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ABSTRACT 

The defuzzification process converts fuzzy numbers to crisp ones and is an important stage in the 

implementation of fuzzy systems. In many actual applications, relationships among data indicate their 

mathematical dependence on one another. Hence, this study proposes a new method based on the 

Data Envelopment Analysis (DEA) model to defuzzify a group of dependent fuzzy numbers. It also 

aims to obtain the crisp points that satisfy the characteristics of these data as a group by 

approximating the optimal solutions within the production possibility set of the DEA model. The 

proposed method partitions the fuzzy numbers, and the relationships among these numbers are 

observed as constraints. Finally, the usefulness of this new method is illustrated in a real-world 

problem. 
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1. Introduction 

The modeling of complex systems is limited by incomplete knowledge and lack of information (Lai & 

Hwang, 1992). Hence, the fuzzy set theory developed by Zadeh (1965), along with its techniques, is 

an interesting and promising approach to address complex, real-world issues. In general, a fuzzy 

representation provides more information regarding a set than a crisp representation. However, this 

crisp representation remains necessary because it simplifies conception and clarification. Thus, the 

objective determination of the fuzzy structures of problematic systems is difficult. Thus, a crisp 

representation is typically easy to interpret and understand although it displays less information. To 

replace a fuzzy representation of sets with a crisp representation in fuzzy system applications, the 

process of defuzzification is applied (Leekwijck & Kerre, 1999; Mahdiani, Banaiyan, Haji Seyed 

Javadi, Fakhraie, & Lucas, 2013). 

This definition enables the defuzzification of a set into a crisp subset of the original. Previous 

literature presents many defuzzification methods, but most of these methods generate fuzzy set results 

with the best information and composition. Furthermore, some of these methods lose their properties 

during actual observations of groups of related data. Meanwhile, defuzzification methods can generate 

similar results given data with various relationships. 
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This study mainly presents a new method to defuzzify a group of dependent fuzzy numbers with the 

tool Data Envelopment Analysis (DEA). The resultant defuzzify points can be considered crisp 

approximation of fuzzy numbers that maintain the relationships among a group of fuzzy numbers. 

Furthermore, the new method can overcome the shortcomings of previous methods, which could not 

address dependent data. 

The rest of the paper is organized as follows. Section 2 presents the backgrounds of defuzzification, 

DEA, and fuzzy DEA (FDEA). Section 3 details the defuzzification of a group through examples and 

discusses the methodology in subsection 3.2. Section 4 presents the results of a case study. The final 

section sums up the main findings of the study. 

2. Background 

2.1 Defuzzification 

Defuzzification is an important fuzzy system stage that replaces fuzzy numbers with a representative 

crisp number (Esogbue, Song, & II, 2000; Mahdiani et al., 2013). Some common defuzzification 

techniques are center of area (COA), weighted average method, and height method (Lee, 1990; 

Gunadi, Nurcahyo, Shamsuddin, & Alias, 2003 ; Nurcahyo, 2014) . 

Related literature also describes various defuzzification methods with different levels of complexity. 

For instance, Ma, Kandel, and Friedman (2000) proposed a novel method to defuzzify fuzzy sets 

according to the metric distance between two symmetric and triangular fuzzy numbers. Similarly,  

Sladoje, Lindblad, and Nyström (2011) presented a novel defuzzification method for image 

processing. Their method determines the crisp set that is at a minimal distance from the fuzzy set by 

generating a family of distance functions. The distance between two fuzzy sets is expressed as a 

Minkowski distance.  

Meanwhile, Naaz, Alam, and Biswas (2011) presented a simple model of the fuzzy load balancing 

algorithm in a distributed system and compared the effects of five defuzzification methods, namely, 

COA, bisector of area, mean of maximum (MOM), smallest of maximum, and largest of maximum.  

Asady and  Zendehnam (2007) also Saneifard and Ezatti (2010) proposed defuzzification methods to 

rank fuzzy numbers. In the present study, we compare the proposed method with the center of gravity 

(COG) method and with that proposed by Asady and Zendehnam (2007). 

