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ABSTRACT 

 

Nonparametric methods require no or very limited assumptions to be made about the 

format of the data, and they may therefore be preferable when the assumptions 

required for parametric methods are not valid. The Wilcoxon signed rank test applies 

to matched pairs studies. For two tail test, it tests the null hypothesis that there is no 

systematic difference within pairs against alternatives that assert a systematic 

difference. The test is based on the Wilcoxon signed rank statistic W, which is the 

smaller of the two ranks sums. The step to compute the statistic W considered positive 

and negative differences and omit all the zero differences.  In this study, we modify 

the Wilcoxon signed rank test using the indicator function of positive, zero and 

negative differences to compute the Wilcoxon statistic, W. The empirical Type I error 

rates of the modified statistical test was measured via Monte Carlo simulation. These 

rates were obtained under different distributional shapes, sample sizes, and number of 

replications. The modified Wilcoxon signed rank test was found to be robust under 

symmetric distributions. The result shows that this test produced liberal Type I error 

rates under skewed distribution. The use of the indicator positive, zero and negative 

differences influence the result of the Wilcoxon statistic. These finding was 

demonstrated using an example data. 

. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

1.1 Research Background  

Drawing conclusions and inferences through statistical hypothesis testing about the 

differences between two groups is one of the routinely employed processes in 

educational, behavioral or social research. Group comparisons are at the heart of many 

research questions addressed by the researchers. Here are some examples of the research 

questions.  

1) Do males and females differ in terms of their exam scores? 

2) Is a particular curriculum effective in improving students’ achievement? 

To answer these questions, researchers typically turn to a time-honored procedure like the 

independent samples t-test. The independent samples t-test is based on certain 

assumptions namely (a) samples are independent and randomly selected, (b) population 

distributions are normal, and (c) population variances are equal. In order for the test 

statistic to provide valid results leading to sound and reliable conclusions, this 

requirement must be satisfied.  
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In real life, these ideal data are no doubt hard to access. Fortunately, if the 

assumption of normality is not satisfied, researchers can choose alternative procedures 

from the nonparametric methods. Wilcoxon rank sum test and Wilcoxon signed rank test 

can be used for independent and dependent samples respectively. Dependent or paired 

data are numerical data obtained from two populations that are related, that is, when 

results of the first group are not independent of the results of the second group. This 

dependency characteristic of the two groups occurs either because the items or 

individuals are paired or matched according to some characteristic or because repeated 

measurements are obtained from the same set of items or individuals. In either case, the 

variable of interest becomes the difference between the values of the observations rather 

than the values of the observations themselves. 

            If the difference scores are assumed to be randomly drawn from a poulation that is 

normally distributed and sample size is not very small, paired sample t-test can be used to 

determine whether there is a significant population mean difference. The paired t-test 

assumes that the data are measured on interval or a ratio scale. When the paired t-test is 

not suitable due to the violation of the normality assumption, the nonparametric 

Wilcoxon signed rank test for the median difference can be used. The Wilcoxon signed 

rank test requires less stringent assumptions, such that the difference score come from a 

distribution that is approximately symmetric and the data are measured on an ordinal, 

interval, or ratio scale. When the assumptions for the Wilcoxon signed rank procedure are 

met, but the assumptions of the paired t-test are violated, the Wilcoxon procedure is 

likely to be the more powerful in detecting the existence of significant differences.  
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Under ideal condition, where all the assumptions for using t-test are fulfilled, the 

Wilcoxon signed ranks test is almost as powerful. 

        The Wilcoxon signed ranks test uses the test statistic W. The computation of this 

statistic does not involve raw observations in the two dependent groups, but used the 

differences between them. For each item in a sample, the absolute difference between the 

paired values are arranged in increasing order and assign ranks, such that the smallest 

absolute difference score gets rank 1 and the largest gets the highest rank. Keeping track 

of which values were originally positive and negative. For tied values, the average of 

their ranks was computed while for the difference with zero values, it was discarded 

before ranking. These zero values are not considered in the calculation of Wilcoxon 

statistic. Lastly, compute the Wilcoxon test statistic, W, which is the smaller of the two 

ranks sums. 

In the case of independent sample, there was several studies developed new 

approach of nonparametric tests. Study by Steland, Padmanabhan and Akram (2011) used 

pseudo-medians of distribution as a location parameter and applied bootstrap method in 

testing the differences between groups for the nonparametric Behrens-Fisher problem and 

the Generalized Behrens-Fisher problem. Ahad, Othman and Syed Yahaya (2013; 2012; 

2011) modified the one-sample nonparametric Wilcoxon procedure and employed 

pseudo-median of differences between group values as the central measure of location in 

a two independent groups setting. In their study, they considered positive differences, 

differences equal to zero and negative differences in computing the Wilcoxon statistic. 

However, none of these approaches take a look into the case of dependent sample.  
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Therefore, in this study, we focusing on the case of dependent sample (paired 

data) by modifying the original Wilcoxon signed rank test with the application of the 

same indicator function where we considered positive, zero and negative differences in 

calculating the Wilcoxon statistic, W. The Type I error rate was measured in order to 

evaluate the performance of the modified Wilcoxon signed rank test.  

 

 

1.2  Research Objectives  

The primary goal of this study is to evaluate the performance of the modified Wilcoxon 

signed rank test in controlling the Type I error rates by taking into consideration the 

positive, zero and negative differences in calculating the Wilcoxon statistic. To achieve 

this goal, the performance of the modified Wilcoxon signed rank test was measured in 

terms of Type I error rates.  

