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Abstract: This study proposes machine learning strategies to control the parameter adaptation in ant colony 

optimization algorithm, the prominent swarm intelligence metaheuristic. The sensitivity to parameters’ selection is 

one of the main limitations within the swarm intelligence algorithms when solving combinatorial problems. These 

parameters are often tuned manually by algorithm experts to a set that seems to work well for the problem under 

study, a standard set from the literature or using off-line parameter tuning procedures. In the present study, the 

parameter search process is integrated within the running of the ant colony optimization without incurring an undue 

computational overhead. The proposed strategies were based on a novel nature-inspired idea. The results for the 

travelling salesman and quadratic assignment problems revealed that the use of the augmented strategies generally 

performs well against other parameter adaptation methods. 
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INTRODUCTION 

 

As combinatorial optimization solvers, Ant Colony 

Optimization (ACO) algorithms are accorded much 

work to improve their efficiency and usability. 

Parameter adaptation and reactive search are 

autonomous search techniques for improving the 

behavior of the algorithms by integrating control in the 

solving process (Broderick et al., 2014). The control 

takes either a machine learning fashion, as in reactive 

search, or the self-tuning fashion, as in parameter 

adaptation. In ACO, both fashions respond to a similar 

need, which is the balance between two opposing 

processes, namely, exploration and exploitation 

(Solnon, 2010). They have to be maintained during the 

search. These radical methods are used for improving 

the flexibility of ACO algorithm by an “on-the-fly” 

replacing the bad-performance. 

The performance of ACO algorithm relates to how 

efficient it explores the search space, while also being 

able to exploit the most promising regions. In reactive 

search techniques, the searching process integrates 

machine learning with searching process. Integration 

with ACO requires memory-based models to record the 

past history of search and escape mechanism by 

restarting the search from a new random point when it 

shows no improvement in the quality of solutions 

(Khichane et al., 2009; Sagban et al., 2014). However, 

more efforts still need to be directed to the use of 

machine learning triggers to detect the current state of 

search whether it is exploration or exploitation.  

Parameter adaptation techniques modify the 
parameters during the run in different manners: 
deterministic, adaptive and self-adaptive (Stützle et al., 
2012). The first manner assumes that all Combinatorial 
Optimization (CO) problems are the same in their 
global characteristics and this is not true. The second 
manner adapts to the local characteristics of the regions 
of the search space through a feedback. It has the 
advantage of no augmenting in the complexity of the 
problem. On the other hand, it has two limitations: a 
complexity of implementation and presenting new 
hyper-parameters which also need to be tuned. The 
third manner has the advantage of tuning parameters 
“for free”, where its implementation is simple and there 
is no hyper-parameters that need to be tuned. Besides 
increasing the complexity of the problem, it is linked to 
the structure of the algorithm. There is an ongoing 
interest in parameter adaptation strategies in ACO 
literature (Stützle et al., 2012). Although these 
strategies were invented early in ACO history, their 
applications are ineffective compared with those 
proposed for other meta heuristics such as genetic 
algorithms.  

This study proposes three strategies based on the 

type of exploration measures involved to monitor the 

progress of the search. The first strategy utilizes the 

improvement in the quality of solutions as implicit 

proxy for current exploration behavior. The second 

strategy exchanges the proxy with explicit strategy for 

exploration indication called ACOustic (Sagban et al., 

2015), while the third strategy hybridized both 

indications. Max-Min Ant System (MMAS) (Stützle 
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and Hoos, 2000) is used as a test-bed to evaluate the 

performance of the proposed strategies. Two classical 

combinatorial optimization problems are used in the 

evaluation. These are Travelling Salesman Problem 

(TSP) and Quadratic Assignment Problem (QAP). 

 

ANT COLONY OPTIMIZATION 

 
ACO takes inspiration from the foraging behavior 

of several ant species. These ants deposit pheromone on 
the ground in order to mark some favorable path that 
should be followed by other members of the colony. 
Ant colony optimization exploits a similar mechanism 
in solving optimization problems. The ACO 
metaheuristic is based on a generic problem 
representation and the definition of the ants’ behavior 
(Dorigo and Stützle, 2010). Given this formulation, the 
ants in ACO build solutions to the CO problem by 
moving concurrently and asynchronously on a 
predefined construction graph. Considering the TSP 
problem, there are some aspects that need to be 
characterized. 

