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ABSTRACT

The defuzzification process converts fuzzy numbers to crisp ones and is an important stage in the
implementation of fuzzy systems. In many actual applications, relationships among data indicate their
mathematical dependence on one another. Hence, this study proposes a new method based on the
Data Envelopment Analysis (DEA) model to defuzzify a group of dependent fuzzy numbers. It also
aims to obtain the crisp points that satisfy the characteristics of these data as a group by
approximating the optimal solutions within the production possibility set of the DEA model. The
proposed method partitions the fuzzy numbers, and the relationships among these numbers are
observed as constraints. Finally, the usefulness of this new method is illustrated in a real-world

problem.
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1. Introduction

The modeling of complex systems is limited by incomplete knowledge and lack of information (Lai &
Hwang, 1992). Hence, the fuzzy set theory developed by Zadeh (1965), along with its techniques, is
an interesting and promising approach to address complex, real-world issues. In general, a fuzzy
representation provides more information regarding a set than a crisp representation. However, this
crisp representation remains necessary because it simplifies conception and clarification. Thus, the
objective determination of the fuzzy structures of problematic systems is difficult. Thus, a crisp
representation is typically easy to interpret and understand although it displays less information. To
replace a fuzzy representation of sets with a crisp representation in fuzzy system applications, the
process of defuzzification is applied (Leekwijck & Kerre, 1999; Mahdiani, Banaiyan, Haji Seyed
Javadi, Fakhraie, & Lucas, 2013).

This definition enables the defuzzification of a set into a crisp subset of the original. Previous
literature presents many defuzzification methods, but most of these methods generate fuzzy set results
with the best information and composition. Furthermore, some of these methods lose their properties
during actual observations of groups of related data. Meanwhile, defuzzification methods can generate

similar results given data with various relationships.


https://core.ac.uk/display/42982661?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

This study mainly presents a new method to defuzzify a group of dependent fuzzy numbers with the
tool Data Envelopment Analysis (DEA). The resultant defuzzify points can be considered crisp
approximation of fuzzy numbers that maintain the relationships among a group of fuzzy numbers.
Furthermore, the new method can overcome the shortcomings of previous methods, which could not

address dependent data.

The rest of the paper is organized as follows. Section 2 presents the backgrounds of defuzzification,
DEA, and fuzzy DEA (FDEA). Section 3 details the defuzzification of a group through examples and
discusses the methodology in subsection 3.2. Section 4 presents the results of a case study. The final

section sums up the main findings of the study.
2. Background
2.1 Defuzzification

Defuzzification is an important fuzzy system stage that replaces fuzzy numbers with a representative
crisp number (Esogbue, Song, & II, 2000; Mahdiani et al., 2013). Some common defuzzification
techniques are center of area (COA), weighted average method, and height method (Lee, 1990;
Gunadi, Nurcahyo, Shamsuddin, & Alias, 2003 ; Nurcahyo, 2014) .

Related literature also describes various defuzzification methods with different levels of complexity.
For instance, Ma, Kandel, and Friedman (2000) proposed a novel method to defuzzify fuzzy sets
according to the metric distance between two symmetric and triangular fuzzy numbers. Similarly,
Sladoje, Lindblad, and Nystrom (2011) presented a novel defuzzification method for image
processing. Their method determines the crisp set that is at a minimal distance from the fuzzy set by
generating a family of distance functions. The distance between two fuzzy sets is expressed as a

Minkowski distance.

Meanwhile, Naaz, Alam, and Biswas (2011) presented a simple model of the fuzzy load balancing
algorithm in a distributed system and compared the effects of five defuzzification methods, namely,
COA, bisector of area, mean of maximum (MOM), smallest of maximum, and largest of maximum.
Asady and Zendehnam (2007) also Saneifard and Ezatti (2010) proposed defuzzification methods to
rank fuzzy numbers. In the present study, we compare the proposed method with the center of gravity

(COG) method and with that proposed by Asady and Zendehnam (2007).
2.1.1 Center of Gravity (COG)

The COG method was developed by Sugeno (1985) and is the most commonly used defuzzification
method. This method calculates the position at which the left and the right areas are equal. COG

refers to the centroid of the area, and the defuzzification method can be expressed as:
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2.1.2 The method of Asady and Zendehnam

Asady and Zendehnam (2007) presented a defuzzification method based on the nearest point of a
fuzzy number. The nearest point to the triangular fuzzy number u = (x,, §, ) to be:

M) = xo + # , where § and [ are the left and the right fuzziness values, respectively.

