
A UML Profile for Knowledge-Based Systems Modelling

Mohd Syazwan Abdullah1, Richard Paige2, Chris Kimble2 and Ian Benest2
1Faculty of Information Technology, Universiti Utara Malaysia, Sintok, Kedah, Malaysia

syazwan@uum.edu.my
2Department of Computer Science, University of York,Heslington,York, UK

{paige, kimble, idb}@cs.york.ac.uk

Abstract

The Knowledge engineering (KE) techniques are

essentially based on the knowledge transfer approach,
from domain experts directly to systems. However, this
has been replaced by the modelling approach which
emphasises using conceptual models to model the
problem-solving skill of the domain expert. This paper
discusses extending the Unified Modelling Language
by means of a profile for modelling knowledge-based
system in the context of Model Driven Architecture
(MDA) framework. The profile is implemented using
the eXecutable Modelling Framework (XMF) Mosaic
tool. A case study from the health care domain
demonstrates the practical use of this profile; with the
prototype implemented in Java Expert System Shell
(Jess). The paper also discusses the possible mapping
of the profile elements to the platform specific model
(PSM) of Jess and provides some discussion on the
Production Rule Representation (PRR) standardisation
work.

1. Introduction

The main objectives of knowledge engineering (KE)
discipline are to support the development processes of
knowledge-intensive systems by providing the
appropriate tools, concepts, languages and techniques
to the knowledge engineers. An important approach
within KE is the usage of conceptual models to
represent the real world application domain and to
model the problem-solving skills of the domain expert.
Knowledge-based systems (KBS) were developed for
managing codified knowledge (explicit knowledge) in
Artificial Intelligence (AI) systems [1]. These were
known as expert systems and were originally created to
emulate human expert reasoning [2]. KBS are
developed using knowledge engineering (KE)

techniques [2], which are similar to those used in
software engineering (SE), but they emphasise
knowledge rather than data or information processing.

Central to this is the conceptual modelling of the
system during the analysis and design stages of KBS
development (known as knowledge modelling). A
number of KE methodologies have emphasised the use
of models, for example: CommonKADS, Model-based
and Incremental Knowledge Engineering (MIKE),
Knowledge Acquisition and Representation Language
(KARL) and others [3]. KBS continue to evolve as the
need to have a stable technology for managing
knowledge grows; its current role as an enabler in
knowledge management initiatives has led to its wider
acceptance [4]. It has matured from a non-scalable
technology [1, 5]. Once restricted to the research
laboratory, it is now used for demanding commercial
applications and is a tool widely accepted by industry
[6, 7]. As a result, the Object Management Group
(OMG), which governs object-oriented software
modelling standards, has started the standardisation
process for production rule representation (PRR) [8]
and knowledge-based engineering (KBE) services [9].
The standardisation of PRR is vital as it allows
interoperability of rules between different inference
engines – much needed by industry [10, 11].

The major problem with conceptual modelling of
KBS (known as knowledge modelling) is that there is
no standard language available to model the knowledge
for developing a KBS. Most of the languages used are
adapted from SE. The languages used in knowledge
modelling are project based using a mix of notations
such as Unified Modeling Language (UML), Integrated
Definition Method (IDEF), Structured Analysis and
Design Technique (SADT) etc. The SE community has
adopted UML as the de facto standard for modelling
object-oriented systems and the KE community should
do the same. This would be beneficial in the long-term
as KBS can be easily integrated into other enterprise
systems [4] particularly if their designs were based on

Fifth International Conference on Software Engineering Research, Management and Applications

0-7695-2867-8/07 $25.00 © 2007 IEEE
DOI 10.1109/SERA.2007.26

871

a standard language; it would help facilitate
communication and sharing of blueprints among
developers [12].

