8th BSC Doctoral Symposium

Optimizing the SpMV kernel on long-vector
accelerators

Constantino Gomez**, Filippo Mantovani*f, Erich Focht!, Marc Casas*"
*Barcelona Supercomputing Center, Barcelona, Spain
TUniversitat Politécnica de Catalunya, Barcelona, Spain
INEC HPC Europe, Stuttgart , Germany
E-mail: {constantino.gomez, marc.casas, filippo.mantovani, } @bsc.es; erich.focht@emea.nec.com

Keywords—SpMYV, NEC Vector Engine, Long-Vector Architec-
tures, Performance Optimization

I. EXTENDED ABSTRACT

Sparse Matrix-Vector multiplication (SpMV) is an essential
kernel for parallel numerical applications. SpMV displays
sparse and irregular data accesses, which complicate its vector-
ization. Such difficulties make SpMV to frequently experiment
non-optimal results when run on long vector ISAs exploiting
SIMD parallelism. In this context, the development of new op-
timizations becomes fundamental to enable high performance
SpMV executions on emerging long vector architectures. In our
work, we improve the state-of-the-art SELL-C-o sparse matrix
format by proposing several new optimizations for SpMV.
We target aggressive long vector architectures like the NEC
Vector Engine. By combining several optimizations, we obtain
an average 12% improvement over SELL-C-o considering a
heterogeneous set of 24 matrices. Our optimizations boost
performance in long vector architectures since they expose a
high degree of SIMD parallelism.

A. Background

Many different approaches have been proposed to effi-
ciently store sparse matrices and efficiently run SpMV. One
of the most common approaches, Compressed Sparse-Row
(CSR), efficiently stores sparse matrices and enables sim-
ple stride-1 memory access patterns on A and y. However,
accesses on x are highly irregular. Other approaches aim
to mitigate the drawbacks of CSR by enlarging its storage
requirements to increase the locality on x. SELL-C-o [1] and
ELLPACK Sparse Block [2] make use of row sorting and
column blocking to improve both storage requirements and
locality on x. Our work demonstrates that, although some
of these approaches are very good abstractions to represent
and manipulate sparse matrices, there are many unexploited
opportunities to improve their performance on long vector
architectures. For that, we implement, evaluate, and discuss
the performance impact of several SpMV optimizations on the
VE.

B. Optimizations

We revisit and adapt some optimizations previously pro-
posed in the literature extending them with new approaches
targeting long vector architectures.

30

In detail, we explore: i) the adequate sorting strategy
based on the trade-off between performance and preprocessing
overhead as the o parameter increases; ii) the use of task-
based parallelism and the impact of the task granularity in
the scaling performance of SELL-C-o; and iii) the impact of
column blocking in matrices to improve locality on vector z.

In addition, our proposals to accelerate SpMV on long
vector architectures are: i) the use of cache allocation to
improve the reuse of x and deprioritization of store depen-
dencies; ii) divergence flow control adapting the length of
vector operations to avoid loading and computing zero-padded
elements; iii) enabling loop unrolling in SELL-C-o using
partial loop fusion; iv) efficient computation of gather and
scatter addresses with special instructions.

TABLE I: Optimizations applied on each of the implementa-
tions evaluated in our work.

SELLCS SELLCS SELLCS SELLCS

Optimization SELLCS DFC US-DFC US8-NC U8-NC-DFC
Sorting strategies . . . ° °
Task-Based ° . . . °
Parallelism

Column Blocking

Cache Allocation & . .
Store relaxation pol.

Divergent Flow Con-) ° .
trol

Loop unrolling . ° .
Efficient . . .) .
gather/scatter address

computation

C. Results

The test-bench for our experiments is the NEC Vector
Engine 10B. Figure 1 shows GFLOP/s performance results
for a wide set of matrices. We evaluate six different imple-
mentations of the SpMV kernel: NLC, SELLCS, SELLCS-
DFC, SELLCS-US-DFC, SELLCS-US-NC and SELLCS-US-
NC-DFC. The NLC category represents results obtained with
the math library developed by NEC which is particularly
tailored for the VE.

