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ABSTRACT 

The emergent applications of complete graph in diverse domains have invited numerous 
works in this subject matter. Studies related to the decomposition of complete graph such 

as one-factor, several 𝑛-gons and Cartesian product have been solved. Yet, the 
decomposition of complete graph into distinct circuits still has not been done. Thus, this 
paper aims to investigate the structure of complete graph, and in particular, the 
decomposing of complete graph of length six. The decomposition algorithm will be 
presented to enumerate distinct circuits of length six. Along this process, the adjacency 
matrices will be used to clarify distinct structures of circuits in a complete graph of length 
six.  
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1. INTRODUCTION 

We shall follow the standard notations and definitions of graph. A complete graph with 𝑛 vertices 

(𝐾𝑛) is a simple graph whose vertices are pairwise adjacent. A circuit with 𝑛 vertices is a closed 

walk which starts and ends at the same vertex. We define a complete graph decomposition as 

partitioning the edge set of the complete graph into other graphs or subgraphs (Rao, 2006).  

 

The complete graph decomposition into cycles (Alspach and Gavlas, 2001; Sajna, 2002), one-

factors (Kaski and Ostergard, 2009), and Cartesian product (Fu et al., 2004) have been carried out. 

However, to our knowledge, the decomposition of complete graph with 𝑛 vertices into distinct 

circuits with 𝑛 vertices has remained unsolved.  

 

Thus, in this paper, we aim to decompose a complete graph 𝐾6 into distinct circuits of length six. By 

the graph 𝐾6 we mean a finite, connected and undirected graph with six vertices without loops or 

multiples edges.  

 
 

2. PRELIMINARY DEFINITIONS AND RESULTS 

In this section, we provide some definitions which will be used in our algorithm development.  



 

Definition 1. The adjacency matrix for a graph with 𝑛 vertices is a binary 𝑛 × 𝑛 matrix whose (𝑖, 𝑗) 

entry is 1 if the 𝑖𝑡ℎ vertex and 𝑗𝑡ℎ vertex are connected, and 0 if they are not. 

Definition 2. Let M is a 𝑚 × 𝑛 matrix, then a transpose matrix of M denoted by M
𝑇
 is an 𝑛 × 𝑚 

matrix. 

Definition 3. Let 𝐶1
∗ and 𝐶2

∗ be two circuits of length 𝑛. If the direction of 𝐶1
∗ is opposite to the 

direction of 𝐶2
∗, then 𝐶1

∗ is the mirror image of 𝐶2
∗. 

Definition 4. Let (
1

1𝑓
  

2
2𝑓

 
…
… 

6
6𝑓

) denotes the transposition of vertices set {1,2, … ,6} of 𝐾6, which 

maps 1 ⟼ 1𝑓, 2 ⟼ 2𝑓, …, 6 ⟼ 6𝑓, for 𝑛 ∈ ℤ+ and 1𝑓, 2𝑓, …, 6𝑓 be the images. 

Definition 5. An initial set is a set of vertices of 𝐾𝑛 that is used to develop the distinct circuits. 

Definition 6. A first wing shows the direction from vertex 1 to other chosen vertices in an 

increasing order. 

Definition 7. A second wing shows the direction for the remaining vertices from first wing in an 

increasing order. 

Definition 8. Suppose 𝑥𝑖, 𝑥𝑖+1, … , 𝑥𝑛 are the vertices of 𝐾𝑛 where 𝑖 = 1. Then, the set of vertices 

{𝑥𝑖, 𝑥𝑖+1, … , 𝑥𝑛

2
} ∪ {𝑥𝑛+2

2

, 𝑥𝑛+4

2

, … , 𝑥𝑛} = {𝑥𝑖, 𝑥𝑖+1, … , 𝑥𝑛

2

, 𝑥𝑛+2

2

, 𝑥𝑛+4

2

, … , 𝑥𝑛} such that {𝑥𝑖, 𝑥𝑖+1, … , 𝑥𝑛

2
} ∈ first 

wing, and {𝑥𝑛+2

2

, 𝑥𝑛+4

2

, … , 𝑥𝑛} ∈ second wing. 

Definition 9. The first endpoints include all vertices that follow the first wing. 

Definition 10. The second endpoints include all vertices that follow the second wing.  