 

1.3  Significance of the Study 

The contribution of this study is towards the knowledge development in the 

nonparametric statistics. Original step in Wilcoxon signed rank test will omit any 

absolute difference score of zero from further analysis and just considered positive and 

negative differences. However, in this study, we modified the Wilcoxon signed rank test 

where we considered positive, zero and negative differences in calculating W. 
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1.4  Organization of the Report 

In this current chapter, we have provided an introduction of the study which included the 

scenario of testing the two paired samples, the problem that arise when the assumptions 

of normality is violated, the alternative test in the nonparametric methods, the objective 

and the significance of the study. Chapter 2 reviewed the work related to Wilcoxon 

signed rank test and gives definitions of some important terminologies such as Type I 

error and robustness. Chapter 3 proposes the research method and testing framework in 

this study. This chapter also outlines how the empirical investigation was conducted and 

discuss on the study condition being investigated, followed by the procedure of 

generating and manipulating selected distributions. The results and discussion of the 

Monte Carlo simulation study of the modified Wilcoxon signed rank test are presented in 

Chapter 4. Finally, Chapter 5 summarizes the findings and discusses the strength and 

implication of the tests. We ended the report with conclusion and recommendations for 

further studies.  
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CHAPTER 2 

 

LITERATURE REVIEW 

  

2.1  Introduction 

Many parametric statistical methods require assumptions to be made about the format of 

the data to be analyzed. One of the underlying assumptions of parametric tests used in 

hypothesis testing is that the populations from which the data are sampled are normal in 

shape. Very often the variables within data sets from education and psychology are not 

normally distributed (Cressie & Whitford, 1986; Micceri, 1989). In his study, Micceri 

(1989) surveyed 440 data sets from psychological and education sources and determined 

that virtually none of the data sets could be adequately characterized by a normal 

distribution. Micceri (1989) described the distributions he examined as having varying 

degrees of multimodality, asymmetry (skew), and excessive tail weight (kurtosis). 

Although it may be convenient (practically and statistically) for researchers to assume 

that their samples are obtained from normal populations, this assumption may rarely be 

accurate (Micceri, 1989; Wilcox, 1990). For example, the paired t-test requires that the 

distribution of the differences be approximately normal. Fortunately, this assumption is 
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often valid in real data, or the other alternative is to apply suitable transformation. 

However, there are situations where even transformed data may not satisfy the 

assumptions. For such case, it may be inappropriate to use traditional (parametric) 

methods of analysis.  

Nonparametric methods provide an alternative series of statistical methods that 

require very limited assumptions to be made about the data. There is a wide range of 

methods that can be used in different circumstances. The nonparametric alternative to the 

paired t-test is the Wilcoxon signed rank test. For situations involving either matched 

items or repeated measurements of the same item, the nonparametric Wilcoxon signed 

rank test for the median difference can be used when the paired t-test for the mean 

difference is not appropriate due to the violation of the assumptions. The paired t-test 

assumes that the data are measured on an interval or a ratio scale and are normally 

distributed. The Wilcoxon signed rank test only requires that the differences are 

approximately symmetric and that the data are at least measured on an ordinal. The 

Wilcoxon signed ranks test is a more powerful method than t-test when the assumptions 

for t-test are violated, and it is as powerful as t-test when the assumptions are fulfilled. 

Before going in depth into the discussion of the method, the following sections 

will give a brief explanation on the statistical tests used and the definitions on a few 

important terminologies that were being used throughout this study.  
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2.2  Nonparametric Test 

A statistical procedure that has certain desirable properties that hold under relatively mild 

assumptions regarding the underlying population from which the data were obtained is 

known as a nonparametric procedure. According to Savage (1953), papers related to 

nonparametric statistics appeared as early as the nineteenth century, however, he 

designated 1936 as the true beginning of the nonparametric test, because in this year 

Hotelling and Pabst (1936) published their paper on rank correlation. Hettmansperger, 

Mckean and Sheather (2000), stated in their paper that the earliest work in nonparametric 

was done in 1936 by Hotelling and Pabst on rank correlation and followed by Friedman 

on rank tests in a two-way design a year later.  

In testing the equality of two groups, Wilcoxon (1945) introduced the signed rank 

and rank sum tests while Mann and Whitney (1947) extended his ideas to the case of 

more than two groups. The development of nonparametric continued after that when 

Pitman developed efficiency concepts in 1948. During 1950s and 1960s, Lehmann in 

association with Hodges and his students showed that rank tests are surprisingly efficient 

and robust.  Since then, many articles and books were produced and published by well-

known researchers such as Fisher, Scheffe’, Wilcoxon, Wolfowitz, Kendall, Siegel, 

Savage, Hajek, Sidak and many more. Nonparametric statistics continue to flourish 

today.  

According to Hollander and Wolfe (1999), there are many reasons that contribute 

to the rapid development of nonparametric statistical procedures. Among the reasons are: 
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a) Nonparametric methods require few assumptions about the underlying 

populations from which the data are obtained. It forgoes the traditional 

assumption that the underlying populations are normal. 

b) Nonparametric techniques are often (although not always) easier to apply than 

their normal theory counterparts. 

c) Nonparametric procedures are often quite easy to understand. 

d) Nonparametric procedures are applicable in situations where the normal theory 

procedure cannot be utilized. For example, many of the procedures require not the 

actual magnitudes of the observations, but rather, their ranks. 

e) Nonparametric procedures even though are slightly less efficient than their normal 

theory competitors when the underlying populations are normal, they can be 

mildly more efficient compared to their competitors when the underlying 

populations are not normal.  