The improvements added by the three main optimizations
visualized vary across the different matrices, as its effective-
ness depends on specific matrix layout characteristics like size,
sparsity or shape.

8th BSC Doctoral Symposium

Implementation

100

J &
% 75 ens N o8
] N NN
2 5 23233 BRIl o S8
; ST s TN G
G 7 as g ZEBSE
v IIII II INIIN
0 ol
N 3>
& A
& Ng e
< kS
& S
&
?l' =
2 RRQI %R
=¥ mNng
(@] »o
—
=
Q

552'

EENLC HEESELLCS N SELLCS-DFC W SELLCS-U8-DFC

[SELLCS-U8-NC SELLCS-U8-NC-DFC

Fig. 1: Performance comparison of NLC vs our SELL-C-o implementations for regular matrices.

In short, we can draw the following insight from Figure 1.
The cache allocation and store relaxation policies obtain
improvements ranging between 5% to 12%, in two thirds
of the matrices, when using SELLCS-US8-NC-DFC compared
to SELLCS-US-DFC. Moreover, unrolling by 8 slices yields,
in general, gives benefits ranging from 1% to 15%, with a
favorable trend for bigger matrices. In the particular case of
nlpkkt240 it brings a 51% performance increase. Finally, to
understand the impact of the DFC optimization, we compare
the performance of SELLCS with SELLCS-DFC. These two
implementations only differ in the use of the DFC optimiza-
tion. Only the second one includes it. On average, the overall
performance gains of adapting each vector length instruction
to the optimal size are almost negligible. However, it has a
large impact in some scenarios. For example, when considering
webbase-1M, which represents a website connectivity matrix
and has a very low non-zero element density, SELLCS-DFC
is 50% faster than SELLCS.

We obtain in average 90.3 GFLOPs across all matrices
by enabling all optimizations, which constitutes a significant
improvement of ~12% and ~17% compared to the baseline
SELL-C-o and NEC math library implementations, respec-
tively. The significant performance increase that we obtain over
the NEC proprietary software, which is specially tailored to
SX-Aurora VE, demonstrates the relevance of our optimiza-
tions in long vector architectures.

D. Conclusion

In this work, we developed an implementation of SpMV
for the SX-Aurora long vector architecture shows very com-
petitive performance results which mostly overtake the highly
optimized proprietary vendor implementation found in the
NEC Library Collection. Additionally, we explore a set of

31

optimizations targeting long-vector accelerators, and provide
insight on how to exploit them in similar platforms.

II. ACKNOWLEDGMENT

This work has been published as a conference paper is
published in the proceedings of the 26th ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming[3].

REFERENCES

[11 M. Kreutzer et al., “A Unified Sparse Matrix Data Format for Efficient
General Sparse Matrix-Vector Multiplication on Modern Processors with
Wide SIMD Units,” STAM Journal on Scientific Computing, vol. 36, no. 5,

pp. C401-C423, Jan. 2014.

X. Liu et al., “Efficient sparse matrix-vector multiplication on x86-based
many-core processors,” in Proceedings of the 27th international ACM
conference on International conference on supercomputing. Eugene,
Oregon, USA: Association for Computing Machinery, Jun. 2013, pp.
273-282.

C. Gémez et al., “Efficiently running spmv on long vector architectures,”
in Proceedings of the 26th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, ser. PPoPP '21. New York,
NY, USA: Association for Computing Machinery, 2021, p. 292-303.
[Online]. Available: https://doi.org/10.1145/3437801.3441592

[2]

[3]

Constantino Gémez is a last year Ph.D student at
the Barcelona Supercomputing Center. He received
the BSc and MSc degrees in Computer Science from
the Universitat Politecnica de Catalunya (UPC) in
2014 and 2016. He has been involved as a researcher
in the European Processor Initiative since the begin-
ning. His research interests include long vector archi-
tectures and co-design for future massively parallel
systems.

