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Abstract 

 
 

 

Cerebral blood flow (CBF) reflects the rate of delivery of arterial blood to 

the brain. Since no nutrients, oxygen or water can be stored in the cranial 

cavity due to space and pressure restrictions, a continuous perfusion of the 

brain is critical for survival. Anesthetic procedures are known to affect 

cerebral hemodynamics, but CBF is only monitored in critical patients due, 

among others, to the lack of a continuous and affordable bedside monitor for 

this purpose.  

This Doctoral Thesis proposes a potential solution through bioelectrical 

impedance technology, also known as rheoencephalography (REG), that 

could fill the existing gap for a low-cost and effective CBF monitoring tool. 

The underlying hypothesis is that REG signals carry information on CBF that 

might be recovered by means of the application of advanced signal processing 

techniques, allowing to track CBF alterations during anesthetic procedures. 

In the first place, a thorough literature review is presented, providing the 

relevant clinical and technical information related to other CBF monitoring 

techniques and potential signal processing algorithms suitable to be applied to 

REG signals.  Subsequently, clinical data collected under the scope of this 

project and used to develop and validate the techniques applied to REG 

signals are described. 

As a first step in the analysis of REG signals, different filter options for 

noise removal are presented, in the linear and nonlinear domain. The 

performance of a nonlinear filter applied to the signal attractor demonstrated 

a better accuracy in recovering useful information from REG signals, 

especially in very noise environments. Nonetheless, its computational burden 

compromises its use in real time monitoring of physiological signals. 
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The analysis of REG signals starts with the use of geometric features 

extracted from the time domain, since this is the standard processing strategy 

for this type of physiological data. Geometric features are tested for their 

ability to detect apneas in young healthy volunteers and to distinguish between 

different anesthetic depths. Their performance is poor in apnea detection, but 

those features are capable of tracking cerebral hemodynamic changes during 

anesthesia.  

A new approach is proposed, based on the assessment of nonlinear 

dynamics of REG signals.  The descriptors of the attractors reconstructed 

form REG signals show significant differences between apnea and baseline 

recordings, as well as between different anesthetic states. This is a key finding, 

providing an alternative to standard processing of REG signals.  

A third analysis technique is presented, using entropy metrics to 

characterize cerebral impedance signals. Those metrics are also capable of 

detecting apneas and differences among anesthetic states, providing an extra 

tool for REG analysis, even though their elevated computational times are not 

suitable for real time applications.  

The results of the analysis of geometric features, Poincaré plot descriptors 

and entropy rates suggest that REG signals do carry CBF information. Among 

those features, those allowing real time data processing are used to classify 

REG recordings collected in awake and anesthetized patients. Their statistical 

diagnosisAn accuracy of 70% is reached, indicating that CBF changes in REG 

are related to the anesthetic state of the patient but presenting large 

variabilities.  

Nonetheless, REG parameters should not aim at replacing depth of 

anesthesia monitoring but should rather help maintaining cerebral 

hemodynamic stability during anesthetic procedures. For that purpose, the 

relationship between global hemodynamics, cerebral hemodynamics and 

EEG based parameters are analyzed, looking for causal relationships among 

them. Interactions are detected during anesthetic drug infusion and patient 

positioning, providing evidence of the coupling between hemodynamics and 

brain activity.  

As a conclusion, this Doctoral Thesis provides alternative methods for 

REG signal processing that confirm the hypothesis that REG signals carry 

information on CBF. The simplicity of the technology, together with its low 

cost and easily interpretable outcomes, should provide a new opportunity for 

REG to reach standard clinical practice. Moreover, causal relationships among 

the hemodynamic physiological signals and brain activity are assessed, 

suggesting that the inclusion of REG information in depth of anesthesia 
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monitors could be of valuable use for an affordable, noninvasive bedside tool 

to prevent unwanted CBF alterations during anesthetic procedures.  

 

 

UNESCO codes: 240602 (Bioelectricity), 331110 (Medical Instruments), 

241103 (Cardiovascular Physiology).



 

 

 

 

 

Resum 

 
 

 

El flux sanguini cerebral (FSC) reflexa la taxa de lliurament de sang 

arterial al cervell. Com que no es poden emmagatzemar nutrients, oxigen ni 

aigua a la cavitat cranial a causa de restriccions d’espai i pressió, una perfusió 

cerebral contínua és essencial per a la supervivència. És sabut que els 

procediments anestèsics afecten l’hemodinàmica cerebral, però el FSC només 

es controla en pacients crítics degut, entre d’altres, a la manca d’un aparell 

adient, de monitorització contínua, de capçalera i de cost assequible. 

Aquesta Tesi Doctoral proposa una possible solució mitjançant la 

tecnologia d'impedància bioelèctrica, també coneguda com a 

rheoencefalografia (REG), que podria omplir el buit existent per a una eina de 

control de FSC de baix cost i eficaç. La hipòtesi subjacent és que els senyals 

REG porten informació sobre FSC que es podria recuperar mitjançant 

l’aplicació de tècniques avançades de processament de senyals, permetent fer 

un seguiment de les alteracions del FSC durant procediments anestèsics. 

En primer lloc, es presenta una revisió exhaustiva de la literatura que 

proporciona informació clínica i tècnica rellevant relacionada amb altres 

tècniques de control de FSC i possibles algoritmes de processament de senyals 

adequats per aplicar-se a senyals REG. Posteriorment, es descriuen dades 

clíniques recollides en l’àmbit d’aquest projecte i que s’utilitzen per a 

desenvolupar i validar les tècniques aplicades als senyals REG. 

Com a primer pas en l'anàlisi dels senyals REG es presenten diferents 

opcions de filtrat per a l'eliminació del soroll, en el domini lineal i no lineal. El 

filtre no lineal aplicat a l’atractor del senyal mostra una millor precisió a l’hora 

de recuperar informació útil dels senyals REG, especialment en entorns amb 
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molt de soroll. No obstant això, la seva càrrega computacional compromet el 

seu ús en monitoratge de senyals fisiològics en temps real. 

L’anàlisi de senyals REG s’inicia amb l’ús de característiques 

geomètriques extretes del domini temporal, ja que aquesta és l’estratègia de 

processament estàndard d’aquest tipus de dades fisiològiques. S’avalua la 

capacitat de les característiques geomètriques dels senyals REG per detectar 

apnees en joves voluntaris sans i per distingir diferents profunditats 

anestèsiques. El seu rendiment és deficient en la detecció de l’apnea, però 

aquestes característiques poden fer un seguiment dels canvis hemodinàmics 

cerebrals durant l’anestèsia. 

Es proposa també un nou enfocament basat en l'avaluació de la dinàmica 

no lineal dels senyals REG. Els descriptors de la reconstrucció de l’atractor 

dels senyals REG mostren diferències significatives entre l’apnea i els valors 

basals, així com entre diferents estats anestèsics. Es tracta d’una troballa clau 

que proporciona una alternativa al processament estàndard de senyals REG. 

Es presenta una tercera tècnica d’anàlisi mitjançant mesures d’entropia 

per caracteritzar els senyals d’impedància cerebral. Aquestes mètriques també 

són capaces de detectar apnees i diferències entre els estats anestèsics, 

proporcionant una eina addicional per a l'anàlisi de REG, tot i que la seva 

elevada complexitat computacional no és adequada per a aplicacions en temps 

real. 

Els resultats de l’anàlisi de característiques geomètriques, els descriptors 

de Poincaré i les taxes d’entropia suggereixen que els senyals REG porten 

informació de FSC. Entre aquestes característiques s'utilitzen aquelles que 

permeten processar dades en temps real per classificar els enregistraments 

REG recollits en pacients desperts i anestesiats. S'aconsegueix una precisió del 

70%, cosa que indica que els canvis de FSC en REG estan relacionats amb 

l'estat anestèsic del pacient però presenten gran variabilitat. 

No obstant això, els paràmetres REG no tenen com a objectiu substituir 

la monitorització de la profunditat de l’anestèsia, sinó que haurien d’ajudar 

més aviat a mantenir l’estabilitat hemodinàmica cerebral durant els 

procediments anestèsics. Per a aquest motiu, s’analitzen les interaccions entre 

l’hemodinàmica global, l’hemodinàmica cerebral i els paràmetres basats en 

EEG, buscant relacions causals entre ells. Es detecten interaccions durant la 

infusió de medicaments anestèsics i en el posicionament del pacient, la qual 

cosa evidencia la interacció entre l’hemodinàmica i l’activitat cerebral. 

A mode de conclusió, aquesta Tesi Doctoral proporciona mètodes 

alternatius per al processament dels registres de REG que confirmen la 
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hipòtesi que els senyals REG contenen informació sobre FSC. La senzillesa 

de la tecnologia, juntament amb el seu baix cost i resultats fàcilment 

interpretables, hauria de proporcionar una nova oportunitat per als senyals 

REG d’arribar a la pràctica clínica estàndard. A més, s’avaluen les relacions 

causals entre els senyals fisiològics hemodinàmics i l’activitat cerebral, amb 

resultats que suggereixen que la inclusió d’informació REG en monitors de 

profunditat anestèsica podria ser clau per a una eina no invasiva, i assequible, 

que evités alteracions del FSC no desitjades durant els procediments anestèsics. 

 

Codis UNESCO: 240602 (Bioelectricitat), 331110 (Instruments mèdics), 

241103 (Fisiologia cardiovascular).



 

 

 

 

 

Resumen 

 
 

El flujo sanguíneo cerebral (FSC) refleja el suministro de sangre arterial al 

cerebro. Como no se pueden guardar nutrientes, oxígeno ni agua en la cavidad 

craneal debido a restricciones de espacio y presión, una circulación sanguínea 

continua es fundamental para la supervivencia. Los procedimientos 

anestésicos afectan la hemodinámica cerebral, pero el FSC sólo se monitoriza 

en pacientes críticos porque, entre otros motivos, no existen dispositivos de 

cabecera, con monitorización continua y a precios asequibles. 

Esta Tesis Doctoral propone una posible solución a través de la tecnología 

de impedancia bioeléctrica, también conocida como rheoencefalografia 

(REG), que puede ocupar el vacío existente en la monitorización del FSC 

efectiva y de bajo coste. La hipótesis subyacente es que la señal REG 

transporta información de FSC que podría recuperarse mediante la aplicación 

de técnicas avanzadas de procesado de señal, permitiendo el seguimiento de 

las alteraciones del FSC durante los procedimientos anestésicos. 

En primer lugar, se presenta una exhaustiva revisión de la literatura, 

ofreciendo información clínica y técnica relevante relacionada con otras 

técnicas de monitorización del FSC y con posibles algoritmos de procesado 

de señal aplicables a señales REG. A continuación, se describen los datos 

clínicos recogidos en el ámbito de este proyecto y utilizados para desarrollar y 

validar las técnicas aplicadas a señales REG. 

Como primer paso en el análisis de las señales REG, se presentan distintas 

opciones de filtros de eliminación de ruido, en el dominio lineal y no lineal. El 

filtro no lineal aplicado al atractor de la señal ofrece una mayor precisión al 

recuperar información útil de la señal REG, especialmente en ambientes muy 

ruidosos. No obstante, la carga computacional que supone compromete su 

utilización en la monitorización en tiempo real de señales fisiológicas. 
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El análisis de las señales REG empieza con la utilización de características 

geométricas extraídas del dominio temporal, ya que ésta es la estrategia de 

procesado más común para este tipo de datos fisiológicos. Se evalúa La 

capacidad de dichas características para detectar apneas en voluntarios jóvenes 

sanos y para distinguir entre distintas profundidades anestésicas. Su 

rendimiento es pobre en la detección de apneas, pero esas características son 

capaces de detectar cambios hemodinámicos cerebrales durante la anestesia.  

Se propone un nuevo enfoque, basado en la evaluación de dinámicas no 

lineales de señales REG. Los descriptores de los atractores reconstruidos a 

partir de señales REG muestran diferencias significativas entre apneas y 

registros basales, así como entre diferentes estados de anestesia. Éste es un 

hallazgo clave que proporciona una alternativa al procesado estándar de 

señales REG. 

Se presenta también una tercera técnica de análisis, utilizando medidas de 

entropía para caracterizar señales de impedancia cerebral. Dichas métricas son 

también capaces de detectar apenas y diferencias entre estados de anestesia, 

proporcionando una herramienta adicional para el análisis REG, aunque 

tienen tiempos computacionales elevados no adecuados para aplicaciones en 

tiempo real. 

Los resultados de los análisis de características geométricas, de los 

descriptores del grafico de Poincaré y de las tasas de entropía sugieren que las 

señales REG realmente transportan información del FSC. Entre esas 

características, aquellas que posibilitan el procesado de datos en tiempo real 

son utilizadas para clasificar registros REG recogidos en pacientes despiertos 

y anestesiados. Se obtiene una precisión del 70%, indicando que los cambios 

de FSC detectados en señales REG están relacionados con el estado de 

anestesia del paciente, aunque presentan una gran variabilidad. 

Sin embargo, los parámetros REG no deben tener como propósito 

sustituir la monitorización de la profundidad de la anestesia, pero sí deben 

ayudar al mantenimiento de la estabilidad hemodinámica durante los 

procedimientos anestésicos. 

Para alcanzar este objetivo, se analizan las posibles interacciones entre la 

hemodinámica global, la hemodinámica cerebral y parámetros basados en 

EEG, buscando relaciones de causalidad entre ellos. Se detectan interacciones 

durante la administración de anestésicos y cambios de posición del paciente, 

demostrando que existe una interacción entre la hemodinámica y la actividad 

cerebral. 
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En conclusión, esta Tesis Doctoral proporciona métodos alternativos para 

el procesado de señal REG que confirman la hipótesis de que las señales REG 

contienen información sobre el FSC. La simplicidad de la tecnología, junto 

con el bajo precio y los resultados fácilmente interpretables, deben 

proporcionar una nueva oportunidad para REG alcanzar la práctica clínica 

habitual. Además, las relaciones de causalidad entre la señal fisiológica 

hemodinámica y la actividad cerebral sugieren que la inclusión de información 

REG en monitores de profundidad de anestesia puede ser útil para un monitor 

de cabecera no invasivo y asequible para prevenir alteraciones FSC durante 

los procedimientos anestésicos. 

 

Códigos UNESCO: 240602 (Bioelectricidad), 331110 (Instrumentos 

médicos), 241103 (Fisiología cardiovascular).  
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Abstract 

This chapter presents the main research hypothesis of this Doctoral 

Thesis, focusing on the principal and intermediate objectives, and providing 

an overview of the contents of the Thesis and how those are structured. 

Moreover, a description of the research framework in which this project has 

been carried out is presented. 

  

1 
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1.1 Introduction 

Chapter 1 aims at presenting the research hypothesis this Doctoral Thesis 

is based on and provides the relevant information regarding the research 

environment in which it was developed. For that purpose, the main 

hypothesis will be formulated, followed by the specific objectives of this 

project. Finally, the institutions involved will be presented, as well as the 

structure of this Thesis. 

1.2 Background 

In the last decades, medical devices have flooded operating theaters to 

provide healthcare professionals updated and reliable information on patient 

vital signs, as well as advanced algorithms aiming at improving patient care. 

Nonetheless, certain clinical signs are not included in standard patient 

monitoring during surgeries under general anesthesia, such as cerebral blood 

flow (CBF). Even though CBF is monitored in critical patients, it is not part 

of the standard of care, one of the reasons for that being that there is no 

current bedside monitor, non-invasive and affordable, to collect and display 

this information.  

General anesthetics are known to affect hemodynamics, provoking 

changes in CBF that might interfere in the transit times of the anesthetics 

towards the target organ, the brain. The main research hypothesis of this 

dissertation suggests that CBF plays an important role in anesthesia and might 

be useful to enhance current algorithms used for depth of anesthesia 

monitoring. Moreover, to be accepted for standard clinical practice, a CBF 

monitor to be used for anesthesia titration should be easy to use, non-invasive 

and cost-effective, provide real time information and guarantee that it does 

not cause alterations in blood flow during its use.  

Rheoencephalography (REG), a blood flow monitoring technique based 

on bioimpedance, would comply with those requirements. However, its 

clinical relevance has not been confirmed. The possibility of providing a low-

cost tool to allow the inclusion of CBF monitoring in routine clinical practice 

has led to the main research hypothesis in this Doctoral Thesis: REG signals 

carry information on CBF that might be recovered by means of the 

application of advanced signal processing techniques, allowing to track CBF 

alterations during anesthetic procedures. To provide an answer to this 

research question, several intermediate objectives were set up, bearing in mind 

the requirements for bedside monitoring of CBF signals. 
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1.3 Objectives 

The main objective of this project is to assess REG technology as a 

candidate for intra-operative CBF monitoring, using advanced signal 

processing techniques to extract relevant clinical information from REG 

waves and show its relationship with changes during anesthetic procedures.  

The detailed objectives of this Doctoral Thesis are: 

- Research on available techniques for CBF monitoring currently used 

in clinical practice, in order to assess the feasibility of a REG based 

monitor as a bedside tool for CBF measurements.  

- Research on signal processing techniques applied to REG signals and 

alternative methods to extract clinical information form REG waves 

that have not been used for this application and could improve the 

correlation of REG signals with CBF alterations.  

- Design and execution of clinical trials including the collection of 

REG data under simple respiratory challenges and during anesthetic 

procedures, to be used to develop new methodologies for their 

processing.  

- Evaluation of the best filtering strategy to remove high frequency 

noise and drift oscillations from REG signals prior to their analysis.  

- Analysis of REG signals using the classical approach based on the 

extraction of geometrical properties in the time domain, including the 

assessment of their performance during breath holding episodes and 

general anesthesia. 

- Analysis of REG signals by alternative methodologies to be 

compared to the classical approach based on geometric features 

extraction: nonlinear features extraction by Poincaré plot analysis and 

Entropy metrics calculation. Those analyses are to be applied to both 

breath holding and anesthesia scenarios. For each methodology 

proposed, the set of parameters needed for its implementation shall 

be evaluated and specific guidelines on how to apply them to REG 

signals provided. Finally, their suitability for REG analysis in 

anesthesia must be assessed.   
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- Selection of the best methodology from the ones proposed (or a 

combination of them) to track CBF changes during anesthesia by 

means of REG signals. 

- Analysis of causal relationships between the characteristics extracted 

from REG signal processing and other clinical variables recorded 

during general anesthesia procedures, such as EEG, infused drugs, 

heart rate and mean arterial pressure. 

1.4 Research Framework 

This Doctoral Thesis has been developed under the scope of the 

Industrial PhD program of the regional Catalan Government (Programa de 

Doctorats Industrials, Generalitat de Catalunya, DI-2015). This initiative 

intends to reinforce the collaboration between the Catalan Universities and 

Industry, increasing the innovation capabilities of the University, providing 

the Industry with cutting-edge technologies developed in the Education 

Centers and allowing the PhD students to benefit from this interaction.  

Quantium Medical is dedicated to the research, design and development 

of innovative non-invasive monitoring solutions, focused mainly in the field 

of anesthesia. Since 2016, Quantium Medical is part of Fresenius Kabi, a 

global health care company that specializes in lifesaving medicines and 

technologies for infusion, transfusion and clinical nutrition. In this thesis, 

Quantium Medical has provided an extensive market knowledge in 

noninvasive monitoring, as well as instrumentation and know-how from 

previous products applicable to this research project. Those contributions 

were combined with the deep knowledge on signal processing techniques in 

the Automatic Control Department (Enginyeria de Sistemes, Automàtica i 

Informàtica Industrial, ESAII) and Biomedical Engineering Research Centre 

(CREB), as well as their experience with a variety of physiological signals and 

disease conditions. Both entities belong to the Universitat Politècnica de 

Catalunya (UPC), institution hosting the Doctoral School of Biomedical 

Engineering in which this PhD Thesis is developed.  

Even though the Industrial PhD program was led by Quantium Medical 

and the referred departments of UPC, the role of Hospital CLÍNIC de 

Barcelona does also deserve to be outlined. Research in the medical field needs 

to be driven as well by qualified medical staff, since monitoring solutions can 

only succeed when they meet the expectations of the end users, the clinicians. 

Hospitals should therefore be integrated as key players in the ecosystem of 
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innovation related to medical devices, to foster the multidisciplinary approach 

underlying the design and development of this equipment and to contribute, 

as in this particular project, to the continuous innovation in patient care. 

1.5 Thesis Outline 

The contents of this thesis are distributed in 10 chapters. After this 

introduction stating the research hypothesis of this dissertation as well as the 

main objectives of the thesis, Chapter 2 provides background information 

from both clinical and technical perspectives, presenting as well an overview 

of the current devices used for CBF monitoring.  

Chapter 3 contains the description of the clinical databases used along 

this thesis.  Clinical protocol preparation and data collection are part of this 

project and were developed in cooperation with the Hospital CLÍNIC de 

Barcelona. A brief description of the protocols, data collected, and patient 

characteristics is provided for the three datasets processed.  

Chapter 4 discusses the best filtering algorithm to be used for REG 

signals, comparing the performance of classical filters with an alternative 

nonlinear approach based on the reconstruction of the signal attractor. The 

selected optimal filters were used along this project for data preprocessing.  

Chapter 5 contains the analysis of REG signals in the temporal domain 

by means of the selection of features related to the geometry of the REG pulse 

wave. This technique is applied to two sets of data, one based on healthy 

young volunteers performing a respiratory exercise consisting in breath 

holding, and a second one based on the analysis of REG data from patients 

undergoing elective surgeries under general anesthesia. Results from this 

chapter are to be considered as a reference for comparison with other 

techniques applied in this thesis, since those are based on the classical analysis 

of REG waveforms.  

Chapter 6 proposes a new approach to REG signals processing, based on 

the extraction of Poincaré plot descriptors obtained from the signal attractor. 

This nonlinear technique will be applied to REG signals recorded during 

breath holding episodes in a first step, to assess its feasibility. Subsequently, 

the same descriptors will be applied to data recorded during general anesthesia 

procedures to analyze their performance under those circumstances.  
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Chapter 7 reproduces the structure in Chapters 5 and 6, applying entropy 

metrics to the breath holding and anesthesia recordings, to assess the ability 

of entropy metrics to track CBF changes through REG signals.  

After the application of time domain features extraction, Poincaré plot 

analysis and entropy algorithms, the results from those techniques proving to 

contain information on changes in CBF and capable of providing real time 

information will be used together in Chapter 8 to implement a classifier 

capable of distinguishing between different periods in anesthesia management 

and thus proposing a new tool for anesthesia monitoring based on REG 

signals.  

In Chapter 9, interactions between depth of anesthesia monitoring, 

general hemodynamics and REG based variables are analyzed by means of 

causality techniques. This step aims at detecting cause-effect relationships 

taking place during general anesthesia procedures and involving interactions 

between different physiological systems to better characterize the effect of 

anesthetics on brain hemodynamics.  

Finally, Chapter 10 contains the conclusions of this thesis, focusing as 

well on the future steps needed to enhance REG based systems for its 

application in monitoring anesthetic procedures. 



  

 
 

 

 

 

 

Chapter 2 
2. Clinical and Technical 

Background 
 

 

 

 

 

 

Abstract 

This chapter focuses on the existing clinical and technical background 

related to cerebral blood flow (CBF), including an overview of the systems 

currently used to monitor CBF and a review of signal processing techniques 

suitable for rheoencephalography (REG) analysis.   

2 
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2.1 Introduction 

This chapter contains a review of the most relevant clinical and technical 

aspects related to CBF monitoring and REG technology. The first section is 

dedicated to summarize the basic concepts on cerebral hemodynamics, 

followed by an overview of the monitoring systems used in clinical practice, 

focusing on REG.  

Additionally, information on CBF changes during anesthesia is provided, 

together with a review of anesthesia monitoring techniques that will be 

referred along this Thesis. Finally, signal processing techniques used for REG 

and other physiological signals will be described, in order to select the most 

appropriate ones to be applied to REG signals to explore their ability to 

correlate with clinical changes in CBF.  

 

2.2 Cerebral hemodynamics 

This section describes the main anatomical and physiological 

characteristics of the brain and its perfusion, in order to provide an overview 

of the circulatory subsystem that will be studied during this Doctoral Thesis.  

The brain is an organ with unique properties from a hemodynamic point 

of view: even though it represents only 2% of the body weight in humans, it 

receives up to 20% of the total cardiac output [1]. This suggests that the brain 

has large metabolic needs and, as it is an organ that has no mechanism to store 

nutrients, oxygen or water, it needs to receive a large and uninterrupted blood 

supply. 

The brain is perfused with blood coming from the carotid arteries (70%) 

and from the vertebrobasilar system (30%). Interrupting the blood supply to 

the brain for more than 5 minutes causes neuronal death [2]. Therefore, 

security mechanisms need to protect the brain from such a deleterious 

condition. One of the mechanisms used to guarantee as much as possible the 

brain perfusion is the vascular structure known as the circle of Willis [1] 

(Figure 2-1): blood vessels responsible for brain perfusion are interconnected 

in order to provide an alternative path for blood in case one of the main 

arteries is obstructed. 
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Figure 2-1 Circle of Willis (from [3]). 

The volume of blood reaching the brain per minute is the cerebral blood 

flow (CBF). Generally, it has been accepted that in adults the value of CBF is 

around 750 ml per minute or 15% of the cardiac output. This leads to an 

average perfusion of 50 ml of blood per 100 g of brain tissue per minute[4], 

which also reflects the high oxygen consumption of the brain, known as 

cerebral metabolic rate for oxygen or CMRO2, that reaches a 20% of the total 

body consumption. 

Brain perfusion depends on the cerebral perfusion pressure (CPP), which 

is the gradient between intracranial pressure (ICP) and mean arterial pressure 

(MAP) (equation 2.1). ICP is usually less than 13mmHg while MAP is around 
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90 mmHg [5].  Equation 2.2 relates CBF with CPP, reflecting the brain’s ability 

to maintain constant CBF over a range of cerebral perfusion (or mean arterial 

pressures) by means of adapting the cerebrovascular resistance (CVR) [6].  

 

CPP = MAP − ICP (2.1) 

CBF =
CPP

CVR
 (2.2) 

 

As deducted from equation 2.2, cerebral blood flow changes can be 

triggered by two different factors: CVR and CPP. CBF changes provoked by 

MAP alterations and subsequent CPP adaptions are illustrated in Figure 2-2. 

For a MAP range between 60 mmHg and 150 mmHg, CBF is kept constant 

by means of vasoconstriction or dilatation, i.e. modifying the CVR. In other 

words, increases in MAP produce CPP increases that are compensated by a 

reduction in blood vessels diameter (increased CVR) due to the cerebral 

autoregulation (CAR) mechanism; for MAP values below the autoregulation 

limits, brain ischemia takes place as vessels cannot achieve a higher dilation, 

while for MAP values above the upper limit vessels cannot continue reducing 

their diameter and brain edema or brain hemorrhage would occur. 

 

Figure 2-2 Autoregulation mechanism illustration (from [7]). 

As stated below, changes in the radius of blood vessels would also modify 

CBF. In some literature, brain blood flow is modeled as a flow in a tube with 

the assumptions that it is steady, laminar, and uniform through thinned-walled 
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non-distensible tubes. However, these assumptions do not apply to large 

arteries that have thick walls or in the microcirculation in which flow is non-

Newtonian [8].  

Blood flow can be estimated by Poiseuielle’s law, which states that flow 

is directly related to ΔP (equivalent to CPP in the brain), blood viscosity (η), 

the length of the vessel (L, assumed to be constant) and the vessel radius (R) 

to the fourth power [9]:  

 

CBF =
CPP π R4

8 η L
 (2.3) 

 

Equation 2.3 illustrates the main role of blood vessels diameter in the 

CBF: even small changes in diameter have significant effects on cerebral blood 

flow, and it is by this mechanism that vascular resistance can change rapidly 

to alter regional and global cerebral blood flow. The most relevant factors for 

vessel caliber changes for the proposed research project are: (a) cerebral 

metabolism, (b) CO2 and O2 blood pressures, and (c) the previously 

mentioned autoregulation mechanism, but some others such as blood 

viscosity and temperature are also responsible for the vessel radius. Therefore, 

a more detailed analysis of those factors is herein provided.  

a) Cerebral metabolism: Some authors consider there is a flow-

metabolism coupling such that when the brain has an increased 

demand of glucose and oxygen, CBF raises in a linear fashion in 

order to be able to supply the substances needed [5] (Figure 2-3). 

However, other authors rely on non-linear models for this 

coupling, as short oxygen demanding tasks provoke high CBF 

increases with low CMRO2 changes, while others even state that 

such coupling does not exist [10][11]. 

b) CO2 and O2 partial pressures: The partial carbon dioxide arterial 

pressure (PaCO2) shows a sigmoidal relationship with CBF (see 

Figure 2-4): for a very wide range of mean arterial pressures CBF 

increases linearly with PaCO2 having doubled when the partial 

CO2 pressure reaches around 80mmHg. However, if PaCO2 gets 

very reduced, vasoconstriction is activated to the point that it 
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could provoke cerebral ischemia [5]. Therefore, PaCO2 has 

immediate effects in vessel radius and CBF. Nonetheless, partial 

pressure of oxygen (PaO2) has little effects, showing a constant 

behavior while autoregulation is preserved [9].  

 

 

Figure 2-3 Relationship between cerebral blood flow (CBF) and CMRO2 (from [5]). 
Vertical and horizontal lines refer to average resting values. 

 

 

Figure 2-4 Blood pressure (BP), PaCO2 and PaO2 effects on cerebral blood flow 
(CBF) (from [9]). 
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c) Autoregulation: CBF has to be regulated with precision as too 

much blood can raise intracranial pressure (ICP), which can 

compress and damage delicate brain tissue, and too little results 

in ischemia and tissue death. As stated previously, cerebral blood 

flow autoregulation may be defined as the mechanism that 

protects the brain against the dangers of hypoxia at low perfusion 

pressures and against the risks of brain edema at high arterial 

pressures. Autoregulation therefore serves as a line of defense by 

helping to maintain constant the cerebral capillary pressure, 

assuring a steady supply of essential metabolites and 

simultaneously protecting the blood-brain barrier. Cerebral blood 

vessels are able to change the flow of blood through them by 

altering their diameters in a process called autoregulation; they 

constrict when systemic blood pressure is raised and dilate when 

it is lowered.  

 

In order to provide some clarifying examples on how CBF gets adapted 

through autoregulation mechanisms, scenarios of hypercapnia, 

hyperventilation and apnea will be succinctly described. Those methods are 

often used for CVR assessment and applied to clinical practice aiming to 

compensate CBF alterations in critical or anesthetized patients.  

Hypercapnia: Carbon dioxide CO2 has a profound and reversible effect 

on cerebral blood flow as it causes marked dilation of cerebral arteries and 

arterioles and increased blood flow, whereas hypocapnia causes constriction 

and decreased blood flow. A known side effect of hypercapnia is ICP 

elevation as a consequence of elevated CBF values [12]. In several studies, 

rheoencephalographic signals (see section 2.2.4) were used to evaluate the role 

of CO2 inhalation for the measurement of cerebrovascular vasomotor 

reactivity [13]. It was seen that the increase of CO2 inhalation markedly 

affected the REG signal amplitude, indicating increased CBF. A linear 

relationship could be established between CO2 concentration and REG peak 

amplitude and the raise time of the curve. During the inhalation, increases in 

REG were significant, while carotid flow and systemic arterial pressure 

decreased.  
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Hyperventilation: Acute hyperventilation causes an immediate 

vasoconstriction effect because of the reduction in CO2 arterial pressure [14] 

and the subsequent decrease of CBF. Several studies have published CBF data 

obtained during hyperventilation episodes: Settakis et al. measured flow 

velocity during hyperventilation concluding that the maximal effect took place 

20 seconds after starting the procedure and at this time it reached a constant 

value for 40 seconds, time at which the experiment ended. Afterwards, flow 

velocities recovered achieving the baseline values [15]. Kety and Schmidt [16] 

published results from passive and active hyperventilation, concluding that 

both reduced cerebral blood flow while maintained blood pressure values.   

Apnea: Episodes of apnea or breath holding reduce the amount of O2 in 

blood and therefore PaCO2 increases provoking increases in CBF. Kastrup et 

al. [17] quantified the effect of an apnea procedure in regional cerebral blood 

flow measured with magnetic resonance imaging and in average found a 

regional CBF (rCBF) increase of 47-87%, dependent on apnea duration. This 

dependence on apnea duration has been confirmed by posterior 

measurements performed using transcranial Doppler (see Figure 2-5) [18]. 

Apneas and CO2 inhalation tests for CVR evaluation purposes have been 

compared in order to find out if results were equivalent and therefore breath 

holding would be the selected choice as it does not require any CO2 inhalation: 

even though both episodes showed comparable images using the blood 

oxygenation level dependent technique, CBF changes from both tests were 

not correlated [19].   

 

Figure 2-5 Cerebral blood flow velocity (CBFv) recorded by means of Doppler 
spectra during a breath holding test (from  [18]). 
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2.3 CBF monitoring techniques 

 

The first validated method for cerebral blood flow assessment was 

developed by Kety and Schmidt in 1945 [20]. Several methods have been 

developed since then, in order to either quantitatively or qualitatively monitor 

CBF or its surrogates. This section presents a review on the basic techniques 

and devices developed for this purpose. As many efforts have been done in 

this area, the most relevant techniques for the purpose of this project will be 

analyzed in more detail while others will be just succinctly herein described. 

Xenon-133: This is one of the most widely used methods of 

intraoperative CBF measurement, even considered by many authors as the 

gold standard [21]. This technique consists in the injection into the internal 

carotid artery of the radiopharmaceutical Xe133, which is a radioactive agent 

[22], and its assessment through a Computed Tomography (CT) system. This 

isotope is a low-energy gamma emitter that diffuses freely through the brain, 

is temporarily retained in brain tissue and finally released through veins. Thus, 

it allows to image the lungs and blood flow, particularly in the brain, making 

it an ideal agent for measurement of CBF or different lung diseases [23]. 

Nowadays, this technique can be used with inhaled Xe133, making it a non-

invasive tool for CBF assessment; however, xenon provokes changes in blood 

velocity that might influence results [24] and requires the use of a radioactive 

agent and therefore radiation exposure needs to be taken into account and 

reduced as much as possible [25].  

Magnetic Resonance Imaging (MRI): Even though by the end of the XXth 

century MRI techniques were not enough developed for brain hemodynamics 

assessment, they were clearly identified as a very promising tool [25]. Since 

then, several MRI based techniques have been published for CBF monitoring 

and quantification, which are extensively used in clinical trials looking for a 

deeper understanding on brain hemodynamics. They allow both regional and 

global CBF measurements and are non-invasive, fast and accurate, which 

makes them a very interesting choice also for diagnostic procedures [26]. 

Some techniques, as for example dynamic susceptibility weighted imaging, are 

based on tracing agents followed by MRI imaging, while arterial spin labelling 

is based on magnetization labeling of water molecules.  
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Intraoperative Angiography: This method allows to visualize the blood 

vessels and blood flow during surgery to ensure normal vascular flow before 

a procedure has been completed, this technique uses a contrasting agent and 

X-rays to see how blood flows through the brain[27]. Therefore, it is an 

invasive method that allows a qualitative assessment of the presence and 

adequacy of CBF. The intraoperative angiography requires of specific settings 

as the head needs to be fixed and the image intensifier must be placed. The 

puncture can be done through the carotid or the femoral artery. 