 

There are many advantages of using nonparametric techniques. Siegel (1956) 

outlined six main advantages as follows: 

a) For most nonparametric statistics, the “accuracy” of the probability statement 

does not depend on the shape of the population. 

b) The size of the sample is not as important, because small sample sizes will not 

cause the results to be misleading to the extent that small samples unduly affect 

parametric tests. 

c) Nonparametric statistics can be used when observations come from several 

different distributions. 
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d) Nonparametric statistics can be used with data that are ordinal, or ranked, as well 

as with interval and ratio scaled data. 

e) Nonparametric statistics can be used with nominal data as well. 

f) Nonparametric statistics can be easily learned and applied, at least at the 

univariate level. 

 

McSeeney and Katz (1978) summarized the reasons for using nonparametric 

statistics. These include (a) nonparametric statistics have fewer assumptions, (b) 

nonparametric statistics can be used with rank-ordered data, (c) nonparametric statistics 

can be used with small samples, (d) data do not need to be normally distributed, and (e) 

outliers can be present. Conover (1980) provided three reasons for using nonparametric 

statistics. Specifically, he agreed that nonparametric methods (a) involve less 

computational work, (b) easier and quicker to apply, and (c) much of the theory behind 

the nonparametric methods may be developed rigorously, using no mathematics beyond 

high school algebra. 

Furthermore, when approximate normality is met, nonparametric tests are still 

relatively efficient, the asymptotic relative efficiency (ARE) of nonparametric tests with 

respect to parametric tests can be as high as 95.5% (Gibbons, 1993; Hollander & Wolfe, 

1999). ARE in simple term can be defined as a measure of the large-sample efficiency of 

one test relative to the other (Higgins, 2004).  Consequently, in many cases, researchers 

have relatively little to lose by using nonparametric tests if the distribution is normal. If 

the distribution is not normal, tests based on nonparametric tests are likely to be more 

efficient than their parametric counterparts.  
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2.3  Wilcoxon Signed Rank Test 

Frank Wilcoxon stated in his paper in 1945 that the comparison of two treatments 

generally falls into one of the following two categories: a) we may have a number of 

replications for each of the two treatments, which are unpaired, or b) we may have a 

number of paired comparison leading to a series of differences, some which may be 

positive and some negative. Wilcoxon (1945) introduced the rank sum tests for unpaired 

group and signed rank test for paired group which are still named after him. 

To perform the Wilcoxon signed rank test for the median difference, below are 

the steps to obtain the test statistic W.  

1. For each item in a sample of n items, compute a difference score, ��, between the 

two paired values. 

2. Neglect the + and - signs and list the set of n absolute differences, |��|. 
3. Omit any absolute difference score of zero from further analysis, thereby yielding 

a set of �′ nonzero absolute difference scores, where  �′ ≤ �. After remove values 

with absolute difference scores of zero, �′ becomes the actual sample size. 

4. Assign ranks �� from 1 to �′ to each of the |��| such that the smallest absolute 

difference score gets rank 1 and the largest gets rank �′.  If two or more are equal, 

assign each of them the average of the ranks they would have been assigned 

individually had ties in the data not occurred. 

5. Reassign the symbol + or - to each of the �′ ranks, ��, depending on whether 

�� 	was originally positive or negative. 
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6. Compute the sum of the positive ranks and the sum of the negative ranks. The 

smaller of the two rank sums is used as the test statistic, W as shown in Equation 

1.  

   	 = ∑ ���
��� �+�	��		 = ∑ ���
��� �−�	   (1) 

 

Because the sum of the first �� integers �1,2, … , ��� is given by ����� − 1�/2, the 

Wilcoxon test statistic W ranges from a minimum of 0 (where all the observed difference 

scores are negative) to a maximum of ����� − 1�/2 (where all the observed difference 

scores are positive). If the null hypothesis is true, the test statistic W is expected to take 

on a value close to its mean �� = ����� − 1�/4. If the null hypothesis is false, the 

observed value of the test statistic is expected to be close to one of the extremes. The 

two-tail test of the null hypothesis that the population median difference MD is zero can 

be written as Equation 2. 

   � :"# = 0																��:"# ≠ 0    (2) 

 

2.4 The Error of Statistical Test 

Statistical test involves two types of errors which are (1) Type I error (a probability of the 

true null hypothesis is incorrectly rejected) denoted as α and (2) Type II error (a 

probability false null hypothesis fail to be rejected) denoted as β. Definition of these two 

errors can be presented as in Table 2.1. Type I error is the error of rejecting a null 

hypothesis when it is actually true. This error is also known as significant level, nominal 

level, “error of the first kind” or “false positive”. In other words, this is the error when we 
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are observing a difference when in truth there is none, thus indicating a test of poor 

specificity. Type I error can be viewed as the error of excessive credulity. 

Conventionally, researchers have chosen either the 0.05 level or the 0.01 level (5% or 1% 

level) of significance, although the choice of levels is largely subjective. When the 

significance level is low, more data must be diverging from the null hypothesis to be 

significant. Therefore, 0.01 level is more conservative compare to the 0.05 level.  

Type II error is the error of failing to reject a null hypothesis when it is in fact not 

true. This error is also known as “error of the second kind”, β error, or “false negative”. It 

happens when we fail to observe a difference when in truth there is one, thus indicating a 

test of poor sensitivity. This error can be viewed as the error of excessive skepticism. 

Based on their definitions, Type I errors are generally considered more serious than Type 

II errors. 

In many practical applications, Type I errors are more delicate than Type II errors. 

More attention is given on minimizing the occurrence of this statistical error. Therefore a 

good statistical test is defined by evaluating how good the test in controlling the 

occurrence of the probability of Type I error or the Type I error rates. The test with good 

control of the Type I error rates identified as a robust test. 

