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Abstract—Exploitation and exploration mechanisms are the 

main components in metaheuristics algorithms. These 

mechanisms are implemented explicitly in ant colony system 

algorithm. The rate between the exploitation and exploration 

mechanisms is controlled using a parameter set by the users of 

the algorithm. However, the rate remains unchanged during the 

algorithm iterations, which makes the algorithm either bias 

toward exploitation or exploration. Hence, this study proposes a 

strategic oscillation rate to control the exploitation and 

exploration in ant colony system. The proposed algorithm was 

evaluated with job scheduling problem benchmarks on grid 

computing. Experimental results show that the proposed 

algorithm outperforms other metaheuristics algorithms in terms 

of makespan and flowtime. The strategic oscillation has 

improved the exploration and exploitation in ant colony system.  

Keywords—strategic oscillation; ant colony system; job 

scheduling; grid computing 
 

I. INTRODUCTION 

The popularity of grid systems started in the late 1990s 
when Foster developed a grid system called Globus Toolkit 
[1]. Grid system could be classified into several types, such as 
grid computing, data grid, enterprise grid, sensor grid, campus 
grid, global grid, pc grid, and utility grid [2]–[4]. Grid 
computing provides a powerful processing capability which is 
not possible to achieve using individual computer. Grid 
computing is defined as “geographically distributed computers, 
linked through the internet in a Grid-like manner, which are 
used to create virtual supercomputers of vast amount of 
computing capacity able to solve complex problem from e-
Science in less time than known before” [5]. Another definition 
provided by [6] is “a hardware and software infrastructure that 
provides transparent, dependable, pervasive and consistent 
access to large-scale distributed resources owned and shared by 
multiple administrative organizations in order to deliver 
support for a wide range of applications with the desired 
qualities of service. These applications can perform either as 
high throughput computing, on-demand computing, data 
intensive computing, or collaborative computing”. From these 
definitions, grid computing could be defined as a collection of 
computing resources distributed geographically in different 

locations. These resources are forming a processing power that 
can be used to solve various complex problems in several 
fields, such as science, commerce, and education. The 
resources in grid computing could be heterogeneous in terms of 
hardware and software.  

Grid computing has been successfully implemented to 
solve various real-life problems. For instance, finding Protein 
binding sites using DNA@Home volunteer computing project 
[7],  grid computing for disaster mitigation implemented by 
Universiti Sains Malaysia [8], C-Grid based on Integrated 
Rule-Oriented Data System for health care community [9], and 
ANSYS® Commercial Suite on the EGI Grid Platform [10]. 

The main components in Grid are infrastructure fabric, 
middleware, and applications [11]. The middleware layer 
considered as the brain of the grid and provides many services, 
such as job scheduling, job enactment, monitoring, and meta-
scheduling [11]. These services handled by Resource 
Management System (RMS) which has the responsibility to 
map users’ submitted tasks to available and suitable resources 
[12]. Scheduling algorithm is the major influence on the 
performance of grid computing system [5]. Scheduling 
algorithm could be implemented using simple approach, such 
as first come first serve or greedy algorithm. However, grid 
computing system with big number of resources and tasks 
needs more sophisticated algorithm in order to achieve good 
quality of services. Therefore, more intelligent algorithms are 
required for scheduling algorithm implementation in RMS.  