2.1.1 Center of Gravity (COG) 

The COG method was developed by Sugeno (1985) and is the most commonly used defuzzification 

method. This method calculates the position at which the left and the right areas are equal. COG 

refers to the centroid of the area, and the defuzzification method can be expressed as: 
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2.1.2 The method of Asady and Zendehnam  

Asady and Zendehnam  (2007) presented a defuzzification method based on the nearest point of a 

fuzzy number. The nearest point to the triangular fuzzy number � = 
��, �, ��
 
to be: 

ℳ
�� = �� + ���� 	,   where � and � are the left and the right fuzziness values, respectively. 

2.2 Data Envelopment Analysis (DEA) 

DEA is a recognized modern approach that stems from a linear programming (LP) model to evaluate 

the relative efficiencies of decision making units (DMUs) with multiple inputs and outputs. DEA is a 

non-parametric technique and was initially proposed by Charnes, Cooper, and Rhodes (1978) as a 

(CCR) model. This model was improved by other scholars, particularly in the form of the Banker, 

Charnes, and Cooper (1984) (BCC) model . 

Assuming the inputs  ��� 	
� = 1,2, . . , �� and outputs   !� 	
" = 1,2, . . , #� for DMUj (j=1,2,..,n). The 

programming statement for the CCR model is formulated as follows:    
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Where *� 	is a non-negative value related to the j
th

 DMU. The vector  * = 
*., *5, … , *,�6  constructs a 

hull that covers all of the data points. 

Model (1) is divided into three parts, namely, the left- and right-hand sides of the constraints and the 

objective function. The left-hand side generates the production possibility set (PPS), and retouching 

this set changes the space. The right-hand side and the objective function lead DMUs to the frontier. 

Thus, the DMUs located on the efficiency frontier are considered the relative ideal points in DEA 

evaluation. That is, each inefficient DMU probes its own ideal DMU on the frontier. However, the 

question is whether the ideal points always lie on the efficiency frontier. In this research, we indicate 

that the ideal point can be probed within PPS. 

2.3 Fuzzy Data Envelopment Analysis (FDEA) 

In real-world problems, the required input and output data are often not known precisely. Imprecise 

evaluations may be the result of unquantifiable, incomplete and non-obtainable information. Model 

(1) can only be used for cases where the data are precisely measured. As for the application of fuzzy 



sets theory in DEA,  Fuzzy DEA that can be traced to Sengupta (1992) as a powerful tool for 

evaluating the performance of DMUs with imprecise data (or interval data). Fuzzy input–output 

variables can be introduced to CCR model as in the following; 
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Since its inception, the FDEA method and its applications have generated increased interest. Wang, 

Greatbanks, and Yang (2005) used the α-level set approach to convert the fuzzy data into intervals.   

Hatami-Marbini, Saati, and Tavana (2010) developed a four-phase FDEA framework based on 

displaced ideal theory. Moreover, they (2011) also established an additive FDEA model. Meanwhile,  

Saati, Hatami-Marbini, and Tavana (2011) incorporated fuzzy discretionary and non-discretionary 

factors into a DEA model. Also  Zerafat Angiz, Emrouznejad, and Mustafa (2012) proposed an 

alternative FDEA model to measure the efficiency of DMUs in a fuzzy environment according to the 

local α-level concept and an LP model. The approaches established by Luban (2009) and  Zerafat 

Angiz, Emrouznejad, Mustafa, and Al-Eraqi  (2010) have contributed to FDEA development as well. 

3. Defuzzification of a Group of Dependent Fuzzy Numbers 

3.1 Dependent fuzzy numbers 

This section stresses on the origin of the premise underlying dependent fuzzy numbers. First, Asady 

and Zendehnam proposed the new defuzzification method that able to rank a group of independent 

fuzzy numbers in 2007. Although their method determined to the nearest point, it primarily 

concentrated on independent fuzzy numbers. Moreover, it is quite notable that all the proposed 

methods in literature deal with independent fuzzy numbers, which produce similar defuzzification 

data points under various conditions. Literature is also rife with independent fuzzy numbers in terms 

of various relationships emphasizing the transformation of individual fuzzy numbers into crisp 

numbers (e.g. COG, MOM) and the method brought forward by Saneifard (2009). 

