International Journal of Pure and Applied Mathematics Volume 99 No. 1 2015, 77-96 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu doi: http://dx.doi.org/10.12732/ijpam.v99i1.7

(γ, β) -P_S-IRRESOLUTE AND (γ, β) -P_S-CONTINUOUS FUNCTIONS

Baravan A. Asaad^{1 §}, Nazihah Ahmad², Zurni Omar³ ¹,2,3School of Quantitative Sciences College of Arts and Sciences Universiti Utara Malaysia 06010, Sintok, Kedah, MALAYSIA

Abstract: This paper introduces some new types of functions called (γ, β) -P_S-irresolute and (γ, β) -P_S-continuous by using γ -P_S-open sets in topological spaces (X, τ) . From γ -P_S-open and γ -P_S-closed sets, some other types of γ -P_Sfunctions can also be defined. Moreover, some basic properties and preservation theorems of these functions are obtained. In addition, we investigate basic characterizations and properties of these γ - P_S - functions. Finally, some compositions of these γ - P_S - functions are given.

AMS Subject Classification: 54A05, 54C08, 54C10 **Key Words:** γ -P_S-open set, γ -P_S-closed set, (γ, β) -P_S-irresolute function, (γ, β) -P_S-continuous function

1. Introduction

Kasahara [7] defined the concept of α -closed graphs of an operation on τ . Later, Ogata [10] renamed the operation α as γ operation on τ . He defined γ-open sets and introduced the notion of τ_{γ} which is the class of all γ -open sets in a topological space (X, τ) . Further study by Krishnan and Balachandran ([8], [9]) defined two types of sets called γ -preopen and γ -semiopen sets. Recently, Asaad, Ahmad and Omar [1] introduced the notion of γ -regular-open sets. They

Received: October 1, 2014 C 2015 Academic Publications, Ltd. url: www.acadpubl.eu

§Correspondence author

also introduced the notion of γ - P_S -open sets [2] which lies strictly between the classes of γ -regular-open set and γ -preopen set. By using this set, they defined a new type of function called γ - P_S -continuous and studies some of its basic properties [3].

In the present paper, we define some new types of γ - P_{S} - functions called (γ, β) -P_S-irresolute and (γ, β) -P_S-continuous by using γ -P_S-open sets in topological spaces (X, τ) . In addition, we give some basic characterizations and properties of these γ -P_S- functions by using γ -P_S-open and γ -P_S-closed sets are introduced. Finally, some compositions of these γ - P_S - functions are given.

2. Preliminaries

Throughout this paper, spaces (X, τ) and (Y, σ) (or simply X and Y) will always means topological spaces on which no separation axioms are assumed unless explicitly stated. An operation γ on the topology τ on X is a mapping $\gamma: \tau \to P(X)$ such that $U \subseteq \gamma(U)$ for each $U \in \tau$, where $P(X)$ is the power set of X and $\gamma(U)$ denotes the value of γ at U [10]. A nonempty subset A of a space (X, τ) with an operation γ on τ is said to be γ -open if for each $x \in A$, there exists an open set U such that $x \subseteq U$ and $\gamma(U) \subseteq A$ [10]. The complement of a γ -open set is called a γ -closed. The τ_{γ} -closure of a subset A of X with an operation γ on τ is defined as the intersection of all γ -closed sets of X containing A and it is denoted by τ_{γ} -Cl(A) [10], and the τ_{γ} -interior of a subset A of X with an operation γ on τ is defined as the union of all γ -open sets of X contained in A and it is denoted by τ_{γ} -Int(A) [9]. A topological space (X, τ) is said to be γ -regular if for each $x \in X$ and for each open neighborhood V of x, there exists an open neighborhood U of x such that $\gamma(U) \subseteq V$ [10]. Throughout of this paper, γ and β be operations on τ and σ respectively.

Now we begin to recall some known notions which are useful in the sequel.

Definition 2.1. A subset A of a topological space (X, τ) is said to be:

- 1. γ-regular-open if $A = \tau_{\gamma}$ -*Int*(τ_{γ} -*Cl(A))* and γ-regular-closed if $A = \tau_{\gamma}$ - $Cl(\tau_{\gamma}$ -Int(A)) [1].
- 2. γ-preopen if $A \subseteq \tau_{\gamma}$ -*Int*(τ_{γ} -*Cl*(A)) and γ-preclosed if τ_{γ} -*Cl*(τ_{γ} -*Int*(A)) \subseteq A [8].
- 3. γ-semiopen if $A \subseteq \tau_{\gamma}$ - $Cl(\tau_{\gamma}$ - $Int(A))$ and γ-semiclosed if τ_{γ} - $Int(\tau_{\gamma}$ - $Cl(A)) \subseteq$ A [9].

(γ, β) -P_S-IRRESOLUTE AND... 79

4. γ -dense if τ_{γ} - $Cl(A) = X$ [6].

Definition 2.2. [2] A γ -preopen subset A of a topological space (X, τ) is called γ -P_S-open if for each $x \in A$, there exists a γ -semiclosed set F such that $x \in F \subseteq A$. The complement of a γ - P_S -open set of X is called γ - P_S -closed.

The class of all γ -P_S-open and γ -preopen subsets of a topological space (X, τ) are denoted by τ_{γ} - $P_{S}O(X)$ and τ_{γ} - $PO(X)$ respectively.

Lemma 2.3. [2] A subset A of X is γ - P_S -open if and only if A is γ -preopen *set and it is a union of* γ*-semiclosed sets.*

Definition 2.4. A subset N of a topological space (X, τ) is called a γ -P_S-neighbourhood of a point $x \in X$, if there exists a γ -P_S-open set U in X containinig x such that $U \subseteq N$.

Definition 2.5. [2] For any subset A of a space X. Then:

- 1. the γ -P_S-boundary of A is defined as τ_{γ} -P_SCl(A) \ τ_{γ} -P_SInt(A) and it is denoted by τ_{γ} - $P_{S}Bd(A)$.
- 2. the γ -P_S-derived set of A is defined as $\{x :$ for every γ -P_S-open set U containing x, $U \cap A \setminus \{x\} \neq \emptyset$ and it is denoted by τ_{γ} - $P_{S}D(A)$.

Lemma 2.6. *[2] For any subset* A *of a space* X*. Then the following statements are true:*

- *1.* τ_{γ} - $P_{S}Cl(A)$ *is the smallest* γ - P_{S} -closed set of X containing A.
- 2. τ_{γ} - $P_{S}Int(A)$ *is the largest* γ - P_{S} -open set of X contained in A.
- *3.* A is γ -P_S-closed if and only if τ_{γ} -P_SCl(A) = A, and A is γ -P_S-open if *and only if* τ_{γ} - $P_SInt(A) = A$ *.*
- *4.* τ_{γ} - $P_{S}Cl(A) = X\setminus \tau_{\gamma}$ - $P_{S}Int(X\setminus A)$ *and* τ_{γ} - $P_{S}Int(A) = X\setminus \tau_{\gamma}$ - $P_{S}Cl(X\setminus A)$ *.*
- *5.* A is γ - P_S -closed if and only if τ_{γ} - $P_S B d(A) \subseteq A$.
- *6.* τ_{γ} - $P_{S}D(A) \subseteq \tau_{\gamma}$ - $P_{S}Cl(A)$.
- *7.* A is γ -P_S-closed if and only if τ_{γ} -P_SD(A) \subset A.

Definition 2.7. [4] A subset A of a space (X, τ) is said to be γ - P_S generalized closed (γ -P_S-g-closed) if τ_{γ} -P_SCl(A) \subseteq G whenever $A \subseteq G$ and G is a γ -P_S-open set in X.