A finite set of components of the problem: C = {c1, 

c2, …, cn}, where n is the number of components of the 

TSP problem: 

 

• A sequence of the states of the problem over the 

elements of C, such that each sequence S = <ci, cj, 

…, ch,…>. The set of all sequences is denoted by 

S. 

• A set of candidate solutions S
*
 is a subset of S. 

• A set of feasible solutions N is a subset of S. 

• A non-empty set of optimal solutions. 

• A cost g (s, t) is associated with each candidate 

solution. 

 

TSP (S, f, Ω) has to be mapped to a complete 

connected graph called construction graph CGTSP = (C, 

L), where C is the set of nodes of the graph and L is the 

connections of those nodes. The artificial ants will walk 

randomly on CGTSP to build solutions of the TSP 

problem. The pheromone trail value τ and heuristic 

value can be associated with C or L. 

A finite set C of solution components need to be 

derived. This set C is used to assemble solutions for the 

CO problem. Next, a set of pheromone values τ is 

defined. The set τ is called the pheromone model and is 

commonly recognized as a parameterized probabilistic 

model. The pheromone model is probabilistically used 

to generate solutions based on the solution components. 

To achieve this, the model associates the solution 

components to the pheromone values τi∈ τ which 

formed the central components of the ACO 

metaheuristic. In general, the ACO approach attempts 

to solve an optimization problem by iterating the 

following two steps (Dorigo and Stützle, 2010): 

 

• Constructing candidate solutions by using the 

pheromone model. The pheromone model, as 

mentioned earlier, is a parameterized probability 

distribution over the solution space. 

• Modifying the pheromone values by using 

candidate solutions in a way that it is deemed to 

bias future sampling towards high quality 

solutions. 

 

The interaction between the two steps is presented 

in Fig. 1 which illustrates a conceptual abstraction 

about how ACO metaheuristic solves CO problems. 

This is an informal high-level description about this 

functionality. The ACO metaheuristic defines the way 

of the solution construction and the pheromone update. 

These are used to implement problem specific or 

centralized actions that cannot be performed by a single 

ant. 

 

 
 

Fig. 1: The conceptual framework of ACO 
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PARAMETERS ADAPTATION IN ACO 

 

Parameter control methods work directly on the 

values of the parameters while solving the 

combinatorial problem. The schemes of control are 

governed by the type of information used as evidence 

for changing parameters’ values. This section reviews 

the recent work in the field of parameter adaptation in 

ACO. 

In deterministic parameter adaptation, the 

information is not predicted during the run and a set of 

deterministic rules is allowed to trigger the change. In 

this way, there is no feedback from the search that 

needs to be collected. This kind of adaptation is useful 

for improving the anytime behavior of ACO (Lopez-

Ibanez and Stützle, 2014). Stützle et al. (2010) 

examined two deterministic MMAS variants. In the first 

one, the parameter of the number of ants (m) starts with 

(1) and then increases by (1) every (10) iterations until 

the value becomes equal to the number of variables (n). 

In the second variant, the parameter of 

exploration/exploitation, denoted by q0, decreases 

starting from 0.99 until 0.0. Both variants showed good 

results in the context of anytime behavior and quality of 

solutions. The same strategy was followed by Liu et al. 

(2011a) by considering more parameters. This approach 

can be regarded as an offline schema for adapting 

parameters. The value of parameters is adapted based 

on a pre-scheduled number of iterations. The problem 

with such deterministic assignment of parameter values 

is that the number of iterations needed for convergence 

is unknown. In fact, devising proper values for 

parameters must be adapted based on the search 

progress.  

In adaptive approach, parameters are modified 

according to either the diversity of the pheromone trails 

or the quality of solutions. Searching behavior of the 

algorithm is considered. Neyoy et al. (2013) 

implemented    fuzzy   logic   controller   to   adjust   the  

pheromone concentrate parameter, denoted by α. The 

rule of adaptation relied on λ-branching factor as an 

exploration indicator. Various fuzzy systems were 

proposed to control the diversity of solutions in order to 

maintain the exploration and exploitation in ACO 

(Olivas et al., 2014). Collings and Kim (2014) 

augmented the use of fuzzy controller for the adaptation 

base, stagnation detection and control. Two fuzzy 

controllers were proposed by Liu et al. (2011b) to 

adjust the parameters of the number of ants and the 

evaporation rate dynamically. Wang (2013) used the 

proxy of entropy information as an exploration 

indicator for adaptaion.  