Table 2.1: Type of errors 

Statistical Decision True State of the Null Hypothesis 

H0 True H0 False 

Reject H0 Type I error Correct Decision 

Do not Reject H0 Correct Decision Type II error 
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2.5 Robustness 

Robustness signifies insensitivity to small deviations from the assumptions (Huber, 

2004). According to Sullivan and D`Agostino (1996) and Heeren and D`Agostino (1987), 

statistical tests are said to be robust if the observed Type I error rates are close to the pre-

selected or nominal significance value in the presence of violations of assumptions.  

Robustness in the context of hypothesis testing is the ability of a procedure to 

control the Type I error rate of a test close to the nominal value (significance level) and 

stable over a range of distributions even with some deviations from its assumptions. Tiku, 

Tan and Balakrishnan (1986) refer the phenomenon as “robustness of validity” when the 

Type I error of a test procedure is stable from distribution to distribution; at any rate the 

Type I error for plausible alternatives to normality is never too large compared to its 

normal-theory.   

In order to provide a quantitative definition of robustness, we have to state for a 

given α value, the range of the true probability p of a Type I error for which the test 

would be regarded as robust. Bradley (1978), recommended that a procedure could be 

considered robust to the violation of an assumption if the Type I error rate is within 

0.5α± . Bradley proposed a ‘liberal criterion’ by defining robustness as 0.5 1.5pα α≤ ≤ . 

Thus, when the nominal level is set at α = 0.05, the procedure or test is considered robust 

if its Type I error rate is in between 0.025 and 0.075. If the Type I error was not 

contained in this interval, then a test procedure was considered non robust for that 

particular condition. Type I error rates above 0.075 are considered liberal and those 

below 0.025 are considered conservative. A conservative test is of less concern and at 
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times considered robust. This situation is different for liberal tests as it is viewed with 

caution for it has committed a critical Type I error. This research used Bradley’s liberal 

criterion of robustness to measure the performance of the proposed statistical test in 

controlling its Type I error. 
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CHAPTER 3 

 

METHODOLOGY 

 

3.1 Introduction 

The Wilcoxon signed rank test is a nonparametric procedure which is suitable to be 

applied to test two dependent groups (matched pairs). It tests the null hypothesis that 

there is no systematic difference within pairs against alternatives that assert a systematic 

difference. The test is based on the Wilcoxon signed rank statistic W, which is the smaller 

of the two rank sums. The step to compute the statistic W considered positive and 

negative differences and omit all the zero differences. Recent works by Ahad et al. (2013; 

2012; 2011) and Steland et al. (2011) considered indicator function of positive, zero and 

negative differences to compute the Wilcoxon statistic, W for two independent groups. In 

this study, the same idea of using the indicator function of positive, zero and negative 

differences to compute the Wilcoxon statistic, W for dependent group will be employed. 

In order to accomplish the objective of the study which is to investigate the 

performance of the modified Wilcoxon signed rank test in controlling the Type I error 

rate, a few variables have been manipulated to create conditions which may be able to 
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highlight the strengths and weaknesses of the method. The variables include total sample 

sizes, types of distributions, and number of simulation.  

A simulation study was conducted to evaluate and compare the performance of 

the method for each of the conditions investigated. The robustness of the method or test 

was determined by performing the test under constant conditions a large number of times. 

The frequencies of rejecting the null hypotheses were recorded. The proportion rejected 

(frequencies of rejecting the null hypotheses divide by the number of simulations) was 

used as an estimate of the probability of committing the Type I error.  

 

3.2 Procedure Employed 

The procedure employed in this study was the modification of the Wilcoxon signed rank 

test with the inclusion of the indicator function zero differences to obtain the Wilcoxon 

statistic, W. The two-tail test of the population median difference, MD is given by 

Equation 3. 

   � :"# = 0																��:"# ≠ 0    (3) 

Generate two sequences of uncorrelated &� and &' using specified distribution with equal 

sizes. Define a new sequence as Equation 4 to get a correlated or paired data (Thijs van 

den Berg, 2013). This new (� sequence will have a correlation of ρ with the &� sequence. 

The value of ρ is set as 0.8. 

   (� = )&� + &'*1 − )'     (4) 

Find sequence difference between &� and (� where  
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   �� = &�� − (��       (5) 

where + = 1,2, … , �. Let |��| denotes the absolute value of ��, and �� denotes the rank of 

|��| . Define the indicator function as  

   ,� = -1						+.	�� > 00.5			+.	�� = 00					+.	�� < 0       (6) 

Based on Equation 6, determine ,� with regards to the differences, ��. Then the Wilcoxon 

statistic is defined as 

   	 = ∑ ��,�����       (7) 

For a two-tail test and for a particular level of significance, if the observed value of 	 

equals or is greater than the upper critical value or is equal to or less than the lower 

critical value in the Wilcoxon table, the null hypothesis is rejected.  

 

3.3 Variables Manipulated 

A few conditions that were identified to have effect on the robustness of test for paired 

group were considered. These conditions were created by manipulating a few variables 

namely sample sizes, distributional shapes and simulation number. The purpose was to 

highlight the strength and weaknesses of the method in the aspect of robustness.  

Discussion on the variables manipulated is given in the next subsection.  
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3.3.1 Sample Sizes 

This study focused on paired groups with small sample sizes. To examine the effect of 

sample size on the test, we manipulated the sample size ��� to be 10, 15, 20, 25 and 30. 

We focus on small sample sizes since we want to accommodate the critical values 

provided by the Wilcoxon table when making decision whether to reject or not to reject 

the null hypothesis. For a large sample, the test statistic 	 is approximately normally 

distributed.  

 

3.3.2 Types of Distributions 

The next variable of interest was the population distributional shape. We chose to employ 

various distribution from both types of symmetrical and nonsymmetrical distributions to 

study the effects of distributional shape on Type I error for the procedures investigated.  