Research has shown that neither technical nor
economic factors determine whether KBS technology
will be successfully adopted, but rather it is the
organisational and managerial environment that is the
main determinant [13, 14]. Gill [13] highlights one of
the problems: the management of the development
team. KBS projects are specialised in nature requiring
team members to have knowledge of both the problem
domain and the development tools. As a result, the
team members are skilful individuals and the success
of the project is threatened if one or more leave the
team mid-way through the development or during the
maintenance period. But a KBS that is designed using
an appropriate, well-understood, standard language for
conceptual modelling along with a methodologically
sound representation technique should be readily
understood by new team members. Conceptual models
(CM) are a description of the software system at
different level of abstractions [15] and are popular in
SE domain for providing an overview of concepts and
relationships of the real-world, eliminate costly errors
during analysis and design stages prior to construction
and facilitates better communications between different
people in the project team [16]. The importance of CM
in software systems development are reflected through
Model Driven Architecture (MDA) technique as
models rather than codes have become the important
artifacts of software development [17].

This paper is organised thus. Section 2 discusses
the UML extensibility mechanicsm. Section 3
describes the knowledge modelling profile, and section
4 illustrates how the profile can be used to develop a
KBS. Section 5 provides some discussion and finding
on the use of the profile in PRR standardisation, while
section 6 concludes with directions for future work.

2. UML Extensibility Mechanism

The OMG’s Model Driven Architecture (MDA) – a
model-driven engineering framework – provides
integration with, and interoperability between,
different models developed using its standards [18]
(such as UML, Meta-Object Facility (MOF), and
others). The growth of MDA will fuel the demand for
more meta-models to cater for domain specific
modelling requirements [18, 19]. Profiles have defined
semantics and syntax, which enables them to be
formally integrated into UML, though of course they
must adhere to the profile requirements proposed by
OMG. Previous profile development for knowledge
modelling has concentrated only on certain task types
such as product design and product configuration [20].
In contrast, the work described here emphasises the

development of a generic profile. Developing a meta-
model for knowledge modelling will enable it to be
integrated into the MDA space allowing the relation
between the knowledge models and other language
models to be understood. It provides for seamless
integration of different models in different applications
within an enterprise.

UML is a general-purpose modelling language [18]
that may be used in a wide range of application
domains. It can be extended to model domains that it
does not currently support, by extending the modelling
features of the language in a controlled and systematic
fashion. The OMG [21, 22] defines two mechanisms
for extending UML: profiles and meta-model
extensions. Both extensions have (unfortunately) been
called profiles [18].

The “lightweight” extension mechanism of UML
[22] is profiles. It contains a pre-defined set of
Stereotypes, TaggedValues, Constraints, and notation
icons that collectively specialize and tailor the existing
UML meta-model. The main construct in the profile is
the stereotype that is purely an extension mechanism.
In the model, it is marked as «stereotype» and has the
same structure (attributes, associations, operations) as
that defined by the meta-model. However, the usage of
stereotypes is restricted; changes in the semantics,
structure, and the introduction of new concepts to the
meta-model are not permitted [23]. The “heavyweight”
extension mechanism for UML (known as the meta-
model extension) is defined through the MOF
specification [24] which involves the process of
defining a new meta-model [23]. This approach should
be favoured if the semantic gap between the core
modelling elements of UML and the newly defined
modelling elements is significant [18].

The work presented in this paper exploits the profile
extension using the XMF (eXecutable Meta-modelling
Framework) approach [25] as we believe that the
knowledge modelling concepts can be modelled by
tailoring existing UML meta-models without having to
introduce new meta-concepts to UML. Furthermore,
this will enable the profile to have readily available
tool support which will be a significant advantage for
knowledge modellers in adopting UML over other
languages. The OMG only specifies what profiles
should constitute and not how to design them. By
adopting the XMF approach, the profile development
is structured into well-defined stages that are easy to
follow and methodologically sound. The XMF is a
newly developed object-oriented meta-modelling
language, and is an extension to existing standards for
meta-models such as MOF and UML. XMF offers an
alternative approach in profile design, which allows
modification, or addition, of new modelling constructs;
and these are easily integrated into the core meta-

872

model of UML. This work uses the XMF approach in
designing the profile and implementing it in the
Mosaic tool. Although XMF core meta-model differs
slightly from UML meta-model, and the same is true
for Eclipse ECore meta-model, nevertheless the
fundamentals are still the same. Furthermore, the
knowledge modelling profile only extends the UML
meta-class Class and Associations. However, only the
profile concepts’ extension to Class can be defined
using Mosaic, as associations are implemented as built-
in modelling features which are directly available to
use at the model level.