Thermal Diffusion Flowmetry (TDF): It is one of the most common 

invasive methods for monitoring CBF. It is widely used for long-term bedside 

monitoring of CBF in comatose patients, patients with brain injuries, both 

during and after surgery. The CBF is determined by measuring the effective 

thermal conductivity of the cortical tissue, which changes with CBF, using a 

temperature microprobe implanted in the cerebral region of interest (ROI) 

(see Figure 2-6). Temperature gradients are induced in a volume of interest 

and the temperature variations recorded [28]. It then measures dynamic 

changes in cerebral perfusion by converting the value of temperature gradient 

to ml of blood per 100g of brain tissue per min, ml/(100g.min), in real-time 

[29]. However, by nature of its design, it could accurately reflect relative 

changes but not absolute values. Care must be taken not to place the probe 

on any major surface vessel and the probe must be in contact with the tissue 

surface to provide valid temperature measurements. Besides its invasiveness, 

the main disadvantage of thermal diffusion techniques is that they measure 

cortical blood flow, which is not always representative of total CBF.  

 

Figure 2-6 Placement of thermal diffusion flowmetry (TDF) probe (from [30]). 
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Perivascular Flow Probe: This technique has been used routinely for 

measuring blood flow intraoperatively. It is an invasive method, based on a 

probe consisting of an electronic flow detection unit and a flow sensing 

perivascular one, and has a semicircular tip which is positioned in such a way 

that it contains the vessel of interest within its diameter (see Figure 2-7). It 

then uses ultrasound transit time to measure the blood flow, obtaining a 

quantitative measure of CBF independent of the flow velocity profile, 

turbulence or hematocrit [31].  

 

Figure 2-7 Perivascular Flow Probe (from [31]). 

Laser Doppler Flowmetry: When using a monochromatic laser light, 

reflections from moving cells create a frequency shift while other tissues 

reflect light with the original frequency. Following this principle, laser 

Doppler flowmetry is able to measure movements from red blood cells. Three 

variables are provided: the concentration of moving cells (CMBC), their 

velocity and the flow, which is the multiplication of the other two. Computed 

values are relative and even though absolute values can be deducted they must 

be interpreted carefully. It is an invasive technology because it requires probes 

implantation but has been designed for bedside monitoring [25][21].  

Diffuse Correlation Spectroscopy (DCS): This technique uses near 

infrared light to measure local microvascular CBF. Although it is based on 

similar principles as the ones applied for Near-Infrared Spectroscopy (NIRS) 

(see section 2.2.1), the properties of the emerging light provide different 

results and allow for CMRO2 measurements as well [32]. Even though it can 
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be applied to different tissues, it has revealed to be useful for CBF assessment, 

both in CVR challenges [33] and during general anesthesia [34]. It is a non-

invasive technology as it uses two probes placed on the forehead, but it is only 

useful for assessing relative changes in blood flow.  

Jugular Bulb Oximetry: This is an invasive method which indicates 

changes in CBF without its direct measurement. The jugular bulb is the dilated 

portion of the jugular vein just below the base of the skull and is the preferred 

site for blood sampling. Here, jugular venous oxygen is an indirect assessment 

of cerebral oxygen use. It measures arterio-jugular differences of oxygen 

(AVDO2) and relies on the assumption that CBF and CMRO2 are coupled 

and therefore related by equation 2.4: if CMRO2 is constant, AVDO2 

decreases imply higher CBF. When demand exceeds supply, the brain extracts 

a bigger amount of oxygen, resulting in a decrease of jugular bulb oxygen 

saturation. If CBF decreases, a point is eventually reached at which the brain 

can no longer completely compensate by a further increase in oxygen 

extraction. At this point, oxygen consumption decreases and anaerobic 

metabolism starts. On the other hand, when cerebral oxygen supply exceeds 

demand, oxygen saturation of jugular bulb blood is increased [35]. This 

technique is invasive and measurements might be influenced by extracranial 

venous blood, distorting results [25]. 

 

CMRO2 = CBF × AVDO2 (2.4) 

 

Besides all these relevant techniques, it is also necessary to introduce the 

utility of electroencephalography (EEG) and somatosensory evoked 

potentials (SEP) in CBF monitoring. Even though these monitors have not 

been developed for CBF monitoring purposes, they might be used as 

surrogates of CBF and for that reason will be included in this review. Brain 

function is represented in the EEG by neural oscillations at certain 

frequencies, and due to the fact that pyramidal neurons are exquisitely 

sensitive to conditions of low oxygen, EEG changes are strongly correlated 

to CBF decreases. When normal CBF declines, the EEG first loses faster 

frequencies, then as the CBF decreases, slower frequencies gradually increase. 

Therefore, EEG detects changes in CBF within seconds and allows for 

continuous monitoring of these changes over time, which makes it an indirect, 

non-invasive and qualitative measurement of CBF in patients undergoing 

surgery. Nevertheless, raw EEG requires interpretation, which is ultimately 
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subjective, by trained experts, being this the main limitation to this method 

[36]. 

SEP consist on the application of an electrical stimulation on the patient’s 

skin over the trajectory of peripheral nerves and the response is monitored, 

therefore the technique is a non-invasive mean of assessing somatosensory 

system functioning. Nowadays, SEP are a standard tool for intraoperative 

neurophysiological monitoring. It is used for clinical diagnosis in patients with 

neurologic diseases, to evaluate patients with sensory symptoms that might be 

psychogenic, for prognostication in comatose patients, and for intraoperative 

monitoring during surgeries that place parts of the somatosensory pathways 

at risk [37]. But SEP monitoring has also been used to assess the adequacy of 

CBF, relating the lack of detection of SEP to an insufficient blood perfusion 

to the brain. Some studies show that, thanks to being relatively resistant to the 

effect of metabolic insults and drug effects, this technique has a similar or 

even lower threshold for failure compared to the EEG.  

Having briefly described these methods for CBF measurement or 

assessment, the following sections will introduce the technologies that are 

most commonly used for noninvasive CBF monitoring (Near Infrared 

Spectroscopy and Transcranial Doppler), as well as the one this project is 

based on, rheoencephalography.  

 

2.2.1 Near Infrared Spectroscopy  

In 1977 Jobsis [38] first published  that brain tissues characteristics made 

possible a non-invasive measurement of tissue oxygen saturation in real time 

by means of light in the near infrared spectrum.  However, the first United 

States Food and Drug Administration (FDA) approved device appeared in 

1993, was named INVOS 3100® and was developed by Somanetics 

Corporation (United States)[39].  

Near-infrared spectroscopy (NIRS) measures regional brain tissue 

oxygen saturation (rSO2) via an emitted near-infrared light that penetrates the 

scalp and underlying brain tissue and detects the absorption of oxygenated 

haemoglobin compared with deoxygenated haemoglobin [40]. However, the 

extent to which light can penetrate in the brain depends on the thickness of 
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the skull and for this reason this technology works better with neonates than 

adults, as for neonates [25] penetration is deeper.  

Wavelengths used in NIRS are in the 700-850 nm range, as for these light 

wavelengths the separation between oxygenated and deoxygenated 

haemoglobin is maximized (see Figure 2-8). Even though these wavelengths 

also prevent from overlap with water, they are quite sensitive to melanin [39]. 

The measured rSO2 refers to the percentage of oxygenated haemoglobin 

within the total amount of haemoglobin and is therefore related to the tissue 

oxygen extraction fraction (OEF). Equation 2.5  [41], where Ca corresponds 

to average capillary oxygen concentration, illustrates the relationship between 

the OEF coefficient, cerebral metabolism CMRO2 and cerebral blood flow 

CBF, from which it can be deducted that NIRS devices measure in fact a 

surrogate of CBF. 

OEF =
CMRO2
CBF · Ca

 (2.5) 

 

Figure 2-8 Absorption for main substances as a function of light wavelength (from 
[39]). 
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NIRS technology is affected by several confounding factors that might 

be responsible for distorted outputs. For example, the separation between 

transmitter and receptor is critical: short distances provide low penetrations 

while longer distances would demand higher power with risk of tissue damage 

[42] and therefore high penetrations cannot be achieved in adults. 

Furthermore, in 1996 a clinical study was published in which NIRS 

measurements were performed in human cadavers [43]: values provided by 

NIRS technology for one third of the cadavers were values previously 

obtained for normal subjects.  Even though it can be explained by the fact 

that venous cerebral vessels could still contain blood, it questions the 

specificity of the technology.  

However, a considerable amount of clinical studies have been performed 

using NIRS technology with promising results. McCormick et al. [44] reported 

NIRS to be at least as sensitive as EEG for hypoxia detection. Moreover, the 

use of NIRS as continuous monitoring under coronary artery bypass trying to 

maintain patients baseline has shown a significant reduction of adverse clinical 

events [45] and in patients with subarachnoid hemorrhage, vasospasms were 

associated to reductions in NIRS signal [46]. 

NIRS provides a non-invasive, real-time, bedside monitoring tool of 

cerebral oximetry, without exposing patients to radiation as happened with 

the xenon-133 technique; however, some controversies exist around its ability 

to assess CBF as it measures a surrogate of blood flow.  

 

2.2.2 Transcranial Doppler 

Transcranial Doppler ultrasound (TCD) or Transcranial Doppler 

sonography was first introduced in 1982 by Aaslid, Markwalder and Nornes 

[25]. This is a non-invasive technique that measures blood flow velocities in 

cerebral arteries with high temporal resolution. It uses ultrasound transducers 

in contact with the surface of the head. When ultrasound waves are reflected 

by moving objects, a frequency shift takes place allowing the detection of 

tissue motion and blood flow. As ultrasound waves need to penetrate the skull 

and lower waves present better penetration, low ultrasound 2MHz waves are 

used [47]. Applying the Doppler spectral envelope detection technique to the 

flow returning from the middle cerebral artery, flow indices can be calculated 
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and displayed in real time providing information concerning perturbations in 

CBF [48].  

The most frequent measurement place is the temporal window as usually 

the main arteries supplying blood to the brain can be identified in this region 

[26]. Even though the middle cerebral artery is the one monitored most often, 

the internal carotid and anterior cerebral arteries can be measured as well.  

One of the main disadvantages of TCD is that it measures velocity, not 

flow, hence it is a surrogate measure for CBF. In an artery with lumen area A, 

blood flow can be expressed as BF=V·A, where V is the cross-sectional flow 

velocity. However, as vessels anatomy is complex and different among 

individuals, the obtained values for blood flow are difficult to interpret and 

not always reliable [25]. Besides this information, TCD also offers three 

indices related to CVR: a pulsatility index, a resistance index and the ratio 

between CPP and flow velocity [49]. 

It is a well-used method for clinical studies although, as mentioned before, 

it only provides a relative index of CBF with the problematic of not being 

always reliable. Even so, as equipment evolves, this technique has been used 

more frequently as an intraoperative monitoring system, as it is portable, non-

invasive and allows continuous monitoring. Moreover, it is considered a very 

useful tool in order to measure anesthetic effects on brain hemodynamics[50]. 

 

 

2.2.3 Rheoencephalography 

A rheoencephalograph is defined by the United States Food and Drug 

Administration (FDA) as “a device used to estimate a patient's cerebral 

circulation (blood flow in the brain) by electrical impedance methods with 

direct electrical connections to the scalp or neck area”.  Therefore, 

rheoencephalography (REG) is an explorative method of cerebral circulation 

that measures electrical impedance which allows a continuous observation of 

the blood flow in different cerebral regions. The principle of this method is 

that blood is a good electrical conductor, therefore any increase in blood 

volume will lead to a reduction of the brain electrical resistance, and this will 

be reflected in a decrease of REG pulse amplitude given a constant current.  

The main limitations of REG data processing are the need to clean the 

signal from various artifacts, such as respiration or movements, the 
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differences in tissue conductivity, and the lack of absolute measurements of 

CBF. However, it is a very low cost technique and this is the main reason why 

it is still attractive for researchers[51]. REG was extensively used during the 

60s and 70s, but afterwards its popularity decayed because the provided results 

were not conclusive from a clinical point of view. Nowadays, with more 

precise electronics, software capabilities and newer methods for CBF 

assessment, investigations on REG seem to have restarted [52]. Nevertheless, 

it is only being used in some countries, as China and Russia, while in the EU 

and the US is almost ignored. Table 2-1 shows the rheoencephalographic 

devices that have been referred in publications of clinical data since the early 

clinical trials and have been listed and published by Bodo [51]. 

 

Table 2-1 Rheoencephalographic devices used for REG clinical trials and excitation 
frequency used in each case [51]. 

NAME  FREQUENCY (KHZ) COUNTRY 

Galileo 45 Italy 

Medicor 160 Hungary 

Cereberus 125 Hungary 

UFI 50 US 

MIC 100 US 

   

 

Figure 2-9 shows an average cerebral impedance pulse as recorded by 

means of a rheoencephalograph, where Δz, the maximum change of blood 

volume in a heartbeat, is indicated. In order to obtain this results and readings 

from a REG signal, its amplitude, its first derivative and its integral 

measurement are most commonly used. This is due to the fact that the 

information of the signal resides in the variation of the distance between 

minimum and maximum points of the REG pulse wave, which refers to heart 

and respiratory activity as well as brain vasoconstriction and vasodilatation 

[51]. However, as shown in Figure 2-10, several extra parameters are 

extracted from REG curves.  
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Figure 2-9 Cerebral Impedance pulse (from [53]). 

 

 

Figure 2-10 Geometric values calculated in a rheoencephalographic curve by a 
particular software tool, RHEOSYS (from [53]). 

  

The REG technology 

Two different configurations have been used for REG devices: the 

bipolar (REGI) and tetrapolar (REGII) configurations. REGI uses a single 
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pair of electrodes and impedance is measured with bridge systems, allowing 

for interferences in between electrodes when placed close, while REGII uses 

a different pair of electrodes for sending current and sensing impedance, 

improving the quality of the collected data [54]. For that reason, in this project, 

a REGII configuration was used for data recording.  

Figure 2-11 shows the optimal frequency range to be used for REG 

recordings, that ideally should be between 60kHz and 100kHz but can be 

reduced down to 20kHz.These frequencies are determined as a function of 

γm/γs which is the ratio of electrical conductivity of extracranial tissues 

(muscles and skin), γf/γp, which is the ratio of electrical conductivities of fluid 

and structural intracranial compounds, γb which represents changes of 

electrical conductivity of moving blood and %, that accounts for changes of 

electrical sensitivity of head skin [52].  

 

 

Figure 2-11 Optimal frequency for REG (from [52]). 

 

Lately, several multifrequency approaches have been developed under the 

assumption that tissues will provide different impedances depending on the 

signal frequency and therefore recording the cerebral bioimpedance with 

several frequencies, usually three or four, will provide information on the 

contribution of each tissue into the final recorded values [55]. 
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One of the problems that REG technologies need to face is the 

contamination from extracranial tissue in the final readings, as happened with 

NIRS devices as well [56]. Efforts have been made in order to distinguish 

from brain tissue and external tissue contribution, developing advanced signal 

processing algorithms that have the ability to account for those two 

factors[54], [57], [58]. Besides those solutions, intracranial REG (iREG) 

measurements have also been performed in animals to overcome this issue 

[59][60]. However, iREG technique is invasive and is not suitable for CFB 

monitoring in standard clinical practice.  

 

Clinical studies performed with REG devices 

Pathological conditions in the brain typically involve changes in fluid 

content caused by bleeding, vascular reaction, cerebral volume changes and 

vessel wall hardening. These changes can cause an increase in ICP and a 

resulting decrease in CBF. With this in mind, several studies tried to find a 

relationship between REG and ICP or arterial blood pressure in order to 

confirm whether this parameter could be used to assess the state of CAR. 

There is no clear consensus, although in some animal studies, in which REG 

was used to monitor the lower limit of CAR, correlations between REG and 

measurements of carotid flow and ICP were confirmed [61]. 

As mentioned before, a direct correspondence between REG and ICP 

would allow the use of this methodology as assessment of CAR. That is why 

there are many studies on this subject, such as one that compared estimates 

of the lower limit of CAR based on REG signal, with data based on the 

pressure-reactivity index and visual assessment by an expert in animals during 

exsanguination [59]. Exsanguination is commonly chosen as a model for CAR 

assessment as it causes Systolic Arterial Pressure (SAP) to gradually lower and 

cerebral arteries to maximally dilate until the autoregulation is exhausted. The 

results obtained were promising as it was observed that amplitude changes in 

the intracranial REG signal reflected changes in cerebral vascular resistance. 

These studies confirmed that both REG and iREG reflected CAR and were 

useful for detecting spreading depression, vasospasm and the lower limit of 

CAR [62].  

It has also been observed that REG pulse amplitude increased as SAP 

decreased due to arteriolar vasodilation and increased blood volume within 

the skull. The increased blood volume is demonstrated by increased REG 

pulse amplitude, due to the fact that blood and even more cerebrospinal fluid 
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are better conductors than brain tissue [63]. REG has revealed to be useful in 

assessing cerebrovascular reactivity (CVR) and very useful when combined 

with functional testing (such as Valsalva, apnea or hyperventilation)[64]. 

Several trials have compared REG measurements to other methods: it 

has been published that correlation between cerebral blood flow assessed by 

transcranial Doppler and the the Xe133 clearance method have shown high 

correlations, between 0.75 and 0.92. When validating REGII with rCBF 

obtained with the Xe133 clearance method, a close correlation between both 

was detected [65]. Another clinical trial with 60 patients suffering from 

cerebrovascular diseases [66] compared the information provided by cerebral 

angiography and REG. Results are summarized in Table 2-2, suggesting that 

a high correlation exists between diagnosis performed with the two methods, 

and with clinical findings as well. 

 

Table 2-2 Angiographic and REG results (from [66]). 

 

REG assessment has also been evaluated during mental tasks. In a two 

volunteers study performed during mental tasks and postural stress  [67], 

pulsatile resistance changes (ΔR) and its first derivative (ΔR/ΔT) were 

extracted from REG recordings and assessed during the completion of a 

defined mental task, both being reduced during the procedure. However, 

EEG changes were not consistent among the two studied subjects. In a larger 

study, including data from 10 volunteers [53], task complexity was observable 

in REG recordings as well as in EEG, suggesting that REG and EEG 

combination might provide valuable information regarding the compensatory 

responses of the brain.  

REG technology has been investigated and applied for combat casualties 

monitoring. Provided that clinical tests in rats allow to conclude that REG 

might be a non-invasive tool for global assessment of CBF and not just 
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regional [68], REG was considered to be a cost effective option for 

monitoring CBF impairments in soldiers.  Even though it cannot compete 

with MRI or TCD as a diagnosis tool [69], it could be a useful and cost-

effective technology as well for continuous CBF monitoring during surgery, 

to prevent or at least detect brain perfusion changes than could eventually put 

patients at risk. 

 

2.3 Cerebral blood flow and general anesthesia 

2.3.1 Cerebral blood flow during anesthesia 

 

Autoregulation of cerebral blood flow is a fundamental property of the 

cerebral vascular system to assure adequate oxygenation and metabolism of 

the brain under changing physiological conditions. In spite of this, the impact 

of factors such as age or anesthesia on autoregulation remains unclear, 

although it is a sensitive mechanism and it has been observed to be impaired 

by different pathologies and by general anesthesia. Anesthetics are known to 

decrease cerebral metabolism and therefore CBF in a dose-dependent manner, 

however those effects can be modulated by other factors during anesthesia 

[70]. Regulation of CO2 partial pressures have also a direct impact in CBF, 

suggesting that during anesthesia altering respiratory conditions or 

administering vasoactive drugs might help maintaining CBF in the adequate 

range.  

There are differences in the influence of anesthetic agents that are 

currently used in hospitals on cerebrovascular autoregulation, and some 

studies suggest that volatile anesthetics lead to an impairment of CAR, while 

intravenous anesthetics preserve it. However, both of them have been proved 

to reduce cerebral blood flow assessed by transcranial Doppler [71]. 

Table 2-3 shows the effects of different anesthetics in CVR, CPP, CAR 

and CO2 reactivity. It can be deduced from those data published by Engelhard 

and Werner in 2009 [72], that depending on the anesthetics to be used in a 

surgical procedure, consequences at a brain perfusion level might be different. 

This section will review the effects of the most common anesthesia regimens 

in brain hemodynamics. 
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Table 2-3 Effects of anesthetic agents on vasodilation / vasoconstriction (CVR), 
CPP, CAR and CO2 reactivity [72]. 

 

  

Sevoflurane anesthesia 

Sevoflurane has been proved to provoke a decrease in systemic blood 

pressure and therefore a decrease in cerebral blood flow and an increase in 

cerebrovascular resistance [73]. The range of effective CBF autoregulation 

appears shortened in both young and older patients under sevoflurane 

anesthesia. Nonetheless, no significant differences have been recorded in the 

effect of sevoflurane anesthesia on the limits of CAR or the regulatory range 

for different ages. However, this anesthesia generally results in a shortening 

of the autoregulatory plateau when compared to awake subjects. Studies have 

shown an influence of inhalational anesthesia on CBF autoregulation. 

However, it is not yet clear if the autoregulatory response is altered by aging 

alone, or due to a combination of aging and inhalational anesthesia [74]. 

The attenuation of autoregulatory capacity, is a known dose dependent 

effect of most volatile anesthetics (such as halothane, isoflurane, and 

desflurane) [75], and is likely due to the strong vasodilatory properties of these 

volatiles. Therefore, with a higher concentration of a volatile anesthetic, CBF 

becomes more pressure passive and varies linearly with cerebral perfusion 

pressure (CPP). 

 

Propofol anesthesia 

Compared to inhaled anesthetics, which generally have a depressive effect 

on autoregulation (except sevoflurane), propofol preserves autoregulation 
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both at high and low doses in healthy individuals. However, high doses of 

propofol have been shown to impair cerebrovascular autoregulation in head-

injured patients, although this needs to be verified in more studies [76]. In 

patients with increased intracranial elastance, elevated ICP or in which 

complex surgical approaches require intraoperative monitoring, propofol 

intravenous anesthesia remains the first choice. Additionally, hypercapnia has 

been shown to increase CBF velocity during propofol sedation [77]. 

When remifentanil is used together with propofol, it induces a dose-

dependent reduction of CBF while preserving CBF autoregulation. Therefore, 

comparing it to other inhaled agents at comparable doses, propofol results in 

a more profound cerebral vasoconstriction and it does not impair 

cerebrovascular autoregulation [6]. Total intravenous anesthesia (TIVA) with 

propofol and remifentanil reduces mean flow velocity when anesthetic 

dosages are increased and therefore BIS values decreased, suggesting also a 

reduction of blood flow along with neuronal activity [78]. 

 

Comparison between propofol and sevoflurane 

Propofol and sevoflurane are the most widely used intravenous and 

inhaled agents for general anesthesia respectively. They both decrease regional 

cerebral blood flow (rCBF) in a set of cortical regions and the thalamus [79] 

at certain concentrations: at 1 minimum alveolar concentration (MAC) for 

sevoflurane and at the median effective concentration (EC50) dose for 

propofol. At deeper levels only minor changes were observed, suggesting that 

drug induced decrease in metabolism or blood flow is related to level of 

consciousness. Propofol reduced rCBF and rCMRO2 comparably at a BIS 

value of 40 while sevoflurane reduced rCBF less than propofol but rCMRO2 

to a comparable level [80].  

Therefore, it can be concluded that at standard dosages for surgery, both 

preserve autoregulation while decreasing rCBF and rCMRO2. However, for 

higher concentrations and for brain injured patients, propofol has 

demonstrated to be safer as it fully preserves the autoregulation mechanisms.  

 

Other anesthetic regimens 

Halothane and enflurane are two inhaled general anesthetics. They are no 

longer in common use, as they have the capability to impair the CAR 

mechanism. A small dose of this anesthetic reduces the effective range of 
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MAP over which CBF is regulated. Increasing the depth of anesthesia to 1 

MAC at normocapnia totally eliminates effective cerebral autoregulation [81]. 

Hypotensive epidural anesthesia (HEA) is a technique that reduces blood 

loss during an operation by significantly lowering the mean arterial pressure 

(MAP), while providing circulatory support with the simultaneous infusion of 

epinephrine. Therefore, there is a risk that CBF might be reduced lower than 

the limit of autoregulation of CBF by this technique in some patients. 

A study showed that during an HEA regimen that included circulatory 

support, CBF was on average well maintained despite the MAP reduction. 

However, responses were very variable to HEA, leading to a 12% of subjects 

experiencing a reduction of CBF velocity greater than 30% and were therefore, 

probably close to the limits of cerebral ischemia.  

Spinal anesthesia is regional and involves the injection of a local 

anesthetic into the subarachnoid space. It has been documented that a small 

dose of this anesthesia induces a significant modification in CBF in very 

elderly patients. These results lead to think that higher doses may be harmful 

to the autoregulation in elderly patients, as it has been demonstrated for global 

hemodynamic changes after spinal anesthesia [82].  

In conclusion, this type of anesthesia induces a statistically significant 

reduction in middle cerebral artery velocity in elderly patients. This could be 

explained by a decrease in arterial blood pressure which then impairs CAR in 

elderly subjects. However, this small changes in CBF velocity are not likely to 

have relevant clinical consequences. 

 

Additional drugs administered during general anesthesia 

General anesthesia has three main components: hypnosis, responsible for 

patient’s unconsciousness, analgesia, to prevent pain, and muscular blockade, 

to facilitate intubation and to avoid any involuntary movements interfering 

with the surgery. The combination of these three components is necessary to 

guarantee a safe and effective anesthesia. Moreover, since the drugs used for 

this purpose might provoke hemodynamic changes, several other drugs are 

administered during anesthesia to ensure hemodynamic stability.  

The effects of propofol - and its combination with remifentanil – in CBF 

have been previously discussed. Regarding the use of Neuromuscular 
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Blocking Agents (NMBA), one the most commonly used is rocuronium, a 

non-depolarizing agent with quick onset and intermediate duration [83]. 

Several authors have analyized the effects of rocuronium and other NMBA 

on hemodynamics, concluding that even tough it can potentially increase heart 

rate, it does not provoke any clear hemodynamic instability at intubation 

dosages[83]–[85], even in critically ill patients undergoing cardiac surgeries.  

During anesthesia, together with the drugs needed to provoke hypnosis, 

analgesia and muscular block, vasoactive drugs are administered to maintain 

stable hemodynamic conditions. For instance, atropine is used to recover 

from bradycardia, which is often provoked by the hypnotic propofol [86]. The 

effects of atropine in CBF remain unclear: a clinical study in baboons 

concluded that atropine did not have any effect in CBF [87] while a study in 

humans suggested that atropine attenuated cerebral vasodilation response [88]. 

Since atropine provokes an increase in HR, its administration will be 

considered as a possible factor for CBF regulation in this Thesis.  

  Another drug commonly used during anesthesia is ephedrine, which is 

administered to prevent or compensate for hypotension and bradycardia 

produced by hypnotics and opioids [89]. Ephedrine during general anesthesia 

has proved to increase MAP but without affecting CBF and cerebral 

oxygenation[90], [91].  

Besides the effect of the drugs administered during general anesthesia in 

CBF, other events might also alter the blood supply to the brain, as for 

example patient positioning [92]. Kose at el. [93] published the influence of 

head and body position in CBFv, concluding that it affects cerebral perfusion 

and ICP. Kim et al. [94] analyzed the effect of patient positioning in 

gynecological laparoscopic surgeries, proving an association between the 

Trendelenburg position and cerebral desaturation, changes in ICP and CBF. 

Furthermore, passive leg raise (PLR) rest is used as a ressucitation technique 

since it has proved to help out increasing cerebral perfusion improving the 

CBF conditions in critically ill patients [95].  

Considering all those factors affecting brain perfusion during anesthesia, 

CBF should be the result of the effects of positional changes, selection of 

drugs used and their dosages, cerebral metabolsim and other aspects related 

to pateint condition and the type of surgery being carried out.     
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2.3.2 EEG monitoring 

The electroencephalogram (EEG), which results from the addition of the 

activity of millions of neurons in cerebral cortex [96], is known to reflect 

changes provoked by anesthetics in the brain. In 1950, Falconer and Bickford 

[97] related EEG electrical power with changes in anesthetic dosages using a 

time domain approach and this is still nowadays a research topic in the 

biomedical field.  

EEG is divided in several frequency bands which are representative of 

different patterns and are widely used by the scientific community (see Table 

2-4) [98]. EEG changes produced by anesthetics are based on frequency shifts 

among the referred bands as well as amplitude changes. 

 

Table 2-4 EEG frequency bands. 

NAME  FREQUENCIES (HZ) 

Delta (δ) 0.5 – 3.5 

Theta (θ) 3.5 – 7.0 

Alpha (α) 7.0 – 13.0 

Beta1 (β1) 13.0 – 30.0 

Beta2 (β2) 30.0 - 50.0 

  

Awake humans, while maintaining eyes closed to avoid blinking artefacts, 

present a predominant rhythmic α activity [99]. When low doses of propofol 

are administered, energy in the β bands paradoxically increases, as this reaction 

is common during excitation states [100]. Increased propofol dosages will 

provoke a shift towards α, θ and δ bands with simultaneous amplitude 

increases, as well as an increase of the full power of the EEG spectrum [101]. 

Administering even more propofol would elicit a burst suppression pattern, 

which consists on the alternation of almost flat EEG sequences and bursts. 

Those frequency patterns herein described, and the corresponding amplitude 

shifts, are reversed at recovery of consciousness.  

Besides the analysis of the changes in each frequency band, two 

parameters have also been studied as indicators of loss of consciousness: the 

spectral edge frequency and the median frequency, corresponding to the 

frequencies below which 95% and 50% of the total power of the spectrum is 
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confined. Both of them are decreased during anesthesia induction and 

increased at recovery [98] [102].  

During the last decades several indices have been developed based on 

EEG analysis and aiming to reflect patient brain status during general 

anesthesia and sedation. The most widely used depth of anesthesia index is 

the bispectral index, BIS, developed by Aspect Medical. It is based on 

bispectral analysis of the EEG [98][103] and has been used as a reference for 

evaluating the pharmacodynamics of propofol  [104]. The qCON index 

(Quantium Medical, Mataró, Spain) is another index for depth of anesthesia 

assessment that uses spectral EEG analysis to evaluate the effects of hypnotics 

in the brain and has been proved to be equivalent to BIS in loss of 

consciousness detection [105]. The qCON index, as well as the energy in the 

aforementioned frequency bands, will be used in the scope of this project to 

assess depth of anesthesia and to related it to cerebral blood flow changes. 

 

2.3.3 Propofol pharmacokinetic models 

Propofol is one of the most used anaesthetic agents in clinical practice, 

because of the short action, fast effect and few side effects [106]. It is 

administered intravenously, often combined with intravenous opioids such as 

remifentanil, resulting in a total intravenous anesthesia (TIVA).  

Different pharmacokinetic models have been developed in order to 

describe how propofol is distributed through the human body. The most 

commonly used are the Marsh model [107] and the Schnider model [108]. 

They are both based on a three-compartment model, i.e. a system composed 

by homogeneous units (or compartments) that exchange substances based on 

the principle of mass conservation. Figure 2-12 shows an example of a 

compartment i receiving a determined amount of drug (d(t)), with current 

concentration (Ci), eliminating part of it with a ki0 rate, and exchanging the 

substance with another compartment j (with rates kij for the drug going from 

i to j and rate kji for the drug going from j to i).  
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Figure 2-12 Description of one compartment. 

   

As stated before, both Marsh and Schnider models are based in a three-

compartment approach, in which compartment 1 corresponds to the central 

compartment (plasma), compartment 2 to highly perfused tissues and 

compartment 3 to scarcely perfused tissues. Propofol is therefore directly 

administered to compartment 1 and redistributed among compartments 2 and 

3 while a percentage of it is achieving the target organ, in this case, the brain 

(Figure 2-13). 

 

 

Figure 2-13 Three compartment model. 
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Under those assumptions, a differential equations system is defined 

accounting for all the drug exchanges among compartments for each time 

interval, resulting in the final equations 2.6 and 2.7 used to compute the 

plasmatic and effect site concentration values. The plasmatic concentration 

(Cp) refers to the concentration in the first compartment while the effect site 

concentration (Ce) refers to the concentration in the target organ.  

 

dCp(t)

dt
= Ċ1(t) (2.6) 

 

 

dCe(t)

dt
= ke0C1(t) − ke0Ce(t) (2.7) 

 

 

Even though both Marsh and Schnider models rely in the same three 

compartment assumption, their performance is different because the 

constants that characterize the model are not coincident. While the Marsh 

model uses constant kij rates for drug transfer among compartments and 

compartment volumes only depending on the patient weight, the Schnider 

model adapts those transfer rates to patient characteristics and considers 

different compartment volumes (See Table 2-5 and Table 2-6 for details). 

 

Table 2-5 Compartment volumes in Marsh and Schnider models. 

COMPARTMENT MARSH MODEL (L/KG) SCHNIDER MODEL (L) 

V1 0.228 4.27 

V2 0.463 18.9-0.39*(age-53) 

V3 2.893 238 
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Table 2-6 Kij values for Marsh and Schnider models. 

TRANSFER 

RATES 

MARSH MODEL  

(MIN-1 ) 

SCHNIDER MODEL  

(MIN-1 ) 

K10 

 

0.119 

 

0.443+0.0107*(weight-77)-

0.0159*(LBM-59) + 0.0062*(height-177) 

 

K12 

 

0.112 

 

0.302-0.0056*(age-53) 

 

K13 

 

0.042 

 

0.196 

 

K21 

 

0.055 

 

(1.29-0.024*(age-53))/(18.9-0.391*(age-

53)) 

 

K31 

 

0.0033 

 

0.0035 

 

Ke0 0.26 0.465 

   

 

Those differences in model definitions are responsible for the differences 

in the predicted plasmatic and effect site concentrations. Several clinical 

studies have been designed in order to evaluate the differences between the 

two models, mainly when anesthesia is administered via target control infusion 

(TCI): a system that given the target concentration desired in the target organ 

computes de infusion rate needed for that purpose.  

For instance, Absalom et al. [109] concluded that in determined set of 

patients both models can differ substantially and attention should be payed 

when used under TCI conditions because performances were very different 

and for example the Schnider model should not be used with target Cp 

concentrations. Sivasubramaniam [110], in his review of pharmacokinetic 

models for TCI, clearly stated that due to the differences between the two 

models, Marsh model should be used with plasmatic concentration targets 

while the Schnider model was most suitable for effect site concentration 

targets.  

Besides the comparison between the two models, several publications 

have debated the appropriate value for the ke0 constant, which is the rate that 
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modulates propofol going from the first compartment to the target organ and 

is therefore related to the propofol time effect as well as to the equilibrium 

between plasmatic and effect site concentrations (see equation 2.6). The 

original model from Schnider proposed a ke0 value of 0.456 min-1  [108], while 

Gambús et al. obtained 0.122 min-1 [104]; furthermore other studies have 

published 0.16 min-1 for young adults [111] and 0.3 min-1 in different age 

groups [112]. In each case different populations and surrogates have been 

used to obtain the final ke0. It is also known that pharmacokinetic models 

present a significant accuracy errors when evaluated on a particular population 

sample [113] and this would also explain those differences. 

It is common to use EEG changes and/or depth of anesthesia indices as 

the reference for ke0 calculations, as they are considered surrogates of the 

anesthetic effect. Moreover, as stated before, propofol is known to decrease 

CMRO2 and CBF, and these effects are translated into EEG alterations. 

Therefore, one could consider that ke0 should not be constant but dependent 

on the cerebral blood flow, which is one of the hypothesis evaluated along 

this Doctoral Thesis.  

 

2.4 Signal processing techniques for REG analysis 

 

As previously presented in this chapter, signal processing applied to REG 

recordings has been based in the extraction of geometric features from its 

pulse wave and the study of their evolution over time under certain clinical 

conditions. This is a similar approach to the one taken for thoracic 

bioimpedance [114], [115] and photoplethysmography recordings [116], [117], 

that share with REG a similar pulse waveform. However, other signal 

processing techniques are needed to further explore in depth the ability of 

REG waves to reflect CBF changes.  

Biomedical signals, due to their intrinsic characteristics, often require to 

be processed with alternative methods to extract the information they contain. 