The parameter settings can be encoded with the 

search space, in which explicitly results the search-

adaptive approach, or implicitly results the self-

adaptive approach. In the first category, the work of 

Melo et al. (2010) considered the ACS parameters: α, β, 

ρ and q0 in their adaptation strategy mutation operator 

for exchanging the best setting with the worst one. The 

proposed mechanism has contributed a new 

measurement tool to indicate disturbance of parameters 

and then each parameter to be disturbed will be 

substituted by the best one in the best colony. In the 

second category, the most state-of-the-art methods 

(Pellegrini et al., 2012) exist as exemplified by 

Khichane et al. (2009) and Randall (2004). The 

rationale way for the adaptation is by evolving 

parameters based on an extra pheromone matrix 

maintained solely for this purpose known by parameters 

matrix. The self-adaptive methods played a key role in 

solving several CO problems. However, they did not 

improve the performance of ACO in TSP and QAP 

(Pellegrini et al., 2012), except the work of Randall 

(2004) which has shown explicitlygood results for TSP 

and QAP. To fill the gap, there is an emphasis on 

adoptingsuccessful methodologies such as those in 

evolutionary metaheuristics. 

 

THE PROPOSED CONTROLLERS 

 

This section is about the proposal of ACO-based 

Adaptive Parameters’ Selection method (APSACO) in 

addressing the parameter setting problem. Two 

components are needed to address the problem, namely 

the parameters’ selection and the reward assignment. In 

Fig. 2, APSACO will determine which of the parameters’ 

values can be applied for current iteration/sec. 

Nature-inspired strategies proposed to operate 

APSACO, include the Exploration-based Reward 

Assignment (ERA), Quality-based Reward Assignment 

(QRA) and Unified Reward Assignment (URA). The 

parameters’ selection selects a parameter according to 

its empirical quality during the last iterations. The 

selected parameter is applied and its impact is 

transformed into a reward, using reward assignment, to 

be used in updating the quality of parameters. The 

reinforcement learning process in APSACO is guided by 

those two components. 

In parameters’ selection, the desirability of 

selecting the given parameter value V is affected 

proportionally by its empirical quality Q = {� ���� �,
� ���	 �, … , � ������, … , � �����} where k is the 

number of parameters and m is the number of values for 

the k
th 

parameter. Each parameter is associated with a 

range of values. The bounds of the ranges are set based 

on Dorigo and Stutzle (2010). The j
th 

parameter value 

for the i
th

 parameter, i.e., the value vij, is selected as 

follows: 

 

�(���) =  �� +  �(���)
� (�� −  ��)                              (1) 

 

where, 1 ≤   ≤ ! "#$ 1 ≤ % ≤ &: 
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Fig. 2: The general scheme ACO-based adaptive parameters’ selection 

 

' (���) =  � (���) ( � (��))*)+,-                (2) 

 

where, li is the lower bound value of i
th

 parameter, ui is 

the upper bound value of i
th

 parameter, m is the number 

of values and p is the proportional selection probability 

for value the vij. In the first application, the value of 

each parameter is chosen as the halfway point in its 

range. After that, the values are selected proportionally. 

If the application performs badly, then the desirability 

of application of the parameter has to be decreased, 

otherwise it will be rewarded. This is by firstly 

evaluating the effect of the selected values and then 

updating the empirical quality of the selected values. 

In reward assignment, the empirical quality of each 
parameter gain rewards only if the application of the 
parameter achieves impact for the optimization process. 
The impact determined by feedback collection strategy 

is translated into rewards denoted as . (���). The 

reward will be added to the previous quality of the 
perspective value as follows: 

 

� (���) = (1 −  /) . � (���) +  / . . (���)             (3) 

 

The value of ρ is automatically assigned within the 

recommended range. Based on this formula, there is 

another instance of exploration versus exploitation: the 

best values are extensively used, while other values 

which need to be tried from time to time are not 

considered yet. To find good trade-off of the two 

processes, the bounding strategy is involved where the 

quantity 1��*  represents the minimum selection 

probability for all the parameters’ values: 

 

� (���) = (1 −  2) . � (���) +  2 . 1345                     (4) 