2.2 Data Envelopment Analysis (DEA)

DEA is a recognized modern approach that stems from a linear programming (LP) model to evaluate
the relative efficiencies of decision making units (DMUs) with multiple inputs and outputs. DEA is a
non-parametric technique and was initially proposed by Charnes, Cooper, and Rhodes (1978) as a
(CCR) model. This model was improved by other scholars, particularly in the form of the Banker,
Charnes, and Cooper (1984) (BCC) model .

Assuming the inputs x;; (i = 1,2,..,m) and outputs y,.; (r =1,2,..,s) for DMU; (j=1,2,..,n). The

programming statement for the CCR model is formulated as follows:
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Where A, is a non-negative value related to the /" DMU. The vector A = (A1,1,,...,4,)t constructs a

hull that covers all of the data points.

Model (1) is divided into three parts, namely, the left- and right-hand sides of the constraints and the
objective function. The left-hand side generates the production possibility set (PPS), and retouching
this set changes the space. The right-hand side and the objective function lead DM Us to the frontier.
Thus, the DMUs located on the efficiency frontier are considered the relative ideal points in DEA
evaluation. That is, each inefficient DMU probes its own ideal DMU on the frontier. However, the
question is whether the ideal points always lie on the efficiency frontier. In this research, we indicate

that the ideal point can be probed within PPS.
2.3 Fuzzy Data Envelopment Analysis (FDEA)

In real-world problems, the required input and output data are often not known precisely. Imprecise
evaluations may be the result of unquantifiable, incomplete and non-obtainable information. Model

(1) can only be used for cases where the data are precisely measured. As for the application of fuzzy



sets theory in DEA, Fuzzy DEA that can be traced to Sengupta (1992) as a powerful tool for
evaluating the performance of DMUs with imprecise data (or interval data). Fuzzy input—output

variables can be introduced to CCR model as in the following;

. _
0, = min @,
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X: fuzzy inputs

¥: fuzzy outputs

Since its inception, the FDEA method and its applications have generated increased interest. Wang,
Greatbanks, and Yang (2005) used the a-level set approach to convert the fuzzy data into intervals.
Hatami-Marbini, Saati, and Tavana (2010) developed a four-phase FDEA framework based on
displaced ideal theory. Moreover, they (2011) also established an additive FDEA model. Meanwhile,
Saati, Hatami-Marbini, and Tavana (2011) incorporated fuzzy discretionary and non-discretionary
factors into a DEA model. Also Zerafat Angiz, Emrouznejad, and Mustafa (2012) proposed an
alternative FDEA model to measure the efficiency of DMUs in a fuzzy environment according to the
local a-level concept and an LP model. The approaches established by Luban (2009) and Zerafat
Angiz, Emrouznejad, Mustafa, and Al-Eraqi (2010) have contributed to FDEA development as well.

3. Defuzzification of a Group of Dependent Fuzzy Numbers
3.1 Dependent fuzzy numbers

This section stresses on the origin of the premise underlying dependent fuzzy numbers. First, Asady
and Zendehnam proposed the new defuzzification method that able to rank a group of independent
fuzzy numbers in 2007. Although their method determined to the nearest point, it primarily
concentrated on independent fuzzy numbers. Moreover, it is quite notable that all the proposed
methods in literature deal with independent fuzzy numbers, which produce similar defuzzification
data points under various conditions. Literature is also rife with independent fuzzy numbers in terms
of various relationships emphasizing the transformation of individual fuzzy numbers into crisp

numbers (e.g. COG, MOM) and the method brought forward by Saneifard (2009).