Job scheduling problem in grid computing is considered as 
NP-complete problem [13]. Due to the complexity nature of 
these types of problems, a heuristic and metaheuristics 
algorithms are preferred in real application [14]. Metaheuristics 
algorithms have the ability to produce optimal or near-optimal 
solution in reasonable time and resources. One of the 
metaheuristics algorithms branches is nature inspired 
algorithms, such as Ant Colony Optimization (ACO), 
Simulated Annealing (SA), Particle Swarm Optimization 
(PSO), and Artificial Bee Colony (ABC) [15]. Among them, 
ACO algorithm shows an excellent performance in various 
domains, such as routing, scheduling, classification, and 
optimization [16].  
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ACO is a framework algorithm for other variants, such as 
Ant System (AS), Elitist Ant System (EAS), Rank-Based Ant 
System (ASrank ), Ant Colony System (ACS), and Max-Min 
Ant System (MMAS) [16]. ACS algorithm is considered as one 
of the best among them [17]. ACS algorithm is based on two 
mechanisms, namely exploitation and exploration [16]. During 
the algorithm iteration, the selection between the two 
mechanisms is controlled via a fixed parameter 𝑞0 (0 ≤  𝑞0  ≤
1) . Therefore, the algorithm with small exploitation or 
exploration rate will never change during all iterations. In other 
words, the rate of any mechanism will not increase or decrease 
during the execution. Therefore, this study focuses on a 
dynamic rate specifically, adopting the strategic oscillation rate 
between exploitation and exploration which is proposed in 
Tabu Search (TS) algorithm by Glover and Laguna in [18]. 
This strategy makes the ACS algorithm behaves differently but 
strategically in each cycle.   

This paper organized as follow, Section II reviews the 
evolution of ant colony optimization. The strategic oscillation 
in ant colony system is provided in Section III. Section IV 
illustrates the problem formulation while Section V presents 
the experiments and results. Finally, the conclusion is provided 
in Section VI. 

II. ANT COLONY OPTIMIZATION 

Ant colony optimization algorithm was proposed in 1990s 
by Dorigo [16] as a metaheuristics algorithm. The first version 
of ACO is known as ant system [19]. AS consists of two main 
phases, namely solution construction and pheromone update. 
The solution construction phase is based on probabilistic action 
choice rule, known as random proportional rule. For 
pheromone update phase, AS uses evaporation concept and 
pheromone deposit method. Compared with other ACO 
variants, the performance of AS algorithm decrease 
dramatically when the problem instance size increases [16].  

Additional reinforcement to the arcs belonging to the best 
solution was introduced in Elitist strategy [EAS] algorithm to 
improve AS [20]. The implementation of the elitist strategy 
enables the ants to find better solution quality as well as lower 
number of iterations. EAS algorithm shows better performance 
than AS algorithm. Another improvement over AS algorithm is 
rank-based ant system introduced in [21]. ASrank algorithm 
applies ranking concept to the amount of pheromone deposits 
on the arcs. Only the best-so-far ant and best ranked ants are 
allowed to deposits the pheromone. Compared to AS and EAS, 
ASrank performed significantly better than AS and slightly 
better than EAS. 

Another variant of ACO algorithm is max-min ant system 
which has direct improvement over AS algorithm [22]. MMAS 
provides four improvements. Firstly, it uses a stronger 
exploitation mechanism. Secondly, MMAS apply a range of 
pheromone trail values to the interval that help to avoid the 
premature stagnation (all ants converge early to one suboptimal 
solution) of the search process. Thirdly, the initial pheromone 
value is set to the upper pheromone limit with a small 
pheromone evaporation rate to increase the exploration 
mechanism. Finally, in MMAS, pheromones values are 
reinitialized whenever the algorithm is not able to find an 
improved solution for a certain number of iterations. For the 

pheromone update, only one of the two ants is allowed to add 
pheromone, either the best-so-far ant or the iteration-best ant.  

One more important improvement over AS algorithm is ant 
colony system proposed in  [23]. ACS algorithm improves AS 
algorithm in three main aspects. First, ACS implements a 
stronger action choice rule than AS. Second, the pheromone 
value is added only to the arcs belonging to the global-best 
solution. Third, each time an ant moves on an arc, it evaporate 
some pheromone from that arc. The three main phases of the 
ACS algorithm constitute the ants’ solution construction, 
global pheromone trail update, and local pheromone trail 
update. In global pheromone update, only one ant (the best-so-
far ant) is allowed to add pheromone after all ants have 
finished constructing their tours. In local pheromone update, all 
the ants in ACS algorithm apply local pheromone update rule 
immediately after moving on arcs during the solution 
construction using the evaporation concept. In ACS algorithm, 
the tuning between exploitation and exploration is controlled 
by a parameter fixed by the user. Therefore, the rate of the 
exploration and exploitation will never change during the 
algorithm execution. Thus, if the exploitation rate is high, then 
the algorithm will behave more toward greedy approach. In 
opposite, if the exploration rate is high, then the algorithm will 
behave more toward random approach. Hence, this study 
proposes strategic oscillation rate for exploitation and 
exploration mechanisms in ACS algorithm.  

