited by them, 
as a starting point for the development of new stepping-
stone populations, as males will be attracted into the area 
and they will have tendency to stay there. However, rein-
troduction of lynx populations into new areas should be 
well-planned (selection of suitable founders with regard 
to their population origin and genetic status, habitat qual-
ity and landscape connectivity in the surroundings) and 
used very cautiously due to a risk associated with capture 
and release of animals, high mortality of lynx exploring 
new areas after release and the conflicts arising with the 
acceptance of lynx by local key stakeholders (Červený 
et al. 2019), whose perception highly affects the success 
of all these conservation efforts.
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tary material available at https://​doi.​org/​10.​1007/​s10592-​021-​01363-0.
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