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ABSTRACT. The utilization of the Internet has grown tremendously re-

sulting in more critical data are being transmitted and handled online. 

Hence, these occurring changes have led to draw the conclusion that the 

number of attacks on the important information over the internet is increas-

ing yearly. Intrusion is one of the main threat to the internet. Various tech-

niques and approaches have been developed to address the limitations of in-

trusion detection system such as low accuracy, high false alarm rate, and 

time consuming. This research proposed a hybrid machine learning tech-

nique for network intrusion detection based on combination of K-means 

clustering and support vector machine classification. The aim of this re-

search is to reduce the rate of false positive alarm, false negative alarm rate 

and to improve the detection rate. The NSL-KDD dataset has been used in 

the proposed technique. In order to improve classification performance, 

some steps have been taken on the dataset. The classification has been per-

formed by using support vector machine. After training and testing the pro-

posed hybrid machine learning technique, the results have shown that the 

proposed technique has achieved a positive detection rate and reduce the 

false alarm rate.  

Keywords: intrusion detection, hybrid intelligent technique, K-means, 

SVM, NSL-KDD  

INTRODUCTION 

In recent decades, computer networks (internet) have become broadly used. A lot of sensi-

tive information and services passes through various kinds of computer and mobile devices . 

Such these changes have led to increase number of threats on important information over the 

network systems. Hence, the network security has become a significant issue to prevent dan-

gerous threats and to protect sensitive data over the network. Intrusion is one of the broad 

types of threats over the Internet.  

In order to recognize the attacks with high accuracy, different techniques have been ap-

plied and suggested over the last few years. Most recent methods for processing of detecting 

network system attack have been utilizing machine learning techniques for automating the 

detection process (Upadhyaya & Jain, 2013; Wankhade, Patka, & Thool, 2013) Machine 

learning performs a major role in intrusion detection via decreasing and categorizing the data 

according to the clusters. This research has proposed a hybrid machine learning technique for 

network intrusion detection based on combination of K-Means clustering and support vector 
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machines (SVM) classification to overcome the mentioned limitation in existing hybrid intel-

ligent approaches. 

INTRUSION DETECTION SYSTEM 

 Intrusion detection system(IDS) is a dynamic security system which can provide effective 

defense to the information stored in the network systems. The main objective of deploying the 

IDS is to recognize abuse, illegitimate use and misuse of network system attacks and to pre-

vent them from carrying out their attacks. On other hand, IDS performs three main security 

tasks which are monitoring the activities of networks users, detecting and responding to mali-

cious actions respectively for both two types of attacks (Anantvalee & Wu, 2007; Brutch & 

Ko, 2003).  

In general, intrusion detection system (IDS) can be categorized into two broad approaches 

come under this classification and they are misuse and anomaly approach. Misuse approach is 

the ability for detecting attacks depending on predefined signatures of malicious activities. 

Systems store patterns or signatures of known attacks and use them to compare with the actu-

al activities or captured data. For signature detection method, the IDSs analyze the data which 

are collected and compared to attacks pattern, which are saved in the big database of known 

attacks (Albers et al., 2002; Anantvalee & Wu, 2007). Anomaly detection approach depends 

on defining a network behavior (profile) and trying to detect traffic on deviation created by 

normal network behavior. For anomaly method, the system administrators determine the nor-

mal profile (baseline) for the traffic of the network, protocols and typical package size, break-

down (Farhan, Zulkhairi, & Hatim, 2008).  

DESIGN OF PROPOSED HYBRID TECHNIQUE 

The proposed hybrid machine learning technique applies clustering on all data by dividing 

and labeling into the corresponding group. A clustering algorithm which used K-means di-

vides and labels the data for the corresponding groups before applying a classifier technique. 

A Support Vector Machine (SVM) is a technique used for classification purpose. Figure 1 

shows the proposed hybrid technique model. 

 

Figure 1. Proposed Hybrid Technique Model 

K-Means Clustering 

Data clustering is a popular technique for intrusion detection. Labelling and grouping of 

dataset are important and natural patterns in the K-means clusters (Jain, Sharma, & Sisodia, 

2011; Jaisankar & Kannan, 2011). The manual labeling of dataset is expensive and time con-

suming because of the huge amount of network data available. Clustering is the process of 
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grouping, labeling the data and determining it into sets of similar objects (Chapke Prajkta & 

Raut, n.d.). Every set is named as cluster.  