III. STRATEGIC OSCILLATION IN ANT COLONY SYSTEM 

Strategic oscillation concept is proposed by Glover and 
Laguna in tabu search algorithm [18]. The authors state that 
“strategic oscillation provides a means to achieve an effective 
interplay between intensification and diversification over the 
intermediate to long term” [18]. The idea behind this concept is 
simply to oscillate between the exploration and exploitation in 
a strategic process. Fig. 1 shows the process of strategic 
oscillation in TS algorithm [18]. 

In ant colony system algorithm, the exploration and 
exploitation mechanisms are explicit and controlled via a fixed 
parameter  𝑞0 (0 ≤ 𝑞0 ≤ 1)  [16]. Therefore, applying the 
concept of strategic oscillation is direct and straightforward in 
ACS algorithm.  

 

 
Fig. 1. Strategic oscillation process [18]. 
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The proposed algorithm called Strategic Oscillation Ant 
Colony System (SOACS) starts with maximum oscillation rate 
𝑞0 = 1(behaves like greedy approach). During the iterations, 
gradually moves towards exploration by reducing the 
oscillation rate using the step_size parameter 𝛾 (0 ≤ 𝛾 ≤ 1). 
Once the oscillation rate reaches the minimum ( 𝑞0 = 0 ) 
(behaves like random approach), the oscillation rate starts to 
moves toward exploitation again by increasing the oscillation 
rate with step-size parameter  𝛾 . Fig. 2 represents the 
pseudocode of the strategic oscillation in ACS algorithm. 

SOACS algorithm starts with equal pheromone values on all 
edges. Therefore, the algorithm starts with maximum 
oscillation rate to exploit the heuristic information rather than 
pheromone information. The idea of starting with maximum 
exploitation will produce a good staring solution which is at 
least equal to the solution produced by nearest- neighbour 
approach. During the algorithm iterations, the oscillation rate 
will change using the 𝛾  parameter. The value of the 𝛾 
parameter is recommended to be very small value in order to 
move smoothly between exploitation and exploration 
mechanisms. The oscillation rate for 1000 iterations using 
𝛾 = 0.001 is shown in Fig. 3. 

The strategic oscillation could be implemented in ACS 
algorithm either in iteration level or ant level. However, this 
study implemented the strategic oscillation in iteration level. In 
other words, the oscillation rate will change after all the ants 
finish one iteration. Fig. 4 represents the complete pseudocode 
for SOACS algorithm. 

 

Fig. 2. Strategic oscillation pseudocode for ACS algorithm. 

 

 

Fig. 3. Strategic oscillation rate. 

 

Fig. 4. SOACS algorithm pseudocode. 

In Fig. 4, the syntaxes with bold text represent the proposed 
strategic oscillation code in ant colony system. Moving this 
part of code to the location after the syntax “Apply local 
pheromone update” in Fig. 4, will make the strategic oscillation 
based on ant level in ACS algorithm. The proposed SOACS 
algorithm could be implemented to solve various combinatorial 
problems similar to ACS algorithm. However, this study has 
implemented the proposed SOACS algorithm to solve job 
scheduling problem on static grid computing system. 

IV. PROBLEM FORMULATION 

The job scheduling problem on computational grid is 
known as a multi-objective problem. There are various criteria 
in grid computing that need to be optimized, for instance 
makespan, flowtime, load balancing, utilization, matching 
proximity, turnaround time, total weighted completion time, 
and average weighted response time [24]. This study has 
implemented two criteria, namely makespan and flowtime with 
the priority to makespan as the main optimization objective. 

