
Proceedings of the 5th International Conference on Computing and Informatics, ICOCI 2015

11-13 August, 2015 Istanbul, Turkey. Universiti Utara Malaysia (http://www.uum.edu.my)
Paper No.

101

347

ADDING SMP SUPPORT TO FASTPATHS IN AN L4
MICROKERNEL

Petre Eftime1, Lucian Mogosanu2, Mihai Carabas3, Laura Gheorghe4, and
Razvan Deaconescu5

1University POLITEHNICA of Bucharest, Romania, petre.eftime@cti.pub.ro
2University POLITEHNICA of Bucharest, Romania, lucian.mogosanu@cs.pub.ro

3University POLITEHNICA of Bucharest, Romania, mihai.carabas@cs.pub.ro
4University POLITEHNICA of Bucharest, Romania, laura.gheorghe@cs.pub.ro

5University POLITEHNICA of Bucharest, Romania, razvan.deaconescu@cs.pub.ro

ABSTRACT. Fastpaths are a method of optimization which relies on treat-

ing the most commonly executed cases of certain functions in a privileged

manner, such that behaviour is not modified, but execution time is reduced.

Fastpaths play an important role on improving paravirtualization perfor-

mance offered by an L4 microkernel. In this article we redesign two existing

fastpaths in an L4 microkernel for the purpose of adding SMP support. We

then put these fastpaths through a series of regression and performance tests

to determine if the design is correct and what performance benefits we can

expect by using them on a multiprocessor system.

Keywords: L4 kernel, ARM, SMP, fastpath

INTRODUCTION

Operating systems is one of the areas where performance can be important to usability.

Ideally, the operating system kernel should perform all operation without adding any over-

head, but in practice this is not possible. However, performance can be improved in certain

scenarios through the use of fastpaths, i.e. optimizations which rely on various assumptions

regarding the system's state in order to speed up execution time.

The microkernel we improve belongs to the L4 family of microkernels, based around the

ideas of Jochen Liedtke. L4 microkernels were built from the ground up to have good perfor-

mance through careful design of the Application Programming Interface (API) and imple-

menting it using the best available algorithms for the targeted systems (Liedtke, 1994)

(Liedtke, 1995).

However, even the best API and algorithms can be improved by optimizing the code for

various architectures or use cases, or, as is our case, to optimize for certain system states

without having to reduce abstraction (Elphinstone & et al., 2007). Optimizations can reduce

code readability and increase maintenance cost, so they must add a tangible benefit to perfor-

mance in order for them to be implemented or even kept in the kernel. They must also not

harm system security or behavior (Klein et al., 2014).

In this paper we discuss two optimizations available in our L4 based microkernel, which

we update to work on Symmetric multiprocessing (SMP) systems, namely the system call

exception fastpath and the Inter-process communication (IPC) system call fastpath. Section

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UUM Repository

https://core.ac.uk/display/42982564?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.uum.edu.my/
mailto:dejl@unikom.edu.id
mailto:dejl@unikom.edu.id
mailto:dejl@unikom.edu.id
mailto:dejl@unikom.edu.id
mailto:dejl@unikom.edu.id

Proceedings of the 5th International Conference on Computing and Informatics, ICOCI 2015

11-13 August, 2015 Istanbul, Turkey. Universiti Utara Malaysia (http://www.uum.edu.my)
Paper No.

101

348

Related Work explains what fastpaths are and why these two were chosen for improvement.

Their functionality and design is explained in Section Design and Implementation. In Section

Evaluation the benefits brought by these optimizations are measured. The last section draws

conclusions on the importance and maintability of these fastpaths, as well describing some

future work which could be done for further improving them.

RELATED WORK

Optimization refers to the process of improving execution time of a certain functionality

without affecting the observed behaviour of that functionality. Optimizations can come at

multiple levels: algorithmic (an algorithm is either replaced or tailored to better suit its use

cases), instruction set (a better set is used to implement the same algorithm), architectural (

hardware specific functionality is added or simply employed).

Optimization must be carefully employed, unless some tool (e.g. a compiler) does this op-

timization automatically, since it always comes at the cost of either code maintainability, de-

ployability or even worse, correctness (Dannowski, 2007). Therefore, it is generally preferred

to start optimization at high levels of abstraction and only use architectural improvements

when it is required or if they offer significant advantages.

Fastpaths are an optimization method which rely on treating one or more commonly exe-

cuted code paths in an special manner, such that these common cases take less time to com-

plete. If the execution could lead to fewer common cases or errors the normal path, or slow-

path, is taken instead. While the goal is to reduce execution time by having these common

cases execute as fast as possible, fastpaths do add overhead when the less common cases must

be executed, falling back to the slowpath. With or without the fastpath, the execution must

have identical (observed) behavior (Blackham & Heiser, 2012).