Definition 11. An endpoint (𝑥𝑖, 𝑥𝑗) is a set of ordered pairs of vertices 𝑥𝑖 and 𝑥𝑗 such that 𝑥𝑖 ∈ first 

endpoint and 𝑥𝑗 ∈ second endpoint, where 𝑖, 𝑗 ∈ ℤ+.  

Definition 12. The union of any endpoints (𝑥𝑖, 𝑥𝑗) ∪ (𝑥𝑚, 𝑥𝑛) ∪ … (𝑥𝑝, 𝑥𝑞) = (𝑥𝑖, 𝑥𝑗, 𝑥𝑚, 𝑥𝑛, … , 𝑥𝑝, 𝑥𝑞) 

where 𝑖, 𝑗, 𝑚, 𝑛, 𝑝, 𝑞 ∈ ℤ+. 

 

Now, we would like to investigate the structure of 𝐾6 and present 𝐾6 decomposition algorithm of 

length six.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. A complete graph 𝐾6. 

 



Suppose we have 𝐾6 as shown in Figure 1. We can see several circuits of length six that can be 

decomposed from 𝐾6 as presented in Figure 2. At this stage, one question may arise: how many 

distinct circuits of length six exist for 𝐾6 decomposition? Thus, Section 3 will focus on algorithm 

development for 𝐾6 decomposition into circuits of length six.  
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Figure 2. Several circuits from 𝐾6 
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3. 𝑲𝟔 DECOMPOSITION INTO CIRCUITS 

In this section, we provide the algorithm to decompose 𝐾6 into distinct circuits of length six. The 

steps involved are discussed below.  

 

Step 1: 

We first find the initial sets. For 𝐾6, six initial sets are needed. Let {1,2,3,4,5,6} be the set of vertices 

of 𝐾6. We denote 𝑇1 as the first initial set of 𝐾6. We get the initial set by taking the first three 

vertices in the set which are 1, 2, and 3,  for the first wing. Next, we take the remaining vertices 

which are 4, 5, and 6 for the second wing. The single arrow and the double arrow represent the first 

and second wing respectively.  

 

 

 

 

To generate 𝑇2, we take the odd vertices in the set which are 1, 3, and 5 for the first wing. Next, we 

take the even vertices in the set which are 2, 4, and 6 for the second wing.  

 

 

 

 

 

To generate the remaining initial sets 𝑇3, 𝑇4, 𝑇5 and 𝑇6, we take any arbitrary vertices for the first 

wing and the second wing. Both wings must be in increasing order which cannot turn back, and 

must have distinct vertices (both wings are not allowed to share the same vertices). The wing that 

contains vertex “1” will be the first wing. Thus, we obtain the remaining initial set as shown below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
𝑇1: 1 2 3 4 5 6 

  

𝑇2: 1 2 3 4 5 6 

    

𝑇3: 1 2 3 4 5 6 

 
 

 
 

 

𝑇4: 1 2 3 4 5 6 

 
  



 

 

 

 

 

 

 

 

 

 

 

 

 

We obtain the initial sets by following the ‘Definition 8’ as shown below. We  use these initial sets to 

obtain the sixty distinct circuits as discussed in Step 2. 

𝑇1 = {1,2,3} ∪ {4,5,6} = {1,2,3,4,5,6} 

𝑇2 = {1,3,5} ∪ {2,4,6} = {1,3,5,2,4,6} 

𝑇3 = {1,2,4} ∪ {3,5,6} = {1,2,4,3,5,6} 

𝑇4 = {1,2,5} ∪ {3,4,6} = {1,2,5,3,4,6} 

𝑇5 = {1,3,4} ∪ {2,5,6} = {1,3,4,2,5,6} 

𝑇6 = {1,4,5} ∪ {2,3,6} = {1,4,5,2,3,6} 

 

Step 2: 

We start with the first initial set, 𝑇1 = {1,2,3,4,5,6}. In this step, we put all vertices from first wing into 

first endpoints consecutively. Likewise, we put all vertices consecutively from second wing into 

second endpoints  to obtain 𝐶1
∗. We call this step as Endpoint Strategy or Endp-S. 

 

We describe in more detail here. 𝐶1
∗ is obtained in this way: the vertices from first wing which are 1, 

2, and 3 are put into first endpoints like this: (1   )(2   )(3   ). Next, the vertices from second wing 

which are 4, 5, and 6 are filled into second endpoints like this: (   4)(   5)(   6).  