3. Knowledge Modelling Profile

The concepts for the knowledge modelling profile are
re-used from the existing BNF definition of the
CommonKADS Conceptual Modelling Language (CML)
[26]; this provides a well-defined and well-established
main set of concepts for the domain. Most of these
elements are generally adopted in the KBS literature
[1, 27-29] and are widely used for representing
concepts in KBS in the KE domain. Figure 1 shows the
knowledge modelling profile stereotypes.

A Concept class is used to represent structural
things and these have attributes contained in them; it is
similar to class in the UML meta-model. When the
attributes are used in rules they are known as
knowledge elements. A Concept is linked to the Rule
class in the model. Concepts are diagrammatically
associated with FactBase; as the values of the attributes
are stored here and are extracted during the reasoning
process of the inference. The instances of each
attribute, contained in the FactBase class, are accessed
by the dynamic role, which passes them to the
inference process that matches the premise with the
consequent part of an implication rule.

Task class defines the reasoning function and
specifies the overall input and output of the task. Each
task will have an associated task method that executes
the task. The structure of the task, its task method, and
the set of associated inference processes can be defined
with the knowledge model from the problem-solving
method library. The task-type, knowledge model, will
help in identifying the inference structure needed to
perform the desired task. Task method can be
decomposed into sub-tasks for certain task-types. Task
method class will specify the type of inference that is
to be performed. The control structure of the method
captures the inference reasoning strategy, which is
described using an activity diagram. If the inference
process requires additional input, either from the user
or from an external entity, the task method will invoke
a transfer function. Such functions are used to transfer

additional information between the reasoning
processes.

Figure 1. Extension of the UML with stereotypes for the
Profile defined in XMF Mosaic tool

The Dynamic Role class specifies the ‘information’

flow of attribute instances from the concepts. It also
specifies the outputs that arise from executing the
inference sets. The output of this inference process is
the ‘result’ of matching the antecedent of the rule with
the consequent part. Depending on what the KBS is
reasoning about, if it is not the final output of the
system, then the output can be used in another
inference. The Static Role class is the function
responsible for fetching the collection of domain
knowledge (rules) from the knowledge base prior to an
active inference. Inferences do not access the
knowledge base directly, but request the necessary
rules related to the particular inference from the static
roles. In some KBS shells this is similar to posting the
rules to the inference process or similar to setting
which rule should be fired. This allows the inference
process to handle a specific reasoning task and invoke
those rules that are appropriate.

An Inference class executes a set of algorithms for
determining the order in which a series of non-
procedural, declarative statements are to be executed.
The inference process infers new knowledge from
information/facts that are already known. The Task
Method invokes this. The input (information/fact) used
by this process is provided by the dynamic role. The
result of the inference process is then passed to the
dynamic role. The knowledge element used in the
inference is accessed through the Static Role, which
fetches the group of rules from the knowledge base.
There are several different inference processes for a
given task, most of which are run in the background by
the inference engine. The knowledge base class

873

contains domain knowledge, represented as rules,
which are used by the inference process. The contents
of the knowledge base are organized in tuples
(records). A tuple is used to group rules according to
their features. This allows the partitioning of the
knowledge base into modules that enables the
inference process to access the rules faster. The
maintainability of the rules is enhanced when it is
organised in this manner.