K-means is one of well-known data mining clustering algorithms. K-means has been per-

formed in an attempt to detect abnormal network user behavior in a network traffic. The diffi-

culty of recognizing among normal and intrusion behavior in network systems is a major 

challenge using clustering techniques because of the overlapping in data monitoring. The 

detection processing causes true and false alarms in the intrusion detection system. The main 

aim of applying the K-Means clustering algorithm is to separate the set of normal and abnor-

mal data that behave similarly for different partitions which are known as K-th cluster cen-

troids (Joshi & Pimprale, 2013; Mohammad, Sulaiman, & Khalaf, 2011). 

Support Vector Machine Classification 

Support Vector Machine (SVM) Classification is a machine learning techniques that deals 

with every instance of data set and classifies it to a specific class. Classification process con-

sists of two steps. The first step is learning by training phase and the second step is by classi-

fication. In the learning step, a classifier is formed and in the classification step that model is 

used to predict the class labels for a given data (Neethu, 2012) .  

Nowadays, SVM technique is mature enough to apply for different domain classification 

problems (Jain et al., 2011). It plots the training vectors in high dimensional feature space 

assign each vector by its class. It classifies data by determining a set of support vectors which 

are the members of the set of training inputs that outline a hyper plane in the feature space. 

SVMs provide a generic mechanism to fit the surface of the hyper plane to the data via the 

use of a kernel function. 

EXPERIMENTS 

For the purpose of running the experiment, a simulation environment has been selected 

due to the ease of varying different parameters of the environment and observing the results. 

The fully functional WEKA machine learning software is an open source tool. The results 

will be presented in two different methods namely Confusion Matrix and Receiver Operating 

Characteristic curve (ROC). A ROC curve is to help us decide where to draw the line between 

'normal' and 'not normal' behaviour. In addition, the process of evaluation was done and 

shown by comparing with the existing intelligent approach for network intrusion detection. 

Dataset Description 

The experiments for training and testing of the proposed hybrid intelligent approach for 

network intrusion detection is applied by using a real dataset stream named as intrusion detec-

tion dataset. These datasets contain a standard set of data to be audited and the datasets in-

clude a wide variety of intrusion types simulated in a network environment. Validating the 

efficiency and accuracy of the proposed hybrid technique, NSL-KDD intrusion dataset was 

used. It is a new version of KDD’99 dataset (Tavallaee, Bagheri, Lu, & Ghorbani, 2012, 

2009). NSS-KDD dataset has some advantages over KDD’99 dataset. It has solved several 

inherent problems of the KDD’99 dataset and it is considered as the standard benchmark da-

taset for intrusion detection evaluation (Chapke Prajkta & Raut, n.d.)(Jain et al., 2011). 

Dataset Pre-processing 

Pre-processing of original NSL-KDD intrusion data set is an important phase to make it as 

an appropriate input for classification phase. The main objective of preprocessing phase is to 

reduce ambiguity and provide accurate information to detection engine. The preprocessing 

phase cleans the network data by grouping, labeling and it handles the missing or incomplete 

dataset. The dataset pre-processing is achieved by applying the following stages sequentially. 
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Transformation 

There are many symbolic attributes like flag, services types and protocol types. These at-

tributes have nominal values such as RSTOS0 and ICMP in the dataset. Under this step, some 

outlier data will be filtered and modified. Hence, one needs to transform these nominal values 

to numeric values beforehand and to make it suitable input for classification phase using 

SVM. In Table 1, shows the transformation of all the nominal values of dataset features into 

the numeric values. For instance, the flag type of “OTH” is transformed to 1, “REJ” is trans-

formed to 2 and so on.  

Table 1. Transformation Table 

Type Feature 

Name 

Numeric Value 

Attack or Nor-

mal 

Normal 0 

 Attack 1 
 TCP 1 

Protocol Type UDP 2 
 ICMP 3 

 OTH 1 

 REJ 2 
 RSTO 3 

 RSTOS0 4 
 RSTR 5 

Flag S0 6 
 S1 7 

 S2 8 

 S3 9 
 SF 10 

 SH 11 
Services All Services 1 to 70 

 

Feature Selection 

Features selection is the most critical stage in building a hybrid intrusion detection models 

and is equally important to improve the efficiency of data mining algorithms. In general, the 

input data to classifiers is in a high dimension feature space but not all of the features are rel-

evant to the classes to be classified. Some of the data includes irrelevant, redundant or noisy 

features. In this case, irrelevant and redundant features can introduce noisy data that distract 

the learning algorithm. It decreases the number of attributes, eliminates irrelevant, noisy or 

redundant features and brings about effects on applications such as speeding up a data mining 

algorithm, improving learning accuracy and leading to better model comprehensibility. Dur-

ing this step, the set of attributes or features deemed to be the most effective attributes which 

are extracted in order to construct suitable detection system.  