Fastpaths are usually employed in applications where performance is required, such as

networking, operating system kernels and servers. Kernels in the L4 family include a fastpath

for IPC system calls, and try to avoid doing IPC syscalls entirely if possible, since IPCs can

have relatively complex code associated with them and are the main mechanism for commu-

nication and synchronization between processes and even threads. Indeed, (Liedtke, 1994),

the father of the L4 microkernels suggested that IPC performance is very important and built

L4 around this idea.

Previously, our L4 microkernel had fastpaths for both system call exceptions (necessary

for paravirtualization) and IPCs, written in assembly language and later translated to C/C++

for the purpose of portability. The performance improvements brought by these fastpaths

were rather promising and because they were written in a high level programming language,

the cost of updating them to support SMP was thought to be minimal.

DESIGN AND IMPLEMENTATION

The purpose of fastpaths are reducing execution time, by optimising the most common

case or cases. After determining these cases, the fastpath will implement one or more of them,

depending on their complexity. The fastpath will start with a series of tests to determine

whether it's currently in one of the selected cases, otherwise it will fall back to the slowpath.

Fastpaths have been used before in L4 microkernels, but our implementation is on SMP,

which brings a few complications with it: one cannot make assumptions about the state of

other threads, since they could be currently running on another CPU and their state might

change. Locking these threads is essential to correctness, and the scheduler must be involved

in making the decision of what thread will run next and on what CPU. Locking is fine grained

in our L4 microkernel: there are a few global locks (e.g. scheduler, thread list), but most of

http://www.uum.edu.my/

Proceedings of the 5th International Conference on Computing and Informatics, ICOCI 2015

11-13 August, 2015 Istanbul, Turkey. Universiti Utara Malaysia (http://www.uum.edu.my)
Paper No.

101

349

the locks are per object (e.g. thread, space). The locks in the kernel are basic spinlocks and

ticketlocks, making deadlocks a possiblity if the threads are not acquired in a certain order:

global locks first, then object locks in the order of their address.

A brief explanation of what the fastpaths already available in the microkernel is in order.

In the case of our L4 microkernel system calls (and other exceptions) can be redirected to a

userspace thread as IPCs, a mechanism which is required for paravirtualization. If the thread

which processes and serves these system calls is waiting for an IPC and is idle (which should

be the common case), then the microkernel can send the IPC to the exception handler directly,

without queueing the exception and waiting for that thread to become available, since it al-

ready is. This is done by copying the necessary information and setting the exception handler

thread as running in place of the thread that raised the exception. The IPC fastpath deals with

a similar case, for an explicit IPC system call made by a user thread and with some additional

verifications and complexity, since IPCs are a general purpose mechanism and can be used

for multiple purposes such as synchronization or communication, but the core idea remains

the same.

The non-SMP implementations were written in C/C++ as modern compilers are good at

generating optimized assembly code, especially with some aid from the programmer (Black-

ham & Heiser, 2012). This made updating to SMP cost-efficient, but because locking can be

an expensive process, special care was required. Test cases which do not require a lock, or

require a single lock, were prioritized, as failing faster reduces overhead when having to enter

the slowpath. Releasing and reacquiring locks was avoided, since fastpath executes quickly

and would not cause other threads to wait, but other threads might cause the fastpath to wait

(multiple times) if contention were to occur. Another reason to avoid reacquiring locks is that

another thread might modify the state of the exception handler thread, which would have re-

quired additional tests, and thus would add undesirable complexity to the fastpath. Finally,

locks in the microkernel have to be acquired in a defined order (e.g. scheduler lock before

thread locks, thread locks in order of their address), to prevent deadlocks, which forced some

reordering of the tests. Some additional fixes and checks were also added during this process,

to guarantee safe operations. Even though this did not seem to be an issue previously, SMP

systems are more susceptible to bugs because of increased complexity.

EVALUATION

In this section, we assess the correctness of fastpath using two kind of unit tests: ktest at

the microkernel level and Linux Test Project (LTP) at the paravirtualized Linux kernel level.