Definition 2.8. A topological space (X, τ) is said to be:

- 1. γ -locally indiscrete if every γ -open subset of X is γ -closed, or every γ closed subset of X is γ -open [1].
- 2. γ-hyperconnected if every nonempty γ-open subset of X is γ -dense [1].
- 3. γ - P_S - $T_{\frac{1}{2}}$ if every γ - P_S -g-closed set of X is γ - P_S -closed [4].
- 4. γ -semi T_1 if for each pair of distinct points x, y in X, there exist two γ semiopen sets U and V such that $x \in U$ but $y \notin U$ and $y \in V$ but $x \notin V$ [9].

Theorem 2.9. *The following statements are true for any space* (X, τ) *:*

- *1.* If X is γ -locally indiscrete, then τ_{γ} -P_SO(X) = τ_{γ} [2].
- *2.* If *X* is γ -semi T_1 , then τ_{γ} - $P_S O(X) = \tau_{\gamma}$ - $PO(X)$ [2].
- *3.* If X is γ -hyperconnected if and only if τ_{γ} -P_SO(X) = { ϕ , X} [2].
- 4. *X* is γ - P_S - $T_{\frac{1}{2}}$ if and only if for each element $x \in X$, the set $\{x\}$ is γ - P_S *closed or* γ *-* \tilde{P}_S *-open [4].*
- *5. X* is γ -regular, then $\tau_{\gamma} = \tau$ [10].

Definition 2.10. Let (X, τ) and (Y, σ) be two topological spaces. A function $f: (X, \tau) \to (Y, \sigma)$ is called:

- 1. γ -P_S-continuous if for each P_S-open set V of Y containing $f(x)$, there exists a γ -P_S-open set U of X containing x such that $f(U) \subseteq V$ [3].
- 2. (γ, β) -precontinuous if for each β -preopen set V of Y containing $f(x)$, there exists a γ -preopen set U of X containing x such that $f(U) \subseteq V$ [8].
- 3. γ -continuous if for each open set V of Y containing $f(x)$, there exists a γ -open set U of X containing x such that $f(U) \subseteq V$ [5].
- 4. β-P_S-open (resp., β-open and β-P_S-closed) if for every open (resp., open and closed) set V of X, $f(V)$ is β - P_S -open (resp., β -open and β - P_S -closed) set in Y [3].

3. (γ , β)- P_S -Irresolute and (γ , β)- P_S -Continuous Functions

In this section, we introduce three types of γ - P_{S} - functions called (γ, β) - P_{S} irresolute and (γ, β) -P_S-continuous by using γ -P_S-open set. Also we give relations between these functions and γ - P_S -continuous function.

Definition 3.1. Let (X, τ) and (Y, σ) be two topological spaces. A function $f: (X, \tau) \to (Y, \sigma)$ is called (γ, β) -P_S-irresolute (resp., (γ, β) -P_S-continuous) at a point $x \in X$ if for each β -P_S-open (resp., β -open) set V of Y containing $f(x)$, there exists a γ -P_S-open set U of X containing x such that $f(U) \subseteq V$. If f is (γ, β) -P_S-irresolute (resp., (γ, β) -P_S-continuous) at every point x in X, then f is said to be (γ, β) -P_S-irresolute (resp., (γ, β) -P_S-continuous).

Remark 3.2. It is clear from the Definition 2.10 (1) and Definition 3.1 that every γ -P_S-continuous function is (γ, β) -P_S-continuous since every β -open set is open, where β is an operation on σ . However, the converse is not true in general as it can be seen from the following example.

Example 3.3. Let $X = \{a, b, c\}$ with the topology $\tau = \{\phi, X, \{a\}, \{b\},\$ ${a, b}, {b, c}$ and $Y = {1, 2, 3}$ with the topology $\sigma = {\phi, Y, {2}, {3}, {2, 3}}.$ Define operations $\gamma: \tau \to P(X)$ and $\beta: \sigma \to P(Y)$ as follows: for every $A \in \tau$ and $B \in \sigma$

$$
\gamma(A) = \begin{cases} A & \text{if } a \in A \\ Cl(A) & \text{if } a \notin A \end{cases}
$$

$$
\beta(B) = \begin{cases} B & \text{if } B = \{2\} \\ Cl(B) & \text{if } B \neq \{2\} \end{cases}
$$

Then $\sigma_{\beta} = {\phi, \{2\}, Y\}.$

Let $f: (X, \tau) \to (Y, \sigma)$ be a function defined as follows:

$$
f(x) = \begin{cases} 2 & \text{if } x = a \\ 3 & \text{if } x = b \\ 1 & \text{if } x = c \end{cases}
$$

Clearly, $\tau = \{\phi, X, \{a\}, \{a, b\}, \{b, c\}\}\$, τ_{γ} - $P_{S}O(X) = \{\phi, \{a\}, \{a, c\}, \{b, c\}, X\}$ and $\sigma_{\beta} = {\phi, \{2\}, Y\}}$. Let $f: (X, \tau) \to (X, \sigma)$ be a function defined as follows:

$$
f(x) = \begin{cases} 2 & \text{if } x = a \\ 3 & \text{if } x = b \\ 1 & \text{if } x = c \end{cases}
$$

Then f is (γ, β) -P_S-continuous, but it is not γ -P_S-continuous since $\{3\}$ is an open set in (Y, σ) containing $f(b) = 3$, but there exist no γ -P_S-open set U in (X, τ) containing b such that $f(U) \subseteq \{3\}.$

Remark 3.4. The relation between (γ, β) - P_S -irresolute function and (γ, β) -P_S-continuous function are independent. Similarly the relation between (γ, β) -P_S-irresolute function and γ -P_S-continuous function are independent, as shown from the following examples.

Example 3.5. Let (X, τ) be a topological space as in Example 3.3. Suppose that $Y = \{1, 2, 3\}$ and $\sigma = \{\phi, Y, \{2\}, \{2, 3\}\}\$ be a topology on Y. Define an operation β on σ such that β : $\sigma \to P(Y)$ by $\beta(B) = B$ for all $B \in \sigma$. Then σ_{β} - $P_{S}O(Y) = {\phi, Y}.$

Let $f: (X, \tau) \to (Y, \sigma)$ be a function defined as follows:

$$
f(x) = \begin{cases} 3 & \text{if } x = a \\ 2 & \text{if } x = b \\ 1 & \text{if } x = c \end{cases}
$$

Then the function f is (γ, β) -P_S-irresolute, but f is not (γ, β) -P_S-continuous since $\{2\}$ is a β -open set in (Y, σ) containing $f(b) = 2$, but there exist no γ - P_S open set U in (X, τ) containing b such that $f(U) \subseteq \{2\}$. By Remark 3.2, f is not γ - P_S -continuous.

Example 3.6. Consider the space $X = \{a, b, c\}$ with the topologies $\tau = \{\phi, X, \{a\}, \{c\}, \{a, c\}\}\$ and $\sigma = \{\phi, X, \{b\}, \{c\}, \{a, b\}, \{b, c\}\}\$. Define the operations γ and β on τ and σ respectively as follows: For every $A \in \tau$, $\gamma(A) = A$ and for every $B \in \sigma$

$$
\beta(B) = \begin{cases} B & \text{if } c \in B \\ Cl(B) & \text{if } c \notin B \end{cases}
$$

Obviously, $\tau_{\gamma} = \tau = \tau_{\gamma}P_S O(X)$, $\sigma_{\beta} = {\phi, X, {\c}, \{a, b\}, \{b, c\}}$ and $\sigma_{\beta}P_S O(X) =$ $\{\phi, X, \{c\}, \{a, b\}, \{a, c\}\}.$ Define a function $f: (X, \tau) \to (X, \sigma)$ as follows:

$$
f(x) = \begin{cases} b & \text{if } x \in \{a, c\} \\ a & \text{if } x = b \end{cases}
$$

So, the function f is both (γ, β) - P_S -continuous and γ - P_S -continuous, but f is not (γ, β) -P_S-irresolute since $\{a, c\}$ is a β -P_S-open set in (X, σ) containing $f(b) = a$, there exist no γ -P_S-open set U in (X, τ) containing c such that $f(U) \subseteq \{a, c\}.$

4. Characterizations

We start with the most important characterizations of (γ, β) -P_S-irresolute functions.