The shape of a distribution is usually depicted by skewness and kurtosis. 

Skewness is a departure from symmetry (Hoaglin, 1985a). In other words, skewness is a 

measure of symmetry, or more precisely, the lack of symmetry. The coefficient 
1γ  is 

used to measure the skewness.  
1γ  provides an indication of departure from symmetry in 

a distribution and its value can be positive or negative. Generally, a distribution is 

symmetric if the median divides the left side and the right side into two identical areas. A 

symmetric distribution has a skewness value of zero ( )1 0γ = . Left skewed occurs when 

the left tail is longer with regard to the right tail, i.e. 
1 0γ <  and right skewed occurs 
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when the right tail is longer with regard to the left tail, i.e. 
1 0γ > . Refer to Figure 3.1 for 

illustration.  

 

 

Figure 3.1. Type of skewness 

 

Kurtosis, on the other hand, is a measure of whether the data are peaked or flat 

relative to a normal distribution. In a simple definition, kurtosis also refers to heavier tails 

(Hoaglin, 1985a). The coefficient 
2γ  is used to measure the kurtosis.  High kurtosis is 

usually represented by a distinct peak near the mean, which subside rather rapidly, and 

have heavy tails. While low kurtosis tends to have a flat top near the mean. Zero kurtosis 

( )2 0γ =  indicates normal tail or mesokurtic distribution. Short-tailed distributions have 

2 0γ < , and long-tailed distributions have 
2 0γ >  (Algina, Keselman & Penfield, 2005). 

Leptokurtic distributions have a positive kurtosis while platykurtic distributions have a 

negative kurtosis. According to Miles and Shevlin (2001), the term ‘leptokurtic’ is 

originally from the Greek word ‘leptos’, meaning small or slender. On the other hand, the 

word ‘platykurtic’ comes from the French word ‘plat’, meaning flat. In other word, 

positive kurtosis indicates a "peaked" distribution while negative kurtosis indicates a 

"flat" distribution. A general form of kurtosis is illustrated in Figure 3.2.  
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Figure 3.2. General forms of kurtosis 

 

To observe the effect of distributional shapes on Type I error of the modified 

Wilcoxon signed rank test, this study focused on four distributions representing different 

degrees of skewness and kurtosis from both spectrum of symmetric and asymmetric 

distribution. For symmetric distributions, the distributions used in this study were 

standard normal, Beta (0.5, 0.5) and the g-and-h distribution from Hoaglin (1985b) with g 

= 0 and h = 0.225, representing symmetric mesokurtic, platykurtic and leptokurtic, 

respectively.  

The normal distribution is probably the most important distribution in statistics 

and it represents distribution with zero skewness.  Normal distribution was used as the 

basis of comparison. Beta in general is an asymmetric distribution. But one advantage of 

the Beta distribution is that it can take on many different shapes. We can set the Beta’s 

parameters in order to generate a desired distribution. Beta (0.5, 0.5) is a platykurtic 
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distribution and has a u-shape. The g-and-h distribution was obtained from the 

transformation of the normal distribution to skewed or longer tailed by controlling the g 

and h parameters. The parameter g controlled the amount of skewness, while parameter h 

controlled the kurtosis. The tails of the distribution were further skewed as g increased 

and became heavier as h increased. Meanwhile, for asymmetric distributions, the chi-

square distribution with three degrees of freedom ( )2

3χ  was chosen to represent skewed 

leptokurtic distribution. Table 3.1 shows the types of symmetrical and nonsymmetrical 

distributions used in this study together with their levels of skewness and kurtosis.  

 

Table 3.1: Distributions used in the study 

Distributional Shape Distribution Identified Skewness  Kurtosis 

 

Symmetrical 

Platykurtic Beta(0.5,0.5) 0 -1.5 

Normal tail Normal(0,1) 0 0 

Leptokurtic g = 0, h = 0.225 0 154.84 

Asymmetrical Leptokurtic Chi-square(3) 1.63 4.00 

 

 

3.3.3 Number of Simulation 

The last variable manipulated was number of simulation. In this study, we used 1000, 

5000 and 10,000 replications for each distribution with each study condition. These three 

different replication sizes have been used by Kang and Harring (2012) in their simulation 
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study. According to the literature, there are various numbers of simulations being used by 

previous researchers. For example, Othman, Padmanabhan and Keselman (2003) used 

one thousand replications of each condition when they extended the Mann-Whitney 

procedure to J-samples. The same number of simulations also been used in Wilcox, 

Keselman and Kowalchuk (1998) and Keselman, Wilcox, Taylor and Kowalchuk (2000). 

Greater numbers of simulations like ten thousands were used when sampling distribution 

was really intractable to derive analytically as done in Keselman, Wilcox, Lix, Algina 

and Fradette (2007) and Guo and Luh (2000).  

However, the number of simulations frequently used is five thousand. Syed 

Yahaya, Othman and Keselman (2006) generated five thousand data sets in examining 

the Type I error rates of their modified robust statistical procedure and when comparing 

the typical score across independent groups based on different criteria for trimming. 

Othman, Keselman, Padmanabhan, Wilcox and Fradette (2004) also used five thousands 

replications of each study condition when comparing a number of adaptive robust 

methods with respect to their ability to control Type I error. Other researchers that used 

this number of simulations in their study were Keselman, Othman and Wilcox (2013), 

Keselman, Wilcox, Othman and Fradette (2002), Keselman, Othman, Wilcox and 

Fradette (2004) and Hess, Olejnik and Huberty (2001). 