However, because real-world application data is noted in groups that display some relationships and
properties that emphasize their dependence, dependent fuzzy numbers takes significance. Therefore,

in this study, a new defuzzification method that stresses on dependent groups of fuzzy numbers is



proposed. In other words, the present study is unique in that it addresses dependent fuzzy numbers

rather than what has been extensively examined in literature namely independent fuzzy numbers.

To explain further, we refer to an example presented by Zerafat Angiz, Emrouznejad, Mustafa, and
Rashidi Komijan (2009), where (G;, G,,..,G,) indicates the supposed ranking places. Given a group of
p experts (E, E,..,E,) commenting on the weights of these places, the weights
wip (i =12,..,n)(k =1,2,..,p) can be aggregated into a group of fuzzy numbers. Thus, we first
generate n fuzzy numbers. We then select the triangular fuzzy numbers (TFN) from among the
various shapes of fuzzy numbers because it is the most popular one. Therefore, the triangular fuzzy

numbers are denoted by three points as follows:
w; = (Wi, wi,wl)

In this case, we determine a representative of the fuzzy numbers given above (w;,ws,..,wy,).This
representative is established as the final weight of eachG; (i = 1,2,...,n), and the sum of the
representative  weights must be one. However, this restriction may not be adhered to if a
defuzzification method such as COG or that developed by Asady and Zendehnam is employed
because these methods do not have a condition that maintains these relations among the representative

weights. The following diagram illustrates this matter.
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Figl- Example to illustrate the shortcoming of existing defuzzification methods.



3.2 Defuzzification of a Group of Dependent Fuzzy Numbers

The method proposed to defuzzify a group of dependent fuzzy numbers operates in five stages:
Stage I: n triangular fuzzy numbers are generated based on the method proposed by Yeh and Chang
(2009) as follows:

% = (" xf 2

1
where x[" = ([Th_, xix) /”, x} = min{xil,xiz,..,xip} and x{ = max{xy, X, .., Xip}

This method displays the following membership functions:

= l
Xi — X =
L4 x <% <xm
x" — x}
i
by, (%) = i=12,..,n
u _
x¥% — x;
t t m = u
R(W) X Sxi Sxi
i i

Stage 2: The interval [xl-l,x}‘] of the fuzzy number i is divided into m subintervals{[xil =

X1, Xiz], [Xi2) X33+, [xi(m—l)rxim = xlu]}

Stage 3: With these subintervals, m DMUs are created. The PPS of these DMUs generate all of the
possible solutions in the fuzzy interval. In other words, x! = x; X2 X3js s Xne1)j Xnj = Xy
represents the input values of DMU; (j=1, 2,..., m) that are used to produce PPS. The single output
corresponding to DMU; is assumed to be one. Figure 1 illustrates the interval partitioning of the fuzzy

number i.
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Fig 2- The interval partitioning of the fuzzy number i.

Stage4: The following non-linear programming model is proposed to the points nearest to fuzzy

number i using the optimal solution. The objective functions approximate the COG of the distances

from each partition.
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In the proposed method, the relationships among these groups of fuzzy numbers are expressed as

constraints Y™ , f(x;) = t . The fourth constraint on the right-hand side includes all of the intervals

of the fuzzy numbers.

As shown in the model above, constraints including A produce PPS that correspond to the CCR

model. This model is solved only once unlike DEA evaluation, in which DMU evaluation, requires

the calculation of many models.

By ignoring the third constraint Y%, f(x;) =t in the aforementioned model, we can easily prove

that the optimal solution (defuzzification points of each fuzzy number i of the above model is related

to triangular fuzzy numbers of the mean value of each fuzzy number.

Stage5: We assume that zy = X' — Xy and|z | = z% + z7  V(i, k). The multi-objective nonlinear

programming model (3) is then proposed as follows:
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If ¥, f(x';) = t s linear, this model above is a multi-objective linear programming model (MOLP);

hence, it can be solved using Archimedean goal programming model.



min iz, wid;

S.t.
S we (i) (28 + 23
k=1 Jrc:l ik (\lk lk) —diSf\i i=1,2,...,n (5)
k=1 M, (Rige)
MR 2 X i=12,..,n

~

=
I\
_

=T =1
\7\
?{I
(2
Il
o~

xilk N .