Theorem 4.1. *For any function* $f: (X, \tau) \to (Y, \sigma)$ *. The following properties of* f *are equivalent:*

- *1. f is* (γ, β) *-P_S-irresolute.*
- *2.* The inverse image of every β -P_S-open set of Y is γ -P_S-open set in X.
- *3.* The inverse image of every β-P_S-closed set of Y is γ -P_S-closed set in X.
- 4. $f(\tau_{\gamma}$ -P_SCl(A)) $\subset \sigma_{\beta}$ -P_SCl(f(A)), for every subset A of X.
- *5.* τ_{γ} - $P_{S}Cl(f^{-1}(B)) \subseteq f^{-1}(\sigma_{\beta}$ - $P_{S}Cl(B))$, for every subset B of Y.
- 6. $f^{-1}(\sigma_{\beta}P_{S}Int(B)) \subseteq \tau_{\gamma}P_{S}Int(f^{-1}(B)),$ for every subset B of Y.
- *7.* σ_{β} - $P_SInt(f(A)) \subset f(\tau_{\gamma}$ - $P_SInt(A))$, for every subset A of X.

Proof. (1) \Rightarrow (2) Let V be any *β-P_S*-open set in Y. We have to show that $f^{-1}(V)$ is γ -P_S-open set in X. Let $x \in f^{-1}(V)$. Then $f(x) \in V$. By (1), there exists a γ -P_S-open set U of X containing x such that $f(U) \subseteq V$. Which implies that $x \in U \subseteq f^{-1}(V)$. Therefore, $f^{-1}(V)$ is γ - P_S -open set in X.

 $(2) \Rightarrow (3)$ Let F be any β -P_S-closed set of Y. Then $Y \backslash F$ is a β -P_S-open set of Y. By (2), $f^{-1}(Y \backslash F) = X \backslash f^{-1}(F)$ is γ - P_S -open set in X and hence $f^{-1}(F)$ is γ -*P_S*-closed set in X.

(3) \Rightarrow (4) Let A be any subset of X. Then $f(A) \subseteq \sigma_{\beta}$ -P_SCl(f(A)) and hence $A \subseteq f^{-1}(\sigma_{\beta}P_SCl(f(A)))$. Since $\sigma_{\beta}P_SCl(f(A))$ is $\beta-P_S$ -closed set in Y. Then by (3), we have $f^{-1}(\sigma_{\beta}P_SCl(f(A)))$ is γP_S -closed set in X. Therefore, τ_{γ} - $P_{S}Cl(A) \subseteq f^{-1}(\sigma_{\beta}$ - $P_{S}Cl(f(A)))$. Hence $f(\tau_{\gamma}$ - $P_{S}Cl(A)) \subseteq \sigma_{\beta}$ - $P_{S}Cl(f(A))$.

 $(4) \Rightarrow (5)$ Let B be any subset of Y. Then $f^{-1}(B)$ is a subset of X. By (4), we have $f(\tau_{\gamma} P_SCl(f^{-1}(B))) \subseteq \sigma_{\beta} P_SCl(f(f^{-1}(B))) = \sigma_{\beta} P_SCl(B)$. Hence τ_{γ} - $P_{S}Cl(f^{-1}(B)) \subseteq f^{-1}(\sigma_{\beta}$ - $P_{S}Cl(B)).$

 $(5) \Leftrightarrow (6)$ Let B be any subset of Y. Then apply (5) to $Y \setminus B$ we obtain τ_{γ} -P_SCl(f⁻¹(Y\B)) \subseteq f⁻¹(σ_{β} -P_SCl(Y\B)) \Leftrightarrow τ_{γ} -P_SCl(X\f⁻¹(B)) \subseteq $f^{-1}(Y \setminus \sigma_{\beta} \text{-} P_SInt(B)) \Leftrightarrow X \setminus \tau_{\gamma} \text{-} P_SInt(f^{-1}(B)) \subseteq X \setminus f^{-1}(\sigma_{\beta} \text{-} P_SInt(B)) \Leftrightarrow$ $f^{-1}(\sigma_{\beta}P_{S}Int(B)) \subseteq \tau_{\gamma}P_{S}Int(f^{-1}(B)).$ Therefore, $f^{-1}(\sigma_{\beta}P_{S}Int(B)) \subseteq \tau_{\gamma}P_{S}Int(B))$ $P_SInt(f^{-1}(B)).$

 \Box

 \Box

 $(6) \Rightarrow (7)$ Let A be any subset of X. Then $f(A)$ is a subset of Y. By (6), we have $f^{-1}(\sigma_{\beta}P_{S}Int(f(A))) \subseteq \tau_{\gamma}P_{S}Int(f^{-1}(f(A))) = \tau_{\gamma}P_{S}Int(A)$. Therefore, σ_{β} - $P_SInt(f(A)) \subseteq f(\tau_{\gamma}$ - $P_SInt(A)).$

 $(7) \Rightarrow (1)$ Let $x \in X$ and let V be any β -P_S-open set of Y containing $f(x)$. Then $x \in f^{-1}(V)$ and $f^{-1}(V)$ is a subset of X. By (7), we have σ_{β} - $P_SInt(f(f^{-1}(V))) \subseteq f(\tau_{\gamma}$ - $P_SInt(f^{-1}(V)))$. Then σ_{β} - $P_SInt(V) \subseteq f(\tau_{\gamma}$ - $P_SInt(f^{-1}(V))$. Since V is a β - P_S -open set. Then $V \subseteq f(\tau_\gamma \cdot P_SInt(f^{-1}(V)))$ implies that $f^{-1}(V) \subseteq \tau_{\gamma} \neg P_{S}Int(f^{-1}(V))$. Therefore, $f^{-1}(V)$ is $\gamma \neg P_{S} \neg P_{S}$ -open set in X which contains x and clearly $f(f^{-1}(V)) \subseteq V$. Hence f is (γ, β) -P_Sirresolute function. \Box

Theorem 4.2. Let $f: (X, \tau) \to (Y, \sigma)$ be any function. Then the following *statements are equivalent:*

- *1. f is* (γ, β) *-P_S*-continuous.
- 2. $f^{-1}(V)$ *is* γ - P_S -open set *in* X, for every β -open set V *in* Y.
- *3.* $f^{-1}(F)$ *is* γ - P_S -closed set *in* X, for every β -closed set F *in* Y.
- 4. $f(\tau_{\gamma}$ - $P_{S}Cl(A)) \subseteq \sigma_{\beta}$ - $Cl(f(A))$, for every subset A of X.
- *5.* σ_{β} -Int(f(A)) \subseteq f(τ_{γ} -P_SInt(A)), for every subset A of X.
- 6. $f^{-1}(\sigma_{\beta} \text{-} Int(B)) \subseteq \tau_{\gamma} \text{-} P_S Int(f^{-1}(B))$, for every subset B of Y.
- 7. τ_{γ} - $P_{S}Cl(f^{-1}(B)) \subseteq f^{-1}(\sigma_{\beta}$ - $Cl(B))$, for every subset B of Y.

Proof. Similar to Theorem 4.1 and hence it is ommited.

Theorem 4.3. *The following properties are equivalent for any function* $f: (X, \tau) \to (Y, \sigma)$:

- *1. f is* (γ, β) *-P_S-irresolute.*
- *2. For every* $x \in X$ *and for every* β - P_S -neighbourhood N of Y such that $f(x) \in N$, there exists a γ -P_S-neighbourhood M of X such that $x \in M$ *and* $f(M) \subseteq N$ *.*
- *3. The inverse image of every* $β$ - P_S -neighbourhood of $f(x)$ is $γ$ - P_S -neigh*bourhood of* $x \in X$ *.*

Proof. It is clear and hence it is omitted.