 

where, the value of 2 is automatically assigned by the 

proposed APSACO method itself. Through this 

component, the effect of parameter value choices on the 

search  is  transformed  into  rewards.   It   involves   the 

exploration state, the quality of solutions or both for 
rewards’ calculation, i.e., the proposals of ERA, QRA 
and URA strategies. The idea of the proposed 
controllers is inspired from the acoustical mimicry to 
the sounds of ant queens by some parasites to control 
the food foraging behavior of some insects. For the 
mimicry to be succeeded, the parasites use a kind of 
feedback collection process. The nature-inspired 
feedback collector proposed by Sagban et al. (2015) to 
characterize the exploration in the ACO algorithm. Its 
idea presents in the following subsections. 
 

The biological schema: Rapid and effective 

communication between ants is a key attribute that 

enables them to live in dominant, fiercely protected 

societies. Myrmica ant colonies, in particular, are 

exploited by social parasites called Maculinea 

butterflies (Barbero et al., 2012). The process of 

Trophallaxis (i.e., distributing liquid food from the 

'social stomach') between attendance workers and other 

nest-mates is the main process in food foraging 

behavior of ants. The worker ants produce acoustics 

during the process. The Maculinea larvae interfere with 

the Myrmica system and produce similar acoustics to 

that of the colony. The high number of worker ants 

leads to a low relatedness between nest-mates. A 

greater variance in nest-mates ACOustic signals leads 

to a higher likelihood of being infested (Barbero et al., 

2009). Through this indicator, the larva can decide the 

optimal point to leave the colony before it is discovered 

by other ants. The larva is able to evaluate the situation 

inside the nest whether to leave or stay. If the 

relatedness between nest-mates becomes high, then the 

likelihood of being clustered around the larva will 

become low. This is an indication to the larva to 

explore another nest before being killed; otherwise the 

larva will continue to exploit the current nest until 

further notice. The ACOustic reaction in this process 

can be simplified in three basic components as shown 

in Fig. 3. 
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Fig. 3: The Myrmica ants-Maculinea larvae system 

 

A colony of artificial ants is inspiring its 

characteristics from the real ant’s foraging behavior. 

The construction graph simulates the environment that 

ants and larvae agents are moving on. For larvae agents, 

the interaction with the new environment is highly 

related with state of penetration, i.e., learning process. 

The agents can decide whether to continue with the 

current exploitation or to explore another environment. 

To simulate the process of characterizing the state of 

penetration, statistical analyzing and the agglomerative 

clustering algorithms are developed in this study.  

 
The computational schema: The way of 
characterizing the state of penetration is used as a 
didactic tool to explain the idea behind the ACOustic 
proposal. The behavior of ACO algorithm is described 
in terms of exploration and exploitation processes. 
According to the biological scheme, the natural scheme 
in parasites-ants system models is then translated into 
procedures for feedback collection during the problem 
solving. 

For the modelling, let a construction graph G = (N, 

A) represent a CO problem, where N is the set of nodes; 

A is the set of arcs; |A| = a and |N| = n. The fitness 

landscape of the given CO problem is defined by: P is a 

population set which includes all solutions to the CO 

problem where each solution � ∈  6 is assigned a 

fitness value f (s); and has a structure of neighborhood 

7 ⊆ 6 × 6. A colony of artificial ants performs a 

biased walk in this landscape with the goal of finding 

low f (s) (in case of minimization problems). The set Cp 

(t) represents the collection of acoustics (sounds) that 

emanate from the landscape traversed by the ants of a 

perspective colony at time t where Cp (t) ⊆ P (t) ×P (t) 
where ci and ci+1 are two acoustics which belong to Cp 

(t) where ci = {x1, x2,…, xa}; ci+1 = {y1, y2,…, ya} and 

where the long of each ACOustic signal is equal to a. 

The relatedness between two nest-mates is defined by 

the similarity between their acoustics. Two acoustics 

ci+1 and ci are considered as similar if their similarity 

neighborhood SN is below a predefined threshold X. 

For the implementation, the section walks-through the 

implementation of Algorithm 1. 