Initialize the oscillation rate 𝑞0 = 1; 

Initialize the step_size parameter 𝛾; 

Initialize switch variable (switch = false); 

If (𝑞0 ≥ 1)  //Maximum exploitation rate 

 switch ← true; //Switch to exploration 

Else if (𝑞0 ≤ 0)  //Maximum exploration rate 

 switch ← false; //Switch to exploitation 

If (switch = true)  //If exploration is true 

 𝑞0 =  𝑞0 −  𝛾; //Decrease the rate  

Else    

 𝑞0 =  𝑞0 +  𝛾; //Increase the rate 

 

Procedure SOACS 

Initialize the number of ants 𝑛; 

Initialize parameters and pheromone trails; 

Initialize 𝑞 = random [0, 1]; 

Initialize the oscillation rate 𝒒𝟎 = 𝟏; 

Initialize the step_size parameter 𝜸; 

Initialize switch variable (switch = false); 

While (Termination condition not met) Do 

 For i = 1 to 𝑛 Do 

  Construct new solution: 

𝑞 = random [0, 1]; 

   If (𝑞 ≤ 𝑞0) 

    Exploitation; 

   Else 

    Exploration; 

  Apply local pheromone update; 

 End For; 

 Apply pheromone evaporation; 

 Apply Global pheromone update; 

If (𝒒𝟎 ≥ 𝟏) 

 switch ← true; 

Else if (𝒒𝟎 ≤ 𝟎) 

 switch ← false; 

If (switch = true) 

 𝒒𝟎 =  𝒒𝟎 −  𝜸; 

Else 

 𝒒𝟎 =  𝒒𝟎 +  𝜸; 

Update best-so-far solution 𝑠∗; 

End while; 

End Procedure 
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The general productivity of the grid computing is measured by 
makespan. The best scheduling algorithm is the one that can 
achieve a small value of makespan, which means that the 
algorithm is able to map tasks to machines in a good and 
efficient way. Therefore, the main objective in this study is to 
minimize the makespan. Makespan is defined as the time when 
the last task finishes execution, formally defined as: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛: 𝑚𝑖𝑛 𝑆𝑖 ∈ 𝑆𝑐ℎ𝑒𝑑{𝑚𝑎𝑥𝑗 ∈𝐽𝑜𝑏𝑠𝐹𝑗} 

where 𝑆𝑐ℎ𝑒𝑑 is the set of all possible schedules, 𝐽𝑜𝑏𝑠 is the set 
of all jobs to be scheduled, and 𝐹𝑗 denotes the time when task 𝑗 

finalizes [24]. The second criterion implemented in this study 
is flowtime which refers to the response time to the user 
submissions of task executions. Flowtime is defined as the sum 
of finalization times of all tasks, formally defined as: 

𝑓𝑙𝑜𝑤𝑡𝑖𝑚𝑒: 𝑚𝑖𝑛 𝑆𝑖 ∈ 𝑆𝑐ℎ𝑒𝑑{ ∑ 𝐹𝑗𝑗 ∈𝐽𝑜𝑏𝑠 }. 

These criteria could conflict with each other since limited 
resources could be the bottleneck of the system [24] 

In order to evaluate the proposed SOACS algorithm, a 
suitable benchmark is required to reflect the robustness of the 
algorithm. The benchmark model should has the features to 
reflect the environment characteristics, such as resources and 
jobs heterogeneity. A benchmark for static grid computing 
which is based on a successful model known as Expected Time 
to Compute (ETC) proposed in [25] has been implemented. 
This model is widely accepted by researchers for algorithms 
evaluation in job scheduling problem [26], [27]. The 
benchmark model defines a matrix known as ETC matrix. Each 
row in the ETC [𝑖, 𝑗]  matrix contains the expected time to 
compute task  [𝑖]  on machine  [𝑗] . Therefore, ETC has 𝑛 ∗ 𝑚 
entries where 𝑛  represents the number of tasks and 𝑚 
represents the number of machines. ETC matrix is again 
defined using three metrics, namely task heterogeneity, 
machine heterogeneity, and consistency. The task 
heterogeneity measures the variance in execution time among 
tasks while machine heterogeneity measures the variance in 
machine speed among machines. The heterogeneity of tasks 
and machines is represented with two values of “high” and 
“low” respectively.  In addition, ETC matrix captures other 
possible features of real heterogeneous computing system 
using three more metrics to measure the consistencies, namely 
consistent, inconsistent, and semi-consistent. The ETC matrix 
is considered consistent whenever a machine 𝑟𝑗 executes a task 