The Rule class of the profile describes the
modelling of rules within the domain concept. Rule
class is used to represent knowledge elements in KBS
and is viewed as ‘information about information’. Rule
class allows for rules to be in different formats. There
are two types of rule: implication rule, and decision
table. An implication rule is of the form: ‘if-then’
premise followed by an action. This type of
representation is widely used in KBS; they are known
as production rules. A decision table is an addition to
the rule class. It is introduced here because certain
rules are best expressed in the form of a decision table,
even though they are usually converted to flattened
production rules. This paper only concentrates on rule-
based KBS as it is the one widely adopted by industry
[10, 11] and is the focus of OMG’s PRR [8] and KBE
[9] standardisation work.

4. Clinical Practice Guidelines Case Study

The purpose of this case study was to evaluate the
usefulness of the knowledge modelling profile in
capturing the KBS requirements and to assess the
implementation value of the profile when building a
KBS from scratch. To demonstrate that the profile is
capable in bridging the gap between domain analysis
and system implementation, a prototype KBS was built
using the Java Expert System Shell (Jess) [29]. The
possible mapping between the profile elements and
Jess meta-model is also presented. The case study is
based on the Clinical Practice Guideline (CPG)
recommendations for managing patients with venous
leg ulcers described in [30]. The CPG contains
recommendations for assessment of ulcers patients, the
management of treatment using compression therapy,
cleaning and dressing of the ulcers, education and
training of care through sharing of knowledge and
quality assurance issues related to provision of leg
ulcer care. Each of these categories is further divided
into several related factors grouped together
functionally. The guideline is evidence-based and these
recommendations are gathered from systematic review
reports complied by researchers in patient health care.
The guideline contains recommendation statements,

which were graded based on the following three
strength of evidence shown it Table 1.

Table 1. Description of Evidence Strength for CPG

Strength

Meaning

I Generally consistent findings in a
majority of multiple acceptable studies.

II Either based on a single acceptable study,
or a weak or inconsistent finding in
multiple acceptable studies.

III Limited scientific evidence which does
not meet all the criteria of acceptable
studies of good quality.

4.1. CPG KBS Development

The CPG recommendation was implemented as a KBS
application for educational purposes to list the
recommendations based on evidence strength using the
following classification (a) evidence strength only; (b)
evidence strength and category; (c) category only; and
(d) factors, evidence and category. The rules for the
KBS was defined based on these classifications (in the
actual recommendation, each recommendation has a
brief explanation rather than ID as I1, II2, III4, etc
which are much more convenient for discussions.).

The KBS domain concept ‘CPG’ is composed of the
five category of recommendations which are
represented as domain concept ‘CPGManagement’,
‘CPGCleansing’, ‘CPGQualityAssurance’,
‘CPGAssessment’ and ‘CPGEducation’ shown at the
top section of figure 2. Each of the domain concepts
has three attributes (name, factors and evidence
strength) upon which four types of rules for the system
were defined based on their values. The instances of
these attribute are stored in the fact base of the system
which are accessed by dynamic role to get the facts for
the inference reasoning process. The inference
executes the reasoning task based on the task method
specification which only specifies a single inference
execution for the CPG system. The production rules of
the system are stored in the knowledge base which are
organised into tuples.

874

Fig. 2. CPG knowledge model

KBS design is very much different to that of a
conventional system, as the overall aim of the KBS is
to gather the needed facts to fire the rules. In doing so,
completing the whole reasoning cycle involves
activation of different processes and message passing
between objects. As a result, it is difficult to capture
these vital information using object diagram due to the
fact that several snapshots are needed to gather the
whole picture. However, this limitation was solved
with the aid of another type of UML diagram, namely
the sequence diagram. Using sequence diagrams, the
processing elements of the KBS gathered from the
profile are listed as objects with an additional Interface
object to model the flow of logic that captures the
dynamic behaviour of the KBS as shown on figure 3.
The input from the user is entered through the interface
which becomes the fact for the system when the
recommendation type selection question has been
answered. These facts are gathered by dynamic role
and the inference engine gets these facts and matches
them with the rule gathered from the knowledge base
to provide the recommendation.