 

Algorithm 1: ACOustic () 

Input: X  

Define: C = {C1, C2, .., C|a|} = {{c1}, {c2},.., {c|a|}}  

miniDist = min=>,=? ∈ @ d=> ,=? 

for each Ch, Ck∈Cdo 

B = $CD,C� =  E( (F�G −  F�)	H�+�   

end-foreach 

repeat 

IG =  I  ∪  IG 

I =  I \LI} 

    foreach Cw∈ I \LIG} do 

$CD ,CM =  $CM,CD = min  N$CD,CM , $C�,CMO 
    end-foreach 

    miniDist = min=>,=? ∈ @ d=> ,=?  

    nc = | C | 
until (miniDist≤X ) 

rltdnss←mr-CRS3/stdr 

return rltdnss 

end-algorithm 

 

In Algorithm 1, the minimum distance miniDist is 
calculated from the distance matrix that is generated 
earlier. The nearest two clusters are united, the distance 
matrix is recalculated and finally miniDist and number 
of clusters ITU� are updated as in Algorithm 3. The 
nearest neighborhood threshold X is entered, vector of 
acoustics clusters Ci is defined and other variables such 
as miniDist, ITU�, 7IVGWXUYGX)Z and max are initialized. 
A matrix of Euclidian distances between acoustics is 
generated and the statistical medians are calculated as 
follows: 

 

&. =  (( (  (B�,�/&)�H\�+�]��H\^��+�   

/ ((&"F	 − &"F ) /2)                                        (5) 

 

�. =  ( (  (I�� −  &.)	�H\�+�]��H\^��+�                (6) 

 

�`$. =  E �W
�H\^�                                            (7) 

 

The number of clusters are combined and returned 

as a relatedness quantifier denoted as rltdnss. 

 

The implementation of APSACO controllers: The 

contributed controller emerged to the body of ACO 

algorithmic framework as shown in Algorithm 2.  

 

Algorithm 2: APSACO 

 

Set the number of parameters to k 

Set the number of values to m 
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Set the maximum and minimum ranges of parameters’ 

values 
Discretize the ranges R based on value of m 
for i = 1 to k do 
     vi←ri 
d←m/2 
for i = 1 to k do 
for j = 1 to m do 
 qij←τmin//It can be set to τ0 if another ACO 
variant is applied except the MMAS 
 sij←vid 
while (not termination_condition ()) do 
 select_param () 
 construct_solutions () 
 update_ pheromone () 
 assign_rewards () 
end-while 
end-algorithm 
 

In initialization, the probability and the quality 

vectors are initiated. In select_param, the parameters’ 

values are either selected as the halfway point in their 

ranges, if that is the first application, or selected 

proportionally to be involved in the search. The ants 

construct their solutions and update the memory of the 

pheromone. The effect of the just applied parameters’ 

values is transformed into rewards by the 

assign_rewards. It is based on the feedback collected 

from the search and it updates the quality of the current 

parameters’ values. The amount of rewards assigned 

depends on the way of feedback collected, whether it 

focuses on the improvement in quality, the 

improvement in exploration behavior or the relative 

improvement in both of them.  

In ERA and URA strategies, the exploration 

identified in terms of the so-called relatedness (rltdnss) 

amount between ants produced by ACOustic indicator, 

while it identified based on the quality of solutions in 

QRA. 
 
Exploration-based strategy: The ERA strategy, the 
exploration identified in terms of the relatedness 
amount between ants produced by ACOustic as follow: 
 

a(.�`$#��) =
bcF'�. = cF'�. + 1  a.�`$#�� > eW)VZ*YYcF'� =  cF'� + 1 f`ℎc.h �c i         (8) 

 

where, the value of eW)VZ*YY is the first relatedness value 

captured when the number of clusters decreased. It is 

worth mentioning that this characterization function is 

deactivated during the stagnation of the search. The 

stagnation is flagged when the solutions jsince the last 

best restart ilast did not improve for the last k iterations 

(e.g., 250 iterations), i.e., if f (Sk) ≥f (Sgb) and i-ilast>ϵ. 
The rewards amount is derived from the impact of the 

application of parameter values which is calculated as 

follows: 

. (���)  = m\�)Wn
m\�)                                                                   (9) 

 

It is worth mentioning that the values of the 

exploration/exploitation quantifiers, i.e., explr and expl, 

are very sensitive to the value of the nearest 

neighborhood threshold. The higher the threshold is, the 

more sensitive the quantifying becomes. In the 

beginning of the search, the amount of exploration 

starts higher than the exploitation one. With this 

property, the behavior of the algorithm is automated in 

various phases of the search. This automates the trade-

off between exploration and exploitation in response to 

the current state of the search. 