𝑡𝑖  faster than another machine   𝑟𝑘 , therefore, machine 𝑟𝑗  will 

execute all other tasks faster than machine  𝑟𝑘. ETC matrix is 
considered inconsistent when a machine 𝑟𝑗 could execute some 

tasks faster than machine 𝑟𝑘  and some other slower. Finally, 
semi-consistent ETC matrix is an inconsistent matrix which 
has a consistent submatrix of specific size. Combining all these 
matrices will generate 12 distinct types of  ETC matrix [25]. 

V. EXPERIMENT AND RESULTS 

The experiments have been conducted using Intel® Core 
(TM) i7-3612QM CPU @ 2.10GHz and 8G RAM. A 
simulation is developed using C# language. The proposed 
SOACS algorithm was evaluated against genetic algorithm, ant 
system, and ant colony system provided in [28].  SOACS 
algorithm parameters values are given in Table I. The new 

parameter, γ is the step size to move from exploitation to 
exploration and vice versa. The parameters value of number of 
ants, evaporation rate, and beat are adopted from the original 
ACS algorithm which are recommended in [16]. The proposed 
SOACS algorithm was executed 10 times to calculate the best 
and average values. Each run is given only 90 seconds, such a 
time restriction is very important requirement to mimic the real 
grid computing environment [29], [30]. 

Experimental results are organized in tables. The first 
column of each table represents the instance name with an 
abbreviation code: x-yyzz as follows: 

x represent the type of consistency; c means consistent, i means 
inconsistent, and s means semi-consistent. 

yy represents the heterogeneity of the tasks; hi means high and 
lo means low. 

zz represents the heterogeneity of the machines; hi means high 
and lo means low. 

For example: c_hilo means consistent environment, hi 
heterogeneity in tasks and low heterogeneity in machines. The 
results show that the proposed SOACS algorithm outperforms 
other algorithms in terms of best makespan values on all the 12 
instances as illustrated in Table II. Similar performance is 
shown by the proposed SOACS algorithm in terms of average 
makespan values as shown in Table III. 

TABLE I.  SOACS PARAMETERS VALUES. 

Run time Beta Evaporation rate No of ants 𝛄 

90second 8 0.6 10 0.00004 

TABLE II.  BEST MAKESPAN 

 
GA AS ACS SOACS 

c_hihi 11215488.9 11210553.9 10794610.8 10525341.5 

c_hilo 182232.0 184701.3 179762.4 177747.2 

c_lohi 374686.0 367182.8 346838.4 346627.3 

c_lolo 6138.5 6224.8 6051.8 6031.9 

i_hihi 3995843.4 3946883.2 4066163.7 3919048.2 

i_hilo 91682.3 90968.3 93829.0 87510.4 

i_lohi 134151.1 133825.4 137176.5 129994.6 

i_lolo 3045.3 3141.0 3209.0 3020.8 

s_hihi 6223749.5 5991234.3 6119602.0 5741578.0 

s_hilo 120447.3 118988.3 120539.1 115123.5 

s_lohi 181155.5 176800.4 178584.8 166583.1 

s_lolo 4246.4 4296.3 4350.4 4131.0 

TABLE III.  AVERAGE MAKESPAN 

 
GA AS ACS SOACS 

c_hihi 11266455.7 11492186.4 10947366.9 10747849.5 

c_hilo 183264.9 186640.1 181434.4 179875.2 

c_lohi 375322.2 373766.6 353670.8 350654.3 

c_lolo 6152.5 6281.5 6120.0 6062.4 

i_hihi 4029108.7 4021032.5 4261681.8 3984413.4 

i_hilo 91682.3 92311.6 94832.7 88536.5 

i_lohi 135625.0 136721.9 144178.5 133200.5 

i_lolo 3051.0 3198.6 3280.0 3045.5 

s_hihi 6317823.2 6114694.0 6322969.8 5940008.6 

s_hilo 120664.4 121995.8 122440.4 117386.7 

s_lohi 181734.6 178990.5 181737.4 170489.2 

s_lolo 4249.9 4369.1 4399.4 4186.7 
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For best and average flowtime values, Tables IV and V 
show that the proposed SOACS algorithm was able to achieve 
the best results on 10 instances followed by AS algorithm on 
two instances. 