— <x;=<1 i=12,...,n k=12,...,m
Xik

X — 2 — (zh—2z7) =0 i=12,..n k=12,...m
Ae =0 k=12, ..,m

In model (5) ,w; (i = 1,2,...,n) denotes positive penalty weights. These weights can be determined
through multi-criteria decision making techniques such as the analytic hierarchical process (AHP)
developed by Saaty (1980). However, we assume that each objective is equally important and allocate
equal weight without losing generality. That is (w; = w, = --- = w,, = 1/n) allocated to each weight
for this model d; (i = 1,2,..,n) measures the over-achievement from the target point t'; (i =
1,2, ...,n) which is obtained by computing the MOLP model as a single objective n times (i.e. by

considering each objective individually).
4. An Application and Comparison with Other Methods

In this section, we apply the proposed methodology in real life by estimating the required number of
hospital beds for the different wards of a Malaysian hospital. We collected the data on the number of
beds used by patients who were hospitalized over a period of 150 days from the hospital database of
the Malaysian Ministry of Health. The hospital patients are divided into five categories based on age
[toddler (T), schoolchildren (S), adult (A), old (O), and elderly (E)]. This case study aims to aid
managers in determining the optimal number of beds to be allocated to each group because the

number of available beds at this hospital is limited.

Thus, the data are first compiled into a group of dependent fuzzy numbers. This group is represented
as a triangular fuzzy number instead of individual fuzzy numbers, which is common in traditional
defuzzification methods. The fuzzy number of each group [;; (j = 1,2,..,m) (i = 1,2,...,n) is then
generated using the method proposed by Yeh and Chang (2009). In DEA, the interval of each fuzzy
number i is partitioned into m subintervals. The starting point of each interval of fuzzy number i is an
input (I11, 112, I13,114, I15) for DMU,; The second point is an input (I5q, 53, I3, I54, Ir5) for DMUS,,

and so on until DM U,,.

These nine partitions therefore imply that nine DM Us exist for all fuzzy numbers, and the categorized

elements are considered DMUs in this case study. Five groups of fuzzy numbers represent the



inputs(Ir , Is, 1y, Iy, Ig). PPSs generated by these DMUs help generate the interval of fuzzy numbers in

association with the five groups of inputs.

Therefore, the efficiency frontier produced by the starting points of the interval of fuzzy numbers is
insignificant. In this case, optimal solution should occasionally be obtained from within the PPS
rather than on the frontier, as demonstrated in the following example. The figure below indicates two
groups of fuzzy numbers (T and S). These groups correspond to DMU; where j = 1,2, ..., mand m =

9.
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Fig 3- The first and second inputs of DMU;, DMU,,.., DMUg
The flexibility of this method enables the increase in different numbers of DMUs by increasing the
number of partitions to obtain the best solution. Hence, different numbers of partitions are introduced

until we obtain a stable result.

Table 1
Results of the defuzzified values by using proposed method when the total of available beds is 130

Group fuzzy numbers Defuzzified values
(2, 2™, x¥) m=9  m=17 m=33 m=65 m=129
(14,29.2397,48) 27 29 28 28 28
(1,6.7661,19) 8 7 7 7 7
(4,15.5450,34) 15 15 16 16 16
(15,29.4486,51) 29 29 29 29 29
(30,51.8925,76) 51 50 50 50 50
Sum of defuzzified values 130 130 130 130 130

Table 1 shows the group fuzzy numbers generated for each group of inputs (five groups of patients)
over 150 days. For instance, when i=1, the first group of fuzzy numbers is described as follows as
shown in column 1:

) Y
xi = min{xi1,X12,-, X1 150} = 14, %" = (H/ﬁ% xige) '1%0, xt = max{xy1, X13,.., X1 150} = 48

The results obtained using m different numbers of partitions ranged from 9, 17, 33, and 65 to 129 are

summarized in column 2 to 5. These values indicate the optimal number of beds for each group of



patients under different numbers of partitions. Moreover, the observed results were stabilized by
increasing the number of partitions to m = 33, 65,129. The optimal numbers of beds determined for
these five groups of patients under various partitions satisfies the relationship(¥?_, £*; = 130), which
represents the total number of available beds. Table 2 depicts the results if the number of available

beds is increased from 130 to 200.