For instance, signal processing in the frequency domain is usually performed 

applying the Fast Fourier Transform (FFT). However, this technique requires 

stationarity and linearity, while physiological signals are typically stochastic, 

nonlinear and not stationary [118].  Therefore, different approaches in the 

frequency domain have been developed to overcome those constraints and 
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have been extensively applied to biomedical signals, such as Time Frequency 

Distributions (TFD) and wavelets.  

For example, wavelets have been used to identify epileptic seizures in 

EEG signals [119] and to enhance peaks detection in photoplethysmography 

[120]. In other publications, TFD were successfully used to model upper 

airway obstructions when applied to respiratory signals [121] or were part of 

an EEG based emotions recognition system [122].  

Even though results provided relevant clinical outcomes, elevated 

computational times are required by both wavelet [123]  and TFD analysis 

[124]. Since algorithms developed under the scope of this Thesis are to be 

applied to a real time CBF monitor, techniques with low computational efforts 

are needed to be able to monitor patients in real time.  For that reason, other 

options suitable for real time monitoring of physiological signals should be 

explored.  

Biomedical signals are typically nonlinear and  can be defined as the result 

of the combination of the action of many multidimensional control loops 

[125]. Therefore, nonlinear signal processing techniques might be an 

appropriate strategy to analyze REG signals and explore the possibility of 

using them as an additional source of information for anesthesiologists to 

monitor the effects of anesthesia in patients undergoing clinical procedures.  

Within the field of time series nonlinear analysis, many features have been 

developed for signals characterization, such as the Lyapunov exponents, 

fractal dimension, Poincaré plot analysis or entropy. Lyapunov exponents, 

fractal dimension and the entropy metric ApEn were successfully applied to 

EEG signals for epilepsy detection [126] and to HRV signals to measure the 

effects of mobile phone radiation in cardiac health [127]. However, both the 

fractal dimension calculation [128] and the determination of the Lyapunov 

exponents require extensive computational efforts [129]. Hence, they could 

be a powerful tool for post-hoc analysis but are not the optimal solution for 

patient bedside monitoring. In contrast, within the set of nonlinear algorithms 

applied to biomedical signals, Poincaré plot analysis has shorter computation 

times and has also been extensively used in physiological signal processing, 

namely in HRV analysis [130], hence being a suitable tool for REG analysis.   

Even though none of those algorithms has been applied to REG signals, 

some authors have studied their performance in processing similar data, such 
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as intracranial pressure (ICP) recordings. Di Ieva et al. [131], in their review 

of existing methods for ICP analysis, concluded that the analysis of the 

nonlinear dynamics is a promising research field to improve patient bedside 

monitoring. Moreover, other authors have published their investigations on 

the nonlinear processing of ICP signals. For instance, Lu at al. [132] used 

multiscale entropy applied to ICP recordings to study their complexity in brain 

injured patients, concluding that multiscale entropy was a good predictor of 

mortality and favorable outcome in those patients. Another entropy metric, 

Apen, was selected by Hornero et al. [133] to analyze ICP signals in the 

pediatric population,  providing evidence that decreased complexity in ICP 

was related to events of intracranial hypertension. 

In the scope of this Doctoral Thesis, considering the underlying 

nonlinear behavior governing biomedical signals and the need for real time 

algorithms to be embedded in a standalone device, the selected algorithms for 

REG signal processing were Poincaré plot analysis and entropy, since they 

have proved to be effective for HRV and EEG monitoring even when there 

is no clear evidence on the chaotic behavior of the signals [134]. Therefore, 

algorithms for Poincaré plot analysis and entropy metrics were developed to 

quantify their ability to track CBF changes. Moreover, the performance of 

those nonlinear techniques was compared to the outcome of the traditional 

REG processing by means of the extraction of geometric features from the 

time domain signal. 
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3. Clinical Datasets 

 

 

 

 

 

 

 

 

 

Abstract 

This chapter aims to present all datasets used for the development of the 

algorithms contained in the present PhD Thesis. Information on the clinical 

trials design, data collection methodology and a general description of the 

recorded data are provided. 

  

3 
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3.1 Introduction to Clinical Trials 

Due to the lack of publicly available datasets of REG signals, the design 

and execution of clinical trials was performed under the scope of this Doctoral 

Thesis. The common objective of the three clinical trials herein presented was 

the collection and analysis of REG signals under clinical conditions known to 

provoke changes in brain hemodynamics. The two scenarios chosen for that 

purpose were (a) awake healthy subjects carrying out breath holding exercises 

and (b) patients undergoing elective surgeries under general anesthesia. 

All the clinical trials were designed and executed in cooperation with 

Hospital CLÍNIC de Barcelona. The specification of the primary and 

secondary objectives, the study population to be enrolled, the study design 

and methodology and all safety concerns and risk analysis were defined by the 

multidisciplinary team involved in this research project. The main design 

details, as well as the methodology and the description of the collected data, 

are presented along this chapter.     

      

3.2 Ethical Considerations 

All clinical trials under the scope of this thesis have been performed 

following the principles of the Declaration of Helsinki [135] and the ISO 

standard on Clinical investigation of medical devices for human subjects -- Good clinical 

practice, ISO 14155:2011 [136].  Clinical protocols were approved by the 

Ethical Committee of the Hospital CLÍNIC de Barcelona with protocol 

number (2013/8356). All participants were informed about the study and gave 

their written consent prior to participation.  

 

3.3 Apnea-Baseline Database 

3.3.1 Clinical Protocol Rationale  

The objective of this clinical trial was to record REG data during a 

respiratory challenge, consisting on the alternation between apnea and resting 

periods, to analyze the differences in REG waves provoked by the apnea 

episodes. In order to limit the number of possible confounding factors, 

inclusion criteria required healthy young volunteers, with ages on the range of 

18 to 40 years old. The study was observational and retrospective.    
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3.3.2 Recorded Data Description 

Sixteen young healthy volunteers were enrolled in this observational 

study. Details of the participants are reported in Table 3-1.   

Table 3-1 Participants demographic data. Gender is provided as an absolute 
frequency. Age, height, weight and body mass index (BMI) are provided as mean ± 
standard deviation. 

APNEA-BASELINE PARTICIPANTS DEMOGRAPHIC DATA 

Gender (male/female) 8/8 

Age (years) 25.4 ± 3.6 

Height (cm) 166.8 ± 8.3 

Weight (kg) 59.6 ± 6.8 

BMI (kg/m2) 21.3 ± 2.1  

 

The qCO monitor (Quantium Medical, Barcelona, Spain) was used to 

monitor the cerebral bioimpedance signal for CBF estimation. Four pre-gelled 

standard Ag/AgCl ECG electrodes were placed on the subject temples and 

connected to the qCO monitor through a patient cable. Data from the 

monitor were continuously collected at a sampling rate of 250Hz.  

The subjects were monitored in supine position for 8 minutes repeating 

twice the sequence of 3 minutes at rest followed by 1 minute of breath holding 

(Figure 3-1). Subjects were asked to avoid talking, movements and blinking, 

since those would provoke artifacts in the recorded signals. Apneas were 

planned to stand for 1 minute, however volunteers were instructed to stop 

earlier if needed and raise their hand to communicate to the investigator that 

the apnea period was over. 

 

Figure 3-1 Sequence of breath holding (apnea) and baseline episodes. 
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All events susceptible of creating artefacts in the signal, such as coughing 

or swallowing, were annotated in a customized software developed for qCO 

data collection to guarantee synchronism with the recorded REG signals. In 

addition, events corresponding to the beginning and to the end of the apnea 

period were also annotated. 

REG recordings and demographic data of the patients were anonymized 

and assessed for completeness and integrity prior to their analysis through 

advanced signal processing techniques.     

 

3.4 General Anesthesia Dataset 1 

3.4.1 Aims of the Protocol 

The objective of this clinical trial was to record REG data during elective 

surgeries performed under general anesthesia and analyze their evolution 

when compared to the events taking place along the surgery and other 

physiological data recorded simultaneously. Exclusion criteria considered 

were cardiac or neurosurgeries, as well as traumatic brain injuries. This clinical 

trial was observational and retrospective: no clinical decisions were made 

based on the output of the qCO monitor.  

3.4.2 Recorded Data Description 

Forty female patients undergoing elective surgeries were enrolled in this 

clinical trial. A summary of the demographic data of the participants in the 

study is provided in Table 3-2. All patients were scheduled for elective 

gynecological surgeries under TIVA with propofol and remifentanil.  

Table 3-2 Patients demographic data. Age, height, weight and body mass index 
(BMI) are provided as mean ± standard deviation. 

GENERAL ANESTHESIA DATASET 1 PATIENT DEMOGRAPHIC DATA 

Age (years) 50.9 ± 15.9  

Height (cm) 160.7 ± 6.5  

Weight (kg) 68.9 ± 13.4  

BMI (kg/m2) 26.7 ± 5.0  

 

At their arrival in the operating room (OR), all sensors needed for patient 

monitoring were prepared and attached to the patient. Additionally, an 

intravenous cannula was placed to allow the administration of anesthesia and 
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other drugs as required. Anesthesia was induced by means of a TCI system 

(Base Primea, Fresenius Kabi, Germany), with an average target dose of 5.9 

µg/mL of propofol (ranging from 5 to 7µg/mL) and 3.7 ng/mL of 

remifentanil (ranging from 2 to 6.2 ng/mL). Once loss of consciousness was 

assessed as the loss of eyelash reflex, patients were preoxygenated to prepare 

for intubation. Laryngoscopies were only performed in case the use of 

laryngeal masks (LMA) was not recommended. In those cases, patients 

received a 30mg bolus of rocuronium 2 minutes before intubation. Airway 

management through LMA required lower bolus of either 10mg or 20mg of 

rocuronium in 8 patients.  

After intubation, anesthetic dosages were reduced for maintenance to an 

average propofol concentration of 3.4 µg/mL of propofol (from 2.5 to 4.3 

µg/mL) and 3.4 ng/mL of remifentanil (from 2.3 to 4.5 ng/mL). The dosages 

of both drugs were adjusted as required during the whole anesthetic procedure. 

Patients were placed in supine position for the surgery: 25% of them (10 out 

of 40) remained in the horizontal plane for the whole procedure while 12.5% 

(5 out of 40) were placed in the Trendelenburg position and in 62.5% of cases 

(25 out of 40) patient legs were raised during the procedure. 

During the surgeries, other drugs were administered either to prevent 

pain (Methadone) or to preserve hemodynamic stability (Atropine, 

Ephedrine). Table 3-3 presents the occurrence of the administration of those 

drugs.  

Table 3-3 Drugs administered during surgical procedures. 

DRUGS ADMINISTERED 

Propofol 40/40 (100%) 

Remifentanil 40/40 (100%) 

Rocuronium 18/40 (45%) 

Atropine 9/40 (22.5%) 

Ephedrine 3/40 (7.5%) 

Methadone 10/40 (25.0%) 

 

Patient monitoring consisted on the use of a Depth of Anesthesia device, 

the Conox (Fresenius Kabi, Germany),  an electrical bioimpedance monitor 

for REG data collection, the qCO (Quantium Medical, Barcelona, Spain) and 

a hemodynamic monitor providing information on the heart rate, systolic 
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blood pressure (SBP), diastolic blood pressure (DBP) and mean blood 

pressure (MBP).  

Data from those monitors, as well as data from the TCI pumps, were 

recorded through the RugloopII© software (Demed, Belgium). Moreover, 

annotation of relevant events during the surgical procedure was performed 

through the same software, to make sure the occurrence of those events was 

synchronized with all other clinical data. Once patients were discharged, 

collected data were checked for anonymization and recorded for further 

analysis. No adverse events were detected throughout the clinical trial. 

 

3.5 General Anesthesia Dataset 2 

3.5.1 Aims of the Protocol 

The objective of this clinical trial was to extend the available dataset of 

REG signals during general anesthesia and to confirm the findings with the 

previous dataset and increase the statistical power of the results obtained.  As 

for the other clinical protocols described in this section, this clinical trial was 

observational and retrospective: no clinical decisions were made based on the 

output of the qCO monitor.  

3.5.2 Recorded Data Description 

Ninety female patients were enrolled in this clinical trial. Two of them 

were discarded due to technical reasons, resulting in a final dataset composed 

by 88 patients. Summarized demographic data are provided in Table 3-4.  

Table 3-4 Patients demographic data. Age, height, weight and body mass index 
(BMI) are provided as mean ± standard deviation. 

GENERAL ANESTHESIA DATASET 2 PATIENT DEMOGRAPHIC DATA 

Age (years) 49.5 ± 16.4  

Height (cm) 161.3 ± 7.0  

Weight (kg) 68.1 ± 13.9  

BMI (kg/m2) 26.2 ± 5.2  

 

The clinical procedures and the protocols for data collection in this 

clinical study are analogous to those previously presented for the General 

Anesthesia Dataset1. Initial dosage of propofol at anesthesia induction was 

5.8 µg/mL (ranging from 4.8 to 7 µg/mL) and was administered together with 
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remifentanil targeted at 3.8 ng/mL (ranging from 2 to 6.2 ng/mL). After 

induction, those target dosages for propofol and remifentanil were reduced to 

3.4 µg/mL (from 2.5 to 4.3 µg/mL) and to 3.4ng/mL (from 2.3 to 4.5 ng/mL), 

respectively. From the 88 patients suitable for analysis, 22 were intubated 

through laryngoscopy while in the remaining 66 an LMA was used. Regarding 

patient positioning, 24 patients (27.3%) were kept in the horizontal plane for 

the whole procedure, while passive leg raising took place in 51 cases (57.9%) 

and 13 participants (14.8%) were placed in Trendelenburg position.  

The same set of drugs was used for anesthesia management and control 

of hemodynamics. The occurrence of administration of each drug is specified 

in Table 3-5. 

 

Table 3-5 Drugs administered during surgical procedures. 

DRUGS ADMINISTERED 

Propofol 88/88 (100%) 

Remifentanil 88/88 (100%) 

Rocuronium 43/88 (48.9%) 

Atropine 16/88 (18.2%) 

Ephedrine 7/88 (7.9%) 

Methadone 16/88 (18.2%) 

 

All patients were monitored from 3 min prior to the anesthesia induction until 

3 minutes after extubating. At that time, sensors were disposed, patients 

discharged, and data anonymized and stored for retrospective analysis. No 

adverse events were detected throughout the clinical trial.   
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Chapter 4 
4. Optimal parameters for 

noise reduction algorithm 

based on local geometric 

projections of REG signals 
 

 

 

Abstract 

Physiological signals are known to be affected by noise. This chapter 

compares several methods for signal preprocessing to filter out interferences 

from REG signals collected during anesthetic procedures, in order to identify 

the algorithm and parameters optimizing the noise cancellation process.  

  

4 
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4.1 Introduction 

The recording and processing of biomedical signals in the operating 

rooms have improved patient care during the last decades. One of the most 

critical steps for vital signs monitoring is the identification and rejection of 

noise embedded in the recorded signals. In clinical settings, the noise sources 

can be classified into noise coming from the electronics used by the recording 

system, environmental noise provoked by power line and other devices 

emitting radiations, and interferences originated by physiological processes 

other than the one under assessment [137]. 

In particular, REG signals are affected by electrooculogram, respiration, 

movements and facial electromyography, as well as by surrounding electrical 

equipment and power line interferences. Literature on the noise embedded in 

REG signals is scarce. However, lots of efforts have been made to overcome 

the difficulties in filtering photoplethysmography waves (PPG), that share 

many properties with REG signals since they both record a similar waveform 

resulting from the circulation of the blood through the vessels, also known as 

pulse waves. 

Several publications provide indications on how to remove respiration 

interference with adaptive filters or wavelet based filters [138]–[141]. However, 

the most commonly used solution relies on bandpass filters, even though they 

are not always able to get rid of noise preserving the pulse wave intact [142]. 

Stuban and Niwayama published their work [143] analyzing the optimal filter 

bandwidth for pulse oximetry, concluding that the best cut-off frequency to 

be chosen was the one closest to the fundamental frequency of the signal, 

obtaining a sinusoidal wave that contained enough information to estimate 

the O2 concentration in arterial blood, despite the fact that the dicrotic notch 

was filtered out as well.  

One of the most commonly used filters is the Butterworth filter [144]–

[146]. Elgendi et al. [144] used in their work a zero-phase second order 

Butterworth filter with bandpass from 0.5 to 15 Hz. In other publications, a 

Butterworth filter of order 2 and phase zero was used but with different 

bandwidths (0.5 to 8 Hz in [145] and 0.5 to 7Hz in [146]). Even though the 

selection of the cut-off frequencies was detailed, the order of the filter was 

not supported by any justification.  

Chebyshev filters have also been used to filter PPG signals. A Chebyshev 

Type I, zero-phase, of order 6 with cut-off frequencies of 0.3 and 12 Hz was 

used in [147], while Chebyshev Type II filters were used by Kubicek et al.[148]: 
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PPG waves were filtered with a 5th order Chebyshev Type II with 90 dB of 

attenuation in the stop band. Moreover, elliptic filters[149], median filters 

[149], [150], and Hamming-based Finite Impulse Response filters [149], [151] 

were also applied to PPG signals in several publications.  

Liang et al. [149] systematically tested the signal quality obtained by using 

nine types of filters to analyze which filter and parameters optimized the 

recovered PPG signal. They concluded that the best signal quality was 

obtained with a Chebyshev Type II 4th order filter, which outperformed all 

other filtering options tested.  

Analogously, the objective of this chapter is to find the best filter for 

REG signal processing, which cancels out noise while preserving the pattern 

of the REG waves. This will be done comparing two different methods: (1) 

in the linear domain, selecting the best classical filter (Butterworth, Chebyshev 

or elliptic) for this dataset and (2) in the nonlinear domain, using local 

geometric projections of REG signals. This method is based on the one 

originally published by Cawley and Hsu [152] and later applied by other 

authors in RR signals [153]. 

 

4.2 Methods  

Physiological signals need to be filtered to remove noise related to non-

physiological sources or to physiological signals that are not desired in a 

specific application. Unwanted signals shall be cancelled while preserving an 

undistorted representation of the targeted signal. Aiming at identifying the 

optimal filter for REG signals, linear and nonlinear noise reduction algorithms 

were compared.  In this section, all filters tested are described, followed by 

the methodology applied to generate the reference signals used to evaluate the 

filters and the assessment of the performance of each algorithm.  

 

4.2.1 Classical time domain filters 

Typically, time domain classical filters are used for noise removal. In this 

chapter, Butterworth, Chebyshev (Type I and Type II) and elliptic filters were 

evaluated, searching, in each case, the optimal set of parameters for REG 

signals: filter order (n), cut-off frequency (ωc) and attenuation (Rs and/or Rp). 
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A review of the main characteristics and analytic expressions [154] is provided 

in this section.  

The Butterworth filter is characterized by a flat response in the passband 

followed by a monotonic decrease for frequencies above the cut-off frequency. 

The squared transfer function of a low pass filter is shown in Figure 4-1(a) 

and its analytic formula can be written as: 

|H(jω)|2 = 
1

1 + (
jω
jωc

)
2n  (4.1)

 

where n is the order of the filter and the cut-off frequency is ωc. It is worth 

noting that higher orders provide sharper transitions between the passband 

and stopband.  

 

Figure 4-1 Example of magnitude responses for the digital low pass filters (a) 
Butterworth, (b) Chebyshev Type I, (c) Chebyshev Type II and (d) Elliptic. 

 

Chebyshev filters, when compared to Butterworth, provide sharper 

responses given the filter order. Since Butterworth filters provide a 

monotonical response, they concentrate accuracy errors in the lowest 

frequencies of the passband and above the cut-off frequency. To avoid this, 

Chebyshev filters distribute the accuracy error uniformly in the passband or 

the stopband (or both).  
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Chebyshev type I shows a ripple in the passband and monotonic stop 

band (Figure 4-1 (b)), with a magnitude response of the type: 

|H(jω)|2 = 
1

1 + ε2Vn2 (
ω
ωc
)
 (4.2) 

where ε represents the passband ripple, ωc the cut-off frequency and Vn(x) is 

a Chebyshev polynomial of order n: 

Vn(x) = cos(n cos
−1 x) (4.3) 

Typically, those filters are designed by providing the required peak to 

peak passband ripple (Rp), which relates to the value of ε in equation (4.2) as: 

 

ε = √100.1Rp(dB) − 1 (4.4) 

 

In contrast, Chebyshev Type II filters show the ripple in the stopband 

and are monotonic in the passband (Figure 4-1 (c)). Their transfer function 

for low pass filters can be defined by means of the same parameters used for 

the Type I filters and it is of the form:  

|H(jω)|2 = 
1

1 + (ε2VN
2 (
ωc
ω )

)
−1  (4.5)

 

where the ripple in the stop band attenuation (Rs) is a function of ε: 

Rs(dB) = 10 log (1 + 1 ε2⁄ ) (4.6) 

Elliptic filters distribute the error through all the frequency band, 

showing ripple in both the passband and the stopband. This results in the 

optimal type of filter given a filter order n, since it provides the smallest 

transition band of the four types of filters herein presented (Figure 4-1 (d)). 

Their magnitude function can be determined as: 

|H(jω)|2 = 
1

1 + ε2UN
2 (ω)

 (4.7) 
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where ε is the allowable ripple as specified in equation 4.4 and Un is a Jacobian 

elliptic function of the form: 

UN
2 (ω) = sn [k sn−1 (ω ωp⁄ ,

ωp
ωs⁄ ) + cX1, εpεs] (4.8) 

where sn is the Jacobian elliptic sine function, ωp and ωs the frequency of the 

passband and stopband respectively, c depends on the filter order, X1 is the 

elliptic integral and εp and εs a function of the ripple in the passband and 

stopband frequencies.  

 

4.2.2 The nonlinear filter 

 

Poincaré plot analysis has been extensively used for physiological signals 

processing, to evaluate changes or disease conditions (see Chapter 6). 

Moreover, Cawley and Hsu [152] first published an algorithm for a nonlinear 

filter to be applied to the state-space representation of a signal, the attractor. 

In their work, the noise reduction algorithm is designed with controlled time 

series and applied to the signal resulting from a magnetoelastic ribbon 

experiment. The same algorithm was later on applied to RR time series [153], 

providing successful results.  

This algorithm is iterative and consists on a set of steps herein detailed. 

For clarity, an example with a sinusoidal wave with additive white noise is 

provided. The algorithm is applied to a signal y(t) of the form 

y(t) = s(t) + n(t) (4.9) 

where s(t) is the sinusoidal signal and n(t) the white noise component.    

The steps of the algorithm are illustrated in Figure 4-2 and are as follows: 

Step 1 - Given the time series y(t) (Figure 4-2 (a)), containing N samples, 

the attractor Y(t) is reconstructed with time lag τ and in a m dimension phase 

space (equation 4.10). The values τ=1 and m=2 have been chosen to allow its 

graphical representation and interpretation. Due to the low signal-to-noise 

(SNR) ratio of the input signal y(t), the attractor is a cloud of points around 

the identity line (Figure 4-2(b)). 

 

Y(t) = [y(t) y(t + τ) y(t + 2τ)    …     y(t + (m − 1)τ)] (4.10) 
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Step 2 - All the points in the attractor are clustered in neighborhoods. A 

first reference point x01 is randomly selected and its neighborhood is defined 

as the subset of points in the attractor containing the v-1 nearest neighbors. 

Iteratively, further reference points of the form x0α are randomly selected 

under the condition that the reference point does not belong to any previously 

established neighborhood. This process is repeated until all points are 

associated to at least one neighborhood. As an example, Figure 4-2(c) 

illustrates the first three neighborhoods identified in the attractor of the input 

signal y(t) containing v=120 points each. 

 

Figure 4-2 Nonlinear filter algorithm description: (a) original time series, (b) 
reconstructed attractor, (c) identification of neighborhoods, (d) new projection of 
neighborhoods, (e) final attractor after 8 iterations, (f) filtered time series. 
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Step 3 - Neighborhood projection: for each neighborhood, the center of 

gravity qα and radius rα, defined as the maximum distance between any 

neighbor and its center of gravity, are computed. Neighborhoods are sorted 

according to decreasing values of rα and for each neighborhood, starting with 

the one with higher radius value, the local covariance matrix is calculated 

(equation 4.11). Using a singular value decomposition approach, points in 

each neighborhood are projected into a new subspace of lower dimension, 

keeping the largest variance for each neighborhood (quantified in the 

parameter k) while suppressing small variations since those are likely to be 

caused by noise. All points shall be projected only once: if a data point belongs 

to more than one neighborhood, it will only be projected within the 

neighborhood with highest rα value. 

𝐶 = 
1

𝑣
 ∑[𝑥𝑖 𝑞] [𝑥𝑖 𝑞]𝑇
𝑣−1

𝑖=0

 (4.11) 

Step 4 - Return to time series: once all points have been projected on a 

new subspace, time series are reconstructed while minimizing the overall error. 

The time series minimizing the error is of the form [152]: 

 

sREC(t) =

{
 
 
 
 

 
 
 
 1

z
∑y(t − (j − 1)τ),                                 1 + (z − 1)τ ≤ t ≤ zτ, z = 1,… ,m − 1

z

j=1

1

m
∑y(t − (j − 1)τ),                                           1 + (m − 1)τ ≤ t ≤ N − (m − 1)τ

d

j=1

1

z
∑ y(t − (j − 1)τ),          1 + N − zτ ≤ t ≤ N − (z − 1)τ, z = m − 1,… ,1 

d

j=d−z+1

(4.12) 

 

Step 5 - Steps 1-4 are repeated until a predefined condition on the time 

series is satisfied, such as a SNR target or signal variance. Figure 4-2(e) shows 

the reconstructed attractor after eight iterations (arbitrarily fixed in this 

example) and Figure 4-2(f) illustrates the recovered time series using the 

formula presented in equation 4.12.   

The application of this algorithm requires the a priori definition of a set 

of parameters. Given a time series y(t), with N samples, the following 

parameters need to be fixed: 

• τ: time lag for attractor reconstruction 
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• m: embedding dimension of the attractor 

• v: number of points to be considered in each neighborhood 

• k: percentage of variance to be preserved after the projection of each 

neighborhood 

The values assigned to those parameters depend on the characteristics of 

the dataset to be processed. Typically, τ is chosen to be 1 sample, and k takes 

values close to 1 (e.g. k=0.95) to avoid filtering out too much variance of the 

system. The embedding dimension m must fulfill the condition m≥2d+1, 

where d is the real dimension of the attractor and can be estimated by means 

of the correlation dimension [153]. REG signals show a sinusoidal waveform 

and therefore their correlation dimension is expected to be close to 1. 

Nonetheless, the existing noise in the collected signal would increase the 

correlation dimension significantly. For that reason, in this analysis, the value 

of the embedding dimension was obtained empirically, together with the 

number of points (v) to be included in each neighborhood.  

Moreover, a strategy to evaluate the effects of the filter and the need of 

an additional iteration shall be defined. In this work, the parameters providing 

a lowest error in the reconstructed REG signal sREC(t) were analyzed, followed 

by the definition of a method to assess the number of iterations needed to 

recover the original signal s(t). 

 

4.2.3 Experimental dataset 

REG data from patients under general anesthesia were used to validate 

the proposed nonlinear filter based on the signal attractor. Twenty patients 

were randomly selected from the General Anesthesia Dataset1 and REG 

segments of 4000 samples (i.e. 16 seconds) free from artefacts were extracted. 

Those segments belonged to different anesthetic states, including awake 

periods, light anesthesia and deep anesthesia. The dataset was randomly 

divided in two subsets of 10 patients each, one to be used for training and a 

second one for validation.  

In order to provide an objective measurement of the error of each filter 

applied to the dataset, known reference signals are needed. For that purpose, 

the original signals REG(t) were filtered in a first step to create the reference 

signals s(t) to which white noise n(t) should be added. Low frequency 
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components were removed by means of a Butterworth high pass filter with 

cut-off frequency 0.1 Hz, and subsequently the nonlinear filter herein 

presented was applied with input parameters m=400 for the embedding 

dimension, τ=1 for the attractor reconstruction, v=300 neighbors, k=0.95 

percentage of variance preserved and 100 iterations. Once the filtered signals 

s(t) were obtained, white noise n(t) was added to build up a signal y(t) under 

the form in equation 4.9, with SNR = 0dB, in which both s(t) and n(t) were 

known. These steps, followed to create the synthetic signals, are summarized 

in Figure 4-3. The filtered datasets were used for training and validation of 

the filter as described in the data analysis subsection.  

 

Figure 4-3 Processing applied to the recorded REG signals to obtain the input 
dataset y(t), consisting on a high pass filter (HPF) with cut-off frequency 0.1 Hz, the 
application of the nonlinear filter with parameters m=400, τ=1, v=300, k=0.95 and 
100 iterations, and the addition of white noise. 

 

4.2.4 Evaluation of the performance of the filters under test 

To evaluate and compare the performance of the filters under test, the 

input dataset y(t) was filtered with all the classical filters herein presented as 

well as with the proposed nonlinear algorithm, to obtain the filtered signal 

sREC(t). The parameters needed to design the filters under test were optimized 

for the training dataset using as a reference the percentage root-mean-square 

difference error (PRD). PRD has been selected due to its low computational 

time and its ability to assess distortion, for instance in compressed 

electrocardiographic signals [155]. Different formulas for PRD calculation are 

available in the literature, proposing different denominators to compute the 

final error  [156]. The one selected for this application is of the form: 

PRD (%) = √
∑ (si − ŝREC i)2
N
i=1

∑ (si)2
N
i=1

. 100 (4.13) 
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where si is the original signal before the addition of white noise, SREC i the 

recovered signal and N the length of both time series. 

Regarding the classical filters under test, signals were filtered forward and 

backward to avoid phase changes. Table 4-1 provides the range of parameters 

tested for every type of filter. The average error obtained with each kind of 

filter was established as the reference threshold to evaluate the performance 

of the nonlinear filter.  

 

Table 4-1 Time domain filters tested for REG signals in the training set. 

FILTER  ORDER CUT-OFF 

FREQUENCY 
RP RS 

Butterworth 2 to 10 2 to 20 Hz - - 

Chebyshev Type I 2 to 10 2 to 20 Hz 0.1 to 1 dB - 

Chebyshev Type II 2 to 10 2 to 20 Hz - 20 to 100 dB 

Elliptic 2 to 10 2 to 20 Hz 0.1 to 1 dB 20 to 100 dB 

Rp: peak to peak passband ripple(dB) 
Rs: stopband attenuation (dB) 

 

Analogously, the a priori values of the parameters needed to design the 

nonlinear filter were optimized as well to minimize the PRD in the training 

set. The time lag for the attractor reconstruction was set to τ=1 sample and 

the percentage of variance to be preserved in each projection of the 

neighborhoods was fixed to k=0.95, to make sure the signal was recovered 

without significant information loss. Since all segments in the dataset were 

N= 4000 samples long, the parameters to be optimized were the embedding 

dimension m the number of neighbors v, and the number of iterations needed, 

as well as the criteria to be used to decide upon the need of a new iteration.    

The determination of those values was done empirically, in two steps. 

Initially, the number of iterations was fixed to a sufficiently high number to 

guarantee the existence of a PRD minimum. A value of 40 iterations was 

chosen for each m and v combination, in order to detect the combination 

minimizing the PRD. Secondly, once filtered signals were analyzed and the 

best v and m parameters selected, characteristics of the signals along the 

iterations were extracted to be able to define a mechanism to automatically 

stop the iterations.  
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As reflected in the introduction, biomedical signals acquired in operating 

rooms are often affected by noise. In the case of REG signals, the expected 

waveform has as main frequency the heart rate, which under resting 

conditions is between 48 and 98 beats per minute [157] (i.e. 0.8 and 1.6 Hz) 

and during general anesthesia is known to decrease[158]. Artifacts affecting 

this signal are typically of higher frequencies, as for example electromyography 

and electrooculograms. Therefore, the energy distribution along the frequency 

domain was used to evaluate the filter performance after each iteration and 

stop it when an adequate energy ratio is reached.  

Three energy bands were tested, E5 (Energy from 0 to 5Hz), E2 (Energy 

from 0 to 2Hz) and E1 (Energy from 0 to 1Hz). All three values were divided 

by the total energy of the signal, such that energy values from all patients were 

comparable. Among the three resulting energy ratios, the one providing the 

highest correlation with the number of iterations was chosen as the criteria to 

stop the iterative algorithm. 

Afterwards, the performance of the nonlinear filter compared to the 

classical time domain filters was analyzed both in the training and validation 

sets. The PRD error was used for comparisons through statistical hypothesis 

testing. Paired t-student tests or Wilcoxon tests were used, depending on the 

assessment of normality of the samples through a Kolmogorov-Smirnov test. 

Statistical significance was set to p<0.025 (including Bonferroni correction).  

The use of the nonlinear filter in the steps followed to create the synthetic 

signals (Figure 4-3) should be considered as a confounding factor, resulting 

in an advantageous situation for the results of the nonlinear filter. Therefore, 

the analysis of the results was repeated placing a Butterworth filter before the 

addition of white noise (Figure 4-4), with the same parameters that optimized 

the PRD error with the first set of synthetic signals. 

 

Figure 4-4 Inclusion of a Butterworth second order low pass filter (LPF) with cut-
off frequency at 4Hz in the steps followed to create the set of synthetic signals. 
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Moreover, the effects of different SNR levels (simulated by modifying 

n(t)) and time series length N on the performance of the filters were evaluated. 

Additionally, execution times of each filter were considered for further 

comparison, to assess the limitations of each filter strategy for real time 

applications.  Execution times were obtained by applying the filters 

implemented in MATLAB 2018a (Mathworks, Inc., Natick, MA) in a 64-bit 

operating system, i5 Intel® CoreTM processor at 1.9 GHz and 8GB RAM.  

 

4.3 Results  

The Butterworth filter minimizing the PRD error was the second order 

low pass filter with cut-off frequency at 4Hz, showing an average PRD of 

4.1%. The cut-off frequency for the optimal Chebyshev Type I filter, which 

was also a second other filter, was smaller due to its sharper transition and 

was placed at 2Hz for a maximum Ripple of 0.2dB in the bandpass, providing 

also a PRD of 4.1%. Type II Chebyshev best filter showed a slightly higher 

PRD, 4.2%, requiring a fourth order filter with cut-off frequency at 16Hz and 

a minimal attenuation of 70dB in the stopband. Finally, the best elliptic filter 

was a second order filter with an average PRD of 4.1%, cut-off frequency of 

2Hz, maximum bandpass ripple of 0.2dB and minimum attenuation of 100dB 

in the stopband. The magnitude response of each filter is presented in Figure 

4-5.  

 

 

Figure 4-5 Frequency responses of the optimal time domain filters. 
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Regarding the nonlinear filter on the state-space domain, all the 

combinations for the number of neighbors v and the dimensions m were 

computed and the PRD error calculated in each case. Figure 4-6 shows the 

evolution of the PRD error with the number of iterations, the number of 

neighbors and the number of dimensions, suggesting an asymptotic decrease 

of PRD as a function of the number of iterations, a local minimum for the 

number of neighbors at v=120 and a monotonic decrease of PRD with the 

embedding dimension. 

 

Figure 4-6 PRD of the filtered signal as a function of: (a) the number of iterations 
(with v=120 and m=50), (b) the number of neighbors (with m=150 and 40 iterations) 
and (c) the number of embedded dimensions (with v=120 and 40 iterations). 

  

In order to choose the optimal nonlinear filter, the lowest PRD among 

all the v and m parameter combinations was identified, as well as the number 

of iterations needed to reach the minimum. Figure 4-7a shows the number 

of iterations needed for each v and m combination to reach the minimum 

PRD value (Figure 4-7b) and the corresponding PRD error in each case. It 

can be observed that the higher the dimension, the lowest the error, with 

m=50 providing the lowest errors, and the combination m=50 and v=120 

resulting in the optimal filter. The number of iterations required decreases as 

the number of neighbors increases for the set of filters with m=50. Even 

though v=200 provides the lowest number of iterations, v=120 is the chosen 

result since it optimizes the PRD error.  
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Figure 4-7 Number of iterations needed (a) and PRD error (b) obtained for each v 
and m combination. 