However, because real-world application data is noted in groups that display some relationships and 

properties that emphasize their dependence, dependent fuzzy numbers takes significance. Therefore, 

in this study, a new defuzzification method that stresses on dependent groups of fuzzy numbers is 



proposed. In other words, the present study is unique in that it addresses dependent fuzzy numbers 

rather than what has been extensively examined in literature namely independent fuzzy numbers.  

To explain further, we refer to an example presented by  Zerafat Angiz, Emrouznejad, Mustafa, and 

Rashidi Komijan (2009), where (G1, G2,..,Gn)  indicates the supposed ranking places. Given a group of 

p experts (E1, E2,..,Ep)  commenting on the weights of these places, the weights 

<�=
� = 1,2, . . , '�
> = 1,2, . . , :�  can be aggregated into a group of fuzzy numbers. Thus, we first 

generate n fuzzy numbers. We then select the triangular fuzzy numbers (TFN) from among the 

various shapes of fuzzy numbers because it is the most popular one. Therefore, the triangular fuzzy 

numbers are denoted by three points as follows:    

<?� = 
<�@, <�A , <�B� 
 In this case, we determine a representative of the fuzzy numbers given above 
<.∗, <5∗, . . , <,∗�.This 

representative is established as the final weight of eachC� 	
� = 1,2,… , '�, and the sum of the 

representative weights must be one. However, this restriction may not be adhered to if a 

defuzzification method such as COG or that developed by Asady and Zendehnam is employed 

because these methods do not have a condition that maintains these relations among the representative 

weights. The following diagram illustrates this matter. 

 

 

 

Fig1- Example to illustrate the shortcoming of existing defuzzification methods. 



 

3.2 Defuzzification of a Group of Dependent Fuzzy Numbers 

 

The method proposed to defuzzify a group of dependent fuzzy numbers operates in five stages: 

Stage 1: n triangular fuzzy numbers are generated based on the method proposed by Yeh and Chang 

(2009)  as follows:    

 

  �7� = 
��@, ��A, ��B�  
where
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This method displays the following membership functions: 
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Stage 2: The interval X��A, ��BY of the fuzzy number i is divided into m subintervalsFX��A =
��., ��5Z, [��5, ��\Z. . , X��
@�.�,��@ = ��BYG. 
 

Stage 3: With these subintervals, m DMUs are created. The PPS of these DMUs generate all of the 

possible solutions in the fuzzy interval. In other words, �.A = �.� , �5�, �\�, . . , �
,�.�� , �,� = �,B 

represents the input values of DMUj (j=1, 2,…, m) that are used to produce PPS. The single output 

corresponding to DMUj is assumed to be one. Figure 1 illustrates the interval partitioning of the fuzzy 

number i. 

 

 

Stage4: The following non-linear programming model is proposed to the points nearest to fuzzy 

number i using the optimal solution. The objective functions approximate the COG of the distances 

from each partition. 

 

Fig 2- The interval partitioning of the fuzzy number i. 
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In the proposed method, the relationships among these groups of fuzzy numbers are expressed as 

constraints	∑ 3
�b̀ �� = (	,�-. . The fourth constraint on the right-hand side includes all of the intervals 

of the fuzzy numbers. 

As shown in the model above, constraints including 	λ	produce PPS that correspond to the CCR 

model. This model is solved only once unlike DEA evaluation, in which DMU evaluation, requires 

the calculation of many models. 

By ignoring the third constraint 	∑ 3
�b̀ �� = (	,�-.  in the aforementioned model, we can easily prove 

that the optimal solution (defuzzification points of each fuzzy number i of the above model is related 

to triangular fuzzy numbers of the mean value of each fuzzy number. 