 

Unified reward assignment: The URA strategy relies 

on the improvement on both the quality of solutions and 

the exploration of the current search in assessing the 

effect of the current parameters’ values. The rewards 

are calculated as follows: 

 

. (���)  =  I*U� o�fp"�_"�o-                            (10) 

 

where, the Cnum is the number clusters calculated in 

Algorithm 1. Based on this equation, the exploration 

behavior plays a fundamental role in determining the 

amount of rewards. The higher the number of clusters 

is, the higher the reward becomes. 

 

Quality-based reward assignment: This QRA 

strategy relies on the improvement in the quality of 

solutions in assessing the effect of the current 

parameters’ values. The median of the objective 

functions of the current population is used as an effect’s 

proxy for the application of selected parameters’ values. 

The value of rewards is calculated as follows: 

 

. (���)  =  1 o�fp"�_"�or                                           (11) 

 

The value of global_avg is the median of the 

objective function for the solutions that is recorded in 

the population-based memory. 

 

Experimental design: The goal of the empirical 

analysis is to evaluate the proposed APSACO against the 

state-of-the-art adaptation methods proposed for ant 

colony optimization. The implementation of four self-

adaption methods is based on the work of two groups. 

The works of Randall (2004) and Förster et al. (2007) 

are in the first group, while the works of Martens et al. 

(2007) and Khichane  et  al.  (2009)  are  in  the  second 

group. To capture the contribution of the groups 

independently of the problems or the algorithms for 

which they were proposed, the works of Randall (2004) 

and Khichane et al. (2009). are followed. In the first 

group, namely RandallG, the parameters’ values are on- 
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Table 1: The TSP and QAP instances and their size, in terms of the 

number of cities and facilities/locations respectively 

TSP 

--------------------------------------- 

QAP 

----------------------------------------- 

Name  Size 

Best-

known cost Name Size 

Best-known 

cost 

eil51  51 426 nug15 15 1150 

st70  70 675 nug20 20 2570 

eil76  76 538 tai25a 25 1167256 

gr96  96 55209 tai35a 35 2422002 

rd100  100 7910 ste36a 36 9526 

bier127  127 118282 tho40 40 240516 

d198  198 15780 sko49 49 23386 

 

line selected based on the Randall way, where the 

parameters are independent, e.g., the parameters β, ρ, γ 

and q0. In the second group, namely Khichane G, the 

parameters’ values are on-line selected based on the 

Khichane way where the parameters are interdependent, 

e.g., the parameters α and β. The search space for the 

parameter values must be known in advance and 

discretized in both groups except in the second group 

where the values are optimized a priori. Both groups are 

in the same level at which they manage parameters. The 

rewards given to the parameters’ values selected during 

the run are based on the best-so-far ant in colony-level 

rather than ant-level. The ant-level setting is omitted 

because most the parameters are colony-wise so that 

they cannot be adapt multiple settings in each iteration. 

The number of parameter values m remains constant at 

20. The ranges for the parameters q0, ρ and γ are bound 

between the constant values of 0 and 1; parameter β is 

bound between the constant values of 5 and 1 and 

parameter α is bound between 1 and 2. 

The experiments are conducted on Windows 8 64-

bit operating system, processor Intel Core i3-3217U 

with CPU @ 1.80 GHz,  RAM 4 GB.  Each  experiment 

is executed 10 times to avoid the stochastic behavior. A 

maximum of 10 sec is used as a termination condition 

to the run of particular algorithms. The QAP and TSP 

instances are selected from QAPLIB and TSPLIB 

repositories as in Table 1. 

 
RESULTS 

 
Non-parametric descriptive statistics are used to 

report the results. This is because the distribution of 
results is highly non-normal. The cost results are 
reported as the Relative Percentage Deviation (RPD) 
from the best known solution cost. This is calculated as 
follows: RPD = (((the result cost - the best known 
cost)) ⁄ (the best known cost)) ×100. Note that “min”, 
“med” and “max” represent the minimum, median and 
maximum RPD respectively. The runtime is recorded as 
the number of CPU seconds required to obtain the best 
solution within a particular run. Table 2 reports the 
results of the conducted experiments. 