The CPG prototype recommendation system was
implemented using Java Expert System Shell (Jess)
rule engine, which is a popular variation of the CLIPS
rule engine developed in Java. Jess was chosen as the
implementation platform as it is the reference
implementation of the JSR 94 Java Rule Engine API
that defines standard API for Java developer to interact
with a Java rule engine widely used in commercial
products and open source software projects.

Dynamic
Role

Knowledge
BaseStaticRoleInferenceTransfer

FunctionInterface FactBase

upload facts

get facts

facts

inference matching facts

Recommendation

inference matching rules

Recommendation rules

requested rules

Recommendation rules

CPG Recommendation Result

Fig. 3. Sequence Diagram of the CPG system

The CPG prototype recommendation system was

implemented using Java Expert System Shell (Jess)
rule engine, which is a popular variation of the CLIPS
rule engine developed in Java. Jess was chosen as the
implementation platform as it is the reference
implementation of the JSR 94 Java Rule Engine API
that defines standard API for Java developer to interact
with a Java rule engine widely used in commercial
products and open source software projects.

Table 2. Jess Program Summary for CPG System

;; Module MAIN
(deftemplate CPG) deftemplate S-C-F)
(deftemplate question)(deftemplate answer)
(deftemplate recommendation)
;;Module Question
;; Module ask
(defmodule ask)
(deffunction ask-user (?question ?type))
(defmodule startup)
;; Module interview
(defmodule interview)
(defrule request-strength => assert ask
strength)))(defrule assert-user-fact
(answer (ident strength) (text ?i))
(answer (ident cate_gory) (text ?d))
(answer (ident factors_type) (text ?j))
 => (assert (user (strength ?i)
(cate_gory ?d)(factors_type ?j))))
;; Module recommend
(defmodule recommend)(defrule S-C-F-1-0-0
 user (strength ?i&:(= ?i 1))(cate_gory
?d&:(= ?d 0))factors_type ?j&:(= ?j 0)))
=> assert recommendation (S-C-F STR1)
(explanation "Strength equals 1
Recommendation (I1 , I2 , I3 , I4)"))))
;; Module report
(defmodule report)deffunction run-system
()
 (reset)(focus startup interview
recommend report)run))while TRUE (run-
system))

The system receives the user input value for the

strength, category and factor which are the facts for the
system to fire the rules through the interview module
based on the questions from the question module and
the ask module performing error checking on the
answers. In the recommendation module, the CPG
rules are defined (evidence strength only; category
only; evidence strength and category; and factors,
evidence and category) and these rules are matched

875

against the facts to fire the activated recommendation
rule. The report module produces the recommendation
report of the system which contains the explanation
and the recommendation value. Table 2 presents the
Jess program summary for CPG system and the sample
screenshot is shown in figure 4.

Fig. 4. Sample screenshot of the CPG system

4.2. Possible Mapping of the Profile to Jess

One of the key motivations for the MDA is in
providing transformations between models (i.e. from a
Platform Independent Model (PIM) such as a UML
model or a profile model to Platform Specific Model
(PSM) of a specific implementation platform such as
Jess). The meta-model of Jess which defines the PSM
is shown in figure 5. The purpose of this mapping is to
translate a model of the profile into Jess
implementation to prove that the profile is capable in
bridging the gap between domain analysis and system
implementation.

However, the profile meta-model elements cannot
be directly mapped to all elements of the Jess meta-
model and only partial mapping are technically
possible. This limitation is due to the declarative nature
of expert system shells programming and the need to
have different level of abstraction between general
KBS conceptual model and detail model of the
implementation platform to enable model
transformation in generating the specific program code.
However, it is acknowledged that the knowledge
modelling profile was very useful in understanding the
KBS requirements for the CPG recommendations. This
limitation is further discussed in detail on section 5.