 

Once the number of neighbors and dimensions optimizing the filter 

performance was set, an automatic condition was sought so that the filter used 

the minimum number of iterations while recovering the signal free from 

artifacts. Three energy ratios E5 (energy from 0 to 5Hz), E2 (energy from 0 

to 2Hz) and E1 (energy from 0 to 1Hz) were tested, all three values divided 

by the total energy of the signal.  

In the training dataset, the energy ratio showing the highest correlation 

(ρ) with the PRD error was E2, with ρ=0.998, and was therefore the one 

selected to be used to stop the iterations of the nonlinear filter. To establish a 

threshold for the E2 ratio parameter, E2 values before and after the number 

of iterations minimizing the PRD were calculated and compared. Before the 

absolute PRD minimum was reached, average differences among consecutive 

iterations were E2 = 0.038 ± 0.065 (mean ± standard deviation) while those 

differences got down to E2 = 0.00005 ± 0.0033 in the following iterations. 

Therefore, the criteria to stop the iterations was chosen to be a decay of less 

than 0.005 (n.u.) in the parameter E2.  

Data on the training and validation set were filtered through the nonlinear 

filter algorithm, stopping automatically as a function of the parameter E2. The 

PRD errors were computed in each case and the results were compared with 

those obtained with the classical filters. Results are shown in Figure 4-8. 
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Figure 4-8 PRD errors of the signals filtered with each filter under test in the training 
set (a) and the validation set (b). 

 

The four classical filters provide similar performances in terms of PDR, 

while the nonlinear filter provides lower error values both in the training and 

the validation sets. To assess the statistical significance of those differences 

observed in the graphical representation, paired hypothesis testing was applied 

to the errors of each filter. Table 4-2 summarizes the p-values obtained from 

the comparison between the nonlinear filter and all other filters, showing that 

the nonlinear option provides statistically significant lower errors. No 

differences were detected among PRD errors of classical filters. 

 

 

 
Table 4-2 Statistical significance p-value of the paired t-student test comparing the 
PRD errors of the nonlinear filter with the one obtained with each classical filter. 

P-VALUE 
BUTTER-

WORTH 
CHEBYSHEV 

TYPE I 
CHEBYSHEV 

TYPE II 
ELLIPTIC 

Training set <0.0001 <0.0001 <0.0001 <0.0001 

Validation set 0.0024 0.0106 0.0131 0.0106 

  

The effect of using either a classical or the nonlinear filter is illustrated 

through an example in Figure 4-9. Given one of the signals in the validation 

set, white noise was added and results for the Butterworth filter and the 
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nonlinear filter are presented. When using the nonlinear filter, the recovered 

signal sREC(t) preserves the same waveform without any visible interference. 

In contrast, the time series sREC(t) obtained after applying the Butterworth 

filter, shows some distortions that were not present in the original waveform.  

 

 
Figure 4-9 Example of a reference signal REG(t) (a), signal y(t) with white noise (b), 
sREC(t) result after applying a Butterworth filter (c) and sREC(t) result obtained with 
the nonlinear filter (d). 

 

As previously stated, the filter used in the generation of the synthetic 

dataset was the nonlinear filter and this might have biased the obtained results. 

In order to discern the effect of this bias, a Butterworth filter was added in 

the generation of synthetic signals as indicated in Figure 4-4. Under these 

new conditions, optimal classical filters were coincident with the ones 

previously identified except for the Chebyshev Type II, that provided the 

lowest PRD error for a 3rd order lowpass filter, with cut-off frequency at 20Hz 

and an attenuation in the stopband of 60dB. Regarding the nonlinear filter, 

the number of embedding dimensions was coincident while the number of 

neighbors minimizing the error was either v=120 or v=160 (with no statistical 
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differences among both solutions). Therefore, v=120 was taken as the 

parameter to be used in the optimal filter.  

PRD errors obtained with this new set of synthetic signals are shown in 

Figure 4-10. The nonlinear filter preserves its superiority when compared to 

all other options in both datasets, suggesting that the filter used to generate 

the synthetic signals does not translate into a biased result. Moreover, Table 

4-3 includes the p-values obtained from the hypothesis testing applied to the 

PRD errors resulting of the application of the different filter options. The 

nonlinear filter outperforms all other four options, providing even lower p-

values than the ones showed for the originally generated synthetic dataset (see 

Table 4-2 for comparison). This result suggests that a coarse filtering applied 

before the use of the nonlinear filter might improve the PRD error of the 

recovered time series. 

 
Figure 4-10 PRD errors of the signals filtered with each filter under test in the 
training set (a) and the validation (b) set, after the inclusion of a Butterworth filter in 
the generation of the synthetic signals dataset.   

 

Table 4-3 Statistical significance p-value of the paired t-student test comparing the 
PRD errors of the nonlinear filter with the one obtained with each classical filter. 

P-VALUE 
BUTTER-

WORTH 
CHEBYSHEV 

TYPE I 
CHEBYSHEV 

TYPE II 
ELLIPTIC 

Training set <0.0001 <0.0001 <0.0001 <0.0001 

Validation set 0.0001 0.0008 0.0026 0.0008 
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The five filters have been evaluated using an input signal y(t) with 

SNR=0dB, with the nonlinear filter showing the best performance. In order 

to assess the effect of different input signal SNR levels in the comparison of 

the proposed filters, SNR was set to 0, 5, 10, 15, 20 and 25 dB. Results from 

this analysis are shown in Figure 4-11. For all filters, the PRD error decreases 

when SNR of y(t) increases, with the nonlinear filter providing a significantly 

lower error for any of the SNR values tested. Moreover, the lower the SNR 

of the input signal y(t), the bigger the improvement obtained by using the 

nonlinear filter.  

 
Figure 4-11 Effect of different SNR levels in the performance of the filters, by 
comparing median and interquartile values of the PRD error (curves from Chebyshev 
type I and elliptic filters are overlapped). 

Intuitively, low SNR scenarios would require a higher number of 

iterations in the nonlinear filter, thus affecting the execution time of this 

algorithm. Figure 4-12 shows a boxplot comparing the execution time of each 

filter as a function of the SNR value of the input signal y(t). Classical filters 

have very low execution times (a few milliseconds maximum) while the 

execution time for the nonlinear filter clearly depends on the SNR of the input 

signal, with median values slightly above 0.5 seconds in case of a SNR = 25dB 

and up to more than 2s for SNR=0dB. Those differences in execution times 

are statistically significant (p<0.0001). 
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Figure 4-12 Execution time of each filter as a function of the SNR value. 

 

Finally, the effects of the length of the input signal y(t) in the performance 

of the filters was assessed by reducing the length of the time series used. Signal 

lengths of y(t) were increased from 500 to 4000 samples in steps of 500 

samples, and SNR was fixed to 5 dB.  All the classical filters showed increasing 

PRD errors (and higher dispersion of those errors) for increasing signal length 

(Figure 4-13). However, for the nonlinear filter, PRD decreased with 

increasing signal length, as well as the dispersion of the PRD values. For input 

y(t) signals below 1000 samples length, classical filters provided the most 

accurate filtered signal, while around 1000 samples all five filters showed 

comparable performance. Finally, for input signals longer than 1000 samples, 

using the nonlinear filter improved the PRD error of the filtered signals, 

providing results with a PRD below 1%. 

The length of the input signals y(t) is again one factor influencing the 

execution time of the filters. For all filters, execution times increased with 

signal length. As illustrated in Figure 4-14, for the nonlinear filter this increase 

exponentially grows with increasing signal length, while the increase in the 

classical filters appears to be negligible. Results from this analysis suggest that 

even though there is an increased accuracy of the recovered signal when using 
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the nonlinear filter, there is a tradeoff between filter performance and 

execution times that might compromise the use of the nonlinear filter for real 

time applications. 

 

 
Figure 4-13 Effects of the input signal length on the performance of the filters, by 
comparing median and interquartile values of the PRD error (curves from Chebyshev 
type I and elliptic filters are overlapped). 

 

4.4 Conclusions 

Among all the filters under test herein proposed, the nonlinear filter 

provided better performance than standard digital filters (Butterworth, 

Chebyshev and Elliptic filters), showing a higher improvement for decreasing 

signal-to-noise ratios. Furthermore, results suggest that a two-step filtering 

process, composed by a coarse filtering process with classical filters followed 

by the application of the nonlinear filter, enhances the accuracy of the 

recovered signals.  
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Figure 4-14 Execution time of each filter as a function of the input signal length N. 

 

However, there is a tradeoff between the performance of the filters under 

test and the execution times required to obtain the filtered time series. 

Moreover, for short sequences, standard filters outperform the nonlinear filter. 

For those reasons, the use of the nonlinear filter seems adequate for post-hoc 

analysis of long REG recordings (at least 1500 samples at 250 samples/s), 

while other alternative filters should be considered for real time applications. 

Considering these results, the use of the nonlinear filter will be restricted 

to retrospective data analysis in this Doctoral Thesis, while real time studies 

will benefit from the use of classical filters. Due to the equivalent performance 

among the classical linear filters, the Butterworth filter was selected to be the 

one used along this for linear filtering.  
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5. Geometric features 

extraction from REG 

signals 
 

 

 

 

 

 

Abstract 

This chapter contains the analysis of REG waves, during an apnea 

challenge and during an anesthetic procedure, by means of the classical 

approach based on the extraction of geometric features from the pulse waves. 

Results of this chapter aim at providing a reference for the evaluation of other 

techniques proposed in this Thesis for REG signals processing.   

5 
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5.1 Introduction 

 

REG signals have traditionally been analyzed by assessing the geometrical 

properties of the blood pulse waves in the time domain, such as the duration 

of the anacrotic phase of the pulse, the maximum and minimum amplitudes, 

the slope and the area under the curve [53], [159]. For example, Traczewski et 

al. [61] analyzed the number of inflection points in the REG curve, concluding 

that REG was a useful technique for the diagnosis of normal pressure 

hydrocephalus. In a REG study with animals, linear correlations of sliding 

windows, aiming at identifying differences in the waveform patterns, were 

used to detect the lower limit of CAR [62]. Moreover, Bodo et al. [63] 

calculated the amplitude and integral of the pulse wave in rats to assess 

cerebrovascular reactivity.  

Those studies based in the pulse waveform analysis are consistent with 

the ones used for other physiological signals reflecting pulse waves or their 

surrogates, such as intracranial pressure (ICP), photoplethysmography (PPG) 

and impedance cardiography (ICG). For example, the waveform analysis of 

ICP signals allows to identify several physiological and pathological changes, 

through the amplitude of the wave and the detection of its main peaks [160]. 

The extraction of geometric features of ICP signals was useful to predict the 

early and 12-months outcome after aneurismal subarachnoid hemorrhage 

[161].  Moreover, the amplitude of the pulses in the time domain has been 

considered as an indicator of intracranial compliance [162], [163]. Despite of 

these evidences, Di Ieva et al.[131] published a review on the analysis of ICP 

signals in which they called for new methods of ICP signals processing, mainly 

nonlinear ones, to consider not only the waveform changes but other 

underlying physiological mechanisms affecting ICP. 

In the same sense, efforts are continuously being made to enhance PPG 

feature detection algorithms for personal health monitoring applications [164] 

and the use of PPG for diagnostic purposes. For instance, Mahri et al. used 

features extracted from the second derivative of the PPG signal to identify 

patients with myocardial infarction [165] and Solosenko et al. developed a 

method to detect premature ventricular contractions trough PPG extracted 

features [166]. A thorough review of clinical applications based on PPG 

contour analysis was published by Millasseau et al., highlighting the usefulness 

of PPG signals in studying the endothelial function, as well as arterial stiffness 

and aging [166].  
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Nonetheless, the closest technology to REG is ICG, since they both 

share the same working principle based on the electrical bioimpedance. ICG 

measures the electrical impedance of the thoracic cavity and allows the 

assessment of several hemodynamic variables, such as cardiac output (CO), 

stroke volume (SV), left ventricular ejection time (LVET) and systemic 

vascular resistance (SVR ), among others [167]. This technology has been used 

to predict the short term risk of clinical decompensation in patients with 

chronic heart failure [168] as well as the effects of cardiac rehabilitation on the 

same type of patients [169]. Furthermore, ICG proved to be useful for 

hypertension management [170] and the evaluation of antihypertensive 

therapies [171].  

Due to the similarities between REG and ICG, and the positive clinical 

outcome of the use of ICG, the rationale behind the analysis of ICG waves 

will be applied to REG recordings for CBF estimation in this chapter, together 

with the main geometric features extracted from the signals. 

One strategy used to evaluate CBF measurements consists of continuous 

assessment of blood flow during the execution of respiratory challenges 

known to modify the CBF. For example, episodes of apnea or breath holding 

reduce the amount of oxygen in blood and therefore partial CO2 pressure 

increases provoking increases in CBF. Kastrup et al. [17] quantified the effect 

of an apnea procedure in regional CBF measured with magnetic resonance 

imaging and found an average regional CBF increase of 47-87%, dependent 

on apnea duration. Increasing  inhaled CO2 [19] is an alternative method that 

can be used to provoke changes in CBF that has also been widely used though 

its implementation is far more complex since it requires controlled CO2 

inhalation.   

This chapter aims at evaluating the ability of the geometric features 

extracted from REG signals to reflect CBF changes. Two scenarios are studied: 

the first one uses a simple breath holding challenge to trigger cerebral 

perfusion changes while the second is based on the analysis of REG 

recordings during surgical procedures under general anesthesia.   

 

 

 



5 Geometric Analysis of REG 74 

 

5.2 Methods  

5.2.1 Geometric features extraction 

 

The classical methods used to assess CBF by means of REG signals rely 

on the analysis of the geometry of the pulse waves. In this way, for REG 

recordings, minimums and maximums of each pulse wave and their respective 

derivatives were automatically detected, and the following features were 

calculated for each signal to be processed: amplitude range of the pulse 

(Range), time between two consecutive maximums (Δtmax), time between 

two consecutive minimums (Δtmin), time between each minimum and the 

following maximum (Δtmin-max), the slope of the pulse during this interval 

(α), the area under the curve (Area), the systolic Area (AreaSyst) – area 

delimited by a minimum and its consecutive maximum - the maximum 

derivative (δmax) and the range of the derivative (δrange). A graphical 

representation of the extracted features is provided in Figure 5-1. 

 

Figure 5-1 Features extracted from REG wave and its derivative. 

In addition to the use of direct geometrical features extracted from the 

time domain time series, blood volume and blood flow estimations were also 

considered. For that purpose, ICG principles were applied to REG waves, 

linking the brain blood volume to the SV and the CBF to the cardiac output.  
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Several methods have been proposed to calculate the stroke volume by 

means of the analysis of ICG signals, but two of them are the most broadly 

used: the Kubicek and the Bernstein equation. The Kubicek [172] method is 

described by equation 5.1, assuming a cylindrical model for the thorax:  

SV = ρ 
L2

Z0
2 (
dZ

dt⁄ )
max

LVET (5.1) 

where L is the distance between the sensing electrodes in cm, Z0 is the basic 

thoracic impedance in Ω, (dZ dt⁄ )
max

 is the maximum derivative of the 

impedance in each heart cycle (Ω/s), LVET is the left ventricular ejection time 

(s) and ρ is the resistivity of blood (Ωcm). The estimation of ρ is controversial. 

Some studies concluded that calculating it using patient’s hematocrit enhances 

the SV accuracy [173], [174]. However, it has also been published after in vivo 

and in vitro investigations that it could be assumed to be constant [175]. 

An alternative methodology was proposed by Sramek and slightly 

modified by Berstein [115], [176], assuming a truncated cone model for the 

thorax, resulting in an SV calculation of the form 

SV = δ
(0.17H)3

4.25
 
(dZ dt⁄ )

max

Z0
LVET (5.2) 

where H is the patient height. This equation does not depend on the blood 

resistivity but includes instead a correcting factor δ that has not been validated 

[177]. 

Even though the Sramek-Bernstein equation is more frequently used, 

Kubicek equation lead to higher correlations with reference methods used for 

validation when direct comparisons were performed for the same set of 

patients [174], [177], [178]. For that reason, the Kubicek equation was the one 

selected for the analysis of REG waves.  

Since REG aims at providing a relative CBF measurement, ρ, L and Z0 

were considered constant. The maximal impedance change reflected by the 

term (dZ dt⁄ )
max

corresponds to the δmax parameter represented in Figure 

5-1. Finally, the value for LVET needs to be estimated. In ICG recordings, 

LVET is deducted from the tracing of the first derivative of the impedance, 

as shown in Figure 5-2. Willems et al. [179] published their work on the 



5 Geometric Analysis of REG 76 

 
relationship between HR and LVET, concluding that there is a very weak 

influence of parameters other than HR in the LVET value. Figure 5-3 shows 

the regression curves of LVET as a function on HR, showing certain 

dependence with gender and age but clearly influenced by HR values.   

 

Figure 5-2 Graphical representation of LVET in the derivative of the ICG curve 
(from [177]). 

 

 

Figure 5-3 Regression curves for the relationship between HR and LVET (from 

[179]). 

 

In their work, Willems [179] et al. provided several regression curves for 

different population groups, concluding that for the general population the 

following expression could be used: 

LVET = 416 − 1.56 HR (5.3) 
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In this chapter, LVET was considered as a function of HR as indicated 

in equation 5.3, where HR is computed as the difference between two 

consecutive maximums of the REG curve. Brain blood volume and brain 

blood flow were estimated analogously to SV and cardiac output. Therefore, 

the relative cerebral blood volume (CBVrel) was calculated as 

CBVrel = δmax LVET (5.4) 

and the CBF estimation as  

CBFest = CBVrel HR (5.5)  

Those two parameters, as well as the geometric features previously listed, 

were tested for their ability to track CBF changes in REG signals, both during 

an apnea challenge and when applied to REG curves collected during 

anesthetic procedures. 

  

5.2.2 Experimental datasets 

 

The geometric feature extraction of REG signals was applied to two 

different datasets. Firstly, the ability of the extracted features to assess CBF 

changes in REG recordings was analyzed in the Apnea-Baseline dataset. As 

described in Chapter 3, this dataset includes data of 16 young healthy 

volunteers undergoing breath holding challenges.  

Secondly, the same set of features was extracted from REG signals 

collected during surgical procedures under general anesthesia, from the 

dataset General Anesthesia Dataset 1 presented in Chapter 3. REG data of 40 

female patients under TIVA with propofol and remifentanil are included in 

this database, as well as other clinical signs typically monitored during 

anesthetic procedures.  

For both datasets, two filtering strategies will be performed, one based 

on the optimal linear filter for REG signals and the other on the optimal 

nonlinear filter, both identified in Chapter 4. Figure 5-4 shows a schematic 

overview of the datasets to be processed. 
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Figure 5-4 Experimental datasets to be processed. 

 

5.2.3 Data analysis for apnea detection 

 

REG segments free from artifacts were identified in the Apnea-Baseline 

dataset, each of them containing 4000 samples (16s). Finally, 53 sequences 

were selected, 29 belonging to apnea recordings and 24 from baseline periods. 

The average main frequency of the recorded signals was 1.10 ± 0.47 Hz (mean 

± standard deviation), resulting in a cardiac cycle of 227 ± 57 samples. The 

dynamic range of the recorded REG waves was 0.089 ± 0.028 Ω (95% 

confidence interval). No differences were observed between groups in terms 

of amplitudes or heart cycle duration.   

Prior to the extraction of the geometric features, recorded REG signals 

were preprocessed in order to remove interferences caused by other electrical 

sources and undesired physiological signals. For that purpose, REG segments 

were high-pass filtered using a 4th-order Chebyshev type II, with 0.1 Hz stop 

band frequency to eliminate DC fluctuations, followed by either the optimal 

linear filter or the optimal nonlinear filter as indicated in Figure 5-4. 

For each selected segment, the geometrical features under study were 

extracted: Range, Δtmax, Δtmin, Δtmin-max, α, Area, AreaSyst, δmax, δrange, 

CBVrel and CBFest. To reduce the effect of possible outliers, the median 

values for all the pulses belonging to each recording was used as the associated 

value for the REG signal under analysis.  

Results obtained for both apnea and baseline segments were tested for 

their ability to detect apneas, by means of hypothesis testing, considering 

significance for p-values<0.05. Normality was assessed through a 

Kolmogorov-Smirnov test and subsequently, a student t-test was performed 
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for Gaussian distributions and a Mann-Whitney test otherwise. The Area 

Under the Curve (AUC) of the Receiver Operating Characteristic, the 

sensitivity, the specificity and the accuracy of parameters showing significant 

differences between groups were also computed.  

 

5.2.4 Data analysis for general anesthesia recordings 

 

REG data from the General Anesthesia Dataset1 were filtered with a 4th-

order Chebyshev type II, with 0.1 Hz stop band frequency, and the linear and 

nonlinear filters presented in Chapter 4. REG segments free from artifacts, of 

4000 samples each, were identified and labeled in 5 different categories based 

on the clinical state of the patient in each situation: 

• Awake: data recorded before the anesthesia induction 

• LOC: data recorded immediately after the loss of eyelash reflex 

• Anes: data recorded during steady state anesthesia with constant 

propofol dosages 

• BSR: data recorded during the detection of suppression patterns in 

the EEG, as indicated by the Conox device 

• ROC: data recorded after patient extubation. 

The main characteristics of the selected segments as well as the number 

of signals available for each state are summarized in Table 5-1. It should be 

noted that statistical differences were detected between the 5 states prior to 

the extraction of the geometrical features. Namely, REG signals at LOC 

presented a higher range than those in the Anes state, and the cardiac cycle 

for LOC was longer than for the awake state.  

For each segment, the geometrical features selected for analysis were 

extracted, using the median value of each segment as the reference. 

Hypothesis testing was used to asses the ability of each extracted feature to 

distinguish between different anesthetic states. Paired Student t-test or 

Wilcoxon test were used depending on the distribution of the samples, 

previously assessed by the Kolmogorov-Smirnov test. A significance level of 
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p<0.01 was used, applying the Bonferroni correction for the 5 groups of 

signals.  

 

Table 5-1 Description of the signals belonging to General Anesthesia Dataset 1: 
sample size,  dynamic range (95% confidence interval), cardiac cycle duration and p-
value obtained from the comparison with values in the following clinical state. 

ANESTHESIA 

STATE 

SAMPLE SIZE 

(N.U.) 

 

DYNAMIC RANGE 

(Ω) 

MEAN±STD 

CARDIAC CYCLE 

(SAMPLES) 

MEAN±STD 

Awake 34 0.053 ± 0.036 230 ± 64+ 

LOC 35 0.059 ± 0.038* 286 ± 116+ 

Anes. 33 0.032 ± 0.013* 249 ± 39 

BSR 22 0.037 ± 0.015 248 ± 49 

ROC 40 0.043 ± 0.026 242 ± 52 

*p<0.01 
+p<0.001 

 

Furthermore, correlations between the extracted features and patient 

demographics were calculated to infer the influence of confounding factors in 

the parameters under study. Additionally, other clinical data recorded during 

surgery such as HR, the effect site concentration of propofol (CePropo), the 

effect site concentration of remifentanil (CeRemi), MAP and qCON values, 

were also included in this analysis.  

 

5.3 Results for apnea detection 

5.3.1 With linear filter 

 

Results obtained for the features extracted from the REG pulse waves 

and their derivatives are summarized in Table 5-2. Even though some 

differences can be found between apnea and baseline recordings, only one of 

the selected parameters showed the ability to distinguish between both with 

statistical significance, the systolic area (AreaSyst). However, it can be 

observed that this parameter presented a high standard deviation in both 

groups, mainly for the apnea recordings, in which it is more than twice the 
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mean value. The parameter AreaSyst presented an AUC of 0.69, with a 

sensitivity of 75.8 % and a specificity of 58.3 %, resulting in an accuracy of 

67.9%.  

 

Table 5-2 Results of geometric features using classical filters: average values (mean 
± standard deviation) for apnea and baseline recordings and statistical significance of 
their difference (p-value). 

PARAMETER 
APNEA 

MEAN±STD 

BASELINE 

MEAN±STD 
P-VALUE 

Range (Ω) 0.092 ± 0.028 0.099 ± 0.033 0.376 

Δtmax (samples) 238.7 ± 22.1 254.9 ± 43.3 0.084 

Δtmin (samples) 242.1 ± 23.2 248.6 ± 38.8 0.455 

Δtmin-max (samples) 52.9 ± 27.4 60.6 ± 24.8 0.217 

α (n.u.) 0.002 ± 0.001 0.002 ± 0.001 0.406 

Area (Ω.s) 12.4 ± 4.8 13.5 ± 4.9 0.446 

AreaSyst (Ω.s) 0.212 ± 0.569 0.516 ± 0.419 0.014 

δmax (Ω/s) 0.006 ± 0.002 0.005 ± 0.002 0.272 

δrange (Ω/s) 0.007 ± 0.002 0.007 ± 0.002 0.145 

CBVrel (Ω) 2.32 ± 0.65 2.11 ± 0.74 0.195 

CBFest (Ω/s) 154.5 ± 37.7 125.8 ± 44.4 0.229 

 

 

5.3.2 With nonlinear filter 

 

The results obtained for the nonlinear filtered REG data processing are 

provided in Table 5-3. The only parameter providing statistically significant 

differences between the apnea and baseline groups was the systolic area 

(AreaSyst), with a p-value of 0.004. 

 

 



5 Geometric Analysis of REG 82 

 
Table 5-3 Results of geometric features using the nonlinear filter: average values 
(mean ± standard deviation) for apnea and baseline recordings and statistical 
significance of their difference (p-value). 

PARAMETER 
APNEA 

MEAN±STD 

BASELINE 

MEAN±STD 
P-VALUE 

Range (Ω) 0.087 ± 0.027 0.096 ± 0.032 0.264 

Δtmax (samples) 240.9 ± 23.2 252.2 ± 40.3 0.209 

Δtmin (samples) 241.6 ± 23.6 249.2 ± 39.2 0.385 

Δtmin-max (samples) 54.3 ± 33.5 60.3 ± 27.0 0.249 

α (n.u.) 0.002 ± 0.001 0.002 ± 0.001 0.649 

Area (Ω.s) 11.8 ± 4.6 13.2 ± 4.7 0.282 

AreaSyst (Ω.s) 0.184 ± 0.559 0.582 ± 0.531 0.004 

δmax (Ω/s) 0.006 ± 0.002 0.005 ± 0.002 0.483 

δrange (Ω/s) 0.007 ± 0.002 0.006 ± 0.002 0.183 

CBVrel (Ω) 2.075 ± 0.639 1.896 ± 0.732 0.189 

CBFest (Ω/s) 128.6 ± 36.7 114.4 ± 44.7 0.105 

 

The parameter AreaSyst presented an AUC of 0.73, with a sensitivity of 

75.8% and a specificity of 54.2%, resulting in an accuracy of 66.0%. Compared 

to the outcome of the linear filter analysis, the use of the nonlinear filter 

resulted in lower p-value and higher AUC, while sensitivity was maintained, 

and specificity and accuracy provided lower rates (Table 5-4).  The graphical 

representation of the Receiver Operating Characteristic curves from both 

analyses is provided in Figure 5-5. 

 

Table 5-4 Comparison of the performance of AreaSyst with the linear and nonlinear 
filter. 

 LINEAR FILTER NONLINEAR FILTER 

p-value 0.014 0.004 

AUC 0.69 0.73 

Sensitivity 75.8% 75.8% 

Specificity 58.3% 54.2% 

Accuracy 67.9% 66.0% 
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Figure 5-5 Receiver Operating Characteristic curves of AreaSyst in the linearly and 
nonlinearly filtered dataset. 

 

 

5.4 Results for general anesthesia 

 

5.4.1 With linear filter 

 

The results obtained for all the extracted features under anesthesia using 

the optimal linear filter are summarized in Table 5-5, characterized by their 

mean values and standard deviation. Even though some differences can be 

observed among the anesthetic states, high standard deviations were obtained 

for almost all the parameters under test. 
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Table 5-5 Average values (mean, standard deviation) of all the extracted geometric 
features in each anesthesia state for REG data preprocessed with the linear filter. 

 

AWAKE 

MEAN 

(STD) 

LOC 

MEAN 

(STD) 

ANES 

MEAN 

(STD) 

BSR 

MEAN 

(STD) 

ROC 

MEAN 

(STD) 

Range 

 

0.103 

(0.061) 

 

0.130 

(0.094) 

0.062 

(0.025) 

0.071   

(0.031) 

0.082 

(0.049) 

Δtmax 

 

379.2 

(222.2) 

 

361.4 

(154.4) 

277.0  

(93.3) 

272.9 

(45.8) 

357.5 

(179.9) 

Δtmin 

 

383.0 

(227.2) 

 

352.1 

(150.2) 

275.4  

(80.5) 

285.8 

(69.4) 

359.0 

(186.0) 

Δtmin-

max 

 

182.7 

(145.0) 

 

162.7 

(107.1) 

107.4  

(75.8) 

114.6 

(36.3) 

179.5 

(133.0) 

α 

 

0.0009 

(0.0006) 

 

0.0011 

(0.0009) 

0.0008 

(0.0003) 

0.0008 

(0.0004) 

0.0007 

(0.0004) 

Area 

 

417.6 

(257.8) 

 

393.9 

(184.4) 

287.8  

(83.2) 

301.0 

(72.0) 

387.6 

(210.1) 

AreaSyst 

 

198.7 

(159.8) 

 

181.5 

(123.3) 

112.2  

(77.7) 

120.7 

(37.6) 

194.8 

(150.1) 

Δmax 

 

0.0019 

(0.0012) 

 

0.0023 

(0.0017) 

0.0012 

(0.0004) 

0.0013 

(0.0006) 

0.0014 

(0.0008) 

Δrange 

 

0.0030 

(0.0020) 

 

0.0033 

(0.0022) 

0.0018 

(0.0006) 

0.0020 

(0.0009) 

0.0022 

(0.0012) 

CBVrel 

 

1.015 

(0.669) 

 

1.128 

(0.822) 

0.593 

(0.194) 

0.660 

(0.295) 

0.747 

(0.412) 

CBFest  
51.91 

(40.34) 

48.76 

(31.14) 

33.99 

(12.42) 

37.51 

(18.86) 

34.87 

(19.90) 
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The evolution of the parameters across the 5 anesthesia states is depicted 

in Figure 5-6. The REG Range showed its maximum value for LOC, and its 

minimum for steady state anesthesia. The same trend was shared by δrange, 

δmax and CBVrel. Regarding the systolic area (AreaSyst), its value in Awake 

and ROC was comparable, a slightly decrease was observed for LOC and the 

lowest values took place in Anes and BSR states. A similar behavior was 

detected for CBFest, with the only difference that Awake values were not 

recovered at ROC.  

 

Figure 5-6 Trends (mean and standard deviation) of the parameters showing 
statistically significant differences for the transitions between the defined anesthetic 
states: (a) Range, (b) AreaSyst, (c) δmax, (d) δrange, (e) CBVrel and (f) CBFest.  

 

In order to highlight which extracted features present statistically 

significant differences among consecutive anesthesia states, Table 5-6 

presents the results for the hypothesis testing. The REG range, the relative 

cerebral blood volume CBVrel, the CBF estimation CBFest and the maximum 

and range of the derivatives presented significant differences between the 

states of LOC and Anes, while AreaSyst was the only feature able to track 

differences between BSR and ROC.  
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Table 5-6 Statistical significance (p-value) of the differences in every transition of 
anesthetic states. Significant values (p<0.01) are indicated in bold type.  

FROM 

TO 

AWAKE 

LOC 

LOC 

ANES 

ANES 

BSR 

BSR 

ROC 

Range 0.280 1.78E-04 0.568 0.661 

Δtmax  0.990 0.027 0.330 0.062 

Δtmin  0.328 0.220 0.341 0.149 

Δtmin-max 0.248 0.021 0.139 0.011 

α 0.238 0.024 0.921 0.650 

Area 0.409 0.097 0.362 0.149 

AreaSyst 0.328 0.013 0.141 0.006 

δmax 0.316 1.78E-04 0.768 0.833 

δrange 0.424 1.43E-04 0.925 0.733 

CBVrel 0.354 7.37E-05 0.837 0.615 

CBFest 0.829 0.004 0.330 0.783 

 

 

 

 

5.4.2 With nonlinear filter 

 

Similar values to those presented for the linear filter were obtained with 

the nonlinear filter (Table 5-7). The extracted features presented as well high 

standard deviations when compared to the average values, suggesting 

considerable dispersions of their distributions.  
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Table 5-7 Average values (mean, standard deviation) of all the extracted geometric 
features in each anesthesia state for REG data preprocessed with the nonlinear filter. 

 

AWAKE 

MEAN 

(STD) 

LOC 

MEAN 

(STD) 

ANES 

MEAN 

(STD) 

BSR 

MEAN 

(STD) 

ROC 

MEAN 

(STD) 

Range 

 

0.095 

(0.054) 

 

0.130 

(0.093) 

0.064 

(0.026) 

0.070 

(0.030) 

0.079 

(0.047) 

Δtmax 

 

359.5 

(200.3) 

 

363.2 

(160.3) 

268.5 

(75.0) 

260.7 

(52.3) 

341.0 

(164.5) 

Δtmin 

 

365.6 

(214.1) 

 

358.6 

(162.6) 

272.8 

(78.7) 

267.9 

(55.8) 

340.3 

(164.3) 

Δtmin-max 

 

175.5 

(135.7) 

 

154.6 

(103.5) 

85.9 

(49.6) 

96.5 

(39.7) 

155.9 

(119.8) 

α 

 

0.0010 

(0.0007) 

 

0.0011 

(0.0010) 

0.0010 

(0.0006) 

0.0010 

(0.0006) 

0.0008 

(0.0005) 

Area 

 

392.0 

(239.1) 

 

396.6 

(196.8) 

282.9 

(80.8) 

279.3 

(57.6) 

363.2 

(187.9) 

AreaSyst 

 

188.3 

(149.5) 

 

170.4 

(117.4) 

89.2 

(51.2) 

100.8 

(41.3) 

167.7 

(135.4) 

δmax 

 

0.0018 

(0.0010) 

 

0.0023 

(0.0018) 

0.0014 

(0.0005) 

0.0014 

(0.0007) 

0.0014  

(0.0007) 

δrange 

 

0.0028 

(0.0018) 

 

0.0034 

(0.0024) 

0.0020 

(0.0007) 

0.0021 

(0.0009) 

0.0021 

(0.0011) 

CBVrel 

 

0.923 

(0.569) 

1.159 

(0.885) 

0.632 

(0.221) 

0.669 

(0.282) 

0.718 

(0.386) 

CBFest  

 

50.39 

(40.08) 

 

50.30 

(33.50) 

36.94 

(14.28) 

40.76 

(21.33) 

35.17 

(21.16) 
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The trends of those parameters are graphed in Figure 5-7. The parameters 

Δtmin-max and AreaSyst presented analogous trends, characterized by higher 

values at Awake and ROC, a small decrease for LOC and a minimum in Anes. 

All other parameters presenting statistical significant differences (Range, 

δrange, δmax and CBVrel) showed an absolute maximum at LOC and the 

minimum in anesthesia, with ROC values slightly lower than the ones 

recorded in the Awake state.  

 

Figure 5-7 Trends (mean and standard deviation) of the parameters showing 
statistically significant differences for the transitions between the defined anesthetic 
states when using the nonlinear filter for data preprocessing: (a) Range, (b) Δtmin-
max, (c) AreaSyst, (d) δmax, (e) δrange and (f) CBVrel. 