Stage5: We assume that  9hi = xk`h − �̀hi and|9hi| = 9�=m + 9�=� 			∀
�, >�. The multi-objective nonlinear 

programming model (3) is then proposed as follows:  
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If	∑ 3
�b̀ �� = (	,�-. is linear, this model above is a multi-objective linear programming model (MOLP); 

hence, it can be solved using Archimedean goal programming model.  
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In model (5) ,<� 	
� = 1,2, … , '	� denotes positive penalty weights. These weights can be determined 

through multi-criteria decision making techniques such as the analytic hierarchical process (AHP) 

developed by Saaty (1980). However, we assume that each objective is equally important and allocate 

equal weight without losing generality. That is 
<. = <5 = ⋯ = <, = 1/'� allocated to each weight 

for this model I� 	
� = 1,2, … , '	�
 

measures the over-achievement from the target point (`� 	
� =1,2, … , '	� which is obtained by computing the MOLP model as a single objective n times (i.e. by 

considering each objective individually). 

4. An Application and Comparison with Other Methods 

In this section, we apply the proposed methodology in real life by estimating the required number of 

hospital beds for the different wards of a Malaysian hospital. We collected the data on the number of 

beds used by patients who were hospitalized over a period of 150 days from the hospital database of 

the Malaysian Ministry of Health. The hospital patients are divided into five categories based on age 

[toddler (T), schoolchildren (S), adult (A), old (O), and elderly (E)]. This case study aims to aid 

managers in determining the optimal number of beds to be allocated to each group because the 

number of available beds at this hospital is limited. 

Thus, the data are first compiled into a group of dependent fuzzy numbers. This group is represented 

as a triangular fuzzy number instead of individual fuzzy numbers, which is common in traditional 

defuzzification methods. The fuzzy number of each group s��	
1 = 1,2, . . , ��	
� = 1,2, … , '	� is then 

generated using the method proposed by Yeh and Chang (2009). In DEA, the interval of each fuzzy 

number i is partitioned into m subintervals. The starting point of each interval of fuzzy number i is an 

input 
s..	, s.5, s.\, s.�, s.t� for DMU1. The second point is an input 
s5.	, s55, s5\, s5�, s5t� for DMU2, 

and so on until DMU9.  

These nine partitions therefore imply that nine DMUs exist for all fuzzy numbers, and the categorized 

elements are considered DMUs in this case study. Five groups of fuzzy numbers represent the 



inputs
su 	, sv , sw, s�, sx�. PPSs generated by these DMUs help generate the interval of fuzzy numbers in 

association with the five groups of inputs. 

 

Therefore, the efficiency frontier produced by the starting points of the interval of fuzzy numbers is 

insignificant. In this case, optimal solution should occasionally be obtained from within the PPS 

rather than on the frontier, as demonstrated in the following example. The figure below indicates two 

groups of fuzzy numbers (T and S). These groups correspond to DMUj where	1 = 1,2, … ,�	and		� =
9.  

 

The flexibility of this method enables the increase in different numbers of DMUs by increasing the 

number of partitions to obtain the best solution. Hence, different numbers of partitions are introduced 

until we obtain a stable result. 

Table 1  

Results of the defuzzified values by using proposed method when the total of available beds is 130 

 

 

 

 

 

 

 

Table 1 shows the group fuzzy numbers generated for each group of inputs (five groups of patients) 

over 150 days. For instance, when i=1, the first group of fuzzy numbers is described as follows as 

shown in column 1: 

 	�.A = ��'{�.., �.5, . . , �.	.t�} = 14	, �.@ = 
∏ ��=�.t�=-. . .t�E 	 , 	�.B = �H�{�.., �.5, . . , �.	.t�} = 48 

The results obtained using m different numbers of partitions ranged from 9, 17, 33, and 65 to 129 are 

summarized in column 2 to 5. These values indicate the optimal number of beds for each group of 

Group fuzzy numbers Defuzzified values 


~��, ~��, ~��� m=9 m=17 m=33 m=65 m=129 

(14,29.2397,48) 27 29 28 28 28 

(1,6.7661,19) 8 7 7 7 7 

(4,15.5450,34) 15 15 16 16 16 

(15,29.4486,51) 29 29 29 29 29 

(30,51.8925,76) 51 50 50 50 50 

Sum of defuzzified values 130 130 130 130 130 

Fig 3- The first and second inputs of DMU1, DMU2,.., DMU9  



patients under different numbers of partitions. Moreover, the observed results were stabilized by 

increasing the number of partitions to m = 33, 65,129. The optimal numbers of beds determined for 

these five groups of patients under various partitions satisfies the relationship
∑ �̅`� = 130t�-. ), which 

represents the total number of available beds. Table 2 depicts the results if the number of available 

beds is increased from 130 to 200. 