Table2
Results of the defuzzified values by using proposed method when the total of available beds is 200

Group fuzzy numbers Defuzzified values
(xh, X, x¥) m=9  m=17  m=33 m=65 m=129
(14,29.2397,48) 43 42 42 42 42
(1,6.7661,19) 15 16 16 16 16
(4,15.5450,34) 27 29 29 29 29
(15,29.4486,51) 45 45 45 45 45
(30,51.8925,76) 70 68 68 68 68
Sum of defuzzified values 200 200 200 200 200

Based on this table, the optimal number of beds for each group of patients under different partitions
remains similar given m =17, 33, 65,129, and the results vary only when the number of partitions is
nine. Furthermore, the findings satisfied the constraint of the available beds(¥}_, ¥'; = 200) in all of
the considered numbers of partitions.

Subsequently, we compare the results of the proposed method with the results obtained using COG
and using the method developed by Asady and Zendehnam. In this comparison, we ignore the third
constraint in model (4), which represents the relationships among the groups of fuzzy numbers. In

other words, we apply this method to a group of independent and unrelated fuzzy numbers.

Table 3
Comparison results of the proposed method with COG and the method of Asady and Zendehnam.

Group fuzzy numbers Defuzzified values COG Z?nscell:g/nfm
(el x™ x) m=9 m=17  m=33 m=65 m=129
(14,29.2397,48) 3000 3100 2999  29.99 3028 3041 30.12
(1,6.7661,19) 799 9.00 8.05 9.00 9.01 8.92 8.38
(4,15.5450,34) 1900 1734 1707 17.73 17.73 17.85 17.27
(15.29.4486,51) 3300 3100 3100 3161 3162 3182 31.22
(30,51.8925,76) 5300 5300 5300  53.00 5192 52.63 52.45
Sumofdefuzzified ) 09 14134 13001 14133 14056 141.63 139.44

values

As, shown in the Table 3, the proposed defuzzification method presents results nearly similar results
to the methods of COG and Asady and Zendehnam. The findings of different defuzzification methods
vary in implementation ( Saneifard & Saneifard, 2011; Chang, Yeh, & Chang, 2013).



The findings suggest that the proposed method can address dependent and independent fuzzy numbers
individually and can generate results that are approximated to those determined using COG and the
method of Asady and Zendehnam. Moreover, the proposed method has the ability dealing with fuzzy

numbers whether as a group or as individuals.

The proposed methodology can also efficiently address nonlinear fuzzy numbers. In this case, many
nonlinear membership functions can represent real-world problems to some extent, including the
(hyperbolic and exponential) membership functions. This method can be followed by the matching of
real-world problems to these functions using actual data and curve fitting or statistical techniques.

Thus, we can obtain improved results in a real-world environment.
5. Conclusion

In this study, a new defuzzification method was developed to defuzzify a group of dependent fuzzy
numbers using the DEA model. In fact, defuzzification was developed to group of dependent fuzzy
numbers. Significantly, the context of the proposed method with respect to dependent fuzzy numbers
reveals the crisp point that maintains the relationships and properties among these groups of fuzzy
numbers. The proposed method is unique because no other methods in previous literature defuzzify
dependent fuzzy numbers. The example and case study confirm that the proposed method is
applicable to both dependent and independent fuzzy numbers even without conditions and even if

these numbers are unrelated.

To demonstrate the influence of the new approach on application, an allocation problem was
presented. In this case study, the proposed method was utilized to estimate the optimal number of

available beds in a hospital by categorizing patients according to age.
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