Lemma 4.4. Let $f: (X, \tau) \to (Y, \sigma)$ be a γ-continuous and β-open func*tion, then the following statements are true:*

1. If V is β -preopen set of Y, then $f^{-1}(V)$ is γ -preopen set in X.

2. If F is β -semiclosed set of Y, then $f^{-1}(F)$ is γ -semiclosed set in X.

Lemma 4.5. *If* $f : (X, \tau) \to (Y, \sigma)$ *is a* γ -continuous and β -open function *and V is* β -*P_S*-open set of *Y*, then $f^{-1}(V)$ *is* γ -*P_S*-open set in *X*.

Proof. Let V be a β - P_S -open set of Y, then V is a β -preopen set of Y and $V = \bigcup_{i \in I} F_i$ where F_i is β -semiclosed set in Y for each i. Then $f^{-1}(V)$ = $f^{-1}(\bigcup_{i\in I} F_i) = \bigcup_{i\in I} f^{-1}(F_i)$ where F_i is β -semiclosed set in Y for each i. Since f is a γ -continuous and β -open function. Then by Lemma 4.4 (1), $f^{-1}(V)$ is γ -preopen set of X and by Lemma 4.4 (2), $f^{-1}(F_i)$ is γ -semiclosed set of X for each *i*. Hence by Lemma 2.3, $f^{-1}(V)$ is γ -P_S-open set in X. □

Corollary 4.6. *If* $f : (X, \tau) \to (Y, \sigma)$ *is a* γ -continuous and β -open func*tion and F is* β -*P_S*-closed set of *Y*, then $f^{-1}(F)$ *is* γ -*P_S*-closed set in *X*.

Lemma 4.7. *If a function* $f: (X, \tau) \to (Y, \sigma)$ *is both* γ -continuous and $β$ -open, then *f* is $(γ, β)$ - P_S -irresolute.

Proof. The proof follows directly from Lemma 4.5 and Theorem 4.1.

Some other characterizations of (γ, β) -P_S-irresolute functions are mentioned in the following.

Theorem 4.8. Let $f: (X, \tau) \to (Y, \sigma)$ be any function. Then the following *properties are equivalent:*

- *1. f is* (γ, β) *-P_S-irresolute.*
- 2. τ_{γ} - $P_{S}Bd(f^{-1}(B)) \subseteq f^{-1}(\sigma_{\beta}$ - $P_{S}Bd(B))$, for each subset B of Y.
- *3.* $f(\tau_{\gamma}$ - $P_{S}Bd(A)) \subseteq \sigma_{\beta}$ - $P_{S}Bd(f(A))$, for each subset A of X.

Proof. (1) \Rightarrow (2). Let f be a (γ, β) -P_S-irresolute function and B be any subset of (Y, σ) . Then by Theorem 4.1 (2) and (5), we have τ_{γ} - $P_{S}Bd(f^{-1}(B)) = \tau_{\gamma}$ - $P_SCl(f^{-1}(B))\setminus \tau_{\gamma}$ - $P_SInt(f^{-1}(B)) \subseteq f^{-1}(\sigma_{\beta}$ - $P_SCl(B))\setminus \tau_{\gamma}$ - $P_SInt(f^{-1}(B)) \subseteq$ $f^{-1}(\sigma_{\beta} - P_SCl(B))\setminus \tau_{\gamma} - P_SInt(f^{-1}(\sigma_{\beta} - P_SInt(B))) = f^{-1}(\sigma_{\beta} - P_SCl(B))\setminus f^{-1}(\sigma_{\beta} - P_SCH(B)))$ $P_SInt(B)) = f^{-1}(\sigma_{\beta}P_SCl(B)\setminus \sigma_{\beta}P_SInt(B)) = f^{-1}(\sigma_{\beta}P_SBd(B)).$ Therefore, τ_{γ} - $P_{S}Bd(f^{-1}(B)) \subseteq f^{-1}(\sigma_{\beta}$ - $P_{S}Bd(B)).$

 $(2) \Rightarrow (3)$. Let A be any subset of X. Then $f(A)$ is a subset of Y. Then by (2), we have τ_{γ} - $P_{S}Bd(f^{-1}(f(A))) \subseteq f^{-1}(\sigma_{\beta}$ - $P_{S}Bd(f(A)))$ implies

□

that τ_{γ} -P_SBd(A) \subseteq $f^{-1}(\sigma_{\beta}$ -P_SBd(f(A))) and hence $f(\tau_{\gamma}$ -P_SBd(A)) $\subseteq \sigma_{\beta}$ - $P_{S}Bd(f(A))$. This completes the proof.

 $(3) \Rightarrow (1)$. Let E be any β -P_S-closed set in Y. Then $f^{-1}(E)$ is a subset of X. So by using part (3), we have $f(\tau_{\gamma}$ - $P_{S}Bd(f^{-1}(E))) \subseteq \sigma_{\beta}$ - $P_{S}Bd(f(f^{-1}(E)))$ = σ_{β} - $P_S B d(E)$ implies that $f(\tau_{\gamma}$ - $P_S B d(f^{-1}(E))) \subseteq \sigma_{\beta}$ - $P_S B d(E) \subseteq \sigma_{\beta}$ - $P_S C l(E)$ = E and hence $f(\tau_{\gamma}$ -P_SBd(f⁻¹(E))) \subseteq E. This implies that τ_{γ} -P_SBd(f⁻¹(E)) \subseteq $f^{-1}(E)$. Thus, by Lemma 2.6 (5), $f^{-1}(E)$ is γ - P_S -closed set in X. Consequently by Theorem 4.1, f is (γ, β) - P_S -irresolute function. П

Theorem 4.9. *Let* $f: (X, \tau) \to (Y, \sigma)$ *be any function. Then the following properties are equivalent:*

- *1. f is* (γ, β) *-P_S*-continuous.
- 2. For each subset A in X, $f(\tau_{\gamma}$ -P_SBd(A)) $\subseteq \sigma_{\beta}$ -Bd(f(A)).
- *3.* For each subset B in Y, τ_{γ} -P_SBd(f⁻¹(B)) $\subseteq f^{-1}(\sigma_{\beta}$ -Bd(B)).

Proof. The proof is similar to Theorem 4.8, and hence it is omitted. \Box

Theorem 4.10. Let $f: (X, \tau) \to (Y, \sigma)$ be any function. Then the follow*ing properties are equivalent:*

- *1. f is* (γ, β) *-P_S-irresolute.*
- 2. $f(\tau_{\gamma}$ -P_SD(A)) $\subseteq \sigma_{\beta}$ -P_SCl(f(A)), for each subset A of X.
- 3. τ_{γ} - $PSD(f^{-1}(B)) \subseteq f^{-1}(\sigma_{\beta}$ - $PSCl(B))$, for each subset B of Y.

Proof. (1) \Rightarrow (2). Let f be a (γ, β) - P_S -continuous function and A be any subset of X. Then by Theorem 4.1 (4), we have $f(\tau_{\gamma}P_{S}Cl(A)) \subseteq \sigma_{\beta}$ - $P_{\mathcal{S}}Cl(f(A))$. Then by Lemma 2.6 (6), we obtain $f(\tau_{\gamma}P_{\mathcal{S}}D(A)) \subseteq f(\tau_{\gamma}P_{\mathcal{S}}Cl(A))$ which implies that $f(\tau_{\gamma}$ - $P_{S}D(A)) \subseteq \sigma_{\beta}$ - $P_{S}Cl(f(A)).$

 $(2) \Rightarrow (3)$. Let B be any subset of Y. Then $f^{-1}(B)$ is a subset of X. Then by hypothesis, we get $f(\tau_{\gamma}$ - $PSD(f^{-1}(B))) \subseteq \sigma_{\beta}$ - $PSCl(f(f^{-1}(B))) = \sigma_{\beta}$ - $P_SCl(B)$ and hence τ_{γ} - $P_S D(f^{-1}(B)) \subseteq f^{-1}(\sigma_{\beta}$ - $P_S Cl(B))$. This completes the proof.