Thus, we obtain 𝐶1
∗ = (1,4)(2,5)(3,6).  

 

Step 3: 

In this step, we fix all the first endpoints, and shift all the second endpoints to the left. We call this 

step as Fix-And-Shift. When we say fix-and-shift 𝐶1
∗ to obtain 𝐶2

∗ and 𝐶3
∗, it means that we fix the 

first endpoints of 𝐶1
∗, and shift the second endpoints of 𝐶1

∗ to the left. Therefore, 𝐶2
∗ and 𝐶3

∗ are 

obtained.  

 

 

 

 

𝑇5: 1 2 3 4 5 6 

 
  

  

  
𝑇6: 1 2 3 4 5 6 



We describe in more detail here. We fix the first endpoints like this:  

𝐶1
∗ = (1   )(2   )(3   ) 

𝐶2
∗ = (1   )(2   )(3   ) 

𝐶3
∗ = (1   )(2   )(3   ) 

 

Next, we shift the second endpoints of 𝐶1
∗ to get the second endpoints of 𝐶2

∗ and 𝐶3
∗ as follows: 

𝐶1
∗ = (   4)(   5)(   6) 

𝐶2
∗ = (   5)(   6)(   4) 

𝐶3
∗ = (   6)(   4)(   5) 

 

Thus, we obtain 𝐶1
∗, 𝐶2

∗, and 𝐶3
∗ as follows: 

𝐶1
∗ = (1,4)(2,5)(3,6) 

𝐶2
∗ = (1,5)(2,6)(3,4) 

𝐶3
∗ = (1,6)(2,4)(3,5) 

 

Step 4: 

In this step, we fix the first endpoints, and reverse the order of second endpoints to the left. We 

called this step as Fix-And-Reverse. When we say fix-and-reverse 𝐶1
∗ to obtain 𝐶4

∗, it means that we 

fix the first endpoints of 𝐶1
∗, and reverse the order of second endpoints of 𝐶1

∗, to obtain 𝐶4
∗.  

 

We explain further here. 𝐶4
∗ is obtained by fixing the first endpoint of 𝐶1

∗ like this: 

𝐶4
∗ = (1   )(2   )(3   ) 

 

Then, the order of second endpoints of 𝐶1
∗ is reversed to get this:  

𝐶4
∗ = (   6)(    5)(    4) 

 

Thus, we obtain 𝐶4
∗ = (1 6)(2 5)(3 4). 

 

Step 5: 

In this stage, we do again the fix-and-shift step. But now we fix-and-shift 𝐶4
∗ to obtain 𝐶5

∗ and 𝐶6
∗.  

𝐶4
∗ = (1 6)(2 5)(3 4) 

𝐶5
∗ = (1 5)(2 4)(3 6) 

𝐶6
∗ = (1 4)(2 6)(3 5) 

 

At this stage, we have achieved complete rotation for 𝐶1
∗ to obtain 𝐶2

∗, 𝐶3
∗, 𝐶4

∗, 𝐶5
∗, and 𝐶6

∗ as listed 

above. These steps from Step 1 until Step 4 are important and they are the basis in developing the 

𝐶𝑘
∗. The development of the remaining circuits will use these four steps repetitively. 

 

 

 



Step 6: 

In this step, we still consider the initial set 𝑇1 = {1,2,3,4,5,6}. We apply Endp-S for 𝑇1 but now we 

start with the second element, 2, to produce 𝐶7
∗.  

 

We explain detail in here. ”Starts with the second element, 2,” means that we apply Endp-S for  𝑇1, 

but we start at the second element, “2”. The elements 2, 3, and 4 are filled into first endpoints like 

this: (2   )(3   )(4   ). Next, the elements 5, 6, and 1 are filled into second endpoints like this: 

(   5)(   6)(   1). Thus, we obtain 𝐶7
∗ as written below. Next, we fix-and-shift 𝐶7

∗ to obtain 𝐶8
∗ and 𝐶9

∗.  