 

3.4 Design Specification 

Table 3.2 shows the design specifications from the combination of sample sizes, types of 

distribution and number of simulation. The test conditions simulated for this study 
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involved the association of the five sample sizes paired with the three simulation number 

which produced fifteen conditions. These conditions were then applied on the four 

suggested distributions. Overall, these specifications produced 60 conditions in total. 

Type I error rates were computed within each condition examined. The results of the 

analysis and discussion in Chapter 4 were based on these design specifications.  

 

Table 3.2: Design specifications and test conditions of the study 

Distribution  Sample Sizes Number of Simulation 

 

Normal 

Beta (0.5,0.5) 

g = 0, h = 0.225 

3'4 

10 

15 

20 

25 

30 

 

1000 

5000 

10000 

 

3.5 Data Generation 

This study was based on simulated data. The simulation of data according to types of 

distribution was the key step in the analytical and empirical computational studies of the 

test procedure. The simulation was carried out using random-number-generating function 

in SAS and the simulation program was written in SAS/IML (SAS, 2006). The data were 

generated by using the following steps for each condition: 

1. Generate two groups of n observations from the target population where n 

is the sample size (n = 10, 15, 20, 25, 30). 
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2. Standardize the distributions using the population expected value and 

standard deviation. 

3. Generate a paired group that use both groups in Step 1. 

In terms of the data generation procedure, pseudo-random variates for each 

particular distributional shape were obtained in the following manner: 

a) Standard normal distribution 

Pseudo-random normal variates were generated by employing the SAS 

generator RANDGEN (SAS, 2006). This involved the straight forward 

usage of the (RANDGEN(Y, ‘NORMAL’)) to generate normal variates 

with means equals to zero and standard deviation equals to one. 

b) Beta (0.5,0.5) distribution 

Data for Beta (0.5,0.5) distribution was generated using the RANDGEN 

subroutine with the beta distribution option, (RANDGEN(Y, 

‘BETA’,0.5,0.5)). Beta (0.5,0.5) is a symmetric u-shaped distribution, 

hence the negative kurtosis. 

c) g-and-h distribution with g = 0 and h = 0.225 

To generate data from a g- and h- distribution, standard normal variates 

ij
Z  were generated using (a). Transform the standard normal variates to g- 

and h- variates via Equation 8 to obtain the symmetric leptokurtic 

distribution. 

 ( = 5,6788                            (8) 
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d) Chi-square distribution with three degrees of freedom 

To generate the chi-square variates with three degrees of freedom, we used 

the straight forward SAS/IML  function i.e.  (RANDGEN(Y, 

‘CHISQUARE’, 3)). 

 Normal distribution already have variances equal to one, therefore standardization 

was not required. Observations generated from the Beta (0.5,0.5), g-and-h and 2

3χ  

distributions, where the variances were not equal to one, were standardized so that they 

were one. The standardization for each of these distributions was done using the equation  

below: .   

  (� = �&� − 9ℎ,��,;+<=>	",=��/√9ℎ,��,;+<=>	@=�+=�<,   (9) 

Table 3.3 gives the theoretical mean and variance for Beta (0.5,0.5), g-and-h and 2

3χ  

distributions.  

Table 3.3: Theoretical mean and variance 

Distribution Theoretical Mean Theoretical variance 

Beta (0.5,0.5) 

 
( )

0.5
A

A B
=

+
 

( ) ( )( )2
0.125

1

AB

A B A B

=
+ + +

 

g = 0, h = 0.225 

 

0 

( )
3

2

1
2.4516

1 2h

=

−

 

2

3χ  3v =  2 6v =  
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3.6 Monte Carlo Simulation 

Monte Carlo simulations are computer experiments involving random sampling from 

known probability distributions to study properties of statistical methods (Mooney, 

1997). By generating data under a variety of model-specific and distributional 

misspecification, one can monitor statistics of interest in order to understand their 

behavior across varying conditions (e.g., severity of non-normal distribution conditions, 

sample sizes). Monte Carlo simulation is a class of computational algorithms that rely on 

repeated random sampling to compute their results. Monte Carlo simulation is usually 

used to estimate the Type I error in situations where the assumptions of the test are 

violated or when analytical approach are not available. The next section will discuss on 

the Monte Carlo simulation used on the statistical test investigated to assess the Type I 

error rates. 

 

3.7 Monte Carlo Assessment of Type I Error 

The simulation of data according to the systematic manipulation of the group sizes and 

the underlying shape of the distribution was used to compute the Type I error for the 

modified Wilcoxon signed rank test. The number of simulations or replications used in 

this study were 1000, 5000 and 10,000. The algorithm of the modified Wilcoxon signed 

rank test for estimating the Type I error is as follows: 

1. Initialize a variable, count = 0. 

2. Generate samples data based on design specification. 
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3. Perform the hypothesis test based on the generated data at the predetermined 

significance level (α = 0.05). 

4. Reject �  if 	 ≥ upper critical value or 	 ≤ lower critical value. 

5. If the decision is reject �  , then increase count by one (count = count + 1). 

6. Repeat step 2 to step 4 for 1000 times. 

7. Calculate the average Type I error rates by dividing count by 1000. 

8. Repeat this simulation for 20 different conditions (4 distributions x 5 sample 

sizes). 

Repeat all the steps (step 1 to step 8) for five thousand and ten thousand replications.  

 

 

 

 



29 

 

CHAPTER 4 

 

RESULT AND ANALYSIS 

 

4.1 Introduction 

The performance of the modified Wilcoxon signed rank test was measured in terms of 

robustness. The test was conducted on data with various combinations of test conditions 

to highlight the strengths and weaknesses of the statistical test. The test conditions 

involved the various combinations of types of distribution, sample sizes and number of 

replication.  