(3) \Rightarrow (1). Let F be any β -P_S-closed set in Y. Then by (3), we have τ_{γ} - $PSD(f^{-1}(F)) \subseteq f^{-1}(\sigma_{\beta}$ - $PSCl(F)) = f^{-1}(F)$ and hence τ_{γ} - $PSD(f^{-1}(F)) \subseteq$ $f^{-1}(F)$. So by Lemma 2.6 (7), we get $f^{-1}(F)$ is γ - P_S -closed set in X. Therefore, by Theorem 4.1, f is (γ, β) -P_S-irresolute function. 口

Theorem 4.11. Let $f: (X, \tau) \to (Y, \sigma)$ be any function. Then the follow*ing properties are equivalent:*

- *1. f is* (γ, β) *-P_S-continuous.*
- 2. $f(\tau_{\gamma}$ -P_SD(A)) $\subseteq \sigma_{\beta}$ -Cl(f(A)), for each subset A of X.
- 3. τ_{γ} - $P_{S}D(f^{-1}(B)) \subseteq f^{-1}(\sigma_{\beta}$ -Cl(B)), for each subset B of Y.

Proof. The proof is similar to Theorem 4.10, and hence it is omitted. \Box

Proposition 4.12. *If a function* $f : (X, \tau) \to (Y, \sigma)$ *is* (γ, β) *-P_S*-*irresolute*, *then for each* $x \in X$ *and each* β - P_S -open set V of Y containing $f(x)$, there exists *a* γ -semiclosed set F in X such that $x \in F$ and $f(F) \subseteq V$. Furthermore, if f is (γ, β)*-precontinuous, then the converse also holds.*

Proof. Suppose f be a (γ, β) - P_S -irresolute function and let V be any β -P_S-open set of Y such that $f(x) \in V$, for each $x \in X$. Then there exists a γ -P_S-open set U of X such that $x \in U$ and $f(U) \subseteq V$. Since U is γ -P_S-open set. Then for each $x \in U$, there exists a γ -semiclosed set F of X such that $x \in F \subseteq U$. Therefore, we have $f(F) \subseteq V$.

Now suppose that f is (γ, β) -precontinuous function. Let V be any β -P_Sopen set of Y. We have to show that $f^{-1}(V)$ is γ - P_S -open set in X. Since every β -P_S-open set is β -preopen, then $f^{-1}(V)$ is γ -preopen set in X. Let $x \in f^{-1}(V)$. Then $f(x) \in V$. By hypothesis, there exists a γ -semiclosed set F of X containing x such that $f(F) \subseteq V$. Which implies that $x \in F \subseteq f^{-1}(V)$. Therefore, by Definition 2.2, $f^{-1}(V)$ is γ - P_S -open set in X. Hence by Theorem 4.1, f is (γ, β) -P_S-irresolute. This completes the proof. \Box

5. Properties

Theorem 5.1. Let (X, τ) be γ -semi T_1 space and (Y, σ) be β -semi T_1 space. *A* function $f: (X, \tau) \to (Y, \sigma)$ *is* (γ, β) *-P_S*-irresolute if and only if f is (γ, β) *precontinuous.*

Proof. This is an immediate consequence of Theorem 2.9 (2).

Theorem 5.2. Let (Y, σ) be β -locally indiscrete space. A function $f: (X, \tau) \to (Y, \sigma)$ *is* (γ, β) *-P_S*-irresolute if and only if f *is* (γ, β) *-P_S*-continuous.

Proof. Follows directly from Theorem 2.9 (1).

Theorem 5.3. Let (Y, σ) be β -regular space. A function $f : (X, \tau) \rightarrow$ (Y, σ) *is* γ - P_S -continuous if and only if f is (γ, β) - P_S -continuous.

□

Proof. Follows directly from Theorem 2.9 (5).

Theorem 5.4. Let $f: (X, \tau) \to (Y, \sigma)$ be a function. If (Y, σ) is β *hyperconnected space, then* f *is* (γ, β) *-P_S-irresolute.*

Proof. This is an immediate consequence of Theorem 2.9 (3).

Proposition 5.5. *If a function* $f: (X, \tau) \to (Y, \sigma)$ *is* (γ, β) *-P_S-irresolute (resp.* (γ, β) *-P_S-continuous), then the following properties are true:*

- *1. for each* $x \in X$ *and each* β - P_S -open (resp. β -open) set V of Y such that $f(x) \in V$, there exists a γ -preopen set U of X such that $x \in U$ and $f(U) \subseteq V$.
- *2. for each* $x \in X$ *and each* β -regular-open set V of Y containing $f(x)$, there *exists a* γ - P_S -open set U of X containing x such that $f(U) \subseteq V$.

Proof. 1) Since every γ -*P_S*-open set of X is γ -preopen, then by using this in Definition 3.1 we get the proof.

2) Since every β-regular-open set of Y is both β-open and β - P_S -open, then the proof follows directly from Definition 3.1. \Box

Proposition 5.6. *A function* $f: (X, \tau) \to (Y, \sigma)$ *is* (γ, β) *-P_S-irresolute (resp.* (γ, β) *-P_S-continuous), if the following properties are true:*

- *1. for each* $x \in X$ *and each* β -preopen set V of Y such that $f(x) \in V$, there *exists a* γ - P_S -open set U of X such that $x \in U$ and $f(U) \subseteq V$.
- *2. for each* $x \in X$ *and each* β*-P_S*-open (resp. β-open) set V of Y containing $f(x)$, there exists a γ -regular-open set U of X containing x such that $f(U) \subseteq V$.

Proof. 1) The proof is clear since every β -*P_S*-open (resp. β -open) set of Y is β -preopen.

2) Obvious since every γ -regular-open set of X is γ - P_S -open and hence it is omitted. □

Theorem 5.7. Let $f: (X, \tau) \to (Y, \sigma)$ be any function, then: $X \setminus \tau_{\gamma}$ $P_S C(f) = \bigcup \{ \tau_\gamma \cdot P_S B d(f^{-1}(V)) : V \text{ is a } \beta \cdot P_S \text{-open in } (Y, \sigma) \text{ such that } f(x) \in V$ *for each* $x \in X$ *}, where* τ_{γ} - $P_{S}C(f)$ *denotes the set of points at which* f *is* (γ, β) *-P_S*-irresolute function.

 \Box

(γ, β) -P_S-IRRESOLUTE AND... 89

Proof. Let $x \in \tau_{\gamma}$ - $P_{S}C(f)$. Then there exists β - P_{S} -open set V in (Y, σ) containing $f(x)$ such that $f(U) \not\subseteq V$ for every γ -P_S-open set U of (X, τ) containing x. Hence $U \cap X \backslash f^{-1}(V) \neq \phi$ for every γ -P_S-open set U of (X, τ) containing x. Therefore, $x \in \tau_{\gamma}$ - $P_{S}Cl(X \backslash f^{-1}(V))$. Then $x \in f^{-1}(V) \cap \tau_{\gamma}$ - $P_SCl(X \backslash f^{-1}(V)) \subseteq \tau_{\gamma} \cdot P_SCl(f^{-1}(V)) \cap \tau_{\gamma} \cdot P_SCl(X \backslash f^{-1}(V)) = \tau_{\gamma} \cdot P_SBd(f^{-1}(V)).$ Then $X\setminus \tau_{\gamma}$ - $P_{S}C(f) \subseteq \cup \{\tau_{\gamma}$ - $P_{S}Bd(f^{-1}(V)) : V$ is β - P_{S} -open in (Y, σ) such that $f(x) \in V$ for each $x \in X$.