The goal of features selection increases the detection rate and decreases the false alarm 

rate in network intrusion detection. WEKA 3.7 which is a machine learning tool has been 

used to compute the features selection subsets for SVM classifier to test the classification 

performance on each of these feature sets.  

The ClassifierSebsetEvel and BestFirst algorithms have been applied to select specific fea-

tures from the dataset and remove those features which are irrelevant before clustering and 

classification phases. All the training dataset and 10-fold cross validation are used for this 

purpose. A 10-fold cross validation is a technique on how to use the dataset. In this case, the 

dataset will be classified into 10 sub-datasets and apply the above algorithms on all the 10 
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sub-datasets. Table 2 and Table 3 shows the result of feature selection operation before and 

after transformation. 

Table 2. The Original NSL-KDD Dataset Before Transformation 

Table 3. The NSL-KDD Dataset After Transformation 

0, 1, 1, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 96, 16, 1.00, 1.00, 0.00, 0.00, 0.17, 0.05, 0.00, 255, 2, 0.01, 0.06, 

0.00, 0.00, 1.00, 1.00, 0.00, 0.00, 1 

0, 1, 2, 10, 300, 13788, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 9, 0.00, 0.11, 0.00, 0.00, 1.00, 0.00, 0.22, 91, 255, 

1.00, 0.00, 0.01, 0.02, 0.00, 0.00, 0.00, 0.00, 0 

 

Dataset Normalization 

Dataset normalization is a preprocessing type which plays an important role in classifica-

tion. Normalizing the input data will help speed up the learning phase and to enhance the 

performance of intrusion detection system when datasets are too large. Min-Max Normaliza-

tion applies in a linear transformation on the original dataset X into the specified interval. 

This method scales the data from (Xmin, Xmax) to (Newmin, Newmax) in proportion. The ad-

vantage of this method is that it preserves all relationships of the data values. The Min-Max in   

(1) is as follow: 

 (1) 

𝑿𝒏𝒆𝒘 = 
(𝑿 −  𝑿𝒎𝒊𝒏)

(𝑿𝒎𝒂𝒙 −  𝑿𝒎𝒊𝒏)
 

K-Means 

K-Means is an unsupervised approach to overcomes the problem of training datasets in in-

trusion detection system. After an initial random assignment of a sample to K clusters, the 

centers of clusters are computed and the sample are assigned to the clusters with the closest 

centers. The process is repeated until the cluster centers do not significantly change. When the 

cluster assignment is fixed, the mean distance of the element to cluster centers is used as the 

score. A set of n vectors Xj where j = (1,…, n) are to be partitioned into C groups Gi where i = 

(1,...,c). The function based on the Euclidean distance between a vector Xj in group J and the 

corresponding cluster centre Ci can be defined in Eq. (2) 

(2) 

𝑱 = ∑ 𝑱𝒊 ∑ [ ∑ ‖𝑿𝒌 − 𝑪𝒊‖𝟐𝒄
𝒌,𝒙∈𝑮𝒊 ]𝒄

𝒊=𝟏
𝒄
𝒊=𝟎                

By applying the K-means clustering algorithm, two clusters were specified and created for 

each output class. As the algorithm iterates through the training data, each cluster’s architec-

ture is updated. In updating the clusters, elements are deleted from one cluster and transferred 

to another. The updating of clusters causes the values of the centroids to modify. This change 

is a reflection of the current cluster elements. When there are no changes to any cluster, the 

clustering of the K-Means algorithm becomes complete. 

0, tcp, netbios_ns, S0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 96, 16, 1.00, 1.00, 0.00, 0.00, 0.17, 0.05, 0.00, 

255, 2, 0.01, 0.06, 0.00, 0.00, 1.00, 1.00, 0.00, 0.00, neptune 

0, tcp, http, SF, 300, 13788, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 9, 0.00, 0.11, 0.00, 0.00, 1.00, 0.00, 0.22,  91, 

255, 1.00, 0.00, 0.01, 0.02, 0.00, 0.00, 0.00, 0.00, normal 
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The algorithms are as follow: 

1. Initialize K clusters (randomly select K elements from the data).  

2. Initialize the K cluster centroids. This can be done by arbitrarily dividing all objects 

into K clusters, computing their centroids, and verifying that all centroids are differ-

ent from each other. Alternatively, the centroids can be initialized to k arbitrarily cho-

sen different object.  