The performance of the test in terms of robustness was assessed at α = 0.05 level 

of significance. To evaluate a particular condition under which a test is sensitive to 

assumption violations, Bradley’s (1978) liberal criterion of robustness was employed. In 

order for a test to be considered robust, its empirical Type I error rate must be contained 

in the interval of [0.5α, 1.5α] or [0.025, 0.075]. A test is considered to be non robust if, 

for a particular condition, its Type I error rate is not within this interval. We adopted this 

standard because it was widely used by most researchers studying on robustness (e.g. 

Keselman et al., 2002; Wilcox et al., 1998; Othman et al., 2004; Syed 
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Yahaya, Othman & Keselman, 2004; Syed Yahaya et al., 2006).  A procedure is 

considered highly robust if its estimated Type I error falls within the Bradley’s liberal 

criterion and close to the nominal (significance) level.  Estimated Type I error rates 

outside these intervals are considered either conservative or liberal for p < 0.025 and p > 

0.075, respectively.  

 

4.2 Type I Error Rates  

The outcome measures for this study which is the Type I error rates were shown in Table 

4.1. As mentioned in the previous chapter, the Wilcoxon signed rank test requires that the 

difference score come from a distribution that is approximately symmetric. The result 

from Table 4.1 shows that the modified Wilcoxon signed rank test is able in controlling 

the Type I error rates for all symmetric distributions.  The cell with bold values represent 

the conditions with Type I error rates outside the Bradleys interval.  All the Type I error 

rates obtained under normal, Beta and g-and-h distributions are lower than the nominal 

level of 0.05. However, there are a few conditions where the test produced conservative 

Type I error rates (below 0.025).  Some researchers would consider that the procedures 

with conservative Type I error rates fail to perform. However, according to Mehta and 

Srinivasan (1970) and Hayes (2005), conservative procedures can still be considered as 

robust.  

The finding displays that the test do not perform well under skewed distribution 

(chi-square with 3 d.f.)  where it produced liberal Type I error rates (above 0.075)  under 

all replications. The bold values under chi-square distributions indicate the Type I error 
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rates are liberal as it exceed Bradley liberal criterion of 0.075. With respect to the number 

of replications, different number of replications used do not influence the outcome 

because there are not much different in the Type I error rates produced by the test among 

the three values. 

Table 4.1: Type I error rates 

 

Distribution 

 

Sample sizes 

Type I error 

1000 

Replications 

5000 

Replications 

10,000 

Replications 

Normal 10 

15 

20 

25 

30 

0.023 

0.024 

0.027 

0.027 

0.024 

0.021 

0.023 

0.025 

0.027 

0.022 

0.020 

0.025 

0.026 

0.027 

0.022 

Beta(0.5,0.5) 10 

15 

20 

25 

30 

0.029 

0.021 

0.035 

0.021 

0.025 

0.030 

0.025 

0.027 

0.024 

0.024 

0.026 

0.024 

0.025 

0.024 

0.023 

g=0 h=0.225 10 

15 

20 

25 

30 

0.023 

0.025 

0.026 

0.027 

0.025 

0.021 

0.023 

0.026 

0.025 

0.022 

0.020 

0.026 

0.026 

0.025 

0.023 

Chi-Square(3) 10 

15 

20 

25 

30 

0.067 

0.054 

0.067 

0.010 

0.091 

0.067 

0.064 

0.084 

0.092 

0.087 

0.062 

0.067 

0.082 

0.091 

0.092 
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4.3 Calculation of Wilcoxon Statistic Based on Example Data 

We believe that the inclusion of indicator zero differences might have some effect in the 

calculation of Wilcoxon statistic, W. However, based on simulation data, we cannot show 

the result for the original Wilcoxon signed rank test due to the time constrain in 

developing the programming.  For that reason, both Wilcoxon tests were demonstrated 

using an example data as shown in Table 4.2 to show that the difference indicator 

influence the result of the Wilcoxon statistics. This section will be separated into two 

parts which are the case without zero difference and the case with zero difference. The 

Wilcoxon statistic, W is compared with the critical value from the Wilcoxon Table. For 

two-tail test, H0 is rejected if W is less than or equal to the lower critical value or W is 

greater than or equal to the upper critical value. We used the example of two-tail test 

from Lind, Marchal and Wathen (2005), page 560. The situation is; 

 

Suppose Toyota Motor Corporation is studying the effect of regular versus  

high-octane gasoline on fuel economy of its new high-performance, 3.5-liter,  

V6 engine. Ten executives are selected and asked to maintain records on the  

number of miles traveled per gallon of gas. Is there a difference in the number  

of miles traveled per gallon between regular and high-octane gasoline? 
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                Table 4.2: Number of miles traveled per gallon of gas 

 

Executive 

Miles per Gallon 

Regular High-Octane 

Bowers 25 28 

Demars 33 31 

Grasser 31 35 

DeToto 45 44 

Kleg 42 47 

Rau 38 40 

Greolke 29 29 

Burns 42 37 

Snow 41 44 

Lawless 30 44 

 

4.3.1 Calculate the Wilcoxon signed rank test with zero difference 

Both calculation are based on B = 0.05. Based on the Wilcoxon signed rank test, the 

statistic 	 is 11. Since there is zero difference, so remove one executive and the sample 

become 9. From the Wilcoxon Table, lower and upper critical value is 5 and 40, 

respectively.  Since 	 = 11 is between 5 and 40, we fail to reject the null hypothesis. 
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Table 4.3: Wilcoxon signed rank test with zero difference 

 

Executive 

Miles per Gallon ��  |��| ��  Sign of �� 
Regular High-

Octane 

Bowers 25 28 -3 3 4.5 - 

Demars 33 31 2 2 2.5 + 

Grasser 31 35 -4 4 6 - 

DeToto 45 44 1 1 1 + 

Kleg 42 47 -5 5 7.5 - 

Rau 38 40 -2 2 2.5 - 

Greolke 29 29 0 Discard Discard Discard 

Burns 42 37 5 5 7.5 + 

Snow 41 44 -3 3 4.5 - 

Lawless 30 44 -14 14 9 - 

 

Next, Table 4.4 shows the calculation based on the modified Wilcoxon signed 

rank test. The Wilcoxon statistic 	 is equal to 14.5. Sample size is still ten executives. 