 

The statistical significance of the results obtained from the hypothesis 

testing are summarized in Table 5-8. The only transition identifiable with the 

selected set of geometrical features was the one from LOC to Anes, that was 

detected by the REG Range, the time difference between a minimum and its 

consecutive maximum (Δtmin-max), the systolic area (AreaSyst), the 

maximum of the derivative and its dynamic range (δmax and δrange) and the 

relative blood volume (CBVrel).   
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Table 5-8 Statistical significance (p-value) of the differences in every transition of 
anesthetic states when preprocessing with the nonlinear filter. Significant values 
(p<0.01) are indicated in bold type.  

FROM 

TO 

AWAKE 

LOC 

LOC 

ANES 

ANES 

BSR 

BSR 

ROC 

Range 0.0880 0.0001 0.4430 0.7578 

Δtmax  0.9044 0.0476 0.3894 0.1579 

Δtmin  0.6480 0.2022 0.7141 0.2234 

Δtmin-max 0.2205 0.0013 0.8155 0.0119 

α 0.1428 0.8913 0.0855 0.2490 

Area 0.9617 0.0964 0.7162 0.1677 

AreaSyst 0.2488 0.0008 0.8257 0.0119 

δmax 0.1184 0.0006 0.5354 0.4909 

δrange 0.1128 0.0001 0.4543 0.9612 

CBVrel 0.0716 0.0001 0.2804 0.8076 

CBFest 0.4711 0.0404 0.5995 0.7089 

 

5.4.3 Confounding factors 

 

Patient demographics (age, height, weight and BMI) were tested for their 

influence in the REG features extracted in each clinical state (Table 5-9).  A 

few significant correlations were found between patient characteristics and 

REG parameters in the awake state, but most of them were identified in the 

Anes state. No significant correlations were found for LOC, BSR and ROC.  

In the Awake state, age showed a low but significant correlation with 

Range and CBVrel in the linear filter group, not detected in the nonlinear 

approach. However, weight and BMI had a moderate significant correlation 

with Range, that remained significant in the nonlinear group even though the 

correlation values calculated were lower. Moreover, CBVrel was also 

correlated with both weight and BMI in the linear filter group, the latest being 

reproduced as well in the nonlinear analysis.  
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Table 5-9 Spearman correlation of each geometric feature with patient 
demographics for every clinical state, either using the linear filter or the nonlinear 
filter. Cells are colored as indicated in Figure 5-8 and statistical significance (p<0.05) 
is indicated in bold. 

  Linear filter Nonlinear filter 

Awake Age Height Weight BMI Age Height Weight BMI 

Range 0.369 0.107 0.459 0.447 0.239 0.042 0.390 0.397 

Δtmax 0.244 0.170 0.291 0.258 0.123 0.100 0.249 0.226 

Δtmin 0.043 0.144 0.191 0.161 -0.070 0.086 0.121 0.112 

Δtmin-max 0.289 0.159 0.224 0.182 0.122 0.147 0.169 0.117 

α 0.115 -0.061 0.204 0.230 0.132 -0.112 0.076 0.141 

Area 0.092 0.166 0.238 0.196 -0.080 0.107 0.142 0.123 

AreaSyst 0.306 0.174 0.245 0.192 0.133 0.161 0.163 0.106 

δmax 0.302 -0.018 0.348 0.376 0.219 -0.094 0.254 0.317 

δrange 0.339 0.002 0.308 0.331 0.296 -0.021 0.244 0.288 

CBVrel 0.369 0.033 0.382 0.395 0.343 -0.005 0.308 0.346 

CBFest  0.101 -0.090 0.096 0.123 0.184 -0.071 0.053 0.092 

LOC                  

Range -0.058 0.085 0.199 0.140 -0.101 0.022 0.120 0.094 

Δtmax -0.261 0.087 0.004 -0.052 -0.313 0.059 -0.041 -0.078 

Δtmin -0.279 0.104 -0.102 -0.162 -0.251 0.006 -0.008 -0.025 

Δtmin-max -0.216 0.151 0.114 0.047 -0.249 0.029 0.017 -0.003 

α 0.173 -0.045 0.130 0.124 0.173 0.026 0.089 0.069 

Area -0.264 0.111 -0.093 -0.155 -0.250 0.000 -0.013 -0.026 

AreaSyst -0.202 0.143 0.088 0.024 -0.218 0.026 0.026 0.004 

δmax 0.068 0.028 0.187 0.164 -0.009 0.002 0.113 0.106 

δrange 0.104 0.045 0.271 0.244 0.038 0.003 0.194 0.189 

CBVrel 0.048 0.081 0.271 0.232 -0.003 0.022 0.195 0.182 

CBFest  0.238 -0.021 0.278 0.273 0.225 0.001 0.245 0.241 

Anes                 

Range 0.329 -0.034 0.548 0.605 0.261 -0.101 0.454 0.527 

Δtmax 0.262 0.307 0.235 0.150 0.289 0.310 0.261 0.189 

Δtmin 0.254 0.282 0.185 0.118 0.161 0.328 0.307 0.225 

Δtmin-max 0.130 0.195 0.397 0.320 0.161 0.243 0.467 0.385 

α 0.013 -0.070 0.110 0.151 -0.041 -0.234 -0.190 -0.088 

Area 0.268 0.275 0.203 0.140 0.178 0.305 0.320 0.248 

AreaSyst 0.148 0.212 0.425 0.348 0.177 0.240 0.483 0.405 

δmax 0.071 -0.125 0.133 0.200 0.008 -0.201 0.016 0.112 

δrange 0.178 -0.034 0.329 0.369 0.037 -0.128 0.154 0.220 
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Table 5-9 (continued) 

CBVrel 0.232 -0.001 0.408 0.435 0.062 -0.091 0.194 0.250 

CBFest  0.100 -0.118 0.285 0.353 0.030 -0.239 0.129 0.237 

BSR                 

Range 0.227 -0.190 0.317 0.411 0.211 -0.172 0.319 0.418 

Δtmax 0.251 0.100 0.361 0.399 0.089 0.134 0.371 0.373 

Δtmin 0.101 0.213 0.195 0.185 -0.077 0.193 0.270 0.260 

Δtmin-max 0.024 0.232 0.175 0.028 -0.140 0.238 0.347 0.178 

α 0.109 -0.160 0.054 0.162 0.182 -0.264 -0.086 0.112 

Area 0.161 0.159 0.177 0.187 -0.075 0.190 0.287 0.276 

AreaSyst 0.047 0.205 0.166 0.033 -0.112 0.187 0.336 0.189 

δmax 0.230 -0.244 0.083 0.231 0.187 -0.259 0.044 0.208 

δrange 0.189 -0.268 0.214 0.348 0.260 -0.335 0.050 0.213 

CBVrel 0.226 -0.276 0.223 0.364 0.200 -0.253 0.153 0.291 

CBFest  0.180 -0.359 0.070 0.199 0.172 -0.352 -0.115 0.036 

ROC                 

Range 0.022 -0.071 0.220 0.269 -0.022 -0.055 0.185 0.225 

Δtmax -0.048 0.178 0.036 0.003 -0.144 0.233 -0.002 -0.058 

Δtmin -0.035 0.089 -0.021 -0.043 -0.094 0.163 -0.042 -0.082 

Δtmin-max 0.055 0.116 0.188 0.167 0.068 0.121 0.222 0.191 

α -0.143 -0.041 0.075 0.081 -0.175 -0.062 -0.077 -0.047 

Area -0.011 0.075 0.027 0.017 -0.090 0.183 0.012 -0.032 

AreaSyst 0.052 0.092 0.182 0.170 0.073 0.123 0.219 0.189 

δmax -0.129 -0.061 0.086 0.140 -0.158 -0.009 0.067 0.103 

δrange -0.032 -0.102 0.176 0.239 -0.128 -0.013 0.160 0.196 

CBVrel -0.027 -0.093 0.169 0.231 -0.099 0.013 0.149 0.182 

CBFest  -0.053 -0.059 0.239 0.258 -0.042 -0.091 0.186 0.224 

 

 

Figure 5-8 Spearman correlation values matching with colors and qualitative level. 

Very High abs(R) ≥ 0.8

High 0.8 > abs(R) ≥ 0.6

Moderate 0.6 > abs(R) ≥ 0.4

Low 0.4 > abs(R) ≥ 0.2

Very low 0.2 ≥ abs(R)
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Correlation values in the Anes state were higher, limited to weight and 

BMI. In the linear group, weight showed a moderate significant correlation 

with Range, AreaSyst and CBVrel, and a low significant correlation with 

Δtmin-max. The BMI presented a high and significant correlation with Range, 

a moderate one with CBVrel, and low but significant with AreaSyst, δrange 

and CBFest. Those correlations were in general lower in the nonlinear analysis, 

the highest value being also the one obtained for the pair Range and BMI.  

Together with the correlations between demographics and the absolute 

values of the extracted features, the correlations of the relative values in each 

transition between anesthetic states and patient demographics were also 

assessed. The results are presented in Table 5-10. The only transitions 

associated with statistically significant correlations were the ones from Awake 

to LOC and from LOC to Anes.  

Age was the most relevant factor in the transition between Awake and 

LOC, presenting negative significant correlation with Δtmax, Δtminmax and 

AreaSyst. The correlation with Δtmax was the only one coincident with the 

results in the nonlinear group, where a negative significant correlation 

between the patient weight and total area under the curve was also identified.  

In the transition between LOC and Anes, age was again the most relevant 

factor, showing a moderate significant correlation with the REG range in both 

the linear and nonlinear approaches. Moreover, in the nonlinear group, age 

presented a low but significant correlation with Area as well.  

The correlation analysis between the extracted REG features and other 

clinical variables is summarized in Table 5-11. The larger coefficients were 

the ones involving the BSR state, where several high and very high 

correlations were detected. Considering the transition between Awake and 

LOC, Δtmin and MAP had a moderate significant correlation in the linear 

analysis, and the effect site concentration of remifentanil presented moderate 

significant correlations with Δtmax, Δtmin, Δtmin-max, α and AreaSyst in the 

nonlinear approach. 
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Table 5-10 Spearman correlation between patient demographics and differences in 
geometric features for every transition between consecutive clinical states analyzed, 
either using the linear filter (left side) or the nonlinear filter (right side). Cells are 
colored as a function of the correlation value (see Figure 5-8) and statistical 
significance (p<0.05) of the correlations is indicated in bold type. 

 Linear filter Nonlinear filter 

Awake-LOC Age Height Weight BMI Age Height Weight BMI 

Range -0.233 0.014 -0.181 -0.240 -0.212 -0.044 -0.107 -0.161 

Δtmax -0.399 -0.212 -0.217 -0.136 -0.401 -0.064 -0.256 -0.217 

Δtmin -0.341 -0.263 -0.256 -0.172 -0.218 -0.161 -0.336 -0.284 

Δtmin-max -0.407 -0.124 -0.052 -0.009 -0.311 -0.120 -0.116 -0.069 

α 0.089 0.104 -0.022 -0.110 0.037 0.077 -0.010 -0.082 

Area -0.277 -0.195 -0.384 -0.325 -0.208 -0.127 -0.403 -0.372 

AreaSyst -0.389 -0.155 -0.064 -0.009 -0.352 -0.130 -0.133 -0.083 

δmax -0.126 0.038 -0.052 -0.106 -0.122 0.026 0.003 -0.059 

δrange -0.145 0.072 -0.024 -0.112 -0.166 0.037 0.073 -0.027 

CBVrel -0.240 0.098 -0.060 -0.147 -0.257 0.053 0.057 -0.033 

CBFest  0.138 0.140 0.124 0.037 0.104 0.050 0.129 0.049 

LOC-Anes             

Range 0.403 -0.061 0.148 0.248 0.439 -0.023 0.167 0.245 

Δtmax 0.287 0.156 0.184 0.181 0.362 0.159 0.172 0.160 

Δtmin 0.317 0.149 0.283 0.258 0.359 0.227 0.259 0.215 

Δtmin-max 0.056 0.164 0.110 0.026 0.254 0.164 0.198 0.148 

α 0.100 -0.065 0.002 0.111 -0.074 -0.274 -0.235 -0.091 

Area 0.363 0.070 0.236 0.248 0.390 0.209 0.266 0.232 

AreaSyst 0.035 0.141 0.091 0.018 0.241 0.147 0.185 0.140 

δmax 0.300 -0.141 0.016 0.143 0.297 -0.080 -0.016 0.068 

δrange 0.281 -0.138 -0.036 0.085 0.273 -0.148 -0.052 0.056 

CBVrel 0.291 -0.116 0.004 0.119 0.352 -0.113 0.002 0.099 

CBFest  0.024 -0.182 -0.124 0.004 -0.167 -0.265 -0.192 -0.045 

Anes-BSR                 

Range -0.045 0.248 0.056 -0.107 -0.070 0.276 0.050 -0.096 

Δtmax -0.259 -0.219 0.158 0.357 0.018 -0.079 -0.240 -0.171 

Δtmin -0.063 0.172 0.025 0.025 -0.052 0.117 -0.009 0.004 

Δtmin-max 0.018 -0.192 0.278 0.404 -0.032 0.023 0.188 0.057 

α -0.084 0.278 -0.034 -0.243 0.130 -0.099 -0.145 -0.007 

Area -0.057 0.192 0.054 0.036 -0.052 0.117 -0.009 0.004 
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Table 5-10 (Continued) 

AreaSyst 0.039 -0.199 0.272 0.400 -0.032 0.023 0.188 0.057 

δmax -0.030 0.133 0.077 0.011 -0.136 0.231 0.269 0.168 

δrange 0.007 0.022 -0.107 -0.107 -0.102 0.068 -0.061 -0.104 

CBVrel -0.014 0.063 -0.086 -0.118 -0.023 0.072 -0.068 -0.104 

CBFest  0.220 -0.068 -0.163 -0.111 0.036 0.014 -0.032 -0.025 

BSR-Awake                 

Range -0.238 0.202 -0.185 -0.258 -0.141 0.141 -0.120 -0.165 

Δtmax -0.235 0.219 -0.034 -0.127 -0.122 0.124 -0.001 -0.008 

Δtmin -0.172 0.198 -0.071 -0.189 -0.096 0.096 -0.134 -0.172 

Δtmin-max -0.124 0.248 0.172 0.091 0.022 0.153 0.154 0.117 

α -0.271 0.181 -0.015 -0.091 -0.287 0.233 0.090 -0.033 

Area -0.203 0.167 -0.112 -0.216 -0.130 0.092 -0.170 -0.205 

AreaSyst -0.164 0.231 0.106 0.027 0.005 0.167 0.142 0.104 

δmax -0.279 0.170 -0.052 -0.086 -0.277 0.203 0.012 -0.036 

δrange -0.274 0.279 -0.034 -0.083 -0.220 0.211 0.022 -0.013 

CBVrel -0.282 0.233 -0.015 -0.058 -0.193 0.195 -0.023 -0.041 

CBFest  -0.280 0.291 0.011 -0.068 -0.237 0.266 0.037 -0.033 

 

In the transition between LOC and Anes, HR and the propofol dosage 

were the clinical variables concentrating most significant correlations. In the 

linear analysis, HR correlated moderately with Δtmax, Δtmin and Area, and 

the propofol dosage with Range, Δtmax, Δtmin-max, AreaSyst, δrange and 

CBVrel. Moreover, the depth of anesthesia index qCON did also provide a 

significant moderate correlation with Δtmax. The results for the nonlinear 

analysis are consistent with those obtained with the linear one, with HR 

presenting significant and moderate correlations with Δtmax and Δtmin, and 

the propofol dosage with Range, Δtmax, Δtmin-max, Area, AreaSyst and 

CBVrel. In this case, MAP also showed a significant correlation with CBFest.  

Regarding the transition from Anes to BSR, high correlations with 

statistical significance were detected between HR and Δtmin, HR and Area, 

MAP and α, MAP and AreaSyst, and between the qCON index and Range, 

δmax and CBFest. Additionally, very high correlations between the depth of 

anesthesia index and δrange and CBVrel were obtained. In the nonlinear 

analysis, correlations were in general lower, except for those related to HR. 

The transition between BSR and Awake was characterized by a very high 

significant correlation between MAP and Range for the nonlinearly filtered 

data. Overall, HR, MAP and qCON are the most relevant clinical variables 
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presenting significant correlations with REG features. Details on all pairs of 

correlations can be found in Table 5-11. 

 

Table 5-11 Spearman correlation between clinical variables related to depth of 
anesthesia and hemodynamics and differences in geometric features for every 
transition between consecutive clinical states analyzed, either using the linear filter 
(left side) or the nonlinear filter (right side). Cells are colored as a function of the 
correlation value (see Figure 5-8) and statistical significance (p<0.05) of the 
correlations is indicated in bold type. 

 Linear filter Nonlinear filter 

Awake - LOC HR Propo Remi MAP qCON HR Propo Remi MAP qCON 

Range 0.002 0.254 -0.133 0.317 -0.097 0.065 0.212 0.122 0.107 -0.020 

Δtmax -0.200 -0.240 -0.372 0.515 -0.306 -0.323 -0.274 -0.483 0.405 -0.230 

Δtmin -0.207 -0.275 -0.351 0.567 -0.275 -0.328 -0.215 -0.487 0.295 -0.184 

Δtmin-max -0.025 -0.347 -0.389 0.499 -0.313 -0.125 -0.414 -0.553 0.482 -0.305 

α -0.049 0.244 0.358 -0.215 0.208 0.018 0.426 0.456 -0.309 0.238 

Area -0.267 -0.118 -0.330 0.394 -0.288 -0.277 -0.072 -0.439 0.336 -0.186 

AreaSyst -0.035 -0.337 -0.430 0.515 -0.328 -0.128 -0.418 -0.525 0.529 -0.295 

δmax 0.167 0.104 -0.065 -0.019 -0.085 0.198 0.180 0.039 -0.135 -0.015 

δrange 0.181 0.191 -0.014 0.033 -0.048 0.132 0.268 0.102 -0.096 0.012 

CBVrel 0.072 0.202 -0.144 0.129 -0.073 0.084 0.245 -0.047 -0.072 -0.083 

CBFest  0.198 0.312 0.165 -0.275 0.171 0.232 0.308 0.298 -0.248 0.138 

LOC-Anes                     

Range -0.139 0.407 0.015 -0.015 -0.143 -0.050 0.432 -0.003 0.006 -0.091 

Δtmax -0.462 0.447 -0.087 0.208 -0.424 -0.421 0.427 -0.049 0.175 -0.307 

Δtmin -0.562 0.325 -0.068 0.100 -0.305 -0.409 0.380 -0.099 0.043 -0.211 

Δtmin-max -0.158 0.503 -0.163 0.163 -0.359 -0.207 0.588 -0.186 0.181 -0.306 

α 0.054 0.038 0.215 -0.394 0.022 0.136 -0.138 0.253 -0.285 0.133 

Area -0.568 0.364 -0.031 0.152 -0.284 -0.400 0.419 -0.073 0.119 -0.221 

AreaSyst -0.142 0.498 -0.156 0.147 -0.341 -0.195 0.582 -0.196 0.181 -0.307 

δmax 0.073 0.357 0.053 -0.041 -0.080 0.141 0.337 0.076 -0.059 -0.002 

δrange 0.077 0.408 0.005 -0.107 -0.032 0.140 0.373 0.066 -0.081 0.043 

CBVrel 0.020 0.453 -0.007 -0.060 -0.097 0.076 0.432 0.008 -0.024 0.007 

CBFest  0.236 0.081 0.224 -0.393 0.111 0.163 -0.118 0.263 -0.481 0.154 

Anes-BSR                     

Range 0.005 0.461 0.250 0.384 0.683 0.141 0.511 0.311 0.443 0.634 

Δtmax -0.395 -0.329 0.014 -0.100 0.054 -0.581 -0.300 0.043 -0.151 -0.036 
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Table 5-11 (Continued) 

Δtmin -0.697 -0.218 0.475 0.205 0.245 -0.715 -0.371 0.571 0.269 0.186 

Δtmin-max -0.315 -0.164 -0.250 -0.584 -0.030 -0.213 0.064 -0.379 -0.315 -0.084 

α 0.368 0.579 0.271 0.616 0.525 0.372 0.193 0.125 0.297 0.481 

Area -0.686 -0.182 0.514 0.274 0.279 -0.715 -0.371 0.571 0.269 0.186 

AreaSyst -0.340 -0.171 -0.268 -0.630 -0.077 -0.213 0.064 -0.379 -0.315 -0.084 

δmax -0.034 0.411 0.300 0.434 0.717 0.181 0.336 0.354 0.461 0.581 

δrange 0.245 0.357 0.386 0.511 0.826 0.324 0.439 0.425 0.603 0.799 

CBVrel 0.177 0.396 0.346 0.511 0.817 0.157 0.429 0.418 0.626 0.774 

CBFest  0.359 0.411 0.207 0.452 0.665 0.515 0.464 0.304 0.575 0.651 

BSR-Awake               

Range 0.155 0.416 -0.320 0.633 0.277 0.170 0.403 -0.284 0.817 0.392 

Δtmax -0.338 0.250 0.020 -0.183 -0.181 -0.377 0.313 -0.074 -0.183 -0.050 

Δtmin -0.292 0.219 -0.069 -0.300 -0.112 -0.371 0.295 -0.098 -0.317 -0.152 

Δtmin-max -0.114 0.058 0.171 -0.283 -0.208 -0.138 0.091 0.251 -0.333 -0.330 

α 0.301 0.266 -0.347 0.750 0.531 0.239 0.134 -0.273 0.633 0.556 

Area -0.264 0.261 -0.130 -0.217 -0.046 -0.356 0.350 -0.119 -0.233 -0.098 

AreaSyst -0.158 0.170 0.108 -0.333 -0.212 -0.144 0.115 0.247 -0.333 -0.303 

δmax 0.201 0.390 -0.293 0.733 0.377 0.231 0.289 -0.301 0.700 0.435 

δrange 0.248 0.330 -0.315 0.683 0.260 0.262 0.292 -0.268 0.750 0.424 

CBVrel 0.187 0.397 -0.273 0.567 0.278 0.216 0.319 -0.234 0.617 0.399 

CBFest  0.362 0.168 -0.290 0.817 0.417 0.378 0.123 -0.250 0.817 0.455 

 

 

5.5 Discussion of the results obtained in apnea 

detection 

 

The area of the systolic part of the cerebral pulse wave was the only 

feature among the ones under test that showed statistically significant 

differences between apnea and baseline REG recordings. Those results could 

suggest that either REG curves do not reflect CBF changes or that the 

geometrical features of the pulse wave do not contain enough information for 

CBF assessment under an apnea challenge.  

Previous studies have assessed the influence of breath holding in CBF, 

using other monitoring techniques. For instance, Kastrup et al. used magnetic 

resonance to track rCBF changes during apnea, concluding that the detected 
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changes in cerebral hemodynamics were dependent on the apnea duration [17]. 

Vestergaard et al. [180] compared the changes in CBF in a group of freedivers 

with those from a control group. In both cases, they observed that CBF 

changes were time dependent as well, reaching an increase of CBF of 107% 

in freedivers and 25.6% in the control group. Moreover, before the expected 

increase of CBF, a small decrease was detected during the first seconds. 

Considering those evidences, one of the reasons for the lack of detection of 

CBF differences in this study might be the limited duration of the apnea 

challenge, as well as the selection of the segments to be analyzed: those were 

chosen to avoid artifacts without considering the time elapsed since the start 

of the breath holding challenge. However, the estimation of CBF (CBFest) 

showed higher values for the apnea group even though those were not 

statistically significant, which is consistent with the expected behavior of CBF 

during a breath holding challenge.  

Only one of the selected features, AreaSyst, presented statistically 

significant higher values in the baseline periods. Several studies analyzing the 

aortic pulse wave [181][182] have reported that stroke volume is proportional 

to the area under the systolic portion of the arterial blood pressure curve. 

Considering the analogy with cerebral blood flow, AreaSyst might provide 

information on the blood volume reaching the brain in every heart beat. When 

compared to the cerebral blood volume estimation herein proposed, CBVrel, 

both parameters show opposite behaviors, with CBVrel increasing in apnea 

recordings. Therefore, results are not conclusive on which estimation of CBV 

better reflects the brain blood volume, needing further evidences and the 

validation with other technologies to reach a conclusion.  

Overall, the extracted geometric features for REG provided limited 

information on CBF changes during the apnea challenge, requiring further 

validation and selecting REG segments during apnea with equivalent elapsed 

time since the start of the respiratory challenge. Moreover, the use of the 

nonlinear filter did not enhance the performance of the parameters under test, 

providing equivalent results in both processing strategies.  
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5.6 Discussion of the results obtained in anesthesia 

 

The geometric features extracted from REG waves collected during 

general anesthesia provided a larger amount of statistically significant results 

when compared to the detection of apnea. Using the linear filter as the 

preprocessing technique, several geometric descriptors were able to detect 

differences between the LOC and Anes states: Range, δrange, δmax, CBVrel 

and CBFest. The evolution of those values suggest a generally decreased CBF 

and instantaneous blood flow velocity during anesthesia, as previously 

reported  by Conti et al [78] and Fodale et al.[50].  

CBFest and CBVrel decreased during general anesthesia. This 

phenomenon has been related with the vasoconstriction associated to the 

propofol administration [183][184]. It should be noted that values for those 

two features are not recovered after extubation. This is probably caused by 

the effects of propofol in hemodynamics, since at the time of extubation it 

has not been eliminated from the body [185].    

The reduction of CBF and related parameters in the anesthetic state 

might seem inconsistent with the slight increases detected during BSR. 

Intuitively, the lower the anesthetic depth, the lower the brain metabolism, 

CBV and CBF. However, it has been proved in rats that hemodynamic 

fluctuations at the brain level occur during general anesthesia: cortical 

electrical activity is accompanied by oscillations in cerebral hemodynamics 

[186][187]. This might explain the small (and non-significant) increase of the 

CBF related parameters during BSR.  

When comparing the results obtained with the two preprocessing 

techniques, the use of the nonlinear filter provided slightly different results 

but confirmed that the geometric features tested were capable of 

distinguishing between LOC and Anes states only. The main differences 

between the results obtained with the two preprocessing techniques were the 

inclusion of Δtminmax and AreaSyst in the list of parameters reflecting 

differences between LOC and anesthesia under the nonlinear filter hypothesis, 

while CBFest did not. A plausible explanation for this is that the algorithm of 

the nonlinear filter equalizes repeated patterns even in non-steady state 

conditions, based on a random selection of the first pattern. However, the 

extraction of the median value of each feature in every time window after 

linear filtering, preserves information on the distribution of the features within 
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the processed REG segment, providing more consistent values for the 

selected metrics.  

The analysis of confounding factors revealed that weight and BMI have 

an influence on the baseline values of CBF. However, those correlations were 

moderate. In contrast, high and very high correlation scores were detected in 

the transitions from Anes to BSR, and from BSR to ROC. The presence of 

BSR in the two transitions suggests that under adequate general anesthesia 

CBF is decreased but without any major alterations, while in very deep 

anesthesia more changes occur. Analyzing the correlations calculated, those 

changes appear at the brain activity level, assessed with the qCON index, and 

at the hemodynamic level, indicated by MAP.  

The correlation between MAP and REG extracted features suggests a 

possible coupling between MAP and CBF that deserves further attention since 

it could imply the impairment of the autoregulation mechanism. However, 

there is consensus in the scientific community around the fact that propofol, 

unlike some inhaled agents, preserves CAR [75]. Since propofol reduces both 

CBF and MAP, a correlation between both clinical variables might take place 

without the need of a causal relationship between them.  

Finally, correlations with the qCON index reveal a relationship between 

the depth of anesthesia level and CBF, as previously reported by other authors 

[188][189]. This link is demonstrated by the high correlations with REG range, 

δmax and CBFest and the very high correlation with δrange and CBVrel.  

 

5.7 Conclusions 

 

Even though the use of geometrical features to track CBF changes from 

REG signals was not successful during the breath holding challenge, the 

analysis of signals recorded during general anesthesia provided relevant results.  

The transition between LOC and Anes was characterized by significant 

changes in REG parameters reflecting a decrease in the signal Range, CBVrel 

and the parameters extracted from the REG derivative, consistent with the 

expected behavior. Moreover, correlations with other clinical variables such 

as MAP and the qCON index, reflected that those CBF changes were also 
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related to the brain activity (EEG) and the global hemodynamic state of the 

patient (MAP). Further studies are needed with larger datasets to analyze the 

influence of patient demographics in CBF as well as possible causal 

relationships among EEG, hemodynamics and CBF parameters.   

 

 

 

 

 



 

 

 

 

 

 

 

Chapter 6 
6. Poincaré Plot 

Analysis of REG Signals 
 

 

 

 

Abstract 

Nonlinear analysis of physiological signals is often used to detect 

underlying structures in the time series. This chapter explores the hypothesis 

that one of those techniques, Poincaré plot analysis, provides further 

information on CBF changes when applied to REG signals than the 

traditional approach based on the detection of geometric features of pulse 

waves.  

6 
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6.1 Introduction 

 

Biological signals are known to be controlled by central nervous system 

oscillators that make them complex, causing some irregular patterns [190]. 

Nonetheless, some underlying well determined behavior exists. Therefore, 

physiological signals might be better characterized by dynamic nonlinear 

analysis instead of using standard linear time series signal processing 

techniques, as the ones presented in Chapter 5.  

One nonlinear technique used to study beat to beat intervals is the 

method of delayed coordinates for state-space analysis, the so-called Poincaré 

plot. Dimitriev et al. [191] analyzed by means of nonlinear dynamics based on 

Poincaré plots how the state of anxiety affected heart rate variability.  Voss et 

al.  [192] have previously published on the effects of age and gender in short-

term heart rate variability analyzed with Poincaré plots among other features 

and Ebrahimzadeh [193] explored the prediction of sudden cardiac death 

based on complexity analysis.  Other biological signals have been studied by 

means of Poincaré plots. Hayashi [194] related the delayed coordinates map 

to changes provoked by anesthesia in the electroencephalograph (EEG). 

Xiong et al. [195] explored the ability of Poincaré plots from electromyogram 

(EMG) to reflect facial paralysis and Son et al. [196] studied regularity in 

respiratory signals using this same technique.  

Hoshi et al. [197] used standard descriptors of Poincaré plot analysis to 

distinguish between healthy subjects and patients suffering coronary disease, 

concluding that the SD1/SD2 index provided useful information for that 

purpose.  Even though some features extracted from Poincaré plots are 

known to be highly correlated to linear time domain information [198], some 

others reflect nonlinear behaviors, complementing the diagnosis capabilities 

of heart rate variability signals, such as the SD1/SD2 parameter or the 

Complex Correlation Measure [199].    

Poincaré plot Analysis is typically applied with a time lag of 1 sample, 

therefore plotting the original signal versus its 1 sample delayed version. 

Several publications have explored the possibility of using different time lags 

to build the Poincaré plot. Since consecutive samples are highly correlated, 

when a lag of 1 sample is used, data are concentrated on the identity line. 

Increasing time lags would spread the data points over the Poincaré plot, 

because there is less correlation between lagged samples [200], [201]. 
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Brennan et al. [198] discussed the effects of lagging the Poincaré plots, 

showing that those lagged plots characterize the autocovariance function, yet 

there is no consensus on which lags should be used [202]. Lerma et al. [203] 

determined that a lag of 4 heart beats would optimize the detection of changes 

in heart rate variability due to hemodialysis in chronic renal failure patients, 

while Thakre and Smith [201] stated that a heartbeat can only influence up to 

the next 6 to 8 beats and therefore higher lags would not be suitable for those 

applications. Therefore, lags lower than 10 are typically used for RR intervals 

[202].   

Contreras et al. [204] used lagged Poincaré plots and assessed the 

correlation between the spectral features (HF and LF) and the SD1 parameter, 

concluding that the value of those correlations was different in healthy and 

pathological heart rate variability signals. Lagged plots were also used by 

Goshvarpour [200] to analyze heart rate during mediation, detecting an 

increase in the SD1 parameter for increasing lags up to 6 beats which reflects 

the transition between cigar-shaped plots for the smallest lag to a cloud of 

points with the largest ones.             

This chapter focuses on the analysis of the dynamics of REG signals 

through lagged Poincaré plots aiming at understanding underlying nonlinear 

behavior and identifying how those dynamics can assess physiological changes 

affecting the system. Since CBF is modulated by several physiological 

conditions, applying nonlinear analysis could be a very promising tool for 

improving clinical information extracted from REG. The analysis herein 

proposed is therefore based on the method of delayed coordinates for state-

space analysis since, to the extent of the knowledge of the author, it has not 

been used for REG data processing.  A simple respiratory challenge, apnea, 

was initially used to explore REG capability to reflect CBF changes and to 

analyze nonlinear dynamics in REG signals. Results obtained from this 

analysis were afterwards applied to REG data collected during surgeries under 

general anesthesia, to assess the ability of REG to reflect changes in CBF 

under those circumstances.  
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6.2 Methods 

6.2.1 Poincaré plot analysis 

 

Taken’s theorem [205] states that the attractor of a dynamical system can 

be reconstructed as a state-space representation for a specific time delay (τ) 

and embedding dimension (m). This attractor, X(t), can therefore be specified 

as: 

 

X(t) = [x(t) x(t + τ) x(t + 2τ)    …     x(t + (m − 1)τ)] (6.1) 

 

Even though the attractor of a given system might have a high embedding 

dimension, the analysis of reconstructed attractors on two dimensions has 

been extensively used to characterize biomedical signals, such as heart rate 

variability, and has proven to provide relevant information [203], [206], [207]. 

In this case, equation 6.1 can be simplified as: 

 

X(t) = [x(t) x(t + τ)] (6.2) 

 

Two-dimensional Poincare plots were constructed from REG sequences. 

Each Poincaré plot is generated with the x-axis representing the REG signal 

(REG(t)) and the y-axis representing the REG signal after a specified time 

delay  (REG(t + )), where the  length of the series is N and t moves from 1 

to N-.  The time lag  to be applied to the signal samples to build the Poincare 

attractor is commonly defined by these criteria: 

 

• 1/4 or 1/5 of the dominant cycle period (T) of the signal [208]  

• First local minimum of the auto-mutual information function (AMIF) 

[209] 

• First zero crossing of the autocorrelation function (ACF) [210] 



105 Chapter 6 

 

 

• First value for which the normalized autocorrelation function has a 

decay of 1/℮ [210].  

• First sign change of the second derivative of the autocorrelation 

function [211] 

• 1/10 to 1/20 of the first local minimum of the autocorrelation 

function [212] 

The choice of the time lag τ is critical, since very low values would not 

allow the attractor to expand, with a majority of points laying on the diagonal 

line [213], while very large values of τ would cause deformations of the 

attractor due to the fact that pairs of samples would be uncorrelated 

[209][211] . Since no previous work has been done on the analysis of REG 

attractors, a wide range of τ values was used, from 1 up to the maximum of 

the above listed criteria, to provide the maximum possible information 

relating to the dynamics hidden in REG signals.  

To generate quantitative information on the distribution of REG signals 

in the Poincare plots, several features were extracted from the reconstructed 

attractor characterization. Two of these features are considered the standard 

descriptors of Poincaré plots, being named SD1 and SD2. They are obtained 

by defining a new set of perpendicular axis (x1 and x2 in Figure 6-1), x2 

following the identity line and therefore rotating the axis 45º and fitting an 

ellipse to the plot as shown in Figure 6-1. Features SD1 and SD2 are defined 

as the standard deviation of the distance along the axis x1 and x2 respectively, 

and lay on the axis of the fitted ellipse having half its size [198], [208], [214]–

[216]. They are computed following the equations 6.3 and 6.4, where var is 

the variance. 