In Table 2, the results reveal that the APSACO with 
QRA shows very good results on QAP and less in TSP 
as compared with other state-of-the-art methods. In 
TSP, while sometimes RandallG finds the best quality 
solutions (such as st70, gr96 and d198), the overall 
behavior of APSACO with QRA is better for small TSP 
problems without local search. In QAP, the KhichaneG 
sometimes finds the best solution (such as tai35a). 
However, the overall performance of the proposed 
method is better. In Table 3, the comparison of the three 
proposed strategies of rewards assignment is depicted. 

The QRA strategy was the best performance, while 
the ERA showed less performance and the URA came 
in last. The design of each proposed strategies 
determines the suitable situation to apply any of them. 
For example, when a restart mechanism is applied, the 
URA will be a promising choice because of its trend to 
increase the current exploration. In Fig. 4, the overall 
performance of the proposed strategies outperformed 
the state-of-the-art methods for TSP instances. 

With small size instances, the three methods are the 
best. The QRA strategy was the best among all. In some 
cases, the ERA strategy is outperformed (such as gr96 
and rd100). However, when the size of the problem 

 
Table 2:  The results of the comparison of quality-based APSACO (Xrltdnss = 0.8) method with Randall G and Khichane G methods on the TSP 

instances 

TSP 
problem 

Randall G 
--------------------------------------------------- 

Khichane G 
---------------------------------------------------- 

APSACO (QRA) 
-------------------------------------------------- 

Cost 
------------------------------------ Runtime 

Cost 
------------------------------------ Runtime 

Cost 
----------------------------------- Runtime 

Min. Med. Max. Med. Min. Med. Max. Med. Min. Med. Max. Med. 

eil51 0.23 0.77 2.11 1.80 0.46 0.86 1.17 4.40 0.00 0.11 0.46 2.41 
st70 0.14 1.51 3.25 6.52 0.74 2.28 4.14 4.26 0.44 0.91 2.37 6.49 
eil76 0.18 1.41 2.97 3.77 0.92 1.89 2.60 4.86 0.00 0.29 0.92 5.70 
gr96 0.33 1.39 4.68 4.22 1.91 3.08 4.76 5.61 0.57 1.13 1.55 4.73 
rd100 0.05 1.10 3.53 5.27 1.01 2.64 6.11 6.91 0.32 0.76 1.87 8.24 
bier127 1.61 2.96 5.24 8.20 2.80 3.76 4.98 3.39 1.53 2.48 3.61 4.99 
d198 1.96 4.21 6.82 7.74 3.07 4.96 6.84 8.89 2.20 3.94 5.48 6.14 
nug15 0.00 0.00 0.00 0.22 0.00 0.00 0.00 0.19 0.00 0.00 0.00 0.05 
nug20 0.00 0.04 0.15 2.75 0.00 0.01 0.15 2.64 0.00 0.00 0.00 1.76 
tai25a 1.40 2.20 2.70 4.77 1.68 2.24 2.61 5.54 1.21 1.88 2.55 4.50 
tai35a 2.98 3.22 3.60 4.50 2.58 3.12 3.51 6.13 2.61 3.02 3.38 3.77 
ste36a 2.45 3.30 4.20 6.14 1.61 3.14 4.42 4.13 0.92 2.26 3.19 3.71 
tho40 1.52 1.88 2.11 5.31 1.39 1.98 2.32 6.33 1.05 1.73 2.08 4.92 
sko49 1.08 1.38 1.75 6.06 0.95 1.32 1.54 4.51 0.85 1.18 1.40 5.44 

Min.: Minimum; Max.: Maximum 
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Table 3:  The results of the comparison of quality-based APSACO (Xrltdnss = 0.8) method with Randall G and Khichane G methods on the QAP 
instances 

QAP 
problem 

APSACO (QRA) 
------------------------------------------------- 

APSACO (URA) 
---------------------------------------------------- 

APSACO (ERA) 
----------------------------------------------------- 

Cost 
---------------------------------- Runtime 

Cost 
------------------------------------- Runtime 

Cost 
-------------------------------------- Runtime 

Min. Med. Max. Med. Min. Med. Max. Med. Min. Med. Max. Med. 