Conversely, let $x \notin X \setminus \tau_{\gamma} P_S C(f)$. Then for each β - P_S -open set V in (Y, σ) containing $f(x)$, $f^{-1}(V)$ is γ -P_S-open set of (X, τ) containing x. So $x \in \tau_{\gamma}$ - $P_SInt(f^{-1}(V))$ and hence $x \notin \tau_{\gamma}$ - $P_SBd(f^{-1}(V))$ for every β - P_S -open set V in (Y, σ) containing $f(x)$. Therefore, $X\setminus \tau_{\gamma} P_S C(f) \supseteq \bigcup \{\tau_{\gamma} P_S B d(f^{-1}(V)) : V \text{ is }$ β -P_S-open in (Y, σ) such that $f(x) \in V$ for each $x \in X$. \Box

The proof of the following theorem is similar to Theorem 5.7 and is thus omitted.

Theorem 5.8. Let $f: (X, \tau) \to (Y, \sigma)$ be any function, then: $X \setminus \tau_{\gamma}$ $P_S C(f) = \bigcup \{ \tau_{\gamma} \cdot P_S B d(f^{-1}(V)) : V \text{ is a } \beta \text{-open in } (Y, \sigma) \text{ such that } f(x) \in V$ *for each* $x \in X$ *}, where* τ_{γ} - $P_{S}C(f)$ *denotes the set of points at which* f *is* (γ, β) -P_S-continuous function.

Now, we will define more types of γ - P_S - functions by using γ - P_S -open set which are defined as follows.

Definition 5.9. A function $f: (X, \tau) \to (Y, \sigma)$ is called (γ, β) -P_S-open (resp. $(\gamma, \beta P_S)$ -open) if for every γ - P_S -open (resp. γ -open) set V of X, $f(V)$ is β - P_S -open set in Y.

Definition 5.10. A function $f: (X, \tau) \to (Y, \sigma)$ is called (γ, β) -*P_S*-closed (resp. $(\gamma, \beta P_S)$ -open) if for every γ - P_S -closed (γ -closed) set F of X, $f(F)$ is β -P_S-closed set in Y.

Theorem 5.11. A function $f: (X, \tau) \to (Y, \sigma)$ is (γ, β) *-P_S-open if and only if for every* $x \in X$ *and for every* γ - P_S -neighbourhood N of x, there exists *a* β - P_S -neighbourhood M of Y such that $f(x) \in M$ and $M \subseteq f(N)$.

Proof. Obvious.

Theorem 5.12. *The following statements are equivalent for a function* $f: (X, \tau) \to (Y, \sigma)$:

1. f is (γ, β) *-P_S-open.*

2.
$$
f(\tau_{\gamma} \text{-} P_S Int(A)) \subseteq \sigma_{\beta} \text{-} P_S Int(f(A)),
$$
 for every $A \subseteq X$.

3.
$$
\tau_{\gamma}
$$
- $P_SInt(f^{-1}(B)) \subseteq f^{-1}(\sigma_{\beta}$ - $P_SInt(B))$, for every $B \subseteq Y$.

Proof. The proof is similar to Theorem 4.1.

Theorem 5.13. *The following properties of* f *are equivalent for a function* $f: (X, \tau) \to (Y, \sigma)$:

- *1. f is* (γ, β) *-P_S-closed.*
- 2. $f^{-1}(\sigma_{\beta} \text{-} P_SCl(B)) \subseteq \tau_{\gamma} \text{-} P_SCl(f^{-1}(B)),$ for every $B \subseteq Y$ *.*
- *3.* σ_{β} - $P_{S}Cl(f(A)) \subseteq f(\tau_{\gamma}$ - $P_{S}Cl(A))$ *, for every* $A \subseteq X$ *.*
- *4.* σ_{β} - $P_{S}D(f(A)) \subseteq f(\tau_{\gamma}$ - $P_{S}Cl(A))$, for every $A \subseteq X$.

Proof. The proof is similar to Theorem 4.1.

Definition 5.14. Let $id: \tau \to P(X)$ be the identity operation. If f is (id, β) -P_S-closed, then for every γ -P_S-closed set F of X, $f(F)$ is β -P_S-closed set in Y .

Theorem 5.15. If a function f is bijective and f^{-1} : $(Y, \sigma) \rightarrow (X, \tau)$ is (id, β) *-P_S*-irresolute, then f is (id, β) *-P_S*-closed.

Proof. Follows from Definition 5.14 and Definition 3.1.

Theorem 5.16. *Suppose that a function* $f: (X, \tau) \to (Y, \sigma)$ *is both* (γ, β) *-* P_S -irresolute and (γ, β) - P_S -closed, then:

- *1. For every* γ -*P_S-g-closed set* A *of* (X, τ) *, the image* $f(A)$ *is* β -*P_S-g-closed in* (Y, σ) *.*
- 2. For every β -P_S-g-closed set B of (Y, σ) the inverse set $f^{-1}(B)$ is γ -P_S-g*closed in* (X, τ) *.*

Proof. (1) Let G be any β -P_S-open set in (Y, σ) such that $f(A) \subseteq G$. Since f is (γ, β) -P_S-irresolute function, then by Theorem 4.1 (2), $f^{-1}(G)$ is γ -P_S-open set in (X, τ) . Since A is γ -P_S-g-closed and $A \subseteq f^{-1}(G)$, we have τ_{γ} - $P_SCl(A) \subseteq f^{-1}(G)$, and hence $f(\tau_{\gamma} P_SCl(A)) \subseteq G$. Since $\tau_{\gamma} P_SCl(A)$ is γP_S closed set and f is (γ, β) -P_S-closed, then $f(\tau_{\gamma}$ -P_SCl(A)) is β -P_S-closed set in Y. Therefore, σ_{β} -P_SCl(f(A)) $\subseteq \sigma_{\beta}$ -P_SCl(f(τ_{γ} -P_SCl(A))) = f(τ_{γ} -P_SCl(A)) $\subseteq G$. This implies that $f(A)$ is β -P_S-g-closed in (Y, σ) .

(2) Let H be any γ -P_S-open set of (X, τ) such that $f^{-1}(B) \subseteq H$. Let $C = \tau_{\gamma} P_S Cl(f^{-1}(B)) \cap (X \backslash H)$, then C is γP_S -closed set in (X, τ) . Since f is

 \Box

 \Box

(γ, β) -P_S-IRRESOLUTE AND... 91

 (γ, β) -P_S-closed function. Then $f(C)$ is β -P_S-closed in (Y, σ) . Since f is (γ, β) -P_S-irresolute function, then by using Theorem 4.1 (4), we have $f(C) = f(\tau_{\gamma}$ - $P_{S}Cl(f^{-1}(B)) \cap f(X \backslash H) \subseteq \sigma_{\beta} \neg P_{S}Cl(B) \cap f(X \backslash H) \subseteq \sigma_{\beta} \neg P_{S}Cl(B) \cap (Y \backslash B).$ This implies that $f(C) = \phi$, and hence $C = \phi$. So τ_{γ} -P_SCl(f⁻¹(B)) $\subseteq H$. Therefore, $f^{-1}(B)$ is γ -P_S-g-closed in (X, τ) . П

Theorem 5.17. *Let* $f: (X, \tau) \to (Y, \sigma)$ *be an injective,* (γ, β) *-P_S*-irresolute *and* (γ, β) *-P_S*-closed function. If (Y, σ) is β *-P_S</sub>*- $T_{\frac{1}{2}}$ *, then* (X, τ) is γ -*P_S*- $T_{\frac{1}{2}}$ *.*

Proof. Let G be any γ - P_S -g-closed set of (X, τ) . Since f is (γ, β) - P_S irresolute and (γ, β) -P_S-closed function. Then by Theorem 5.16 (1), $f(G)$ is β-P_S-g-closed in $(Y, σ)$. Since $(Y, σ)$ is β-P_S-T₁, then $f(G)$ is β-P_S-closed in Y. Again, since f is (γ, β) -P_S-irresolute, then by Theorem 4.1, $f^{-1}(f(G))$ is γ -P_S-closed in X. Hence G is γ -P_S-closed in X since f is injective. Therefore, \Box a space (X, τ) is γ - P_S - $T_{\frac{1}{2}}$.