𝐶7
∗ = (2 5)(3 6)(4 1) 

𝐶8
∗ = (2 6)(3 1)(4 5) 

𝐶9
∗ = (2 1)(3 5)(4 6) 

 

After that, we fix-and-reverse 𝐶7
∗ to obtain 𝐶10

∗ . Then, we fix-and-shift 𝐶10
∗  to obtain 𝐶11

∗  and 𝐶12
∗ . 

𝐶10
∗ = (2 1)(3 6)(4 5) 

𝐶11
∗ = (2 6)(3 5)(4 1) 

𝐶12
∗ = (2 5)(3 1)(4 6) 

 

Step 7: 

In this step, we apply Endp-S for 𝑇1 but now we start with the third element, “3”, to produce 𝐶13
∗ .  

We discussed further here. “Starts with the third element, 3,” means that we apply Endp-S for  𝑇1, 

but we start at third element, “3”. The elements 3,, 4, and 5,  are filled into first endpoints like this: 

(3   )(4   )(5   ). Next, the elements 6, 1,, and 2 are filled into second endpoints like this: 

(   6)(   1)(   2). Thus, we obtain 𝐶13
∗  as listed below.  After that, we fix-and-shift 𝐶13

∗  to obtain 

𝐶14
∗  and 𝐶15

∗ .  

𝐶13
∗ = (3 6)(4 1)(5 2) 

𝐶14
∗ = (3 1)(4 2)(5 6) 

𝐶15
∗ = (3 2)(4 6)(5 1) 

 

Next, we fix-and-reverse 𝐶13
∗  to obtain 𝐶16

∗ . Then, we fix-and-shift 𝐶16
∗  to obtain 𝐶17

∗  and 𝐶18
∗ .  

𝐶16
∗ = (3 2)(4 1)(5 6) 

𝐶17
∗ = (3 1)(4 6)(5 2) 

𝐶18
∗ = (3 6)(4 2)(5 1) 

 

For 𝑇1, we stop until third element. In the following step, we apply the same procedure as applied 

for 𝑇1 to enumerate the remaining circuits. We can conclude that, if steps from 1 to  6 are well 

understood, then the following steps are easy to follow.  

 

At this stage, we obtain eighteen results for 𝐾6 decomposition. The following section presents the 

algorithm to develop the remaining results. 

 



3.1 Developing the Remaining Circuits 

 

This section provided the algorithm to develop the remaining circuits. We follow the similar steps as 

discussed in the previous section.  

 

Now, we consider the initial set 𝑇2 = {1,3,5,2,4,6}. We apply Endp-S for 𝑇2 and we start with the first 

element which is “1”. Thus, elements 1, 3, and 5 are put into first endpoints, and elements 2, 4, and 

6 are put into second endpoints, to obtain 𝐶19
∗  as written below. Then, we fix-and-shift 𝐶19

∗  to obtain 

𝐶20
∗  and 𝐶21

∗ ; fix-and-reverse 𝐶19
∗  to obtain 𝐶22

∗ ; and fix-and-shift 𝐶22
∗  to obtain 𝐶23

∗  and 𝐶24
∗ .  

𝐶19
∗ = (1 2)(3 4)(5 6) 

𝐶20
∗ = (1 4)(3 6)(5 2) 

𝐶21
∗ = (1 6)(3 2)(5 4) 

𝐶22
∗ = (1 6)(3 4)(5 2) 

𝐶23
∗ = (1 4)(3 2)(5 6) 

𝐶24
∗ = (1 2)(3 6)(5 4) 

 

Next, we apply Endp-S at the second element in 𝑇2 which is “3”. The elements 3, 5, and 2 are put 

into first endpoints, and elements 4, 6, and 1 are put into second endpoints to obtain 𝐶25
∗  as listed 

below. Then, we fix-and-shift 𝐶25
∗  to obtain 𝐶26

∗  and 𝐶27
∗ , fix-and-reverse 𝐶25

∗  to obtain 𝐶28
∗ , and fix-

and-shift 𝐶28
∗  to obtain 𝐶29

∗  and 𝐶30
∗ . 

𝐶25
∗ = (3 4)(5 6)(2 1) 

𝐶26
∗ = (3 6)(5 1)(2 4) 

𝐶27
∗ = (3 1)(5 4)(2 6) 

𝐶28
∗ = (3 1)(5 6)(2 4) 

𝐶29
∗ = (3 6)(5 4)(2 1) 

𝐶30
∗ = (3 4)(5 1)(2 6) 

 

We carry out the same procedure for the third element in 𝑇2 which is “5”. The elements 5, 2, and 4 

are put into first endpoints, and elements 6, 1, and 3 are put into second endpoints to obtain 𝐶31
∗ . 