3. Iterate over all data points in the data set and compute the distances to the centroids 

of all clusters. Assign each data point to the cluster with the nearest centroid. 

4. Recalculate “k” new centroids as per centers of the clusters resulting from the previ-

ous step. 

5. Repeat step 3 until the centroids do not change any more. In Figure 2 shows the result 

of clustering for NSL-KDD dataset. 

 

Figure 2. The Result of Clustering for NSL-KDD Dataset 

 

Support Vector Machine  

A classification based IDS will classify all the network traffic into normal or intrusion be-

havior and assign each attack to its specific category. The network attacks fall into four cate-

gories namely DoS, U2R, R2L and Probing. The processed data from previous phase are clas-

sified as normal or attack and are assign every attack to its type. SVM classifies data by de-

termining a set of support vectors which are the members of the set of training inputs that 

outline a hyper plane in the feature space. SVMs provide a generic mechanism to fit the sur-

face of the hyper plane to the data via the use of a kernel function. In the standard supervised 

learning, we are given n training samples (xi, yi), i  =  1,2,…,n where xi ε X denotes the input 

vector and yi ε Y , yi ε {+1,-1} denotes the corresponding output. 

Performance Evaluation 

The confusion matrix method was used to present the classification results. Each row of 

the matrix represents the instances in a predicted class. On the other hand, each column repre-

sents the instances in an actual class. The following factors are often use to evaluate the detec-

tion accuracy and false alarm rate of IDS in confusion matrix as shown in Table 4.  

Table 4. Confusion Matrix 

Actual 
Predicated 

Attack Normal 

Attack True Positive 

(TP) 

False Negative 

(FN) 

Normal False Positive 

(FP) 

True Negative 

(TN) 
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The performance have been evaluated in terms of Accuracy (A) as in  Eq.(3). In Eq.  (3) 

indicates the total number of connections that are correctly classified including normal and 

intrusive connections. Detection Rate (DR) as in Eq. (4) is the amount of attack detected 

when it is actually attack over the amount of attack sample and false alarm rate. False Alarm 

Rate (FAR) in Eq. (5) which is the amount of attack detected when it is actually normal over 

the amount of normal sample. 

 

  A = (TP+TN) / (TP+TN+FP+FN)        

(3) 

DR = (TP) / (TP+FP) 

(4) 

FAR = (FP) / (FP+TN) 

(5) 

RESULTS AND DISCUSSION 

The proposed technique detect anomaly activities with significant improvement in terms 

of high detection rate and low false positive rate. It has achieved 96.26 percentage in detec-

tion rate and 3.7 percentage as a false alarm rate. The proposed technique has detected 95.76 

percentage as attack from 71,463 real attack connection records. While, the other 4.23 per-

centage as normal. Nevertheless, the full number of normal connections of records in the 

NSL-KDD dataset which is 75,984 have been classified as 96.28 percentage as normal and 

3.71 percentage of the connection as an attack.  

Table 5.Table 5 shows the confusion matrix which has been obtained from the classifica-

tion of the proposed hybrid machine learning technique using the full NSL-KDD intrusion 

dataset. 

Table 5. Confusion Matrix Result 

Actual Predicated 

  Attack Normal 

Attack 95.766% (TP) 4.237% (FP) 

Normal 3.715% (FN) 96.284% (TN) 
 

The details of detection for the proposed technique have shown that the higher the detec-

tion for DoS, R2Land Probing attacks. In spite of the highly assigning rate for last three cate-

gories, it shows a less rate in U2R attack detection. In Figure 3, shows the detection rate for 

every category of attack as well as the normal network behavior. 

 

Figure 3. Detection Rate for Attack Categories 

The details of detection for the proposed technique have shown that, the higher the detec-

tion for DoS, R2Land Probing attacks. In spite of the highly assigning rate for last three cate-

gories, it shows a less rate in U2R attack detection. In Figure 4 below shows the detection rate 

for every category of attack as well as the normal network behavior. 
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Figure 4. Detection Rate for Attack Categories 

CONCLUSION 

Network security has recently become a domain of great interest in the scientific, academ-

ic and industrial arenas alike. The impact of a successful attack on an institution can have 

disastrous consequences. Due to the increasing incidents of network attacks have heightened 

concerns for network security and we have proposed the hybrid intelligent technique.  

The proposed hybrid intelligent approach for network intrusion detection has managed to 

address the existing intrusion detection approaches such as accuracy and false detection rate. 

The proposed approach is done by integrating two machine techniques namely K-Means clus-

tering and SVM classifier for intrusion detection. The result indicates an encouraging ap-

proach. 
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