Based on the Wilcoxon Table, lower and upper critical value is 8 and 47, respectively. 

Since 14.5 falls between 8 and 47, we fail to reject the null hypothesis. Even though both 

test give different value of Wilcoxon statistic, but both test have the same conclusion 

which is fails to reject the null hypothesis. 
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Table 4.4: Modified Wilcoxon signed rank test with zero difference 

 

Executive 

Miles per Gallon ��  |��| ��  ,� ��,� 
Regular High-Octane 

Bowers 25 28 -3 3 5.5 0 0 

Demars 33 31 2 2 3.5 1 3.5 

Grasser 31 35 -4 4 7 0 0 

DeToto 45 44 1 1 2 1 2 

Kleg 42 47 -5 5 8.5 0 0 

Rau 38 40 -2 2 3.5 0 0 

Greolke 29 29 0 0 1 0.5 0.5 

Burns 42 37 5 5 8.5 1 8.5 

Snow 41 44 -3 3 5.5 0 0 

Lawless 30 44 -14 14 10 0 0 

 

4.3.2 Calculate the Wilcoxon signed rank test without zero difference 

To make the data without zero difference, we changed the value of miles per gallon for 

regular gasoline for the Greolke executive from 29 to 31. Then we proceed to calculate 

the two Wilcoxon statistic. Both Wilcoxon statistic		 based on the Wilcoxon signed rank 

test and the modified Wilcoxon signed rank test give the same value which is 15.5. From 

the Wilcoxon Table with sample size of ten, lower and upper critical value are 8 and 47, 

respectively. Since 15.5 is upper than 8 but lower than 47, we fail to reject the null 

hypothesis.  
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Table 4.5: Wilcoxon signed rank test without zero difference 

 

Executive 

Miles per Gallon ��  |��| ��  Sign of �� 
Regular High-

Octane 

Bowers 25 28 -3 3 5.5 - 

Demars 33 31 2 2 3 + 

Grasser 31 35 -4 4 7 - 

DeToto 45 44 1 1 1 + 

Kleg 42 47 -5 5 8.5 - 

Rau 38 40 -2 2 3 - 

Greolke 31 29 2 2 3 + 

Burns 42 37 5 5 8.5 + 

Snow 41 44 -3 3 5.5 - 

Lawless 30 44 -14 14 10 - 

 

 

 

 

 

 

 



37 

 

Table 4.6: Modified Wilcoxon signed rank test without zero difference 

 

Executive 

Miles per Gallon ��  |��| ��  ,� ��,� 
Regular High-Octane 

Bowers 25 28 -3 3 5.5 0 0 

Demars 33 31 2 2 3 1 3 

Grasser 31 35 -4 4 7 0 0 

DeToto 45 44 1 1 1 1 1 

Kleg 42 47 -5 5 8.5 0 0 

Rau 38 40 -2 2 3 0 0 

Greolke 31 29 2 2 3 1 3 

Burns 42 37 5 5 8.5 1 8.5 

Snow 41 44 -3 3 5.5 0 0 

Lawless 30 44 -14 14 10 0 0 

 

 From these two examples, it is clearly shown that for situation without zero 

difference, there is no different in the Wilcoxon statistic obtained. Therefore, the used of 

indicator differences have no effect on the Wilcoxon statistic under this situation. 

However, when there is zero difference, the use of indicator differences do have an effect 

on the Wilcoxon statistic, 	.  
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CHAPTER 5 

 

CONCLUSION 

 

5.1 Introduction 

The goal of this research is to evaluate the performance of the modified Wilcoxon signed 

rank test in controlling the Type I error rates when we considered positive, zero and 

negative differences in calculating the Wilcoxon statistic. The performance of the 

modified Wilcoxon signed rank test was measured in terms of the Type I error rates. The 

robustness of the statistical test was evaluated based on the Bradley liberal criterion of 

robustness.  The test was considered robust if the Type I error rates fall between 0.025 

and 0.075.  

 

5.2 Performance of the Modified Wilcoxon Signed Rank Test 

The modified Wilcoxon signed rank test requires that the difference score come from a 

distribution that is approximately symmetric. The test is able in controlling the Type I 
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error rates for all symmetric distribution even though the values obtained is quite 

conservative. From this finding, the modified Wilcoxon signed rank test is robust for non 

skewed distribution. However, under skewed distribution, some of the conditions tested 

showed non robust with liberal Type I error rates.  Different numbers of replication used 

do not influence the outcome of the test.    

 

5.3 Limitation and Suggestion for Future Research 

From this study, we notice that the use of the indicator differences (positive, zero and 

negative) could work for Wilcoxon Signed rank test. The performance of the modified 

Wilcoxon signed rank test should be compared with the original Wilcoxon signed rank 

test. However, due to the time constraint, the comparison between this two Wilcoxon 

tests could not be done because longer period is needed to write the programming for the 

original Wilcoxon signed rank test.  Therefore, for future research we are interested to 

compare the performance of the original and the modified Wilcoxon singed rank test in 

controlling the Type I error rate and also to conduct the power analysis for these two 

Wilcoxon tests. 
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