Next, we fix-and-shift 𝐶31
∗  to obtain 𝐶32

∗  and 𝐶33
∗ , fix-and-reverse 𝐶31

∗  to obtain 𝐶34
∗ , and fix-and-shift 

𝐶34
∗  to obtain 𝐶35

∗  and 𝐶36
∗ .  

𝐶31
∗ = (5 6)(2 1)(4 3) 

𝐶32
∗ = (5 1)(2 3)(4 6) 

𝐶33
∗ = (5 3)(2 6)(4 1) 

𝐶34
∗ = (5 3)(2 1)(4 6) 

𝐶35
∗ = (5 1)(2 6)(4 3) 

𝐶36
∗ = (5 6)(2 3)(4 1) 

 



For 𝑇2, we stop until the third element as 𝑇1. In the following steps, we apply the same procedure 

as 𝑇1 and 𝑇2 to design the remaining circuits. We use the initial sets 𝑇3, 𝑇4, 𝑇5, and 𝑇6, but we just 

apply steps starting from Step 1 until Step 4. 

 

We consider 𝑇3 = {1,2,4,3,5,6}. Using Endp-S, we put elements 1, 2, and 4 into first endpoints and 

elements 3, 5, and 6 into second endpoints to obtain 𝐶37
∗ . After that, we fix-and-shift 𝐶37

∗  to obtain 

𝐶38
∗  and 𝐶39

∗ , fix-and-reverse 𝐶37
∗  to obtain 𝐶40

∗ , and fix-and-shift 𝐶40
∗  to obtain 𝐶41

∗  and 𝐶42
∗ .  

𝐶37
∗ = (1 3)(2 5)(4 6) 

𝐶38
∗ = (1 5)(2 6)(4 3) 

𝐶39
∗ = (1 6)(2 3)(4 5) 

𝐶40
∗ = (1 6)(2 5)(4 3) 

𝐶41
∗ = (1 5)(2 3)(4 6) 

𝐶42
∗ = (1 3)(2 6)(4 5) 

 

Next, we consider 𝑇4 = {1,2,5,3,4,6}. For Endp-S, we put elements 1, 2, and 5 into first endpoints, 

and elements 3, 4, and 6 into second endpoints to obtain 𝐶43
∗ . Next, we fix-and-shift 𝐶43

∗  to obtain 

𝐶44
∗  and 𝐶45

∗ , fix-and-reverse 𝐶43
∗  to obtain 𝐶46

∗ , and fix-and-reverse 𝐶46
∗  to obtain 𝐶47

∗  and 𝐶48
∗ . 

𝐶43
∗ = (1 3)(2 4)(5 6) 

𝐶44
∗ = (1 4)(2 6)(5 3) 

𝐶45
∗ = (1 6)(2 3)(5 4) 

𝐶46
∗ = (1 6)(2 4)(5 3) 

𝐶47
∗ = (1 4)(2 3)(5 6) 

𝐶48
∗ = (1 3)(2 6)(5 4) 

 

Furthermore, we consider 𝑇5 = {1,3,4,2,5,6}. Using Endp-S, we put elements 1, 3, and 4 into first 

endpoints and elements 2, 5, and 6 into second endpoints to obtain 𝐶49
∗ . Then, we fix-and-shift 𝐶49

∗  

to obtain 𝐶50
∗  and 𝐶51

∗ , fix-and-reverse 𝐶49
∗  to obtain 𝐶52

∗ , and fix-and-shift 𝐶52
∗  to obtain 𝐶53

∗  and 𝐶54
∗ .   