eil51 0.00 0.11 0.46 2.41 0.23 0.37 0.70 4.94 0.00 0.28 1.17 2.63 
st70 0.44 0.91 2.37 6.49 0.44 1.20 3.25 4.35 0.29 0.90 1.92 5.80 
eil76 0.00 0.29 0.92 5.70 0.00 0.44 1.11 5.70 0.00 0.61 0.92 4.65 
gr96 0.57 1.13 1.55 4.73 0.36 1.03 3.28 5.01 0.38 0.98 2.82 8.12 
rd100 0.32 0.76 1.87 8.24 0.05 1.18 2.98 5.91 0.01 0.13 0.91 6.63 
bier127 1.53 2.48 3.61 4.99 1.61 2.75 4.57 6.35 2.14 3.20 4.22 6.08 
d198 2.20 3.94 5.48 6.14 2.74 4.40 6.36 7.79 5.15 8.79 7.43 3.51 
nug15 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.22 0.00 0.00 0.00 0.27 
nug20 0.00 0.00 0.00 1.76 0.00 0.04 0.15 3.93 0.00 0.01 0.15 3.52 
tai25a 1.21 1.88 2.55 4.50 1.21 2.01 2.42 3.67 1.30 1.90 2.30 5.70 
tai35a 2.61 3.02 3.38 3.77 3.13 3.34 3.72 5.09 2.60 3.10 3.40 5.36 
ste36a 0.92 2.26 3.19 3.71 2.09 3.00 3.82 5.96 1.40 2.90 4.00 4.11 
tho40 1.05 1.73 2.08 4.92 1.26 1.77 2.15 5.45 0.90 1.84 2.30 5.97 
sko49 0.85 1.18 1.40 5.44 1.06 1.39 1.71 5.54 1.23 1.41 1.63 4.67 

 

 
 
Fig. 4: The results of the comparison of quality-based 

APSACO, exploration-based APSACO (Xrltdnss = 0.8) 
and unified APSACO (Xrltdnss = 0.8) methods with the 
state-of-the-art methods on the TSP instances 

 

 
 

Fig. 5: The results of the comparison of quality-based 

APSACO, exploration-based APSACO (Xrltdnss = 0.8) 

and unified APSACO (Xrltdnss = 0.8) methods with the 

state-of-the-art methods on the QAP instances 

 
increases, the ERA worsens the performance because of 
its additional computations. The URA strategy is more 
robust. In Fig. 5, the overall performance of the 
proposed strategies outperformed the state-of-the-art 
methods for QAP instances. 

With small size instances, the URA has not much 
improved the quality of solution compared with QRA, 
ERA and KhichaneG. The QRA strategy produced the 
best average quality of solutions in all experiments. 
With small size instances, the URA does not improve 
much the quality of solution as compared to QRA, ERA 
and KhichaneG. The QRA strategy produced the best 
average quality of solutions in all experiments. It can be 
concluded that the simplicity and the effectiveness in 
calculating the rewards in each of the proposed 
strategies are critical in determining the contribution of 
the perspective strategy on the search. 
 

CONCLUSION 
 

The parameter controllers proposed in this study 

are to supplement the limitation of parameters’ 

selection in ACO-based reactive search. Simple 

statistics about exploration behavior with machine 

learning procedure of clustering were the soul of the 

proposals. Two dependent components are highlighted 

in the schema of parameter adaptation. These are the 

parameters’ selection and the reward assignment. For 

the parameters’ selection, the implementation of the 

first group is followed. For the rewards assignment, 

three contributed strategies, denoted by QRA, ERA and 

URQ, are proposed for improving the performance of 

parameter adaptation in ACO. Three variants of 

APSACO algorithm can be alternated by varying the 

proposal of the perspective strategy. In the design of 

QRA, the general improvement in the quality of 

solutions used a proxy for the impact of the selected 

parameters. In ERA and URQ, the feedback from the 

search process is collected based on novel swarm 

intelligence idea. The idea is an attempt to emulate the 

acoustical mimicry phenomena in several host-parasites 

systems of some insects in nature. By the said 

contribution, the parameters’ selection problem in ACO 

is addressed. The proposed APSACO variants are 

evaluated against each other and against the state-of-

the-art methods. The results confirmed the effectiveness 
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of the proposed controllers. Future work can be focused 

on generalizing the proposed controllers for other 

swarm intelligence algorithms. 
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