 

SD1 = √var(
REG(t) − REG(t + τ)

√2
) (6.3) 

SD2 = √var(
REG(t) + REG(t + τ)

√2
) (6.4) 
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Figure 6-1 SD1, SD2 and ellipse fitting of a REG signal. 

 

Short term variability is reflected by SD1 while SD2 reflects both, long 

and short-term variability. Moreover, the area (A) of the ellipse (equation 6.5) 

has also been considered since it provides a measure of the total variability of 

the attractor [215]. 

 

A = π SD1 SD2 (6.5) 

 

The ratio of SD1/SD2 was also used as a parameter (SDratio) to measure 

the changes in the scatter patterns. Hayashi et al. [208] proposed this 

technique as a useful tool for depth of anesthesia assessment by means of 

Poincaré plots as this ratio reflects the degree of linearity included in the 

processed signal. 

Correlation measures are also proposed to characterize the shape of the 

Poincaré plots. Equation 6.6 shows the correlation measure (R)[198], in which 

E [ ] is the expected value of the time series and REG̅̅ ̅̅ ̅̅  the average value of the 

REG(t) time series. 
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𝑅 =
E[(𝑅𝐸𝐺(t) − 𝑅𝐸𝐺̅̅ ̅̅ ̅̅ )(𝑅𝐸𝐺(t + τ) − 𝑅𝐸𝐺̅̅ ̅̅ ̅̅ )]

√E[(𝑅𝐸𝐺(t) − 𝑅𝐸𝐺̅̅ ̅̅ ̅̅ )2]E[(𝑅𝐸𝐺(t + τ) − 𝑅𝐸𝐺̅̅ ̅̅ ̅̅ )2]
 (6.6) 

 

Another correlation descriptor considered is the Complex Correlation 

Measure (CCM) [217]. Its computation identifies all possible sets of three 

consecutive attractor points of the Poincaré plot and the area of the triangle 

they define is calculated (Figure 6-2). In cases where all three points are 

aligned, the area is considered to be zero. The purpose of analyzing sets of 

three points in this way is that the descriptor will integrate information from 

different time lags and instead of reflecting just the overall variance as with 

SD1 and SD2, it will integrate temporal information as well. CCM is 

computed as indicated in equation 6.7, where N is the number of points in 

the Poincaré plot, An is a normalization constant equivalent to the ellipse area 

(An = π*SD1*SD2), τ is the time lag of the Poincaré plot and M(i) is the matrix 

including the coordinates of the three points from each subset whose 

determinant is the area of the triangle formed by them. 

 

Figure 6-2 Example of the application of the Complex Correlation Measure (CCM) 
algorithm in a subset of 5 data points. 

CCM(τ) =
1

An(N − 2)
∑‖M(i)‖

N−2

i=1

 (6.7) 
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6.2.2 Experimental datasets 

 

The Poincaré plot analysis was applied to two datasets, Apnea-Baseline 

and General Anesthesia Dataset 1. The first of them contains REG signals 

recorded on 16 healthy volunteers under apnea and baseline periods while the 

second one is composed of REG waves collected from 40 patients undergoing 

surgical procedures requiring general anesthesia. Details on both datasets were 

provided in Chapter 3.  

In a first analysis, the Apnea-Baseline dataset was used to determine the 

range of lags τ to be considered for analysis, by means of applying the set of 

criteria described in section 6.2.1. Moreover, the ability of the Poincaré plot 

descriptors to detect apnea periods was assessed through hypothesis testing 

and a final set of τ was chosen for further analysis. In a second step, results 

from the Apnea-Baseline dataset were applied in the calculation of the 

Poincaré plot descriptors of REG signals during general anesthesia. 

 

6.2.3 Data analysis for apnea detection 

 

A total of 53 sequences free from artifacts, with 4000 samples length, 

were obtained from the Apnea-Baseline dataset analysis. From those signals, 

29 were recorded during apneas while 24 belonged to baseline periods. All 

signals were filtered with a 4th order high-pass filter with a stop band 

frequency of 0.1Hz to remove baseline drift.  

Moreover, a classical linear filter was applied to all the REG recordings 

to remove high frequency noise while preserving the pulse wave pattern. The 

2D-Poincaré plot of the attractor of each signal in the dataset was 

reconstructed for varying time lags, and the following features were extracted: 

SD1, SD2, SDratio, SDarea, R and CCM. A statistical analysis was performed 

to select τ values that allowed 2D-Poincaré plot features to statistically 

distinguish between signals belonging to apneas and resting periods. 

Hypothesis testing was applied using student t-test for normal distributions 

and Mann-Whitney test for non-normal distributions verified by the 

Kolmogorov–Smirnov test. Significant statistical level was set at p-value<0.05 

and Bonferroni correction (p-value<0.025) was applied. The ability of the 

extracted features to distinguish between apnea and baseline periods was 
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further assessed by means of sensitivity, specificity, area under the curve (AUC) 

of the Receiver Operating Characteristic and accuracy.  Finally, this analysis 

was repeated for REG signals preprocessed with the nonlinear filter algorithm, 

to assess the influence of the filtering technique in the obtained results.  

 

 

6.2.4 Data analysis for general anesthesia recordings 

 

REG signals in the General Anesthesia Dataset 1 were classified in 5 

different categories depending on the clinical state of the patients during 

general anesthesia: 

• Awake – corresponding to the data recorded prior to anesthesia 

induction. 

• Loss of Consciousness (LOC) – data recorded right after LOC is 

detected and while intubation is being prepared 

• Steady state anesthesia – data recorded during anesthesia, without 

burst suppression episodes and after intubation has been achieved and 

patient positioned for surgery.  

• Burst Suppression Rate (BSR) - data belonging to periods in which 

the Conox BSR index provides values higher than 10.  

• Recovery of consciousness (ROC) – data belonging to the end of the 

procedure, once drug infusion has been stopped and patent is ready 

to be extubated.  

After artifact rejection, recordings of 4000 samples were classified 

obtaining 34 REG signals for the Awake state, 35 for LOC, 33 for Anesthesia. 

22 for BSR and 40 for ROC. As in the Apnea-Baseline dataset, all segments 

were high pass filtered to eliminate slow fluctuations and low pass filtered 

using either the optimal classical filter or the nonlinear algorithm.  

The Poincaré plot descriptors SD1, SD2, SDratio, SDarea, CCM and R, 

were calculated for each segment, using the τ range optimizing apnea 

detection in the previous analysis. The ability of those parameters to 
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distinguish between the different stages of anesthesia was assessed by means 

of hypothesis testing. A paired student t-test was used for normal distributions 

and Wilcoxon test for non-normal distributions, verified by the Kolmogorov–

Smirnov test. Considering the number of categories defined and the 

application of Bonferroni correction, the statistical significance threshold was 

set to p<0.01. 

The influence of patient demographics and variations in the clinical 

condition of the patient other than the ones provoked by the anesthetic state 

were considered as confounding factors. Therefore, Spearman correlation of 

heart rate (HR), mean arterial pressure (MAP), propofol effect site 

concentration (CePropo), remifentanil effect site concentration (CeRemi) and 

the depth of anesthesia index (qCON) with the Poincaré plot descriptors was 

computed, considering statistical significance of the resulting correlations for 

p-value<0.05. 

 

 

6.3 Results for apnea detection 

6.3.1 With linear filter 

 

The dominant cycle period of the REG recorded signals, the auto-mutual 

information and autocorrelation were computed to determine the range of τ 

values to be used in the reconstruction of the attractors following the criteria 

previously listed.  The average period of REG signals was 0.99 ± 0.12s (mean 

± standard deviation), equivalent to 246.9 ± 30.8 samples.  No differences 

were detected between periods of apnea and baseline signals (p-value = 0.345).  

All values presented for each criterion used for τ calculation are presented in 

Table 6-1. On average, the highest τ is provided by the recommendation 

based on ¼ of the period (61.7 ± 7.7 samples) and therefore the range of τ 

values used was from 1 to 70 samples (from 0.004 to 0.28 s).  
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Table 6-1 Tau values (in samples) calculated from the REG signals following the 
criteria recommended in literature. 
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Mean 61.7 49.4 34.2 58.4 36.5 19.0 12.0 5.98 61.7 49.4 34.2 58.4 

Std 7.70 6.16 11.6 14.3 9.73 9.63 3.15 1.57 7.70 6.16 11.6 14.3 

Min 38.5 30.8 16.0 20.0 14.0 10.0 3.40 1.70 38.5 30.8 16.0 20.0 

Max 76.9 61.5 70.0 91.0 56.0 49.0 17.5 8.75 76.9 61.5 70.0 91.0 

 Mean, standard deviation (std) min and max values are provided for each criterion 

 

 

Attractors were reconstructed for every signal and τ value. The two-

dimensional Poincaré plots for a baseline and apnea REG signal built for τ=5, 

τ=10 and τ=70 samples are shown in Figure 6-3.  While low τ values seem to 

preserve the attractor shape, for τ=70 samples the attractor looks deformed.  

From the reconstructed attractors, the defined Poincaré plot features 

(SD1, SD2, SDratio, SDarea, CCM and R) were calculated for every selected 

segment and every time lag, and their ability to separate apnea from baseline 

signals was assessed through hypothesis testing. The evolution of all 

parameters, as a function of the chosen time lag τ, for both apneas and 

baseline can be observed in Figure 6-4.  
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Figure 6-3 Poincaré plot reconstruction of apnea and baseline signals. Apnea signal 
(a,b,c) and  baseline signal (d,e,f) for different time lags: τ=5 samples (a,d), τ=10 
samples (b,e) and τ=70 samples (c and f). 
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Figure 6-4 Comparison of the results obtained for apnea and baseline periods 
(median values, interquartile range and statistical significance) of all tested features in 
function of the time lag τ. (a) SD1; (b) SD2; (c) SDarea; (d) SDratio; (e) R; (f) CCM. 
Grey solid color corresponds to statistical significance level of p-value<0.025. 

 

SD1 shows a curvilinear increase as τ increases (Figure 6-4a) for both 

apneas and baseline periods, presenting higher values in apneas for low τ 

values and reversing this behavior for τ values above 40 samples. The behavior 

of SD2 is the opposite (Figure 6-4b), decreasing as τ increases, providing 

higher values for baseline periods for all tested τ values. None of those 

features show significant differences between the apnea and baseline groups.  

SDarea, which is a composite measure of SD1 and SD2 (Figure 6-4c), 

increases with an exponential pattern while τ increases and provides higher 

values for the baseline group, even though differences are not significant.  

However, SDratio (Figure 6-4d) is also a composite feature and shows 

significant differences between apnea and baseline periods for τ up to 53 

samples, resulting in higher values for the apnea group.  

The values of parameter R have an opposite behavior when compared to 

SDratio (Figure 6-4e), decreasing as τ increases, with the baseline group 

showing higher values than the apnea group. These differences were 
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significant for all τ lower than 49 and τ=53. Finally, observing the evolution 

of the values of the parameter CCM, it can be stated that they are higher in 

apnea group than baseline group with p-value <0.025 for all range of the 

analyzed time lags.       

Among all tested features, three have shown to be capable of 

distinguishing between apneas and baseline data for several τ values: SDratio, 

R and CCM. The features R and SDratio showed statistically significant 

differences between groups for τ values below 50 samples, showing the lowest 

p-value for τ equal 2 and 3 samples (p-value=7.01*10-5). CCM showed 

significant differences between groups for all τ values, presenting its minimum 

value for τ =13 samples (p-value =0.00012). 

Figure 6-5 illustrates the comparison between the τ values for which the 

extracted features were significant (Figure 6-4) with those theoretical τ values 

presented in Table 6-1. It can be observed that R and SDratio are statistically 

different for τ values lower than 50 samples, while CCM is significant for all 

range with lower values between 10 and 20.  It should be noted that for the 

first six proposed theoretical criteria (1/20 and 1/10 of the first local 

minimum of the autocorrelation function, the first sign change in its second 

derivative, the first local minimum of the automutual information, a decay of 

1/е of the autocorrelation and 1/5 of the signal dominant period ) the three 

extracted features remain significant, since when using the criterion of 1/5 of 

the period all p-values are below 0.025.  

 

Figure 6-5 Statistical significance levels (p-value) for SDratio, CCM and R, as a 
function of the time lag τ when comparing apnea and baseline segments. R and 
SDratio curves are overlapped for almost all values. The dotted horizontal black line 
shows significance when applying Bonferroni correction. Vertical lines indicate the 
different criteria commonly used to determine τ. 
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Correlations were performed between features that were statistically 

significant (Figure 6-6). Pearson’s correlation was applied to the full dataset 

including SDratio, CCM and R values from all subjects and all time lags (i.e. 

resulting in 3710 data points in each case). Since their definitions are quite 

similar both SDratio and R showed a high correlation (=0.965, p-

value<0.001) although not linear. As can be observed in Figure 6-6c, CCM 

showed lower correlations with both SDratio and R. 

 

Figure 6-6 Correlations between R, CCM and SDratio. (a) R and CCM, (b) SDratio 
and CCM, and (c) CCM and R. 

 

The parameters that showed positive results were analyzed by means of 

computing their sensitivity, specificity and AUC. Figure 6-7 shows the 

sensitivity and specificity for SDratio, R and CCM features in the time lag 

values for which they showed statistically significant levels. Both SDratio and 

R provide a high specificity but very low sensitivities, typically below 60% and 

with higher values for low τ, for which it can be observed that SDratio shows 

better performance. CCM shows better sensitivity and specificity, showing a 
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peak of 90% specificity for τ between 10 and 20, and maximal sensitivity for 

τ lower than 10. 

 

Figure 6-7 Sensitivity and specificity of apnea and baseline classification as a 
function of the time lag values (τ). (a) SDratio, (b) R and (c) CCM. 

 

For all three, the best performances are detected for very small τ values 

(lower than 5 samples), lower than the ones proposed in the literature for 

other physiological signals shown in Table 6-1, the closest approximation 

being a time lag corresponding to 1/20 of the first local minimum of the 

autocorrelation function.   

Figure 6-8 presents the AUC computed for each parameter and each 

time lag τ. Both SDratio and R provide the best results, with values higher 

than 0.8 for low τ values (τ < 5 samples) and decreasing when τ increases. 

Even though CCM also offers its best AUC values for low time lags, it does 

not show such a monotonic decreasing behavior. As previously seen in the 

analysis of the obtained p-values, SDratio (Figure 6-4d) and R (Figure 6-4e) 

provide optimal results for τ values lower than the ones recommended in the 

literature (Table 6-1) while the best performance of CCM takes place for τ 
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values consistent with 1/10 of the first local minimum of the autocorrelation 

function and the first sign change in its second derivative. 

 

Figure 6-8 AUC of the Receiver Operating Characteristic for SDratio, CCM and R, 
as a function of the time lag. AUC for R and SDratio are overlapped. 

 

Finally, Figure 6-9 depicts the accuracy of SDratio, CCM and R. It can 

be observed that CCM provides the highest accuracy for τ values around 10 

samples, while SDratio and R reach their maximum accuracy for τ<5samples.  

 

Figure 6-9 Accuracy of SDratio, CCM and R, as a function of the time lag τ. 



6 Poincaré plot Analysis of REG signals 118 

 
 

6.3.2 With nonlinear filter 

 

The results for the Poincaré descriptors in REG signals preprocessed 

with the nonlinear filter are shown in Figure 6-10. The evolution of each 

parameter as a function of τ is equivalent to the one identified with linearly 

filtered signals, providing similar range of values for all features. This suggests 

that Poincaré plot descriptors are not affected by the filter choice. However, 

intervals of τ with statistically significant differences between apnea and 

baseline recordings are slightly shorter in this case, as shown in Figure 6-11.   

 

Figure 6-10 Comparison of the results obtained for apnea and baseline periods after 
nonlinear filtering (median values, interquartile range and statistical significance) of 
all tested features in function of the time lag τ. (a) SD1; (b) SD2; (c) SDarea; (d) 
SDratio; (e) R; (f) CCM. Grey solid color corresponds to statistical significance level 
of p-value<0.025. 

 

The p-values obtained as a result of the hypothesis testing comparing the 

apnea and baseline groups are graphed in Figure 6-11. While the p-values 

obtained for SDratio and R provide trends, as a function of τ, like those 
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observed for linearly filtered signals, CCM shows a different pattern, 

providing lower values and loosing statistical significance for τ=1.  

 

Figure 6-11 Statistical significance levels (p-value) for SDratio, CCM and R, as a 
function of the time lag τ when comparing apnea and baseline segments extracted 
from REG signals nonlinearly filtered. R and SDratio curves are overlapped for 
almost all values. The dotted horizontal black line shows significance when applying 
Bonferroni correction. 

 

Besides the analysis of the p-values obtained for the comparison of both 

groups, specificity and sensitivity were also computed (Figure 6-12). 

Specificity provides higher values than sensitivity for all features, with CCM 

showing the highest specificity for τ values around 10 samples. Regarding the 

sensitivity, it is maximized for low τ values in all cases, with a clear drop as a 

function of τ for SDratio, while R preserved higher sensitivity levels. Overall, 

the trends for all three descriptors show a similar behavior when compared to 

the results obtained for the REG signals after linear filtering. 

The AUC of the Receiver Operating Characteristic for SDratio, CCM and 

R is depicted in Figure 6-13. SDratio and R are fully overlapped and provide 

higher values than CCM for almost all the range of τ under analysis. 

Comparing to the curves obtained when using the linear filter, AUC values 
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are slightly lower in the nonlinear option but preserve the same trends 

previously identified.  

 

 

 

 

 

 

Figure 6-12 Sensitivity and specificity of apnea and baseline classification as a 
function of the time lag values (τ) for signals processed with the nonlinear filter. (a) 
SDratio, (b) R and (c) CCM. 
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Figure 6-13 AUC of the Receiver Operating Characteristic for SDratio, CCM and R, 
when computed from nonlinearly filtered data, as a function of the time lag τ. AUC 
for R and SDratio are overlapped. 

Finally, Figure 6-14 shows the accuracy of the three parameters 

providing statistically significant results as a function of τ. Once again, 

differences between the two sets of data (linearly and nonlinearly filtered) are 

negligible, with CCM providing again the highest accuracy, followed by 

SDratio and R.  

 

Figure 6-14 Accuracy of SDratio, CCM and R, after preprocessing with the nonlinear 
filter. 
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6.3.3 Selection of τ ranges optimizing apnea detection 

 

The analysis of the linear and nonlinear filtered datasets showed 

equivalent results regarding which Poincaré plot descriptors presented the 

ability to detect apneas: SDratio, R and CCM.  The values obtained for 

statistical significance, AUC and accuracy (acc) were dependent on the time 

lag τ used for the reconstruction of the attractor. In order to select the best 

interval of τ values for apnea detection, the performance of each of the three 

metrics providing statistically significant results was analyzed by means of the 

graphical representation of p-values, AUC and accuracy. Figure 6-15 

summarizes the results for SDratio. It can be observed that AUC has a plateau 

for τ<20 for both filtering options and an almost monotonical decrease for 

higher values of τ. The minimal p-values from the hypothesis testing are 

reached for very low τ values (2 and 3 samples) for the linear filter option 

while the absolute minimum goes up to τ=20 for the nonlinear filtered data. 

Finally, accuracy was optimal for very low τ values (τ<10) in both cases.  

 

Figure 6-15 Summary of SDratio performance assessed by means of p-value (a,b), 
AUC (c,d) and accuracy (e,f) as a function of τ, when data were filtered with the linear 
filter (a,c,e) and the nonlinear filter (b,d,f). 

Results for R (Figure 6-16) are analogous to those obtained for SDratio 

due to their high correlation. The minimum p-values were obtained for τ=2 
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samples in the linear filter dataset, while the absolute minimum for the 

nonlinear filtered data is obtained for τ=20 samples. AUC provides a similar 

trend, with a plateau providing the highest values from τ=1 to τ=20 samples, 

and accuracy showing its maximum values for very low τ values (below 5 

samples) and for τ values around 40 samples.  

 

Figure 6-16 Summary of R performance assessed by means of p-value (a,b), AUC 
(c,d) and accuracy (e,f) as a function of τ, when data were filtered with the linear filter 
(a,c,e) and the nonlinear filter (b,d,f). 

 

The CCM descriptor also showed that τ values below 20 samples would 

optimize p-values, AUC and accuracy (Figure 6-17). The minimum p-values 

are obtained for τ=13 samples and τ=15 samples under the linear and 

nonlinear filter assumptions, respectively. Moreover, a maximum AUC is 

reached in both cases for τ=15 samples, while maximum accuracy also occurs 

in this same range of τ values. However, it should be noted that when the 
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nonlinear filter is used, the CCM values obtained for apnea and baseline 

signals do not provide statistically significant differences for τ=1. 

 

Figure 6-17 Summary of CCM performance assessed by means of p-value (a,b), 
AUC (c,d) and accuracy (e,f) as a function of τ, when data were filtered with the linear 
filter (a,c,e) and the nonlinear filter (b,d,f). 

 

Considering the τ ranges optimizing apnea detection for all features and 

both filtering techniques, the interval of τ values from 1 to 20 samples would 

include successful results across all options. Therefore, this was the τ interval 

chosen for analysis of REG signals recorded during general anesthesia 

procedures.  Final results for p-values, AUC and accuracy for this interval are 

provided in Table 6-3. 
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Table 6-2 Performance of SDratio, CCM and R in apnea detection for τ values 
between 1 and 20 samples.  

 
P-VALUE 

AUC 

(MEAN ± STD) 

ACC (%) 

(MEAN ± STD) 

Linear filter    

SDratio <0.0005 0.812 ± 0.004 66.0 ± 3.5 

CCM <0.005 0.772 ± 0.023 69.5 ± 4.1 

R <0.0005 0.812 ± 0.004 63.8 ± 2.4 

Nonlinear filter    

SDratio <0.001 0.777 ± 0.003 66.5 ± 1.5 

CCM* <0.01 0.758 ± 0.018 65.6 ± 3.8 

R <0.001 0.777 ± 0.003 64.2 ± 1.4 

*The interval of τ goes from 2 to 20 samples. 
 

 

6.4 Results for general anesthesia 

 

The General Anesthesia Dataset 1 was processed using the set of 

Poincaré features listed in the methods section, for an interval of τ values 

between 1 and 20 samples. This interval is deducted from the results obtained 

for the Apnea-Baseline dataset.   

 

6.4.1 With linear filter 

 

The evolution of each Poincaré plot descriptor as a function of the time 

lag τ for each anesthesia phase is depicted in Figure 6-18. SD1 increases as τ 

increases in all states, reaching higher values for awake and LOC, which are 

also characterized by a wider interquartile range. In contrast, SD2 remains 

stable for all τ values, providing a highest score in the LOC state and 

presenting also higher dispersion for awake and LOC. Subsequently, their 

ratio increases as τ increases, with similar interquartile ranges among the 

various anesthesia stages, while the ellipse area (SDarea) shows again higher 

values for awake and LOC, with a significantly bigger dispersion in those two 
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states and decreasing values as τ increases across all states. The behavior of 

the correlation R is the opposite of SDratio, due to their high negative 

correlation: it decreases for increasing τ values in all anesthesia phases with 

the LOC state showing the lowest values and similar interquartile ranges 

across states. Finally, CCM is the only feature showing a local maximum, 

identified in low τ values (τ≤5) and provides its highest values in the anesthesia 

state followed by ROC.   

 

Figure 6-18 Evolution of SD1, SD2, SDratio, SDarea, CCM and R as a function of 
τ for the set of anesthesia states under analysis: awake, LOC, anesthesia, BSR and 
LOC. Median values are graphed, together with the 25th and 75th quartiles 
represented with dashed lines. 
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All the extracted features present differences between the targeted set of 

anesthetic states. The statistical significance of those differences is assessed in 

Figure 6-19. SD1 and SD2 showed the ability to differentiate between LOC 

and anesthesia for all τ values, while they failed in reflecting differences among 

all other transitions between consecutive states. Regarding SDratio, significant 

differences were detected in both the transitions between awake and LOC and 

LOC and anesthesia. Nonetheless, the τ range in which p-values were under 

the significance threshold was reduced to the intervals 8 to 20 samples and 12 

to 20 samples, respectively. The correlation R provided a similar performance 

but with narrower τ ranges for significance: 10 to 20 samples for the transition 

between awake and LOC and 17 to 20 samples for LOC and anesthesia. The 

ability of SDarea to distinguish between consecutive states was limited to the 

transition between LOC and anesthesia, preserving the statistical significance 

for all τ values tested. CCM is the only feature that does not distinguish 

between LOC and anesthesia, but it provides positive results in the transition 

between anesthesia and BSR for τ from 18 to 20. Moreover, it also reflects 

differences between awake and LOC states for τ > 10.  

Considering the selection of the optimal τ values to assess differences 

between consecutive anesthesia states using the set of features extracted from 

the Poincaré plot, low τ values have proved to fail in reflecting changes while 

the highest range of the tested interval showed a better performance 

considering all features and anesthesia states. Therefore, the value τ=20 

samples was chosen to be the optimal to detect changes in anesthesia states.  

Average values for each feature and state for τ = 20 samples are summarized 

in Table 6-3. 
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Figure 6-19 Statistical significance (p-values) obtained for the comparison of the 
median values of each Poincaré feature among consecutive anesthesia states. Grey 
areas represent intervals in which the graphed parameter shows statistical significance 
of p-value<0.01. 

. 
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Table 6-3 Average values (mean ± standard deviation) of each Poincaré plot feature 
in the selected anesthesia states considering τ = 20 samples. 

 AWAKE LOC ANES. BSR ROC 

SD1 

 

0.015  

± 0.009 

 

0.015  

± 0.009 

0.009  

± 0.003 

0.010  

± 0.004 

0.011  

± 0.006 

SD2 

 

0.045  

± 0.027 

 

0.058  

± 0.043 

0.027  

± 0.011 

0.031  

± 0.014 

0.036  

± 0.022 

SDratio 

 

0.339  

± 0.074 

 

0.295 ± 

0.074 

0.345 ± 

0.054 

0.329 ± 

0.053 

0.316 ± 

0.060 

SDarea 

 

0.00089  

± 0.00109 

 

0.00122  

± 0.00162 

0.00027  

± 0.00018 

0.00037  

± 0.00031 

0.00051  

± 0.00059 

CCM 

 

0.000034  

± 0.000020 

0.000028  

± 0.000032 

0.000031  

± 0.000013 

0.000030  

± 0.000011 

0.000030  

± 0.000017 

 

R 
0.789  

± 0.084 

0.834  

± 0.073 

0.785  

± 0.059 

0.802  

± 0.056 

0.814  

± 0.063 

 

 

The graphical representation of the values reported in Table 6-3 is 

provided in Figure 6-20. As previously mentioned, all the features except 

SDratio and SDarea showed a high dispersion for Awake and LOC states that 

was reduced from anesthesia to ROC. SD1 presented similar values, in 

average, in awake and LOC, decreasing during anesthesia and slightly 

increasing for BSR and ROC, but without recovering the initial values at LOC. 

SD2 had a similar performance, except for the transition between awake and 

LOC, where SD1 showed similar values while SD2 increased. Since SDarea is 

proportional to the product of SD1 and SD2, it followed the same behavior 

described for those two features. Regarding SDratio and R, they presented 

opposite trends as expected, with similar variances for all patient states: 

SDratio showed an absolute minimum for LOC, while R had its maximum in 

this same state.  Finally, CCM presented a maximum for the awake state and 

a minimum for LOC, presenting similar values for all states except for LOC.  
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Figure 6-20 Trends for (a) SD1, (b) SD2, (c) SDratio, (d) SDarea, (e) CCM and (f) 
R across the different anesthesia states for τ=20 samples, represented as mean ± 
standard deviation. 

 

The trends of all the extracted features present changes along the 

anesthetic procedure for τ=20 samples, mainly during LOC. However, only 

some of those changes are statistically significant. The p-values obtained after 

hypothesis testing are compiled in Table 6-4. All the features except CCM 

were able to detect changes in the transition between LOC and anesthesia, 

providing p-values as low as 5*10-5 for SD1. Regarding the differences 

between the awake and LOC states, SDratio, CCM and R provided statistically 

significant results while none of the features lead to positive results for the 

transitions among other anesthesia states.  
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Table 6-4 Statistical significance (p-value) of the differences between consecutive 
anesthesia states for the Poincaré plot extracted features, considering τ=20 samples. 

FROM 

TO 
AWAKE 

LOC 

LOC 

ANES. 

ANES. 

BSR 

BSR 

ROC 

SD1 0.75387 0.00005 0.42648 0.85828 

SD2 0.20589 0.00009 0.88039 0.63782 

SDratio 0.00530 0.00756 0.05565 0.10933 

SDarea 0.32519 0.00007 0.49686 0.80762 

CCM 0.00950 0.11696 0.00834 0.22312 

R 0.00651 0.00873 0.05071 0.10879 

 

 

 

6.4.2 With nonlinear filter 

 

This section describes the results obtained for the General Anesthesia 

Dataset1 when using the nonlinear filter as the preprocessing strategy. The 

evolution of the median values of each Poincaré parameter as a function of τ 

for all anesthesia states is represented in Figure 6-21. SD1, SD2, SDratio, 

SDarea and R present the same trends observed for the linearly filtered dataset. 

However, CCM shows a different behavior: instead of presenting a local 

maximum among the smallest τ values as previously reported (Figure 6-18), 

it decreased monotonically presenting an inflection point in the same position 

and an asymptotic trend towards τ=20 samples. Moreover, CCM provided 

higher values for all τ and anesthesia states, suggesting a higher correlation 

among consecutive set of points in the attractor.  

The ability to differentiate between consecutive anesthesia states of the 

features extracted from the Poincaré plot analysis is presented in Figure 6-22.  

When the nonlinear filter is applied, the only state that can be identified with 

Poincaré plot indicators is the transition between LOC and anesthesia, for 

which almost all τ provide statistically significant results.  
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Figure 6-21 Evolution of SD1, SD2, SDratio, SDarea, CCM and R as a function of 
τ for the nonlinearly filtered REG signals collected in the anesthesia states under 
analysis: awake, LOC, anesthesia, BSR and LOC. Median values are graphed, together 
with the 25th and 75th quartiles represented with dashed lines. 
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Figure 6-22 Statistical significance (p-values) obtained for the comparison of the 
median values of each Poincaré feature among consecutive anesthesia states, 
computed on the nonlinearly filtered dataset. Grey areas represent intervals in which 
the graphed parameter shows statistical significance of p-value<0.01. 
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Even though there is a wide range of τ values providing successful results 

for the transition between LOC and anesthesia, the final value of τ = 20 

samples was used to be consistent with the results on the linearly filtered 

dataset. The values obtained with this time lag are summarized in Table 6-5.  

A graphical representation of the values presented in Table 6-5 is 

provided in Figure 6-23. The trends of all the Poincaré plot descriptors are 

consistent with the ones obtained when signals were preprocessed with a 

linear filter. The only noticeable difference is the standard deviation of CCM 

values at LOC, that is significantly smaller with the nonlinear filter approach.   

 

 

Table 6-5 Average values (mean ± standard deviation) of each Poincaré plot feature 
in the selected anesthesia states considering τ = 20 samples. 

 AWAKE LOC ANES BSR ROC 

SD1 

 

0.015  

± 0.010 

 

0.015  

± 0.009 

0.010  

± 0.003 

0.010  

± 0.004 

0.011  

± 0.005 

SD2 

 

0.042  

± 0.025 

 

0.056  

± 0.043 

0.026  

± 0.011 

0.030  

± 0.014 

0.034  

± 0.020 

SDratio 

 

0.360 ± 

0.115 

 

0.309 ± 

0.091 

0.395 ± 

0.091 

0.358 ± 

0.084 

0.335 ± 

0.087 

SDarea 

 

0.00080  

± 0.00097 

 

0.00117  

± 0.00159 

0.00029  

± 0.00018 

0.00036  

± 0.00030 

0.00046  

± 0.00049 

CCM 

 

0.00004  

± 0.00003 

 

0.00003  

± 0.00001 

0.00004  

± 0.00002 

0.00004  

± 0.00001 

0.00004  

± 0.00002 

R 
0.763  

± 0.135 

0.817  

± 0.094 

0.724  

± 0.107 

0.768  

± 0.095 

0.792  

± 0.095 
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Figure 6-23 Trends for (a) SD1, (b) SD2, (c) SDratio, (d) SDarea, (e) CCM and (f) 
R across the different anesthesia states for τ=20 samples, represented as mean ± 
standard deviation. 

 

Regarding the statistical significance of the differences between 

consecutive anesthesia states, when using the nonlinear filter p-values lower 

than the established threshold for significance were only achieved for the 

transition from LOC to anesthesia. The lowest p-value was provided by 

SDarea, closely followed by SD2 and SD1 (Table 6-6).  

 

Table 6-6 Statistical significance (p-value) of the differences between consecutive 
anesthesia states for the Poincaré plot extracted features, considering τ=20 samples. 

FROM 

TO 
AWAKE 

LOC 

LOC 

ANES 

ANES 

BSR 

BSR 

ROC 

SD1 0.68913 0.00016 0.27666 0.93531 

SD2 0.12209 0.00015 0.90650 0.61481 

SDratio 0.02818 0.00127 0.04259 0.03095 

SDarea 0.25628 0.00014 0.42332 0.73319 

CCM 0.02010 0.00465 0.10659 0.41761 

R 0.02818 0.00138 0.04500 0.02687 
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6.4.3 Confounding factors 

 

The interpretation of the results provided in the previous section shall be 

done together will the analysis of confounding factors that might play a role 

in CBF changes. The correlations between the Poincaré plot descriptors and 

the main characteristics of the patients are presented in Table 6-7.  Patient 

weight and BMI present moderate correlations with the features extracted 

from Poincaré plot analysis, either using the linear or nonlinear filter for 

preprocessing. SDratio and R present the highest correlations, while SD1 the 

lowest. During LOC those correlations are low or very low, and after the 

transition to the anesthesia period they raise again, providing even higher 

values than for the awake state, with SD2 and CCM showing the highest 

values with statistical significance. Moreover, in the anesthesia period, patient 

age also correlates with SDratio, R and CCM, with higher ages associated to 

higher values of R and lower values for SDratio and CCM. Regarding BSR 

and awake, correlations are in general lower, with only a statistically significant 

moderate correlation detected in BSR between BMI and SD2.  

 

Table 6-7 Spearman correlation of each Poincaré feature with patient demographics 
for every clinical state, either using the linear filter or the nonlinear filter. Cells are 
colored as indicated in Figure 6-24 and statistical significance is indicated in bold. 