Table 3 lists the possible mapping of the profile
elements to the Jess. The domain concept elements of
the profile can be mapped to deftemplate,
defclass or definstance of Jess. However, for
the CPG system, only deftemplate was used to
represent the CPG domain concept which has three

different slots for strength, factor type and category.
The factbase element of the profile can be mapped to
deffacts and for the CPG system; the question-data
were used to gather the needed facts for the
application.

Defmodule

JESS Function

LHS RHS

Defrule

Defquery

Deffacts Constraint

Definstance

DefclassDeftemplate

Conditional
Elements

Constraint

*

0..

1..**

0..
0..*

*

*

JESS Program

name: string
comment: string

Construct

constructs

condition

JavaBean

action

constraints

constraintCE

action

JavaBean

0..*

0..*1

facts

1

deftemplate

function-call

name: string

Deffunction

name: string

Slot

Fig. 5. Jess Meta-model

There are no direct mapping for task and task

method to Jess but defmodule can be used to divide
the application into structured modules. To perform the
reasoning process, inference is activated through the
function ‘run’, which is a Jess function that starts the
pattern matching process. The dynamic role can be
mapped to the Jess function ‘assert’ which asserts
all facts into the working memory of the inference
engine. In the CPG system, this can be seen in the
interview module in getting the facts to the working
memory and asserting the recommendations.

There is no direct mapping for knowledge base and
tuple, but the defmodule constructs of Jess allows
large number of rules to be physically organised into
logical groups. Modules also provide a control
mechanism that only allows the module that has the
focus to fire the rule in it, and only one module can be
in focus at a time. In the CPG system, the recommend
module is used to organise the rules into knowledge
base and static role can be mapped to the focus
function of Jess since all the CPG rules for the
inference engine are contained here. The role of
transfer function in obtaining additional information
can be mapped to the defmodule construct that
implements the appropriate functions to get this
information.

The rule element of the profile can be mapped
directly to the defrule construct of Jess in which
the antecedent part corresponds to the left-hand side
(LHS) of the rule and the consequent part corresponds

876

to the right-hand side (RHS) of the rule. The following
example of manual mapping the CPG system rule ‘S-
C-F-1-0-0’ shown in table 4 would help
demonstrate this better.

Table 3. Possible mapping of the Knowledge Modelling

Profile Concepts map JESS
Concepts

DomainConcept
=

Deftemplate (Frame) Slot
Defclass
Definstance

FactBase = Deffacts
Task ≈ Defmodule
Task Method ≈ Defmodule
Inference ≈ Deffunction – run ()
Dynamic role ≈ Deffunction – assert ()
Static Role ≈ Defmodule - focus
Transfer function ≈ Defunction
Knowledge base ≈ Defmodule - focus
Tuple ≈ Defmodule – focus

(partition the rules)
Rule = Defrule
• ImplicationRule
o Antecedent
o Consequent

=
=
=

Defrule
• LHS
• RHS

Deffunction
Conditional Elements
Defquery

In line 1, we define the rule using defrule which

states the name of the rule – in this case strength = 1,
category = null and factor = null S-C-F-1-0-0 which
will list all recommendation of strength values of 1.
Line 2, 3 and 4 is the LHS of the rule which consists
of facts matching patterns and line 5 and 6 contains
the function call (RHS) which asserts the
recommendations values.

Table 4. CPG ‘S-C-F-1-0-0’ rule

1 defrule S-C-F-1-0-0
2 user (strength ?i&:(= ?i 1))
3 cate_gory ?d&:(= ?d 0))
4 factors_type ?j&:(= ?j 0)))
5 => assert recommendation S-C-F STR1)
(explanation
6 "Strength equals 1 Recommendation
I1,I2,I3,I4)"))))

5. Discussions and Findings

The following discussions are intended to provide
useful information regarding KBS modelling in the
context of the OMG Production Rule Representation
standardisation work. The PPR work mainly requires
the use of activity diagrams to model the relationship
between rulesets to action states. However, in this

work we have identified that the use of activity
diagram is limited to model a particular process of the
system. Furthermore, class diagram can only provide
partial snaphots of the system at a particular point in
time which is less meaningful in complex inference
cycles. To overcome this limitation, we have used the
sequence diagram which clearly helps to understand
the flow of logic in the system as shown in section 4.2.