Theorem 5.18. Let a function $f : (X, \tau) \to (Y, \sigma)$ be a surjective, (γ, β) - P_S -irresolute and (γ, β) - P_S -closed. If (X, τ) is γ - P_S - $T_{\frac{1}{2}}$, then (Y, σ) is β - P_S - $T_{\frac{1}{2}}$.

Proof. Let H be a β -P_S-g-closed set of (Y, σ) . Since a function f is (γ, β) -P_S-irresolute and (γ, β) -P_S-closed. Then by Theorem 5.16 (2), $f^{-1}(H)$ is γ -P_Sg-closed in (X, τ) . Since (X, τ) is γ - P_S - $T_{\frac{1}{2}}$, then we have, $f^{-1}(H)$ is γ - P_S -closed set in X. Again, since f is (γ, β) -P_S-closed function, then $f(f^{-1}(H))$ is β -P_Sclosed in Y. Therefore, H is β -P_S-closed in Y since f is surjective. Hence (Y, σ) is β - P_S - $T_{\frac{1}{2}}$ space. \Box

Remark 5.19. Every β -P_S-open (resp., β -P_S-closed) function is $(\gamma, \beta P_S)$ open (resp., $(\gamma, \beta P_S)$ -closed), but the converse is not true as it is shown in the following example.

Example 5.20. Let $X = \{a, b, c\}$ with the topology $\tau = \{\phi, \{c\}, \{b, c\}, X\}$ and $Y = \{1, 2, 3\}$ with the topology $\sigma = \{\phi, Y, \{2\}, \{1, 3\}\}\$. Define operations β on σ by $β(B) = B$ for all $B \in σ$ and $γ$ on $τ$ as follows: For every $A \in τ$

$$
\gamma(A) = \begin{cases} A & \text{if } A = \{c\} \\ X & \text{otherwise} \end{cases}
$$

Then $\tau_{\gamma} = \{\phi, X, \{c\}\}\$ and hence τ_{γ} - $P_{S}O(X) = \{\phi, X\}.$ Let $f: (X, \tau) \to (Y, \sigma)$ be a function defined as follows:

$$
f(x) = \begin{cases} 3 & \text{if } x = a \\ 1 & \text{if } x = b \\ 2 & \text{if } x = c \end{cases}
$$

So f is $(\gamma, \beta P_S)$ -open (resp., $(\gamma, \beta P_S)$ -closed) function, but f is not β - P_S -open (resp., β -P_S-closed) since $\{c\} \in \tau$, but $f(\{b, c\}) = \{1, 2\}$ is not β -P_S-open set in (Y, σ) . Again since $\{a\}$ is closed set in (X, τ) , but $f(\{a\}) = \{3\}$ is not β -P_S-closed set in (Y, σ) .

Theorem 5.21. *Let* (X, τ) *be* γ -semi T_1 *space and* (Y, σ) *be* β -semi T_1 *space.* A function $f: (X, \tau) \to (Y, \sigma)$ *is* (γ, β) *-P_S*-closed *if* and only *if* f *is* (γ, β) -preclosed.

Proof. This is an immediate consequence of Theorem 2.9 (2).

Theorem 5.22. Let (X, τ) be γ -locally indiscrete space and $f: (X, \tau) \rightarrow$ (Y, σ) be a function, then the following properties of f are equivalent:

- *1.* (γ, β) *-P_S-open.*
- 2. (γ, β) *-P_S-closed.*
- *3.* $(\gamma, \beta P_s)$ -closed.
- *4.* $(\gamma, \beta P_s)$ -open.

Proof. Follows directly from Theorem 2.9 (1).

Theorem 5.23. Let (X, τ) be γ -regular space. A function $f: (X, \tau) \to$ (Y, σ) *is* $(\gamma, \beta P_S)$ -open (resp., $(\gamma, \beta P_S)$ -closed) if and only if f is β - P_S -open $(resp., \beta-P_S-closed).$

Proof. This is an immediate consequnce of Theorem 2.9 (5).

Theorem 5.24. Let $f: (X, \tau) \to (Y, \sigma)$ be a surjective function. If (X, τ) *is* γ -hyperconnected space, then f *is* (γ , β)-P_S-open.

Proof. This is an immediate consequence of Theorem 2.9 (3).

Theorem 5.25. A function $f: (X, \tau) \to (Y, \sigma)$ is (γ, β) -P_S-closed if and *only if for each subset* S *of* Y *and each* γ - P_S -open set O in X *containing* $f^{-1}(S)$ *, there exists a* β - P_S -open set R in Y containing S such that $f^{-1}(R) \subseteq O$.

Proof. Suppose that f is (γ, β) -P_S-closed function and let O be a γ -P_Sopen set in X containing $f^{-1}(S)$, where S is any subset in Y. Then $f(X\setminus O)$ is β-P_S-open set in Y. If we put $R = Y\f(X\O)$. Then R is β-P_S-closed set in Y such that $S \subseteq R$ and $f^{-1}(R) \subseteq O$.

 \Box

 \Box

 \Box

Conversely, let F be a γ -P_S-closed set in X. Let $S = Y \setminus f(F) \subseteq Y$. Then $f^{-1}(S) \subseteq X \backslash F$ and $X \backslash F$ is γ - P_S -open set in X. By hypothesis, there exists a β -P_S-open set R in Y such that $S = Y \setminus f(F) \subseteq R$ and $f^{-1}(R) \subseteq X \setminus F$. For $f^{-1}(R) \subseteq X \backslash F$ implies $R \subseteq f(X \backslash F) \subseteq Y \backslash f(F)$. Hence $R = Y \backslash f(F)$. Since R is β -P_S-open set in Y. Then $f(F)$ is β -P_S-closed set in Y. Therefore, f is \Box (γ, β) -P_S-closed function.

Theorem 5.26. A function $f: (X, \tau) \to (Y, \sigma)$ is $(\gamma, \beta P_S)$ -closed if and *only if for each subset* S *of* Y *and each* γ -open set O *in* X *containing* $f^{-1}(S)$ *, there exists a* β - P_S -open set R in Y containing S such that $f^{-1}(R) \subseteq O$.

Proof. The proof is similar to Theorem 5.25.

Definition 5.27. A function $f: (X, \tau) \to (Y, \sigma)$ is said to be (γ, β) -P_S-homeomorphism, if f is bijective, (γ, β) -P_S-irresolute and f^{-1} is (γ, β) -P_Sirresolute.

Theorem 5.28. *For a bijective function* $f : (X, \tau) \to (Y, \sigma)$ *. The following properties of* f *are equivalent:*

- *1.* f^{-1} *is* (γ, β) *-P_S*-*irresolute.*
- *2. f is* (γ, β) *-P_S-open.*
- *3. f is* (γ, β) *-P_S-closed.*

Proof. Obvious.

Theorem 5.29. *The following conditions of* f *are equivalent for a bijective function* $f: (X, \tau) \to (Y, \sigma)$ *:*

- *1. f is* (γ, β) *-P_S*-homeomorphism.
- 2. f *is* (γ, β) -P_S-irresolute and (γ, β) -P_S-open.
- *3.* f is (γ, β) - P_S -irresolute and (γ, β) - P_S -closed.
- 4. $f(\tau_{\gamma}$ -P_SCl(A)) = σ_{β} -P_SCl(f(A)) for each subset A of X.

Proof. Straightforward.