 Linear filter Nonlinear filter 

Awake Age Height Weight BMI Age Height Weight BMI 

SD1 0.246 -0.064 0.269 0.309 0.241 -0.060 0.249 0.287 

SD2 0.346 -0.028 0.477 0.500 0.337 -0.018 0.482 0.502 

SDratio -0.165 -0.223 -0.589 -0.505 -0.113 -0.215 -0.597 -0.511 

SDarea 0.316 -0.034 0.393 0.421 0.282 -0.026 0.347 0.372 

CCM -0.104 -0.170 -0.552 -0.487 -0.101 -0.147 -0.563 -0.486 

R  0.165 0.223 0.589 0.505 0.113 0.215 0.597 0.511 

LOC                 

SD1 0.040 -0.006 0.110 0.092 -0.004 -0.003 0.053 0.027 

SD2 -0.098 0.021 0.107 0.075 -0.083 -0.004 0.085 0.057 

SDratio 0.215 -0.082 -0.124 -0.067 0.142 -0.064 -0.208 -0.167 

SDarea -0.001 0.018 0.127 0.099 -0.027 0.013 0.079 0.050 

CCM 0.074 -0.058 -0.150 -0.099 -0.039 -0.057 -0.165 -0.120 

R  -0.215 0.082 0.124 0.067 -0.142 0.064 0.208 0.167 
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Table 6-7 (Continuation) 

Anes                 

SD1 0.106 -0.083 0.373 0.436 0.019 -0.166 0.232 0.320 

SD2 0.371 -0.113 0.538 0.625 0.363 -0.125 0.523 0.612 

SDratio -0.571 0.035 -0.550 -0.600 -0.590 -0.024 -0.577 -0.598 

SDarea 0.266 -0.104 0.458 0.533 0.192 -0.153 0.372 0.462 

CCM -0.540 0.117 -0.512 -0.589 -0.615 -0.023 -0.601 -0.627 

R  0.571 -0.035 0.550 0.600 0.590 0.024 0.577 0.598 

BSR                 

SD1 0.214 -0.210 0.237 0.336 0.178 -0.222 0.153 0.278 

SD2 0.236 -0.202 0.357 0.448 0.244 -0.260 0.302 0.441 

SDratio -0.149 0.127 -0.267 -0.387 -0.125 0.119 -0.270 -0.338 

SDarea 0.209 -0.182 0.315 0.414 0.176 -0.201 0.245 0.365 

CCM -0.172 0.173 -0.134 -0.276 -0.141 0.172 -0.109 -0.202 

R  0.149 -0.127 0.267 0.387 0.125 -0.119 0.270 0.338 

ROC                 

SD1 -0.031 -0.037 0.210 0.242 -0.113 -0.019 0.154 0.183 

SD2 0.047 -0.031 0.228 0.264 0.014 -0.035 0.209 0.240 

SDratio -0.192 -0.036 -0.167 -0.171 -0.206 0.005 -0.192 -0.205 

SDarea 0.012 -0.031 0.234 0.264 -0.017 -0.035 0.205 0.238 

CCM -0.139 -0.022 -0.211 -0.216 -0.163 0.190 -0.010 -0.078 

R  0.192 0.036 0.167 0.171 0.206 -0.005 0.192 0.205 

 

 

 

 

Figure 6-24 Spearman correlation values matching with colors and qualitative level. 

 

 

Very High abs(R) ≥ 0.8

High 0.8 > abs(R) ≥ 0.6

Moderate 0.6 > abs(R) ≥ 0.4

Low 0.4 > abs(R) ≥ 0.2

Very low 0.2 ≥ abs(R)



6 Poincaré plot Analysis of REG signals 138 

 
 

Patient demographics have proved to be correlated with the Poincaré plot 

descriptors in Awake, anesthesia (Anes) and, to a lower extent, BSR. 

Furthermore, the analysis of the transitions between consecutive states and 

patient characteristics also provided significant correlations to be considered 

(Table 6-8). For instance, weight and BMI are correlated with SDratio, CCM 

and R in the transition between awake and LOC periods, while in the 

transition from LOC to anesthesia age plays a more significant role showing 

significant moderate correlations with SD2, SDratio, CCM and R. In all other 

transitions, correlations were either low or very low.  

Besides patient demographics, other clinical variables are susceptible to 

provoke changes in Poincaré plot descriptors, such as HR, propofol effect site 

concentrations (CePropo), remifentanil effect site concentrations (CeRemi), 

MAP and the depth of anesthesia index, qCON. Those variables were also 

analyzed looking for synergies between their evolution and the information 

extracted from the signal attractor through Poincaré plot analysis (Table 6-9). 

Both MAP and CePropo provide moderate correlations with the variables 

under study in the transition between awake and LOC, but only the pair SD2 

and CePropo provides statistically significant results when using the nonlinear 

filter. However, between the states of LOC and anesthesia (Anes), CePropo 

presents significant correlations with SD1, SD2 and SDarea for linear filter 

processing, and with SD1, SD2, SDarea and CCM under the nonlinear filter 

assumption. The higher the propofol dosage, the higher the SD1 and SD2 

values, suggesting enhanced complexity under higher anesthetic dosage 

changes. Additionally, HR presents significative moderate correlations with 

SDratio, CCM and R when using the linear filter and with CCM when 

preprocessing is performed with the nonlinear algorithm.  

 

 

 

 

 

 

 



139 Chapter 6 

 

 

Table 6-8 Spearman correlation between patient demographics and differences in 
Poincaré plot descriptors for every transition between consecutive clinical states 
analyzed, either using the linear filter (left side) or the nonlinear filter (right side). 
Cells are colored as a function of the correlation value (see Figure 6-24) and 
statistical significance of the correlations is indicated in bold type. 

 
Linear filter Nonlinear filter 

Awake –  
LOC 

Age Height Weight BMI Age Height Weight BMI 

SD1 -0.147 0.028 -0.091 -0.169 -0.113 0.046 -0.048 -0.126 

SD2 -0.289 -0.002 -0.221 -0.285 -0.278 -0.021 -0.245 -0.305 

SDratio 0.298 0.271 0.490 0.415 0.253 0.259 0.498 0.434 

SDarea -0.240 0.046 -0.091 -0.167 -0.184 0.007 -0.058 -0.124 

CCM 0.096 0.335 0.434 0.375 0.084 0.215 0.465 0.429 

R  -0.309 -0.307 -0.489 -0.402 -0.255 -0.244 -0.493 -0.437 

LOC –  
Anes                 

SD1 0.288 -0.072 0.204 0.294 0.278 -0.091 0.173 0.281 

SD2 0.421 -0.024 0.245 0.322 0.425 -0.061 0.234 0.326 

SDratio -0.520 -0.009 -0.259 -0.303 -0.523 -0.121 -0.354 -0.346 

SDarea 0.309 -0.097 0.159 0.252 0.300 -0.090 0.166 0.252 

CCM -0.398 0.148 -0.182 -0.288 -0.509 -0.037 -0.403 -0.436 

R  0.495 0.015 0.240 0.280 0.550 0.138 0.389 0.367 

Anes- 
BSR                 

SD1 -0.075 0.231 0.023 -0.129 -0.252 0.222 0.041 -0.100 

SD2 0.073 0.152 -0.002 -0.100 0.077 0.135 -0.045 -0.114 

SDratio -0.122 -0.025 -0.059 -0.100 -0.102 0.002 -0.235 -0.261 

SDarea 0.066 0.172 -0.018 -0.139 -0.107 0.181 0.077 -0.029 

CCM -0.182 0.224 -0.106 -0.300 0.005 0.386 0.199 0.021 

R  0.164 0.007 0.059 0.107 0.114 -0.030 0.240 0.289 

BSR- 
ROC                 

SD1 -0.217 0.178 -0.059 -0.083 -0.209 0.165 -0.036 -0.077 

SD2 -0.184 0.177 -0.137 -0.191 -0.211 0.204 -0.103 -0.176 

SDratio 0.100 -0.354 -0.005 0.189 0.115 -0.297 0.057 0.177 

SDarea -0.196 0.206 -0.115 -0.156 -0.260 0.259 -0.045 -0.138 

CCM 0.189 -0.259 -0.055 0.111 0.021 0.074 0.274 0.282 

R  -0.109 0.357 0.025 -0.164 -0.136 0.297 -0.069 -0.184 
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The transition between anesthesia and BSR shows many interactions 

among the variables being analyzed. While most of them did not show 

statistical significance, the qCON index shows high and significative 

correlations with SD1, SD2 and SDarea, despite of the technique used for 

signal preprocessing, suggesting a correlation between the anesthetic depth 

and the features extracted from REG signals. Moreover, to further support 

this relationship, when using the nonlinear filter, the correlations between 

CePropo and SD1, SD2 and SDarea presented moderate correlations with 

statistical significance.  

Finally, when considering the existing changes between BSR and ROC 

periods, the clinical variable that provides the most relevant correlations with 

the Poincaré plot descriptors is the MAP. Under the nonlinear filter 

assumptions, its correlation with SD1 and SDarea is very high, followed by a 

high correlation with SD2. For the linear filter analysis, correlations are high 

but not statistically significant, except for the pair CCM-MAP. Those results 

are a sign of the important role of MAP in the regulation of CBF, analyzed 

through the complexity of REG signals. 

 

Table 6-9 Spearman correlation between clinical variables related to depth of 
anesthesia and hemodynamics and differences in Poincaré plot descriptors for every 
transition between consecutive clinical states analyzed, either using the linear filter 
(left side) or the nonlinear filter (right side). Cells are colored as a function of the 
correlation value (see Figure 6-24) and statistical significance of the correlations is 
indicated in bold type. 

 
Linear filter Nonlinear filter 

Awake - 
LOC 

HR 
Ce 

Propo 
Ce 

Remi 
MAP qCON HR 

Ce 
Propo 

Ce 
Remi 

MAP qCON 

SD1 0.128 0.257 0.199 -0.069 -0.132 0.162 0.247 0.287 -0.077 -0.050 

SD2 -0.068 0.447 0.135 0.267 -0.178 -0.060 0.455 0.173 0.275 -0.151 

SDratio 0.209 -0.266 -0.018 -0.507 0.190 0.114 -0.177 0.061 -0.482 0.151 

SDarea 0.102 0.299 0.110 0.011 -0.210 0.135 0.252 0.173 -0.044 -0.152 

CCM 0.114 -0.187 -0.040 -0.518 -0.107 0.131 -0.214 0.027 -0.380 -0.024 

R  -0.203 0.195 0.018 0.559 -0.187 -0.134 0.166 -0.048 0.482 -0.134 

LOC- 
Anes                     

SD1 0.105 0.548 0.065 0.012 -0.095 0.040 0.454 0.146 -0.110 -0.105 

SD2 -0.132 0.471 0.018 0.020 -0.129 -0.115 0.489 0.053 0.022 -0.138 

SDratio 0.426 -0.330 0.011 -0.028 0.135 0.340 -0.350 0.116 -0.138 0.121 

SDarea 0.031 0.522 0.057 0.039 -0.085 0.019 0.471 0.055 0.024 -0.069 
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Table 6-9 (Continuation) 

CCM 0.509 -0.202 -0.210 0.092 0.167 0.417 -0.451 -0.020 0.010 0.198 

R  -0.420 0.323 -0.010 0.047 -0.144 -0.343 0.371 -0.073 0.132 -0.124 

Anes- 
BSR                     

SD1 0.097 0.557 0.368 0.511 0.681 0.329 0.604 0.300 0.566 0.672 

SD2 -0.039 0.564 0.175 0.384 0.651 0.054 0.532 0.261 0.402 0.704 

SDratio 0.509 0.250 0.068 0.178 0.147 0.409 0.075 0.221 0.283 -0.034 

SDarea 0.059 0.561 0.239 0.466 0.626 0.241 0.575 0.318 0.452 0.608 

CCM 0.132 0.414 -0.036 0.041 0.041 0.138 0.075 -0.032 -0.160 -0.397 

R  -0.502 -0.204 -0.096 -0.219 -0.150 -0.433 -0.032 -0.229 -0.283 0.009 

BSR- 
ROC                     

SD1 0.331 0.415 -0.383 0.683 0.379 0.338 0.337 -0.368 0.833 0.462 

SD2 0.171 0.434 -0.365 0.667 0.326 0.155 0.413 -0.368 0.733 0.309 

SDratio 0.362 -0.160 0.154 -0.600 0.158 0.270 -0.235 0.187 -0.583 0.164 

SDarea 0.338 0.346 -0.365 0.750 0.352 0.296 0.369 -0.395 0.817 0.390 

CCM 0.339 -0.145 0.208 -0.767 -0.097 0.343 0.073 0.006 0.117 0.154 

R  -0.368 0.144 -0.158 0.600 -0.184 -0.258 0.228 -0.197 0.533 -0.178 

 

 

6.5 Discussion of the results obtained in apnea 

detection 

 

In this work, it has been shown that several features extracted from 

Poincaré plots differ from REG signals extracted from baseline and apnea 

periods (SDarea, R and CCM). When compared to the performance of the 

classical parameters based on REG pulse wave geometry, Poincaré related 

features outperformed the former ones since only one of the geometric time 

domain features, the systolic area AreaSyst, showed the ability to detect apneas 

(see Chapter 5).  

Different time lags (τ) have been tested in Poincaré plot analysis; lower 

values optimized the detection of apnea periods both when either using a 

linear filter or a nonlinear filter for data preprocessing. No previous work has 

been found on the delayed coordinates state-space representation for REG 

signals therefore results have been compared to the ones provided in 
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publications based on other biological signals, namely heart rate variability.  

As published by Lerma et al. [203], increasing the time lag should increase 

SD1, decrease SD2 and therefore increase SDratio. Our findings support 

these trends for the three descriptors of the reconstructed attractor, showing 

a curvilinear increase for SD1, a curvilinear decrease for SD2 and a linear 

increase for their ratio (SDratio). Although SD1 and SD2 did not show any 

statistically significant differences among apnea and baseline groups, their 

ratio (SDratio) was able to distinguish between both for τ lower than 53 

samples (0.21s) for linearly filtered data and for τ lower than 48 samples (0.19s) 

under the nonlinear filter assumption.  It is noticeable that the SDarea 

descriptor, which integrates SD1 and SD2 information, evolves in an 

exponential fashion as τ increases but shows no significant differences 

between groups. The correlation parameter R, having a definition very close 

to SDratio and showing a negative correlation close to -1, has the opposite 

behavior when τ increases, keeping the statistical significance for almost the 

same τ range.    

The CCM feature was also computed for all the reconstructed attractors, 

showing a monotonic decrease for τ up to 20 samples and a stable value for 

higher time lags. It demonstrated the ability to distinguish (with statistical 

significance) between groups for all tested τ values, except for τ=1 sample 

when the nonlinear filter was used. Karmakar et al. [217] showed that CCM 

outperformed SD1 and SD2 when applied to heart rate variability signals used 

to identify arrythmia and congestive heart failures, due to the fact that CCM 

quantifies the underlying temporal dynamics of the system which are not 

considered in the definition of the standard Poincaré features. They concluded 

that a decrease in CCM indicates increased regularity and decreased variability 

in the signal. In this work, CCM provides better results than SD1 and SD2 

when used as a predictor for apneas, but SDratio offers even lower p-values 

in the hypothesis testing. Therefore, short term (SD1) and long term (SD2) 

variability are not affected by apneas in a significant manner, but their ratio 

and CCM value are, which could be interpreted, following Karmakar’s 

conclusions, as an increased regularity and less variability present in baseline 

signals.   

The significance level of SDratio, R and CCM depends on the time lag 

used for the attractor reconstruction as shown in Figure 6-5 and Figure 6-11. 

The τ values for which the differences among apnea and baseline groups were 

optimized were compared to the criteria traditionally used for the time lag 

determination (summarized in Table 6-1). All those criteria aim at defining a 

time lag for which the signal samples are still correlated or, in other words, 
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the correlation width [211]. The results from this work show that low τ values 

provide the best ability to differentiate between apneas and baselines and that 

for high values, as illustrated in Figure 6-3 and discussed in other publications 

[209], the attractor deformation occurs.  This suggests that the τ range used (1 

to 70 samples) is too wide and that higher τ, instead of further unfolding the 

attractor, result in a deformation of its underlying structure.   

The time lags for which SDratio and R are optimal are included in the set 

of τ values recommended in the literature when using 1/20 of the first relative 

minimum of the correlation as the reference criteria. For CCM, the best 

performance is achieved for τ values closer to 1/10 of the period. Other 

methods usually applied in literature for other physiological signals propose a 

set of τ values that would not be suitable for this application. This suggests 

that those criteria might need to be reviewed for REG signals since the work 

herein presented indicates that they contain useful clinical information, but it 

is not available, or maximized, by the same time lags commonly accepted for 

other applications.   

Besides the possibility of using 1/10 or 1/20 of the first minimum of 

autocorrelation function as the range of τ values to be investigated, the 

evolution of the CCM parameter over the different time lags suggests that 

CCM could be a useful reference to determine the maximum τ value for which 

the system should be tested. The trends of CCM as a function of τ (Figure 

6-4f and Figure 6-10f) clearly show a first stage in which CCM decreases 

monotonically until a plateau is reached in both apnea and baseline signals. 

This inflection point in CCM could be interpreted as the loss of correlation 

between the signal and its delayed version, presenting CCM as a suitable 

criterion to identify the range of τ values useful for this application.  

Furthermore, the inflection point in the CCM trend is consistent with the 

second derivative sign criteria presented in Table 6-1 (τ=19), indicating that 

optimal range within the 1 to 70 samples interval for all studies parameters is 

delimited by this upper threshold.  Instead of targeting a specific τ value for 

Poincaré plot analysis, this work suggests that an interval of time lags should 

be used, which confirms Lerma’s findings [203], and that this interval could 

be limited by the inflection point observed in the CCM parameter.   

An important limitation of this study is related to the inexistence of 

previous results, which does not allow the comparison between the presented 

findings with other research outcomes of REG signals. However, since 
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information related to REG changes has been obtained by means of feature 

extraction from the Poincaré plot analysis, the findings indicate that this topic 

deserves a deeper look with an extended and independent database to validate 

the results herein presented. Furthermore, since REG signals for apnea and 

baseline periods have shown to present statistical differences in the features 

extracted, this suggests that CBF changes provoked by apneas are traceable 

by means of REG recordings. 

 

6.6 Discussion of the results obtained in anesthesia 

 

The Poincaré plot descriptors of the General Anesthesia Dataset1 were 

computed for a range of τ values from 1 to 20 samples, after the preprocessing 

stage with either the linear filter or the nonlinear filter. Very few differences 

were detected when comparing the evolution of the Poincaré extracted 

features for the linearly filtered and nonlinearly filtered datasets. The most 

relevant one affected CCM only, which presented a local maximum for low τ 

in the data preprocessed with the linear filtered that was not detected in the 

results from the nonlinear filter.  

When the linear filter was used for preprocessing, statistical differences 

were found between Awake-LOC and LOC-Anes transitions, with a wide 

range of parameters showing statistically significant differences (SDratio, 

CCM and R in the Awake-LOC transition and all features but CCM in the 

LOC-Anes transition). Within the 1 to 20 samples interval of τ tested, the 

upper values concentrated the highest amount of statistically singificant 

differences among anesthetic states. It is therefore concluded that a value of 

τ = 20 samples is the most appropriate one for the analysis of REG signals 

during anesthesia.  

The nonlinearly filtered dataset provided a weaker performance in terms 

of identifying different anesthetic states, since only the transition from LOC 

to Anes was supported with statistically meaningful results. However, it 

should be noted that all Poincaré descriptors and all τ >4 values were able to 

identify this transition. The enhanced performance associated to the linearly 

filtered data might be due to the reduced variability of REG signals 

preprocessed with the nonlinear filter, as a result of the reduction of the 

dimension of attractor neighborhoods as presented in Chapter 4. 
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Several confounding factors were considered to study the dependence of 

Poincaré plot descriptors with patient characteristics. Age, weight and BMI 

showed moderate to high correlations with Poincaré based features in the 

Awake, Anes and BSR states, as well as in the transitions from Awake to LOC 

and from LOC to Anes. Older patients show higher SD2 while this trend is 

not followed in SD1, resulting in lower SDratio scores. Age seems therefore 

to increase long term variability but not short term variabilty of Poincaré plots 

reconstructed from REG time series under general anesthesia. A higher 

weight (and BMI) was also related to an increase in SD2 and a decrease in 

SDratio, suggesting that differences in weight are related to a higher long term 

variability but less related to the short term variability. Those results are 

consistent with previously published data, suggesting that age and BMI are 

important factors when analyzing CBF measurements [218]–[220].  

Correlations between global hemodynamic variables (HR and MAP) and 

Poincaré plot descriptors were also identified. HR showed moderate 

correlations in the transition between LOC and Anes, with SDratio, CCM and 

R providing statistically significative results for the linear filter option but 

limited to CCM for the nonlinear filter. MAP provided high and very high 

correlations in the transition between BSR and ROC. Nonetheless, most of 

them, mainly when using the linear filter, lacked statistical significance. This 

might be due to a lower sample size in the BSR group when compared to 

other anesthesia states. Moreover, in this particular case, CCM seems to be 

highly affected by the pre-procesing filter choice. The nonlinear filtered data 

show higher correlations with MAP, the significant ones being with SD1, SD2 

and SDarea, suggesting increasing complexity while MAP increases. MAP 

does not show singifcant correlations in any other transition. This could be 

interpreted as an interaction between MAP and REG features limited to very 

deep anesthesia scenarios, which could be associated with clinical conditions 

close to the lower limit of CBF autoregulation.   

Regarding the influence of drug dosages on the Poincaré plot extracted 

features, CeRemi did not show statistically significant results for any 

correlation, even though it is well know that remifentanil has deep effects in 

global hemodynamics [221]. However, CePropo and qCON values did, 

probably due to their relationship with cerebral metabolsim [222], [223]. 

Those results suggest that CBF autoregulation is preserved and therefore CBF 

is not directly dependent on hemodynamic effects of remifentanil and in the 

case of propofol correlations, significant results are not due to the 
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hemodynamic depression but to its effects in the brain activity, also reflected 

by the qCON correlations.   

Two limitations on the correlation analysis should be considered. The 

sample size in this dataset is limited to 40 female patients, going down to 22 

for BSR episodes, therefore the results cannot be extrapolated to other 

populations. Moreover, correlation provides an overview on how each pair of 

variables evolves but does not allow to infer causal relationships between 

those physiological signals. Other techniques, such as the analysis of causal 

interactions (see Chapter 9), are needed to interpret how anesthesia, general 

hemodynamics and CBF evolve during general anesthesia under propofol and 

remifentanil.  

 

6.7 Conclusions 

 

The information extracted from the Poincaré plot descriptors of REG 

signals during an apnea challenge and under anesthesia suggests that this 

analysis might be able to reflect CBF changes in REG waves. The 

performance of those parameters is dependent on the time lag τ used to 

reconstruct the signal attractor. Considering all the results previously 

discussed, a time lag of 20 samples (0.08s) seems the most appropriate for this 

application.  

SDratio, R and CCM proved their ability to detect apneas, despite the 

preprocessing filter used for data preparation. However, in REG data 

collected under general aneshesia, the linear filter provided better 

performance with a larger set of statistically significant results: all the Poincaré 

plot descriptors under analysis detected differences either in the transition 

from Awake to LOC or in the transtion from LOC to Anes, with SDratio and 

R proving to be effective in both cases.  

Finally, Poincaré plot descriptors were correlated to patient 

characteristics (age, weight and BMI), as well as to global hemodynamic 

changes (HR and MAP) and anesthetic depth (CePropo and qCON). This 

suggests an interaction between the anesthetic dosage, depth of anesthesia and 

global hemodynamics that will be further analyzed in Chapter 9.  

 



 

 

 

 

 

 

 

Chapter 7 
7. Entropy Analysis of 

REG Signals 
 

 

 

 

 

 

Abstract 

This chapter explores different entropy-based algorithms in order to 

assess their ability to extract CBF information from REG signals. The selected 

algorithms were applied to REG signals during apnea and anesthesia, 

providing successful results in the characterization of cerebral hemodynamic 

changes in both scenarios.    

7 
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7.1 Introduction 

One of the most relevant problems that arise from REG signals is the 

interferences provoked by movements, respiration and contamination with 

extracranial blood flow [54], [57], [58]. Consequently, REG recordings suitable 

for processing are often short and noisy, and statistics adapted to those 

conditions are needed to be able to extract relevant clinical information from 

REG. Based on the hypothesis that apnea would provoke changes in REG 

signals under the form of increased complexity, several entropy metrics robust 

in noisy environments are assessed for REG analysis during breath holding.  

Pincus et al. [224] presented the Approximate Entropy (ApEn), as a 

relative entropy metric suitable for short and noisy datasets, applicable to 

biomedical signals. ApEn approximates the exact regularity statistic 

Kolmogorov-Sinai Entropy and reflects the predictability of a time series by 

exploring repetitive patterns in the data. It has been extensively used in heart 

rate variability (HRV) analysis as for example to detect heart failure [225] or 

to identify differences in HRV in diabetic patients [226]. Moreover, ApEn has 

also been used to study the electroencephalograph (EEG) regularity during 

sleep [227], [228] and under sevoflurane anesthesia [229]. Even though those 

clinical applications have shown the ability of ApEn to correlate with 

physiological conditions, there is lots of controversy on its use. It has been 

reported to be inconsistent, lower than expected for short records and thus 

dependent on the length of the time series [230]. Furthermore, to compute 

the ApEn value of a time series, three parameters need to be defined: the 

segment length (N), the embedded dimension (m) and the noise threshold (r). 

The choice of those three parameters influences the ApEn result, therefore 

limiting its use to relative measurements.   

In order to compensate for the limitations of ApEn, Richman and 

Moorman [230] proposed a new entropy metric, called SampEn. The main 

difference between the computation of ApEn and SampEn is that SampEn 

does not count self matches. However, it still requires the a priori definition 

of the same parameters (N, m and r). 

SampEn has been used in different type of biomedical signals, as for 

example to characterize human gait signals [231], as a detector of driving 

fatigue in HRV signals [232] or to study EEG brain maturation in newborns 

[233].  Advantages of SampEn over the use of ApEn have also been reported, 

indicating that ApEn presents inconsistencies that are avoided by using 

SampEn instead [234] and that it is a better choice for short datasets [235].  
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Both ApEn and SampEn rely on the Heaviside function to define the 

similarity between two patterns. Due to its binary output, pairs of patterns are 

either included or rejected before the entropy calculation. In contrast, 

FuzzyEn was defined as a new entropy metric [213], in which the Heaviside 

function classifying the patterns as similar or not is replaced by a fuzzy 

function that computes a membership coefficient ranging from 0 to 1, where 

1 maximizes the membership likelihood. Consequently, in addition to the 

selection of N, m and r, FuzzyEn requires a fourth parameter, n, which is the 

gradient of the boundary of the exponential function used to assess similarity. 

When compared to ApEn and SampEn, FuzzyEn outperformed the other 

measures in electromyogram (EMG) signals characterization [213], as well as 

in Alzheimer’s disease detection in electrocardiographic signals (ECG) [236]. 

Those three Entropy metrics rely on the selection of several parameters 

and there is lots of controversy around how they should be selected and the 

bias they introduce in the final entropy values. Even though some methods 

have been proposed to determine those values [237]–[240], no consensus has 

been reached so far. For that reason, in this chapter, other metrics will be used 

not requiring the definition of so many parameters: Shannon Entropy (SE) 

and Corrected Conditional Entropy (CCE).  

Shannon Entropy (SE) was introduced by Shannon to be applied in the 

Information Theory domain [241] and reflects the regularity of the 

information generated by a defined source. For its use in biomedical 

applications, at a sample level, the parameters to be defined are the signal 

length N to be considered, and the number of quantization levels (ε) used for 

signal discretization. Additionally, in some cases, SE is applied to sequences 

of symbols rather than at a sample level and requires therefore an extra 

parameter, the embedding dimension (m). SE has provided successful results 

when applied to EEG signals for person identification [242] and monitoring 

of intrapartum fetal heart rate dynamics [243].     

Corrected Conditional Entropy (CCE) is an entropy measure introduced 

by Porta [244] that reduces the bias of regularity existing in Conditional 

Entropy. It is based on the definition of SE and has been used mainly on HRV 

signals, in some cases showing the expected trends but without statistical 

significance [245], [246], and in others providing successful results, such as the 

ones obtained by Viola et al. [247], describing a reduction in complexity of 

HRV signals during Rapid Eye Movement (REM) sleep with aging.  
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The entropy measures herein presented have not been previously applied 

to REG signals to the extent of the knowledge of the author, but they have 

been extensively used for diagnosis purposes in other biomedical signals, such 

as the previously mentioned examples, mainly on electromyography (EMG) 

and HRV. Nonetheless, entropy measures have been applied to the study of 

plethysmography signals, which also reflect a pulse wave and are therefore 

closer to REG signals than EMG and HRV. For instance, Pham et al.[248] 

proved that SampEn of plethysmography records is a good predictor of 

mental disorder detection, therefore proving the usefulness of entropy 

assessment in pulse waves.   

The main goal of this work is to study if entropy metrics applied to REG 

signals can detect changes in CBF during breath holding -apnea- and analyze 

which parameters would optimize the results. The underlying hypothesis is 

that entropy would increase during apneas, since under those circumstances 

CBF changes take place, altering the regular baseline pattern of REG signals 

and thus reducing regularity and increasing entropy. Following this 

preliminary analysis, the second goal is to apply the entropy metrics identified 

for apnea detection to REG signals collected during anesthesia, to study which 

entropy metrics would be suitable for CBF monitoring during surgeries 

requiring general anesthesia, which are known to provoke CBF changes. 

 

7.2 Methods 

7.2.1 Entropy definitions 

This section provides information on the algorithms used for entropy 

calculations. Different entropy metrics will be calculated and tested: ApEn, 

SampEn, FuzzyEn, SE and CCE. The parameters involved in the entropy 

evaluation will be a priori identified: the embedding dimension (m), the signal 

length (N), the multiplicand of the standard deviation to define the noise level 

(r), the gradient of the fuzzy membership function (n) and the number of 

quantization levels (ε). 

7.2.1.1 Shannon Entropy 

The Shannon Entropy (SE) [35] assesses the amount of information 

generated by a system. It can be used either locally or globally [249] and, for 

consistency with the other entropy metrics evaluated in this work, SE will be 

applied to consecutive patterns of length m. Hence, from a time series x(n) of 

length N, quantized in ε levels, a phase space reconstruction with dimension 
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m is built, resulting in a set of vectors xm
ε (i) = (xε(i), xε(i − 1), … , xε(i −

m + 1)). The SE of the time series is then computed as 

SE(m, ε) = −∑p(xm
ε )log

xm
ε

 p(xm
ε ) (7.1) 

where p(xm
ε ) corresponds to the joint probability of the xm

ε  pattern and the 

sum is performed across all the different patterns. This entropy metric 

requires the definition of the number of quantization levels (ε), the embedding 

dimension (m) and the length of the input signal (N). Thus, in this work, SE 

for apnea detection will be computed for a set of quantization levels ε ranging 

from 10 to 50, in steps of 10, with dimensions m from 2 to 4 and a set of 

signal lengths N = {1000, 2000, 3000, 4000} samples. The set of parameters 

optimizing apnea detection will be applied to REG signals under general 

anesthesia.  

7.2.1.2 Corrected Conditional Entropy 

Corrected Conditional Entropy[244] is based on the correction applied 

to the Conditional Entropy (CE) definition. CE is calculated as the variation 

of SE in two consecutive values for the embedding dimension, m:  

CE (m, ε) = − ∑ p(xm−1
ε )

xm−1
ε

∑p(
xm
ε

xm−1
ε ) log p (

xm
ε

xm−1
ε ) 

xm
ε

(7.2) 

where the first term sums across all the different xm−1
ε  patterns, p(xm−1

ε ) 

corresponds to the joint probability of the xm−1
ε  pattern and the second term 

covers all m samples in the pattern, with  p(xi
ε/xm−1

ε ) representing the joint 

probability of the m-th pattern conditioned to the preceding m-1 patterns. 

Therefore, CE can be formulated as a function of SE: 

CE(m, ε) = SE(m, ε) − SE(m− 1, ε) (7.3) 

Porta et al. proposed in [244] a correction to CE in order to compensate 

for unique patterns that should theoretically increase entropy but reduce it 

when using the CE definition. The proposed correction consists in adding a 

corrective term and defining CCE as: 

CCE(m, ε) = CE(m, ε) + SE(1, ε) perc(m, ε) (7.4) 
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where perc(m, ε) is the percentage of single points in the m-dimensional 

space. Moreover,  the same authors propose the use of the minimum of the 

CCE entropy, CCEmin, as an approximation to the entropy of the signal, 

avoiding having to define the value for m in advance for the entropy 

calculation [250] [251]. Additionally, they introduced the regularity index ρ, 

computed as: 

ρ = 1 −min(NCCE(m, ε)) (7.5) 

to estimate the overall regularity of a time series. In equation 7.5, NCCE refers 

to the normalized CCE by SE(1,ε), resulting in a regularity index providing 

values between 0 and 1, representing maximum and minimum complexity, 

respectively.  

CCE and the regularity index ρ were computed for all the signals in the 

Apnea-Baseline experimental dataset. Analogous to the parameter set chosen 

for SE, CCE was computed with embedding dimension m from 2 to 4, 

quantization levels ε of 10, 20, 30, 40 and 50 while the length N of the 

segments used ranged from 1000 to 4000, in steps of 1000 samples. Results 

obtained with this dataset were afterwards applied to REG signals in General 

Anesthesia Dataset 1. 

7.2.1.3 Approximate Entropy 

ApEn [224] allows to quantify the regularity of a time series without the 

need of previous knowledge of the dynamics of the system [249], resulting in 

larger values for increasing complexity in the data. ApEn reflects the 

likelihood that patterns that are close, within a defined distance r, in a m-

dimensional space remain close within the same tolerance when defined in a 

m+1 dimensional space.  

Given a digital signal u(n), with length of N samples, values for the 

embedded dimension m and the filtering level r are fixed a priori. A set of 

vectors, x, in the Rm dimensional space are then created: 

xi = [u(i), ⋯ , u(i + m − 1)] (7.6) 

 

For each i, 1 ≤ i ≤ N-m+1, an estimation of the correlation integral Ci
m(r) 

is computed as: 

Ci
m(r) =

number of j such that d[x(i), x(j)] ≤ r

N −m + 1
 (7.7) 
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where the distance between x(i) and x(j) is defined as: 

 

d[xm(i), xm(j)] =  max
k=1,2,..,m

(|u(ti+k−1) − u(tj+k−1)|) (7.8) 

 

Finally, ApEn is calculated as: 

ApEn(m, r, N) = ɸm(r) − ɸm+1(r)  (7.9) 

where 

ɸm(r) = (N −m+ 1)−1  ∑ log Ci
m(r)

N−m+1

i=1

 (7.10) 

The performance of ApEn depends on the choice for the input 

parameters r and m, as well as the length of the time series to be compared. 

Since noise smaller than r is filtered out, ideally r should be small enough to 

preserve the information of the dynamics of the system, but very small values 

would compromise the calculation of conditional probabilities [252]. 

Regarding the choice for m, larger values are preferred but it shall be 

considered that its selection is limited by the length of the time series (N), 

since N should be between 10m and 30m points [253] [254].    

ApEn values can vary significantly for r and m values, therefore it shall 

be used for systems comparison. Typical values for m are m=2 and m=3, 

while selected values for r depend on the type of signals to which this 

technique is applied [224].  The most commonly used combination is m=2 

and r=0.2 (20% of the standard deviation) [249]. Pincus et al. [224] obtained 

significant results on the comparison of HRV signals of healthy and sick 

infants using r values ranging from 0.1 to 0.25 while Chen at al. used r=0.3 to 

successfully distinguish EMG signals originated by four different movements 

[213].   

Even though several algorithms have been published to overcome the 

difficulties in the choice of r [239], [240], when comparing ApEn values for 

two or more groups the optimal r value could be different in each group and 
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lead to inconsistent results [255]. Therefore, experimental analysis is 

recommended to identify the best r for each application.  

It should also be taken into account that ApEn is a biased statistic, 

strongly dependent on the signal length and lacking of consistency [230], 

providing unexpected ApEn variations for different pairs of m and r values 

[254]. The bias is due to the concavity of the logarithmic function, as well as 

to the fact that ApEn counts self matches when computing the correlation 

integral [252].  

For the analysis of REG signals in apnea and baseline recordings, 

considering that data sequences available were 4000 samples length, N values 

of the analyzed time series ranged from 1000 to 4000, in steps of 1000. For 

the parameter m, it was limited to m=2, m=3 and m=4, the last one exceeding 

the N≤10m criteria. Finally, chosen r values covered the range of 0.05 to 0.3 

times the standard deviation of the input signal. The parameters optimizing 

apnea detection were applied to REG signals during surgeries under general 

anesthesia.  

7.2.1.4 Sample Entropy 

The entropy metric SampEn [230] intends to surpass the constraints 

presented in ApEn by excluding self matches in the entropy calculation and 

therefore reducing computation times. The algorithm follows the same initial 

steps presented for ApEn, but when computing the correlation integral self-

matches are excluded, as shown in equation 7.11.   