The profile described in this paper would help in
understanding how rules are related to the domain
concept elements in the KBS and the processes that are
involved in activating the rule to fire with the help of
activity and sequence diagram. Furthermore, the
profile only shows the categories of rule which can be
modelled in a single diagram with the other model
elements. Thus the profile would help overcome the
current problem of omitting rules from the model.

Mapping the profile to PSM is only limited to
domain concept, factbase and implication rule. The rest
of the profile elements are useful to describe the KBS
and usually implemented differently as runtime
concepts in various rule engines. Nevertheless, this
proves that the most important work in designing and
developing KBS is writing the rules based on the
domain concepts which attribute values stored in the
fact base will activate the rules. As such, the
standardisation work in PRR should first emphasise on
agreeing standard representation of rule elements in
writing rules which are portable across different
inference engines.

6. Conclusions and Future Work

This paper presented an extension to UML using the
(lightweight) profile mechanism for knowledge
modelling that allows the relevant structural properties
of KBS to be represented at conceptual level. This
allows knowledge models to be built using an object-
oriented approach based on the standard modelling
language that is widely adopted. The profile was
implemented in an object-oriented meta-modelling
language tool, XMF Mosaic that allows easier visual
implementation of profile which diagrams are similar
to the common UML editors.

The profile has been successfully tested on several
case studies. This includes designs from scratch and re-
engineering of existing KBS and the results are
encouraging. Currently work has concentrated on
building an Eclipse plug-in to support the profile as it
is a popular implementation tool for UML profiles.
The plug-in allows profile-compliant diagrams to be
drawn and validated, and XML or XMI representations
produced. The infrastructure in the Eclipse makes this
mapping straightforward to implement. The future

877

work in this area involves studying how to automate
the generation of Jess code from the profile elements
that can be mapped to Jess meta-model. The work in
automating the generation of Jess code from models is
still in progress [31].

7. References

[1] Giarratano, J.C. and G.D. Riley, Expert Systems:
Principles And Programming. 2004, Boston, Massachusetts.:
Course Technology.
[2] Studer, R., R.V. Benjamins, and D. Fensel, Knowledge
Engineering: Principles and methods. Data & Knowledge
Engineering, 1998. 25(1): p. 161-197.
[3] Gomez-Perez, A. and V.R. Benjamins. Overview of
Knowledge Sharing and Reuse Components: Ontologies and
Problem-Solving Methods. in IJCAI-99 Workshop on
Ontologies and Problem-Solving Methods (KRR5). 1999.
[4] Ergazakis, K., Karnezis, K., Metaxiotis, K. & Psarras, I.,
Knowledge Management in Enterprises: A Research Agenda.
Intelligent Systems in Accounting, Finance and
Management, 2005. 13 (1): p. 17-26.
[5] Awad, E.M., Building Expert Systems: Principles,
Procedures, and Applications. 1996, Minneapolis: West
Publishing Company.
[6] Liebowtiz, J., If you are a dog lover, build expert system;
if you are a cat lover, build neural networks. Expert System
with Applications, 2001. 21: p. 63.
[7] Preece, A., Evaluating Verification and Validation
Methods in Knowledge Engineering, in Micro-Level
Knowledge Management, R. Roy, Editor. 2001, Morgan-
Kaufman: San Francisco. p. 123-145.
[8] OMG, Production Rule Representation - Request for
Proposal. 2003, OMG: Needham, USA. p. 57.
[9] OMG, KBE Services for Engineering Design - Request
for Proposal. 2004, OMG: Needham, MA, US. p. 32.
[10] McClintock, C. ILOG’s position on Rule Languages for
Interoperability. in W3C Workshop on Rule Languages for
Interoperability. 2005. Washington, D.C., USA.
[11] Krovvidy, S., P. Bhogaraju, and F. Mae. Interoperability
and Rule Languages. in W3C Workshop on Rule Languages
for Interoperability. 2005. Washington, D.C., USA.
[12] Abdullah, M.S., Benest, I. Evans, A., & Kimble, C.,
Knowledge Modelling Techniques for Developing
Knowledge Management Systems. Proceedings of the 3rd
European Conference on Knowledge Management. 2002.
[13] Gill, G.T., Early Expert Systems: Where Are They Now?
MIS Quarterly, 1995. 19(1): p. 51-81.
[14] Tsui, E., The role of IT in KM: where are we now and
where are we heading. Knowledge Management, 2005. 9(1):
p. 3-6.
[15 Juristo, N. and A.M. Moreno, Introductory paper:
Reflections on Conceptual Modelling. Data & Knowledge
Engineering, 2000. 33(2): p. 103-117.