Proposition 5.30. *Assume that a function* $f : (X, \tau) \to (Y, \sigma)$ *is a* (γ, β) *-* P_S -homeomorphism. If (X, τ) is γ - P_S - $T_{\frac{1}{2}}$, then (Y, σ) is β - P_S - $T_{\frac{1}{2}}$.

口

 \Box

Proof. Let $\{y\}$ be any singleton set of (Y, σ) . Then there exists an element x of X such that $y = f(x)$. So by hypothesis and Theorem 2.9 (4), we have $\{x\}$ is γ -P_S-closed or γ -P_S-open set in X. By using Theorem 4.1, $\{y\}$ is β -P_S-closed or β -P_S-open set. Then by Theorem 2.9 (4), (Y, σ) is β -P_S-T₁ space. \Box

In the end of this section, we shall obtain some conditions under which the composition of two functions is (γ, β) -P_S-irresolute and (γ, β) -P_S-continuous.

Theorem 5.31. Let α be an operation on the topological space (Z, ρ) . Let $f: (X, \tau) \to (Y, \sigma)$ and $g: (Y, \sigma) \to (Z, \rho)$ be functions. Then the composition *function* $g \circ f : (X, \tau) \to (Z, \rho)$ *is* (γ, α) *-P_S*-continuous if f and g satisfy one of *the following conditions:*

1. f is (γ, β) -P_S-irresolute and g is (β, α) -P_S-continuous.

2. f *is* (γ, β) - P_S -irresolute and g *is* β - P_S -continuous.

Proof. (1) Let V be an α -open subset of (Z, ρ) . Since g is (β, α) - P_{S} continuous, then $g^{-1}(V)$ is β - P_S -open in (Y, σ) . Since f is (γ, β) - P_S -irresolute, then by Theorem 4.1, $(g \circ f)^{-1}(V) = f^{-1}(g^{-1}(V))$ is γ -P_S-open in X. Therefore, $g \circ f$ is (γ, α) - P_S -continuous.

(2) The proof follows directly from the part (1) since every β - P_S -continuous П is (β, α) - P_S -continuous.

Theorem 5.32. Let α be an operation on the topological space (Z, ρ) . If *the functions* $f: (X, \tau) \to (Y, \sigma)$ *is* (γ, β) *-P_S*-irresolute and $g: (Y, \sigma) \to (Z, \rho)$ *is* (β, α) -P_S-irresolute. Then $g \circ f : (X, \tau) \to (Z, \rho)$ *is* (γ, α) -P_S-irresolute.

Proof. It is clear.

Theorem 5.33. Let $f: (X, \tau) \to (Y, \sigma)$ and $g: (Y, \sigma) \to (Z, \rho)$ be func*tions.* Then the composition function $g \circ f : (X, \tau) \to (Z, \rho)$ is γ -P_S-continuous *if* f *and* g *satisfy one of the following conditions:*

- *1. f is* (γ , β)*-P_S*-irresolute and *g is* β -*P_S*-continuous.
- *2.* f *is* (γ, β) *-P_S-continuous and g is* β -continuous.

Proof. The proof is similar to Theorem 5.31.

Proposition 5.34. *Let* $f: (X, \tau) \to (Y, \sigma)$ *and* $g: (Y, \sigma) \to (Z, \rho)$ *be any functions and* α *be an operation on* ρ*. Then the following are holds:*

1. If f is β-open (β-closed) and g is $(β, α)$ - P_S -open ($(β, α)$ - P_S -closed), then $g \circ f : (X, \tau) \to (Z, \rho)$ is α -P_S-open (α -P_S-closed).

 \Box

- *2.* If f is (γ, β) -P_S-open $((\gamma, \beta)$ -P_S-closed) and g is (β, α) -P_S-open $((\beta, \alpha)$ - P_S -closed), then $q \circ f : (X, \tau) \to (Z, \rho)$ is (γ, α) - P_S -open $((\gamma, \alpha)$ - P_S -closed).
- *3.* If f is $(\gamma, \beta P_S)$ -open $((\gamma, \beta P_S)$ -closed) and g is (β, α) -P_S-open $((\beta, \alpha)$ -P_S*closed), then* $g \circ f : (X, \tau) \to (Z, \rho)$ *is* $(\gamma, \alpha P_S)$ -open $((\gamma, \alpha P_S)$ -closed).

Proof. It is clear.

Proposition 5.35. *If* $f : (X, \tau) \to (Y, \sigma)$ *is a function, g:* $(Y, \sigma) \to (Z, \rho)$ *is* (β, α)-P_S-open and injective, and $g \circ f : (X, \tau) \to (Z, \rho)$ *is* (γ, α)-P_S-irresolute. *Then* f *is* (γ, β) *-P_S-irresolute.*

Proof. Let V be an β -P_S-open subset of Y. Since g is (β, α) -P_S-open, $g(V)$ is α -P_S-open subset of Z. Since $q \circ f$ is (γ, α) -P_S-irresolute and q is injective, then $f^{-1}(V) = f^{-1}(g^{-1}(g(V)) = (g \circ f)(g(V))$ is γ -P_S-open in X, which proves that f is (γ, β) -P_S-irresolute. 囗

Proposition 5.36. Let $f: (X, \tau) \to (Y, \sigma)$ and $g: (Y, \sigma) \to (Z, \rho)$ be any *functions and* α *be an operation on* ρ*. Then the following are holds:*

- *1.* If f is (γ, β) -P_S-open and surjective, and $g \circ f : (X, \tau) \to (Z, \rho)$ is (γ, α) - P_S -irresolute, then g is (γ, β) - P_S -irresolute.
- *2.* If f is (γ, β) -P_S-irresolute and surjectiv, and $g \circ f : (X, \tau) \to (Z, \rho)$ is (γ, α) -P_S-open, then g is (β, α) -P_S-open.

Proof. Similar to Proposition 5.35.

References

- [1] B.A. Asaad, N. Ahmad and Z. Omar, γ -Regular-open sets and γ extremally disconnected spaces, Mathematical Theory and Modeling, 3 12 (2013), 132-141.
- [2] B.A. Asaad, N. Ahmad and Z. Omar, γ - P_S -Open sets in topological spaces, Proceedings of the 1^{st} Innovation and Analytics Conference and Exhibition, UUM Press, Sintok, (2013), 75-80.
- [3] B.A. Asaad, N. Ahmad and Z. Omar, γ - P_S -Functions in topological spaces, International Journal of Mathematical Analysis, 8 6 (2014), 285-300. DOI: http://dx.doi.org/10.12988/ijma.2014.4121

 \Box

- [4] B.A. Asaad, N. Ahmad and Z. Omar, γ - P_S -Generalized Closed Sets and γ - P_S - $T_{\frac{1}{2}}$ Spaces, International Journal of Pure and Applied Mathematics, 93 2 (2014), 243-260. DOI: http://dx.doi.org/10.12732/ijpam.v93i2.9
- [5] C.K. Basu, B.M.U. Afsan, and M.K. Ghosh, A class of functions and separation axioms with respect to an operation, Hacettepe Journal of Mathematics and Statistics, **38** 2 (2009), 103-118.
- [6] C. Carpintero, N. Rajesh and E. Rosas, Somewhat (γ, β) -semicontinuous functions, Bol. Soc. Paran. Mat., 30 1 (2012), 45-52. DOI: http://dx.doi.org/10.5269/bspm.v30i1.13015
- [7] S. Kasahara, Operation compact spaces, Math. Japonica, 24 1 (1979), 97- 105.
- [8] G.S.S. Krishnan and K. Balachandran, On a class of γ-preopen sets in a topological space, East Asian Math. J., $22 \frac{2}{12006}$, 131-149.
- [9] G.S.S. Krishnan and K. Balachandran, On γ-semiopen sets in topological spaces, Bull. Cal. Math. Soc., 98 6 (2006), 517-530.
- [10] H. Ogata, Operation on topological spaces and associated topology, Math. Japonica, 36 1 (1991), 175-184.