Than we measure the performance gain obtained by fastpath mechanism. The SMP-enabled

fastpath must perform the same as the slowpath in terms of behavior (Blackham & Heiser,

2012), but should result in better performance. The test platform used was a Pandaboard con-

taining an OMAP4430 System on a chip (SoC) with an ARMv7 Cortex A9 dual-core CPU

and 1 GB of RAM. The version of Linux used was a paravirtualized Linux 3.4.0 with a root

filesystem with Busybox generated by Buildroot.

ktest is a test suite used for testing the correct implementation of the system call interface

and mechanisms of our L4 microkernel (Mogosanu, 2013). This is the first step towards vali-

dating correctness, as it tests the microkernel mechanisms directly, making sure the imple-

mentation conforms to the specifications, but it is not necessarily a stress-test and might not

uncover all the possible SMP issues such as race conditions or deadlocks, even though it can

be useful in detecting at least some of these issues (Condurache & Eftime, 2014). Linux Test

Project (Linux Test Project, n.d.) is a tool used to verify the Linux kernel and libraries (as

ktest is used for our L4 microkernel) for conformance. This is considered a standard test tool

and covers many features of the Linux kernel and standard libraries. Since one of the uses of

http://www.uum.edu.my/

Proceedings of the 5th International Conference on Computing and Informatics, ICOCI 2015

11-13 August, 2015 Istanbul, Turkey. Universiti Utara Malaysia (http://www.uum.edu.my)
Paper No.

101

350

important uses of our L4 microkernel is paravirtualization and since it is a complex test sce-

nario, LTP was used to verify the fastpaths, as used by Linux, and the same tests passed with

and without the fastpaths activated.

Profiling the fastpaths under paravirtualized Linux

To check the performance improvements and potential issues that the fastpaths have,

measuring cycles (or a few other performance parameters) between entry and exit was neces-

sary. A mechanism for such measurements already existed in the microkernel, under the name

of Performance Management Unit, but it required modification of either the microkernel or

userspace programs. Modifying the userspace was difficult in the case of Linux, since the

results had to be printed or memorized after each system call. We opted to add a new mecha-

nism to measure IPCs and syscalls exceptions (which is a type of IPC sent by the microker-

nel).

At the points of entry in the microkernel for the two fastpaths and slowpaths a cycle coun-

ter was started and at the points of exit, the cycle counter was logged in the microkernel's

tracebuffers, alongside the point of exit from the fastpath (the tracebuffers are a mechanism in

the microkernel used for storing messages directly in physical memory). This allowed a direct

comparison between the fastpath-enabled and normal microkernel in terms of cycles spent

treating an IPC or an syscall exception, with minimal overhead.

Figure 6a. Syscall exception handling Figure 7b. IPC exception handling

One of the difficulties with this new mechanism was that, while all IPCs end mostly in the

same point, they can be synchronously interrupted and parts of them are executed later, a

mechanism known as continuations. This meant that the measurements had to be interrupted

and resumed later, otherwise the results would have included unwanted pieces of code, such

as how much time it takes for a userspace thread to treat a syscall exception or reply to an

IPC.

Under Linux three I/O heavy processes and three CPU intensive processes were started on

each CPU, to simulate a system under load. It is noticeable from Figure 1a that, in the case of

the system call exception fastpath is used exclusively by Linux and it performs more than 1.6

times faster on average than the slowpath. It is used exclusively because only one user thread

per CPU can be active at any one time in Linux, which means that the exception handler in

Linux should be waiting for an IPC whenever an exception occurs and no more than one can

occur at a single point in time. Improvements on the IPC system call are visible as well in

Figure 2a, about 1.3 times faster on average. While the improvement is smaller than that

brought by the system call exception fastpath, it can have a big impact on system perfor-

mance, because its' importance to L4 kernels in general and to our paravirtualized Linux spe-

http://www.uum.edu.my/

Proceedings of the 5th International Conference on Computing and Informatics, ICOCI 2015

11-13 August, 2015 Istanbul, Turkey. Universiti Utara Malaysia (http://www.uum.edu.my)
Paper No.

101

351

cifically, where IPCs are used for IRQ delivery by the microkernel and then by the interrupt

handler on the first CPU, which forwards IRQs to the other interrupt handlers on other CPUs

when it is required (e.g. the timer interrupt, which is used for scheduling).

Benchmarking the syscall exception fastpath

The paravirtualized Linux did not stress the syscall exception mechanism enough for

drawing conclusions about how it would perform under a more general work scenario. A test

in which the number of threads per exception handler and wait time between syscall excep-

tions was varied in a controlled way was devised for this purpose. The mechanism for meas-

uring performance is the same as the one used in the previous section.

The waiting time between each syscall generated by a thread is randomized using a pseu-

do-random number generator and the average waiting time is manipulated by multiplying this

random number with a factor which is set on each test. This waiting time represents a counter

for a loop, and after the loop finishes executing a syscall is generated, then the thread is reset.

The syscall exception handler then catches a predefined number of events (3000) after which

the wait factor is increased and the test runs again.