[16] Dieste, O., Juristo, N., Moreno, A. M., Pazos, J. &
Sierra, A., Conceptual Modelling in Software Engineering
and Knowledge Engineering: Concepts, Techniques and
Trends, in Handbook of Software Engineering & Knowledge
Engineering, S.K. Chang, Editor. 2002, World Scientific
Publishing Company: Hackensack, NJ. p. 733-766.
[17] Naumenko, A. and A. Wegmann. A Metamodel for the
Unified Modeling Language. Proceedings of UML 2002.
2002, Springer-Verlag.
[18] Muller, P.-A., P. Studer, and J. Bezivin. Platform
Independent Web Application Modeling. Proceedings of
UML 2003, 2003, Springer-Verlag.
[19] Brown, A.W., Expert’s voice - Model driven
architecture: Principles and practice. Software and Systems
Modelling, 2004. 3(4): p. 314-327.
[20] Abdullah, M.S. Kimble, C. Paige, R., Benest, I., &
Evans, A., Developing UML Profile for Modelling
Knowledge-Based Systems. in Model Driven Architecture®:
Foundations and Applications (MDAFA) 2003 and 2004
conference selected papers. 2004: Springer-Verlag.
[21] OMG. Unified Modeling Language specification
(version 1.4). 2001 [cited 2004 5 April]; Available from:
www.omg.org.
[22] OMG, Requirements for UML Profile. 1999, Object
Management Group: Framingham, MA. p. 8.
[23] Perez-Martinez, J.E., Heavyweight extensions to the
UML metamodel to describe the C3 architectural style. ACM
SIGSOFT Software Engineering Notes, 2003. 28(3).
[24] OMG. MOF Specification version 1.4. 2002 [cited 2004
5 April]; Available from: www.omg.org.
[25] Clark, T., Evans, A., Sammut, P. & Willians, J.,
Metamodelling for Model-Driven Development; Available at
http://albini.xactium.com. 2005.
[26] Schreiber, G., Akkermans, H., Anjewierden, A., De
Hoog, R., Shadbolt, N., De Velde, W. & Wielinga, B.,
Knowledge Engineering and Management: The
CommonKADS Methodology. 1999, Massachusetts: MIT
Press
[27] Cuena, J. and M. Molina, The role of knowledge
modelling techniques in software development: a general
approach based on a knowledge management tool.
International Journal of Human-Computer Studies, 2000. 52:
p. 385-421.
[28] Håkansson, A. UML as an approach to Modelling
Knowledge in Rule-based Systems. in The Twenty-first
SGES International Conference on Knowledge Based
Systems and Applied Artificial Intelligence (ES2001). 2001.
Peterhouse College, Cambridge, UK.
[29] Friedman-Hill, E., Jess in Action: Rule-Based System in
Java. 2003, Greenwich, US: Manning Publications Co.
[30] RCN, Clinical Practice Guidelines: The management of
patients with venous leg ulcers. 1998, Royal College of
Nursing Institute: London.
[31] Wu, C.G. (2004) Modelling Rule-Based Systems with
EMF. Accessed at http://www.eclipse.org/articles

878