𝐶49
∗ = (1 2)(3 5)(4 6) 

𝐶50
∗ = (1 5)(3 6)(4 2) 

𝐶51
∗ = (1 6)(3 2)(4 5) 

𝐶52
∗ = (1 6)(3 5)(4 2) 

𝐶53
∗ = (1 5)(3 2)(4 6) 

𝐶54
∗ = (1 2)(3 6)(4 5) 

 

Finally, we reach at the final level in developing all the sixty distinct circuits for 𝐾6. We consider 

𝑇6 = {1,4,5,2,3,6} to apply Endp-S. The elements 1, 4, and 5 are put into first endpoints and 

elements 2, 3, and 6 are put into second endpoints to obtain 𝐶55
∗ . After that, we fix-and-shift 𝐶55

∗  to 

obtain 𝐶56
∗  and 𝐶57

∗ , fix-and-reverse 𝐶55
∗  to obtain 𝐶58

∗ , and fix-and-shift 𝐶58
∗  to obtain 𝐶59

∗  and 𝐶60
∗ .  

𝐶55
∗ = (1 2)(4 3)(5 6) 

𝐶56
∗ = (1 3)(4 6)(5 2) 



𝐶57
∗ = (1 6)(4 2)(5 3) 

𝐶58
∗ = (1 6)(4 3)(5 2) 

𝐶59
∗ = (1 3)(4 2)(5 6) 

𝐶60
∗ = (1 2)(4 6)(5 3) 

 

It  shows that the above sixty 𝐶𝑘
∗, 1 ≤ 𝑘 ≤ 60, are not the complete circuits since they are in 

endpoint forms.  

 

Step 8: 

In this step, we follow ‘Definition 12’ to get the results as shown below.  

𝐶1
∗ = (1 4) ∪ (2 5) ∪ (3 6) = (1 4 2 5 3 6) 

𝐶2
∗ = (1 5) ∪ (2 6) ∪ (3 4) = (1 5 2 6 3 4) 

. 

. 

. 

𝐶60
∗ = (1 2) ∪ (4 6) ∪ (5 3) = (1 2 4 6 5 3) 

 

 

3.2 Drawing the Circuits 

 

In this section, we provide steps to draw the circuits based on the results in Step 8 in Section 3.1.  

 

Step 1: 

We follow ‘Definition 6’ to find the mapping as shown below.  

 

From Definition 6, 𝐶1
∗ = (1 4 2 5 3 6) have (

1
4

  
2
5

  
3
6

  
4
2

  
5
3

  
6
1

) which maps 1 ⟼ 4, 4 ⟼ 2, 2 ⟼ 5, 5 ⟼

3, 3 ⟼ 6, and 6 ⟼ 1. Likewise, 𝐶2
∗ = (1 5 2 6 3 4) have (

1
5

  
2
6

  
3
4

  
4
1

  
5
2

  
6
3

) that maps 1 ⟼ 5, 5 ⟼ 2, 

2 ⟼ 6, 6 ⟼ 3, 3 ⟼ 4, and 4 ⟼ 1. Similarly, 𝐶60
∗ = (1 2 4 6 5 3) have (

1
2

  
2
4

  
3
1

  
4
6

  
5
3

  
6
5

) which maps 

1 ⟼ 2, 2 ⟼ 4, 4 ⟼ 6, 6 ⟼ 5, 5 ⟼ 3, and 3 ⟼ 1.  

 

Then, we have the mapping as follows: 

𝐶1
∗ = (1 4)(4 2)(2 5)(5 3)(3 6)(6 1) 

𝐶2
∗ = (1 5)(5 2)(2 6)(6 3)(3 4)(4 1) 

. 

. 

. 

𝐶60
∗ = (1 2)(2 4)(4 6)(6 5)(5 3)(3 1) 

We use this mapping in the following step to create the directions for each circuit.  

 



1 2 3 6 5 4 

Step 2: 

We use the mapping 𝐶1
∗ = (1 4)(4 2)(2 5)(5 3)(3 6)(6 1) to get the direction as follows:  

 

 

 

 

 

 

 

 

The remaining directions can be obtained by following the same steps as shown above.  

 

Step 3: 

In this step, we draw the circuits using the same directions as discussed in Step 2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

≡ 𝐶1
∗ 

1 2 3 6 5 4 

1 2 

3 

4 5 

6 

≡ 𝐶2
∗ 

1 2 3 6 5 4 

1 2 

3 

4 5 

6 



. 

. 

. 

 

 

 

 

 

 

 

 

 

 

 

By following the same argument for all the circuits (𝐶1
∗ , 𝐶2

∗ , … , 𝐶60
∗

), we can visualize all the 

circuits. This algorithm has led us to the following theorems: 

 

Theorem 1: 𝐾6 has 120 distinct circuits of order six.   