 Figure 2a. Contention on fastpath Figure 2b. Syscall exception duration

It is noticeable that waiting time has a much bigger impact on performance than the num-

ber of threads, as the curves from the two graphics in Figure 2a and Figure 2b are extremely

similar, for two threads, for example, the correlation coefficient between contention and exe-

cution time is 0.9998. Contention, generated by the having a short wait time between syscalls,

follows a similar path as the one before, as can be seen in Figure 2a. This is thought to be

caused by scheduling: increasing the number of threads also increases the waiting time be-

tween syscalls indirectly, effectively rate-limiting the number of syscalls generated in this test

scenario. We do notice in Figure 2b that when only one thread is started, the results are as we

expected: a horizontal line just below any of the other lines. This is in line with results from

Figure 1a and since paravirtualization is an important use case for this particular L4 mi-

crokernel, it is a good sign that Linux performance is indeed improved by the fastpath.

Benchmarking the IPC exception fastpath

We employed the same measuring methodology and test program as in previous section,

but toggled the IPC fastpath on and off instead. The improvements are only marginal in our

benchmark. We notice that IPC duration is improved considerably when receiving from and

replying to a single thread, however, when this is not the case, the presence of the fastpath

only marginally decreases duration, when contention is low, and behaves worse when conten-

http://www.uum.edu.my/

Proceedings of the 5th International Conference on Computing and Informatics, ICOCI 2015

11-13 August, 2015 Istanbul, Turkey. Universiti Utara Malaysia (http://www.uum.edu.my)
Paper No.

101

352

tion is high. From Figure 1 we know that under Linux the improvement is not negligible, but,

as explained before, only one thread at a time is active. Further work is necessary to make the

IPC fastpath behave well under more varied conditions.

CONCLUSION AND FURTHER WORK

The improvements made by these fastpaths are important for performance, even if their

individual contribution is on the scale of a few percent improvements, and since they are writ-

ten in a high level programming language they are very portable and easy to debug. The pre-

vious version had the issue of not being SMP-compatible and since CPUs come with an ever-

increasing number of cores, it limited their usability. While our main concern is paravirtual-

ization, the in-depth look at the syscall exception fastpath raised some interesting questions

about how cycles are spent inside the microkernel and offered some hints as to where perfor-

mance improvements could be made in the future.

It would be interesting to see exactly what are the test cases which fail on each fastpath

more often than the others, and prioritize them, such that dropping back to the slowpath

would have minimal overhead. In addition to this, it may be possible that some tests are

linked to each other, in the sense that passing one would mean passing the other as well, and

removing extraneous tests could improve performance. It might be possible to cover addition-

al cases with the IPC fastpath at no cost, such as sending notifications. This seemed possible

in the past, in the assembly version of the fastpath, but the current C/C++ version is not capa-

ble of doing this, and the direct translation of the assembly version produces some errors

which are not yet investigated.

ACKNOWLEDGMENTS

The work has been funded by the Sectoral Operational Programme Human Resources De-

velopment 2007-2013 of the Ministry of European Funds through the Financial Agreement

POSDRU/159/1.5/S/134398.

REFERENCES

Blackham, B., & Heiser, G. (2012). Correct, fast, maintainable: choose any three! In Proceedings of the

asia-pacific workshop on systems (p. 13).

Condurache, C., & Eftime, P. (2014). Enhancing virtualization on top of the vmxl4 kernel.

Dannowski, U. (2007). Automated object layout optimization in a portable microkernel. In Proceed-

ings of the MIKES 2007: First International Workshop on MicroKernels for Embedded Systems.

Elphinstone, K., Greenaway, D., & Ruocco, S. (2007). Lazy queueing and direct process switch - merit

or myths?. In Proceedings of the 3rd Workshop on Operating System Platforms for Embedded

Real-Time Applications.

Klein, G., Andronick, J., Elphinstone, K., Murray, T., Sewell, T., Kolanski, R., & Heiser, G. (2014).

Comprehensive formal verification of an OS microkernel. ACM Transactions on Computer Sys-

tems (TOCS), 32(1), 2.

Liedtke, J. (1994). Improving ipc by kernel design. ACM SIGOPS operating systems review, 27, 175–

188.

Liedtke, J. (1995). On micro-kernel construction. Proceedings of the fifteenth ACM symposium on

Operating systems principles, 237-250

Linux Test Project. (n.d.). http://linux-test-project.github.io/. (Last accessed on 1 February 2015)

Mogosanu, L. (2013, July). Evaluating Virtualization on Top of the VMXL4 Microkernel, Master

thesis.

http://www.uum.edu.my/