Due to the difference scale of each instance result, the 
geometric mean is implemented to normalize the makespan 
and flowtime values in order to represent the proposed SOACS 
algorithm visually [31]. Figs. 5-8 represent the geometric mean 
for best makespan, average makespan, best flowtime, and 
average flowtime respectively. The visual geometric mean 
figures show that the proposed SOACS algorithm significantly 
outperforms all other algorithms for makespan and flowtime 
criteria. Optimizing these two criteria at the same time is not an 
easy task. Therefore, the proposed SOACS algorithm is 
considered as promising algorithm for job scheduling in grid 
computing. 

TABLE IV.  BEST FLOWTIME 

 
GA AS ACS SOACS 

c_hihi 175890174.2 170869481.0 167168928.0 164883402.9 

c_hilo 2885387.6 2839818.7 2839974.6 2803190.5 

c_lohi 5862262.0 5600439.3 5481314.1 5468218.9 

c_lolo 97154.5 95877.0 95871.5 94910.8 

i_hihi 63759167.6 60169758.2 64092691.0 61094410.9 

i_hilo 1461297.4 1403670.4 1451182.0 1378783.4 

i_lohi 2141505.9 2032456.4 2150374.0 2038837.0 

i_lolo 48547.9 48773.5 50707.6 47652.4 

s_hihi 98814397.0 90312215.7 95998535.0 89287719.8 

s_hilo 1909954.1 1832927.6 1893970.7 1816923.6 

s_lohi 2867157.9 2682621.5 2800124.8 2635073.7 

s_lolo 67508.1 65545.5 68232.0 64960.5 

 

TABLE V.  AVERAGE FLOWTIME 

 
GA AS ACS SOACS 

c_hihi 176638718.7 174513587.9 171594188.4 168542040.5 

c_hilo 2893345.6 2866863.1 2865314.2 2831223.1 

c_lohi 5867869.1 5712409.2 5587489.2 5533250.4 

c_lolo 97298.9 96857.6 96697.1 95703.2 

i_hihi 64261850.8 61409716.3 66654183.7 62585921.8 

i_hilo 1461683.7 1422434.6 1489277.2 1396360.0 

i_lohi 2163840.8 2068376.5 2256605.3 2093506.3 

i_lolo 48579.5 49416.3 51606.3 48107.0 

s_hihi 99887497.7 92951306.3 98799209.7 92752032.6 

s_hilo 1915659.2 1867344.1 1934073.4 1852245.3 

s_lohi 2871564.9 2738879.1 2869869.2 2691070.5 

s_lolo 67548.4 67048.3 69185.3 65793.0 

 
 

 

Fig. 5. Geometric mean for best makespan values 

 

Fig. 6. Geometric mean for average makespan values 

 

 

Fig. 7. Geometric mean for best flowtime values 

 

 
Fig. 8. Geometric mean for average flowtime values 

VI. CONCLUSION 

Assigning tasks to suitable resources is a very critical 
process which influences the performance of grid system. This 
study has enhanced the exploitation and exploration 
mechanisms in ant colony system. The enhancement is based 
on implementing the strategic oscillation concept which is 
adopted from tabu search algorithm. The proposed SOACS 
algorithm was evaluated against other metaheuristics algorithm 
using expected to compute model for job scheduling. Results 
show that the proposed algorithm outperforms all other 
algorithms in terms of makespan and flowtime values. Future 
work could focus on the strategic oscillation concept which can 
be implemented the ant level which gives different rate for 
each ant. In addition, future work can be on the implementation 
of the proposed SOACS algorithm to solve other combinatorial 
problems such as routing and job shop scheduling. 
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