Proof. 𝐾6 has six vertices and one vertex is fixed to be the starter point of each circuit. Then 𝐾6 

can be decomposed into (6 − 1)! = 120 circuits.  

 

Theorem 2: If circuit 𝐴 has an opposite direction of circuit 𝐵, then 𝐴 is the mirror image of 𝐵 or vice 

versa such that 𝐴 and 𝐵 are the circuits of order six.  

 Proof. We consider the adjacency matrices and its transpose of circuits 𝐴, 𝐵, 𝐺 and 𝐻 in 

Figure 2 to investigate the mirror image as shown below.  

 

Table 1: Adjacency Matrices and the Transpose of K6 
 

Adjacency Matrices Transpose 

  

5     0     1     0     0     0     0 

6     0     0     0     0     1     0 

1     2     3     4     5     6 

1     0     0     1     0     0     0 

2     1     0     0     0     0     0 

3     0     0     0     1     0     0 

4     0     0     0     0     0     1 

𝐴 = 

5     0     0     0     0     0     1 

6     0     0     0     1     0     0 

1     2     3     4     5     6 

1     0     1     0     0     0     0 

2     0     0     0     0     1     0 

3     1     0     0     0     0     0 

4     0     0     1     0     0     0 

𝐴𝑇 = 

≡ 𝐶60
∗ = 

1 2 3 6 5 4 

1 2 

3 

4 5 

6 



  

  

  

 

At this stage, we have matrices 𝐴 ≡ 𝐺𝑇, 𝐵 ≡ 𝐻𝑇 , 𝐺 ≡ 𝐴𝑇, and 𝐻 ≡ 𝐵𝑇 . We conclude that circuit 𝐴 is 

the mirror image of 𝐺, circuit 𝐵 is the mirror image of 𝐻, and vice versa since they have similar 

structure. The remaining circuits in Figure 2 have the same impact.  

 

Theorem 3: There exist sixty distinct circuits with different structure of order six from 𝐾6.  

 Proof. By considering the mirror image, from Theorem 1, we have (6 − 1)!/2 = 60 distinct 

circuits with different structures of order six from 𝐾6.  

 

 
 
 
 
 

5     1     0     0     0     0     0 

6     0     0     1     0     0     0 

1     2     3     4     5     6 

1     0     0     0     0     0     1 

2     0     0     0     0     1     0 

3     0     0     0     1     0     0 

4     0     1     0     0     0     0 

𝐵 = 

5     0     0     0     0     0     1 

6     0     0     0     1     0     0 

1     2     3     4     5     6 

1     0     1     0     0     0     0 

2     0     0     0     0     1     0 

3     1     0     0     0     0     0 

4     0     0     1     0     0     0 

𝐺 = 

5     0     1     0     0     0     0 

6     1     0     0     0     0     0 

1     2     3     4     5     6 

1     0     0     0     0     1     0 

2     0     0     0     1     0     0 

3     0     0     0     0     0     1 

4     0     0     1     0     0     0 

𝐻 = 

5     0     1     0     0     0     0 

6     1     0     0     0     0     0 

1     2     3     4     5     6 

1     0     0     0     0     1     0 

2     0     0     0     1     0     0 

3     0     0     0     0     0     1 

4     0     0     1     0     0     0 

𝐵𝑇 = 

5     0     1     0     0     0     0 

6     0     0     0     0     1     0 

1     2     3     4     5     6 

1     0     0     1     0     0     0 

2     1     0     0     0     0     0 

3     0     0     0     1     0     0 

4     0     0     0     0     0     1 

𝐺𝑇 = 

5     1     0     0     0     0     0 

6     0     0     1     0     0     0 

1     2     3     4     5     6 

1     0     0     0     0     0     1 

2     0     0     0     0     1     0 

3     0     0     0     1     0     0 

4     0     1     0     0     0     0 

𝐻𝑇 = 



4. DISCUSSION AND CONCLUSION 

We  prove that 𝐾6 has 120 circuits of length six. Hence, we prove that each circuits have their 

mirror image. We also prove that 𝐾6 can be decomposed into sixty distinct circuits of length six. We 

hope that this proposed algorithm can be a basis to design 𝐾𝑛 decomposition into distinct circuits 

of length 𝑛.  
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