Table2 

Results of the defuzzified values by using proposed method when the total of available beds is 200 

 

 

 

 

 

 

 

 

 

 

Based on this table, the optimal number of beds for each group of patients under different partitions 

remains similar given m =17, 33, 65,129, and the results vary only when the number of partitions is 

nine. Furthermore, the findings satisfied the constraint of the available beds
∑ �̅`� = 200t�-. � in all of 

the considered numbers of partitions. 

Subsequently, we compare the results of the proposed method with the results obtained using COG 

and using the method developed by Asady and Zendehnam. In this comparison, we ignore the third 

constraint in model (4), which represents the relationships among the groups of fuzzy numbers. In 

other words, we apply this method to a group of independent and unrelated fuzzy numbers.  

Table 3  

Comparison results of the proposed method with COG and the method of Asady and Zendehnam. 

 

As, shown in the Table 3, the proposed defuzzification method presents results nearly similar results 

to the methods of COG and Asady and Zendehnam. The findings of different defuzzification methods 

vary in implementation ( Saneifard & Saneifard, 2011; Chang, Yeh, & Chang, 2013).   

Group fuzzy numbers Defuzzified values 


~��, ~��, ~��� m=9 m=17 m=33 m=65 m=129 

(14,29.2397,48) 43 42 42 42 42 

(1,6.7661,19) 15 16 16 16 16 

(4,15.5450,34) 27 29 29 29 29 

(15,29.4486,51) 45 45 45 45 45 

(30,51.8925,76) 70 68 68 68 68 

Sum of defuzzified values 200 200 200 200 200 

Group fuzzy numbers Defuzzified values COG 
Asady & 

Zendehnam 
��A, ��@, ��B� m=9 m=17 m=33 m=65 m=129   

(14,29.2397,48) 30.00 31.00 29.99 29.99 30.28 30.41 30.12 

(1,6.7661,19) 7.99 9.00 8.05 9.00 9.01 8.92 8.38 

(4,15.5450,34) 19.00 17.34 17.07 17.73 17.73 17.85 17.27 

(15,29.4486,51) 33.00 31.00 31.00 31.61 31.62 31.82 31.22 

(30,51.8925,76) 53.00 53.00 53.00 53.00 51.92 52.63 52.45 

Sum of defuzzified 

values 
142.99 141.34 139.11 141.33 140.56 141.63 139.44 



The findings suggest that the proposed method can address dependent and independent fuzzy numbers 

individually and can generate results that are approximated to those determined using COG and the 

method of Asady and Zendehnam. Moreover, the proposed method has the ability dealing with fuzzy 

numbers whether as a group or as individuals. 

The proposed methodology can also efficiently address nonlinear fuzzy numbers. In this case, many 

nonlinear membership functions can represent real-world problems to some extent, including the 

(hyperbolic and exponential) membership functions. This method can be followed by the matching of 

real-world problems to these functions using actual data and curve fitting or statistical techniques. 

Thus, we can obtain improved results in a real-world environment. 

5. Conclusion 

In this study, a new defuzzification method was developed to defuzzify a group of dependent fuzzy 

numbers using the DEA model. In fact, defuzzification was developed to group of dependent fuzzy 

numbers. Significantly, the context of the proposed method with respect to dependent fuzzy numbers 

reveals the crisp point that maintains the relationships and properties among these groups of fuzzy 

numbers. The proposed method is unique because no other methods in previous literature defuzzify 

dependent fuzzy numbers. The example and case study confirm that the proposed method is 

applicable to both dependent and independent fuzzy numbers even without conditions and even if 

these numbers are unrelated. 

To demonstrate the influence of the new approach on application, an allocation problem was 

presented. In this case study, the proposed method was utilized to estimate the optimal number of 

available beds in a hospital by categorizing patients according to age. 
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