Ci
m(r) =

number of j such that d[x(i), x(j)] ≤ r and i ≠ j

N − m+ 1
 (7.11) 

 

Lastly, ɸ𝑚(𝑟) is defined as 

ɸm(r) = (N −m)−1  ∑ logCi
m(r)

N−m

i=1

 (7.12) 

and SampEn is calculated as the difference between the logarithms of ɸm(r) 

and ɸm+1(r): 

SampEn(m, r, N) = logɸm(r) − logɸm+1(r)  (7.13) 
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SampEn requires the a priori definition of the same parameters listed for 

ApEn - N, m and r – and those are typically coincident with the ones used for 

ApEn (i.e. m=2, r=0.2). However, even though some authors consider the 

same criteria can be used for both SampEn and ApEn [256], other 

publications suggest that they should be explored independently since 

algorithms proposed for the choice of r in ApEn are not applicable for 

SampEn [257]. Moreover, appropriate values for m and r depend of the type 

of signal under analysis [256]. 

For instance, Lake et al. [258] studied the selection of m and r parameters 

for neonatal HRV analysis, concluding that the best pair of values was m=3 

and r=0.2. In contrast, while applying SampEn algorithm to characterize the 

effects of exercise in RR and QT intervals, Lewis et al. [259] explored different 

combinations of r and m values to finally chose m=2 and r between 0.1 and 

0.15. Higher r values have also been considered as optimal, as for example in 

the atrial fibrillation organization analysis presented by Alcaraz et al. [256], in 

which after identifying several combinations providing good classification 

results, the best values were considered to be m=3 and r between 0.3 and 0.4. 

SampEn overcomes the bias problem detected in ApEn as well as its 

inconsistencies, such that if SampEn of one signal (x1) is higher than the value 

obtained with another signal (x2) for a pair of m and r values, a new m-r pair 

would still provide higher SampEn values for the signal x1 [258]. Nonetheless, 

Castiglioni et al. [257] detected inconsistencies in SampEn calculations when 

studying mechanomyographic signals for certain m values, and Yentes et al. 

[235] published similar findings for some r choices, suggesting that under 

certain conditions SampEn can also be affected by inconsistencies. 

Controversy around adequate m and r values and the existence of 

inconsistencies in SampEn calculations requires that, for a new type of signals 

such as REG signals, an analysis of the effect of m, r and N is performed. 

Therefore, in this work, the same values suggested for ApEn were used to 

explore the ability of SampEn to detect apnea periods in REG signals: a range 

of m (from 2 to 4), r (from 0.1 to 0.3) and N (from 1000 to 4000). Moreover, 

the selected set of parameters optimizing apnea detection was used for 

entropy analysis of REG signals during general anesthesia.  
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7.2.1.5 Fuzzy Entropy 

ApEn and SampEn share a definition of similarity in which data segments 

with distances lower than the threshold value r are considered as positive 

matches, while others are rejected and not considered for the calculation. 

Even though ApEn includes self-matches and SampEn does not, in both 

cases a Heaviside function is used to assess similarity. In contrast, the 

definition of FuzzyEn [213] relies on a degree of similarity between 0 and 1. 

This similarity is based on the concept of fuzzy membership as defined by 

Zadeh [260] and results in a weaker influence of the choice of r in the final 

entropy calculations [249]. 

Besides the use of fuzzy membership calculations, FuzzyEn algorithm 

also differs from ApEn and SampEn in the way it creates the set of m-

dimensional vectors. Given a time series N-samples length u(n), vector 

sequences are defined as: 

xi
m = {u(i), u(i + 1),⋯ , u(i + m − 1)} − u0(i), (7.14) 

where u0(i) represents the baseline trend and is computed as 

u0(i) =
1

m
∑ u(i + j)  

m−1

j=0

 (7.15) 

The distance between two vectors, xi
m  and  xj

m , is defined as the 

maximum distance among all the scalar components of the vector dij
m.  A 

matrix, Dij
m is built, containing the similarity degrees for all pairs of r and n 

(width and gradient of the boundary of the exponential function, respectively)  

Di,j
m =  µ(d(x̅i

m, x̅j
m), n, r) (7.16) 

where µ is the exponential fuzzy function: 

µ(x, n, r) = e−(
x
r
)
n

 (7.17) 

Finally, the function ɸm is calculated as 

ϕm =
1

N −m
∑ ∑

Di,j
m

N −m− 1

N−m

j=1,j≠i

N−m

i=1

 (7.18) 

and the fuzzy entropy is computed as:  
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FuzzyEn(m, r, n, N) = lnϕm − lnϕm+1  . (7.19) 

 

FuzzyEn needs therefore four parameters to be computed: N, m, r and n 

values. Typical values for N, m and r are coincident with the ones used for 

SampEn and ApEn, even though dependence on r is less critical due to the 

substitution of the Heaviside function by the fuzzy membership calculation.  

Regarding the values for n, only small values guarantee a good approximation 

of entropy [249], being n=2 the most frequently used [213], [261], [262].  

For this application on apnea REG signals, N, m and r ranges tested were 

the same ones proposed for ApEn and SampEn, while n values ranged from 

2 to 10. The set of parameters optimizing apnea detection were used for the 

study of this entropy metric in the general anesthesia dataset. 

 

 

7.2.2 Experimental protocols 

 

Two datasets were used to explore the ability of entropy metrics to detect 

CBF alterations when applied to REG signals. In a first step, the Apnea-

Baseline Dataset was used to study the best parameters to be used to calculate 

each entropy metric and to identify the ones capable of identifying CBF 

changes. In a second step, the selected set of entropy metrics optimizing apnea 

detection were applied to the General Anesthesia Dataset 1, to assess their 

ability to detect changes during general anesthesia.  

Details on both datasets were provided in Chapter 3. The Apnea-Baseline 

Dataset included REG data from 16 young healthy volunteers during two 

successive breath holding challenges. In contrast, the General Anesthesia 

Dataset 1 contained REG data from 40 female patients undergoing surgical 

procedures in which general anesthesia was applied.  
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7.2.3 Data analysis for apnea detection 

 

Even though entropy measures are known to be robust in presence of 

limited amounts of noise, the recorded signals were filtered to reduce the 

influence of powerline interferences in the computed parameters and to filter 

out slow drifts provoked by respiration as well as other direct current 

fluctuations.  

Two different algorithms were used to filter the input dataset: one based 

on classical linear filters and the other one relying on the nonlinear approach 

applied to the signal attractor, as presented in Chapter 4. For both options, 

signals were filtered in advance with a 4th order high-pass filter with a stop 

band frequency of 0.1Hz. The set of filtered signals was screened, and 

detected artefacts were rejected to finally select data segments of 4000 samples. 

A total of 53 sequences were obtained, 29 belonging to apnea recordings and 

24 from baseline periods. The main characteristics of those signals were 

previously presented in Chapter 5.  

All entropy metrics were computed for each input parameter 

combination indicated in Table 7-1, and their ability to distinguish baseline 

and apnea sequences was assessed by hypothesis testing, using either T-

student tests or Mann-Whitney tests, for normal and non-normal distributions, 

respectively.  Normality was determined using a Kolmogorov-Smirnov test. 

The statistical significance threshold was set at p<0.05, and Bonferroni 

corrections were applied resulting in a final threshold of p<0.025. Additionally, 

the area under the curve (AUC) of the Receiver Operating Characteristic and 

the classification accuracy (acc) were also computed.  Results obtained with 

linear and nonlinear preprocessing algorithms were compared in order to 

assess the potential advantages of the use of nonlinear algorithms to filter 

REG recordings.  
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Table 7-1 Parameter combinations used to calculate each entropy metric. 

 SIGNAL 

LENGTH 

(N) 

(SAMPLES) 

EMBEDDING 

DIMENSION 

(m) 

FILTERING 

LEVEL (r) 

QUANTIZATION 

LEVELS (ε) 

FUZZY 

FUNCTION 

GRADIENT 

(n) 

SE 1000 to 

4000 

2 to 4 - 10 to 50 - 

CCE 1000 to 

4000 

2 to 4* - 10 to 50 - 

ApEn 1000 to 

4000 

2 to 4 0.05 to 0.3 - - 

SampEn 1000 to 

4000 

2 to 4 0.05 to 0.3 - - 

FuzzyEn 1000 to 

4000 

2 to 4 0.05 to 0.3 - 2 to 10 

* Only used in CCE calculation, not applicable for ρ 

 

7.2.4 Data analysis for general anesthesia recordings 

 General Anesthesia Dataset 1 was preprocessed to analyze changes in 

the entropy of REG signals during anesthetic procedures. All collected REG 

waves were filtered following the same steps as for the Apnea-Baseline 

Dataset. Using the guidance provided by clinical annotations recorded during 

the data collection process, 5 artefact free segments 4000 samples long were 

selected form each recording: 

• Awake – corresponding to the data recorded prior to induction of 

anesthesia. 

• Loss of Consciousness (LOC) – data recorded right after LOC is 

detected and while intubation is being prepared. 

• Steady state anesthesia (Anes)– data recording during anesthesia, 

without burst suppression episodes and after intubation has been 

achieved and patient positioned for surgery.  

• Burst Suppression Rate (BSR) - data belonging to periods in which 

the Conox BSR index provides values higher than 10.  
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• Recovery of consciousness (ROC) – data belonging to the end of the 

procedure, once drug infusion has been stopped and patient is ready 

to be extubated.  

Once artefacts were rejected and segments selected, 34 recordings were 

available for the Awake state, 35 for LOC, 33 for steady state anesthesia, 22 

for BSR and 40 for ROC. All entropy algorithms described in this section 

were applied to the selected segments, using for their computation the set of 

parameters (N, r, m, n, ε) deducted from the analysis of the Apnea-Baseline 

Dataset.  

Differences in entropy were analyzed by means of hypothesis testing, 

using paired T-student tests or Wilcoxon tests depending on the distribution 

of the samples. The Kolmogorov-Smirnov test was used for normality 

assessment. Statistical significance was considered for p-value<0.05 and, 

provided that 5 groups were compared, Bonferroni correction was applied 

resulting in a significance threshold for p-value<0.01.   

It should be noted that in the Apnea-Baseline Dataset, all participants 

were young healthy volunteers, with comparable age and physical conditions. 

However, this is not applicable to the General Anesthesia Dataset 1. For this 

reason, correlations between the entropy values in each clinical state and 

demographic data of the patients were assessed, as well as correlations 

between those demographics and the entropy changes identified between 

consecutive states. Moreover, other clinical information was studied as well, 

to analyze its relationship with entropy values and changes. Heart rate (HR), 

mean arterial pressure (MAP), propofol effect site concentration (CePropo), 

remifentanil effect site concentration (CeRemi) and the depth of anesthesia 

index (qCON) were considered for this analysis. Spearman correlation was 

used, considering statistical significance of the resulting correlations for p-

value<0.05. 

 

7.3 Results for apnea detection 

7.3.1 With linear filter 

The evolution of the entropy metrics ApEn(m,r,N), SampEn(m,r,N), 

FuzzyEn(m,n,r,N), SE(N,m,ε), CCE(N,m,ε) and ρ(N,ε), after being 

preprocessed with the linear filter, as a function of the parameters selection is 
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herein presented, as well as their ability to differentiate between apnea and 

baseline signals.  

The CCE and the regularity index ρ resulted in statistically significant 

results for apnea detection, while none of the parameter combinations tested 

for SE was able to identify apneas.  Results for CCE as a function of ε, m and 

N are provided in Figure 7-1, together with the corresponding p-value 

illustrating the ability of CCE to distinguish between apnea and baseline 

recordings. As the number of quantization levels ε increases, CCE increases 

for both apnea and baseline periods (Figure 7-1 (a)), but the p-value decreases 

(Figure 7-1 (d)), showing a minimum for ε = 10 and ε =20 levels. Regarding 

the embedding dimension m, CCE decreases as m increases, providing the 

best statistical significance for m=2 (Figure 7-1 (b) and (e)), while CCE 

remains almost stable for increasing segments length (N) (Figure 7-1 (c)). 

Segments with lengths of 2000 and 3000 samples provide the lowest p-value. 

 

Figure 7-1 Corrected Conditional Entropy (CCE(N, m, ε) ) values of apnea and 
baseline recordings as a function of a) the quantification intervals (ε), b) the 
embedding dimension (m) and c) the signal length (N). The corresponding statistical 
significance (p-value) of the differences between apnea and baseline recordings is 
presented in d), e) and f), respectively. 

 



7 Entropy Analysis 162 

 
In addition to the analysis of CCE values, Figure 7-2 illustrates the 

results for the regularity index ρ. A monotonic decrease in regularity was 

observed for increasing number of quantification intervals (ε), showing higher 

regularity for baseline recordings (Figure 7-2 (a)). The effect of increasing the 

signal length (N) is depicted in Figure 7-2 (b), showing an increase of 

regularity as N increases. Regarding the influence of the number of the 

quantification intervals in the statistical significance of the results, using ε ≤50 

intervals kept p-value lower than the significance threshold (p<0.025) for 

signal lengths of N=2000 samples, as shown in Figure 7-2 (c). However, for 

a fixed number of quantification intervals ε=20, the regularity index ρ is 

statistically significant for signal lengths N≥2000 samples (Figure 7-2 (d)). 

Therefore, optimal parameters for ρ calculation to detect apneas are ε =20 

quantification steps for signals of N=2000 samples. 

 

Figure 7-2 The influence of the signal length and the number of quantization levels 

in the Regularity index (ρ(N, ε)) is analyzed in: (a) values of ρ as a function of the 

number of quantification intervals (ε) and (b) values of ρ as a function of the signal 
length (N). The results of the statistical analysis (p-value) comparing apnea and 
baseline signals using this entropy indexes are shown in: (c) p-values versus the 
number of quantification intervals and (d) p-values versus the signal length. 
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The results in Figure 7-2 were obtained considering an embedded 

dimension m=10, assuming that the minimum value CCEmin of the CCE 

would fall into this m range. To prove this assumption, a study of the entropy 

CCE varying the values of the embedded dimension m is presented in Figure 

7-3. Each plotted CCE curve in Figure 7-3 (a) belongs to an apnea recording 

and each one in Figure 7-3 (b) to a baseline recording. It can be observed 

that the minimum entropy takes place for m<10 in both apnea and baseline 

signals. Furthermore, the location of the minimum CCE is not affected by the 

type of signal (apnea or baseline), as shown in Figure 7-3, and the median 

CCE values of the apnea signals are higher than the median values obtained 

from the baseline recordings. 

 

Figure 7-3 Values of the entropy CCE(N,m,ε) with ε=20 and N=2000 as a function 
of the embedding dimension m for all apnea (a) and baseline (b) recordings, including 
their median values (thick black line). 

Results referred to the study of ApEn, SampEn and FuzzyEn entropies 

are shown in Figure 7-4. In order to explore the effects of m and N, the 

parameter r was initially fixed to 0.3 as recommended in [213]. Entropy values 

were higher for apneas when compared to baseline for all entropy metrics and 

parameter combinations. ApEn provided the highest entropy values, followed 

by SampEn and FuzzyEn, respectively. Both ApEn and SampEn provided 

lower values for recordings of N=1000 samples and remained approximately 

stable for recordings of N= 2000 samples or larger. 
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Figure 7-4 Values of the entropies ApEn, SampEn and FuzzyEn as a function of 
the number of samples (N) and the dimension (m), with r=0.3 and n=2 for FuzzyEn, 
for apnea (solid line) and baseline segments (dashed line). 

The ability of the three entropy metrics to distinguish between apnea and 

baseline segments was assessed by the p-value resulting from the hypothesis 

testing (Table 7-2). FuzzyEn provided statistically significant differences 

between both types of signals in all parameter combinations tested for m and 

N, while statistical significance for ApEn was limited to m=2 and m=3 for 

any sequence length and for SampEn was limited to m= 2 for a signal length 

of N≥2000 samples. Therefore, parameter values m=2 and N=2000 were 

selected as the most appropriate across all entropy metrics for apnea detection 

in REG signals.  

Table 7-2 Parameter combination used to calculate each entropy metric. 

 N=1000 N=2000 N=3000 N=4000 

ApEn     

m=2 0.0044 0.0006 0.0006 0.0004 

m=3 0.0131 0.0014 0.0013 0.0004 

m=4 0.6379 0.4915 0.5376 0.3391 

SampEn     

m=2 0.048 0.014 0.017 0.017 

m=3 0.166 0.195 0.145 0.136 

m=4 0.387 0.280 0.183 0.172 

FuzzyEn     

m=2 0.00076 0.00013 0.00014 0.00012 

m=3 0.00086 0.00018 0.00016 0.00014 

m=4 0.00329 0.00042 0.00022 0.00021 
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Regarding the parameter r, all entropies showed lower values as r 

increased and this behavior was common for both apnea and baseline signals 

(Figure 7-5, a-c). In the case of FuzzyEn, p-values decreased monotonically 

with r, proving a better differentiation between apnea and baseline as r grows, 

even though FuzzyEn provided p-value< 0.025 for all r (Figure 7-5, f). 

Instead, ApEn and SampEn needed at least r=0.2 and r=0.25, respectively, to 

provide significant results, showing both a minimum for r=0.25 (Figure 7-5, 

d-e). For that reason, r=0.25 was considered a suitable value for apnea 

detection in REG signals. 

 

Figure 7-5 Entropy values of ApEn(m,r,N), SampEn(m,r,N) and FuzzyEn(m,r,,n,N) 
as a function of r with  m=2, n=2 and N=2000 for apnea and baseline recordings (a-
c) and the corresponding p-values (d-f). 

 

The entropies ApEn and SampEn are fully characterized with values for 

N, r and m. However, for FuzzyEn, a fourth parameter (n) needs to be 

considered. FuzzyEn showed decreasing values for increasing n values, as 

shown in Figure 7-6a, and the standard deviation of computed entropies only 

tended to 0 for values of n higher than 6 (Figure 7-6b). In order to select the 

best n value for apnea detection, the statistically significant level was calculated 

comparing the FuzzyEn values of apnea from baseline group. FuzzyEn had 
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the minimum p-value at n=2 and hence this was considered the best choice 

(Figure 7-6c). 

The standard deviation of the entropy metrics provides an assessment of 

their stability. Moreover, its evolution of r is used to determine their 

consistency [213]. Therefore, the evolution of the standard deviation of the 

three entropy metrics (ApEn, SampEn and FuzzyEn) as a function of the 

parameter r is depicted in Figure 7-7. All of them decrease with increasing r, 

showing a higher standard deviation value for apneas than baselines. FuzzyEn 

showed the lowest standard deviation, followed by SampEn. It is worth noting 

that both FuzzyEn and SampEn decreased monotonically while ApEn 

showed an almost flat behavior for r values around 0.3 in the apnea signals. 

This phenomenon was less pronounced in baseline recordings, but an 

inflection point can be observed in the same r range. 

 

 

Figure 7-6 Fuzzy entropy (FuzzyEn(m,r, n,N)) (a) FuzzyEn(2,0.25, n, 2000) values 
as a function of n, including the 25-75 interquartile range (colored area); (b) standard 
deviation of FuzzyEn(2,0.25, n, 2000)  as a function of n; (c) p-value obtained 
comparing FuzzyEn(2,0.25, n, 2000)  values in apnea and baseline groups as a 
function of n. 

 

Results for all tested entropy metrics are included in Table 7-3. The 

values of the parameters that best describe these entropies when comparing 

apnea and baseline recordings are included. All these entropy metrics show 

increased values for apnea recordings, indicating an increased signal 
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complexity. It should be noted that the index ρ presents the opposite behavior, 

since it reflects regularity instead of complexity. 

 

 

Figure 7-7 Standard deviation of ApEn(m, r, N), SampEn(m, r, N) and FuzzyEn(m, 
r, n, N) as a function of r comparing baseline and apnea segments, with m=2, n=2, 
N=2000. 

 

 

Since Shannon entropy did not provide significant results for any 

parameter (N, m, ε) combination it has not been included in this table. In 

addition to the p-value computed for each metric, Table 7-3 contains the 

values of area under the curve (AUC) and accuracy (acc), in which FuzzyEn 

outperforms other entropy metrics. Moreover, Figure 7-8 depicts the 

Receiver Operating Characteristic curves for all the entropy metrics 

summarized in the table. 
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Table 7-3 Mean values and standard deviation of all entropy metrics when 
comparing apnea and baseline recordings. The values of the set of parameters that 
best describe these entropies are included. Statistics as p-value, AUC and accuracy 
(acc) are provided to assess the ability of the entropy metrics to distinguish between 
apnea and baseline. 

ENTROPY 

MEASURE 
PARAMETERS 

APNEA 

MEAN  

± STD 

BASELINE 

MEAN  

± STD 

P-

VALUE 
AUC 

ACC 

(%) 

ApEn 

r=0.25 
0.155  

± 0.045 

0.118  

± 0.035 
0.0003 0.789 69.8 m=2 

N=2000 

       

SampEn 

r=0.25  

0.111  

± 0.031 

 

0.092  

± 0.022 

 

0.0132 

 

0.698 

 

60.4 
m=2 

N=2000 

       

FuzzyEn 

r=0.25 

0.021  

± 0.009 

0.015  

± 0.006 
0.0001 0.809 69.8 

m=2 

N=2000 

n=2 

       

CCE 

ε=20 
0.581  

± 0.063  

0.518  

± 0.075 
0.0016 0.744 67.9 m=2 

N=2000 

       

ρ 
ε =20 0.838  

± 0.024 

0.854  

± 0.017 
0.0084 0.713 62.3 

N=2000 
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Figure 7-8 Receiver Operating Characteristic curves of all entropy metrics providing 
statistically significant differences between apnea and baseline recordings. 

 

Additionally, Figure 7-9 shows the distribution of each entropy metric 

for baseline and apnea groups. CCE and ρ present the highest dispersion of 

values, while ApEn, SampEn and FuzzyEn have less dispersed distributions 

but with many outliers, especially ApEn and FuzzyEn. Those results suggest 

that even though the selected metrics provide statistically significant 

differences in apnea and baseline recordings, individual differences should be 

noted. 

 

7.3.2 With nonlinear filter 

 

The entropy metrics proposed for REG analysis were also applied to the 

Apnea-Baseline Dataset preprocessed with the nonlinear filter, and the results 

were compared to those obtained when using classical linear filters. SE was 

excluded from the analysis since it failed to detect apneas for all N and ε 

combinations in the linearly filtered dataset.  Moreover, signals with N≤1000 

samples were discarded due to their inability to provide successful results for 

any of the entropy metrics evaluation.  
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Figure 7-9 Boxplot of all selected entropy metrics, showing the median values 
(horizontal red lines) and outliers (red crosses): ApEn (m, r, N), SampEn (m, r, N), 
FuzzyEn(m, r, n, N), CCE (N, m, ε) and ρ (N, ε), with m=2, r=0.25, N=2000, n=2 
and ε=20. 

        

In Figure 7-10, results for CCE, the regularity index ρ and the position 

of the minimum of CCE are provided. CCE showed higher entropy values 

for apnea signals, decreasing for higher m values (Figure 7-10(a)), remaining 

stable along N values  (Figure 7-10 (b)), and increasing with ε (Figure 7-10 

(e)). In contrast, ρ shows higher regularity for baseline signals for N≥3000 

with ε=20 (Figure 7-10 (c)), and for ε≥30 when N=2000 (Figure 7-10 (f)), 

while for smaller values of N and ε, respectively, it reflects the opposite 

behavior. This suggests that ρ presents some inconsistencies when applied to 

this dataset and might not be a reliable indicator for apnea detection. However, 

its trend when compared to results in Figure 7-2 is preserved, decreasing 

when ε increases and increasing with N.  

Even though the position of the CCE minimum in the linearly filtered 

dataset did not show differences between apnea and baseline groups, Figure 

7-10 (g) shows relevant differences for ε=10 when N=2000 in this dataset: 

CCEmin is obtained at m=9 for apneas and at m=7 for baseline signals. 
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Moreover, the location of the minimum shows a slight increase with 

increasing N values and a significant decrease while ε increases. 

 

Figure 7-10 Values of CCE(N,m,ε), ρ(N,ε) and CCEmin(N,ε) position median and 
interquartile values as a function of N, m and ε for apnea and baseline signals: (a) 

CCE(2000,m,20), (b)CCE(N,2,20), (c) ρ(N,20), (d) CCEmin(N,20), (e) CCE(2000, 

2,ε), (f) ρ(2000,ε), (g) CCEmin(2000,ε). 

The statistical significance of the ability of those metrics to distinguish 

between apnea and baseline segments is depicted in Figure 7-11. As expected, 

the regularity index did not provide significant results for any N and ε 

combination, while the location of the minimum of CCE was significantly 

different between groups for ε=10 and N=2000. Moreover, CCE provided 

acceptable results for the same set of parameters identified in the linearly 

filtered dataset (i.e. m=2, N=2000, ε=20).  
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Figure 7-11 Analysis of the statistical significance (p-value) for apnea detection of 

CCE(N,m,ε), ρ(N,ε) and CCEmin(N,ε) as a function of N, m and ε: (a) 

CCE(2000,m,20), (b)CCE(N,2,20), (c) ρ(N,20), (d) CCEmin(N,20), (e) CCE(2000, 

2,ε), (f) ρ(2000,ε), (g) CCEmin(2000,ε). 

 

The comparison of the results obtained for linearly and nonlinearly 

filtered data is provided in Figure 7-12. In both cases, the CCE of apnea 

segments showed higher entropy values than baseline recordings, with the 

linearly filtered data showing enhanced statistical significance.  It should also 

be noted that dispersion is bigger when the nonlinear filter is used, affecting 

mainly the apnea recordings. Regarding the regularity index ρ, data processed 

with the nonlinear filter show higher regularity than those processed with 

linear filters. Moreover, both sets of data provide an opposite assessment 

comparing the performance in apnea and baseline signals.  
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Figure 7-12 Boxplot showing the distribution of CCE(N,m,ε) and ρ(N,ε) when 
N=2000, m=2 and ε=20 for data preprocessed with linear filters (LF) and nonlinear 
filters (NLF). Median values are indicated with horizontal lines, and mean values with 
circles. 

 

The results obtained for ApEn, SampEn and FuzzyEn are summarized 

in Figure 7-13. The three metrics provide higher entropy values for apnea 

recordings despite of the parameters used for their calculation, which is 

consistent with the previous findings in the analysis of the dataset filtered with 

linear algorithms. ApEn showed a stable behavior along the different signal 

lengths N, a monotonic decrease with m for apnea recordings but a maximum 

entropy for m=3 in baseline signals. Regarding the noise threshold r, ApEn 

decreases while r increases for r≥0.2, showing an absolute maximum at r=0.15 

for both apnea and baseline recordings. SampEn results are also consistent 

with those presented in the linearly filtered dataset, showing an entropy 

decrease for larger embedding dimensions, stable results for different signal 

lengths and a monotonic decrease with r. Finally, FuzzyEn increases with 

higher m values, remains relatively stable with signal length and decreases with 

the noise threshold r. It should be noted that all FuzzyEn calculations in this 

section were performed with n=2, since all n values showed successful results 

in the previous analysis. 
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Figure 7-13 ApEn(m,r,N), SampEn(m,r,N) and FuzzyEn(m,n,r,N) values as a 
function of the embedding dimension (m) (a,b,c,), the signal length (N) (d,e,f) and 
the threshold r (g,h,i). 

 

Even though the behavior of all three metrics is like the one presented in 

section 7.3.1, results for the hypothesis testing provide a different output 

(Figure 7-14). None of the parameter combinations for SampEn presents p-

value<0.025, hence SampEn is not suitable for apnea detection when 

preprocessing is performed through the nonlinear algorithm. The statistical 

significance of ApEn is enhanced for lower m, higher N and higher r values. 

However, for FuzzyEn, the optimal significance is reached for m=3 (when 

r=0.25, n=2 and N=2000), showing better significance as N increases and r 

decreases.    
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Figure 7-14 Analysis of the statistical significance (p-value) for apnea detection of 
ApEn(m,r,N), SampEn(m,r,N) and FuzzyEn(m,n,r,N) as a function of m, N and r. 

 

A comparison between the results obtained using the linear and nonlinear 

filters for data preprocessing is provided in Figure 7-15. Using the nonlinear 

filter results in slightly smaller entropy values in all cases but with similar 

distributions for every group. Except for SampEn, the same parameters used 

with the linear filter preserve the ability to distinguish apnea from baseline 

signals, showing similar results despite of the technique used for data 

preprocessing.  

 

 

Figure 7-15 Boxplot of the distribution of ApEn(m,r,N), SampEn(m,r,N) and 
FuzzyEn(m,r,n,N) when m=2, r=0.25, n=2, and N=2000 and for data preprocessed 
with linear filters (LF) and nonlinear filters (NLF). Median values are indicated with 
horizontal lines, and mean values with circles. 
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All the entropy metrics herein tested providing statistically significant 

results for apnea detection are summarized in Table 7-4. SampEn and ρ are 

not included in the table since they did not provide significant results for any 

parameter combination. As in section 7.3.1, FuzzyEn outperformed all other 

entropy metrics, followed by ApEn, which provides very close AUC, acc and 

p-value. CCE and CCEmin position, although they provided statistically 

significant differences between apnea and baseline signals, showed higher p-

value and lower AUC and acc. In order to illustrate those differences, Figure 

7-16 depicts the Receiver Operating Characteristic curves for those four 

entropy metrics and reassures the superiority of FuzzyEn and ApEn for apnea 

detection.  

 

Table 7-4 Mean values and standard deviation of all entropy metrics when 
comparing apnea and baseline recordings using the nonlinear filter. The values of the 
set of parameters that best describe these entropies are included. Statistics as p-value, 
AUC and accuracy (acc) are provided to assess the ability of the entropy metrics to 
distinguish between apnea and baseline. 

ENTROPY 

MEASURE 
PARAMETERS 

APNEA 

MEAN  

± STD 

BASELINE 

MEAN  

± STD 

P-

VALUE 
AUC 

ACC 

(%) 

ApEn 
r=0.25 

0.133  

± 0.046 

0.103  

± 0.036 
0.0016 0.754 67.9 m=2 

N=2000 

       

FuzzyEn 

r=0.25 

0.019  

± 0.009 

0.013  

± 0.007 
0.0014 0.757 67. 9 

m=2 

N=2000 

n=2 

       

CCE 
ε=20 

0.732  

± 0.103 

0.665  

± 0.089 
0.0171 0.692 54.7 m=2 

N=2000 

       

CCEmin 

position 

ε =20 9.10  

± 3.32 

7.21  

± 1.86 
0.0162 0.666 62.5 N=2000 
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Figure 7-16 Receiver Operating Characteristic curves of all entropy metrics 
providing statistically significant differences between apnea and baseline recordings 
in the nonlinear filter dataset. 

 

7.4 Results for general anesthesia 

7.4.1 With linear filter 

Results obtained for the apnea analysis regarding the parameters to be 

used for the calculation of each entropy metric were applied for the study of 

the entropy of REG signals during general anesthesia. Therefore, ApEn, 

SampEn, FuzzyEn, CCE and ρ were computed with m=2, r=0.25, N=2000, 

n=2 and ε=20, for the five states identified during general anesthesia, labeled 

as (1) Awake, (2) LOC, (3) Anes, (4) BSR and (5) ROC. The average values 

(mean ± standard deviation) of the entropy metrics in each group are 

summarized in Table 7-5, and their graphical representation is provided in 

Figure 7-17. ApEn, SampEn and FuzzyEn show similar trends, with a 

significant decrease of their values at LOC and similar values in all other states. 

It should also be noted that the range of values for each metric is wide, as 

assessed by the standard deviation values provided. The entropy CCE also 
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showed a decrease in LOC, followed by an increase during steady state 

anesthesia (Anes) where its maximum value takes place. The regularity index 

ρ represents the opposite concept and is consistent with the output of all other 

metrics since a maximum is observed at LOC.  

Table 7-5 Average entropy values for each clinical state and each entropy metric. 

 APEN 

MEAN±STD 

SAMPEN 

MEAN±STD 

FUZZYEN 

MEAN±STD 

CCE 

MEAN±STD 
ρ 

MEAN±STD 

Awake 0.083±0.022 0.077±0.021 0.008±0.003 0.388±0.066 0.859±0.021 

LOC 0.071±0.024 0.065±0.024 0.006±0.003 0.361±0.056 0.870±0.020 

Anes. 0.084±0.017 0.078±0.017 0.008±0.003 0.394±0.045 0.861±0.016 

BSR 0.080±0.015 0.076±0.014 0.007±0.002 0.384±0.042 0.863±0.014 

ROC 0.081±0.019 0.075±0.016 0.007±0.003 0.388±0.044 0.861±0.016 

 

 

Figure 7-17 Mean and standard deviation values in each clinical state of the 
anesthetic process for the entropies (a) ApEn, (b) SampEn, (c) FuzzyEn, (d) CCE 

and (e) ρ. 

 

Considering the ability of the entropy metrics to reflect differences 

between consecutive anesthesia stages, paired hypothesis tests were 

performed. Results from this analysis are summarized in Table 7-6. ApEn 

was the only entropy algorithm showing statistically significant differences 
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between Awake and LOC states (p-value=0.0074), while SampEn and CCE 

were the ones able to distinguish between LOC and steady state anesthesia. 

Transitions from anesthesia to BSR and from BSR to ROC were not detected 

by any of the metrics proposed.  

 

Table 7-6 Statistical significance (p-value) of each entropy metric reflecting the 
ability to distinguish between consecutive anesthesia stages. 

From 

To 

AWAKE 

LOC 

LOC 

ANES 

ANES 

BSR 

BSR 

ROC 

ApEn 0.0074 0.0102 0.0250 0.3211 

SampEn 0.0106 0.0094 0.0712 0.2294 

FuzzyEn 0.0332 0.0134 0.0386 0.3489 

CCE 0.3476 0.0010 0.7606 0.6911 

ρ 0.0211 0.0329 0.5592 0.4768 

 

 

7.4.2 With nonlinear filter 

 

A second analysis on the General Anesthesia Dataset 1 was performed, 

preprocessing the recorded signals with the nonlinear filter. The N, m, r, n 

and ε parameters needed to compute the entropy metrics were the same ones 

applied to the linearly filtered signals for the sake of comparison. The trends 

followed by ApEn, SampEn, FuzzyEn, CCE and ρ are depicted in Figure 

7-18. As observed when using the linear filter, a minimum is reached by all the 

entropy definitions at LOC, except for ρ, which presents the opposite 

behavior and therefore has an absolute maximum at this stage.  The maximum 

entropy values are found for the steady state anesthesia stage (Anes), but the 

regularity index does not show a clear minimum in this position. All values 

present a high standard deviation as detected under the linear filter 

assumption. Descriptive statistics of all the entropy metrics (mean and 

standard deviation) are summarized in Table 7-7. 
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Figure 7-18 Mean values in each clinical state for (a) ApEn, (b) SampEn, (c) 

FuzzyEn, (d) CCE and (e) ρ. 

 

Table 7-7 Average values (mean ± standard deviation) for all entropy metrics in each 
anesthetic states when preprocessing signals with the nonlinear filter. 

 APEN 

MEAN±STD 

SAMPEN 

MEAN±STD 

FUZZYEN 

MEAN±STD 

CCE 

MEAN±STD 
ρ 

MEAN±STD 

Awake 0.087±0.031 0.070±0.020 0.009±0.006 0.343±0.065 0.877±0.022 

LOC 0.073±0.029 0.063±0.026 0.007±0.004 0.308±0.061 0.890±0.021 

Anes. 0.096±0.028 0.077±0.023 0.011±0.005 0.331±0.057 0.883±0.020 

BSR 0.087±0.023 0.072±0.017 0.009±0.004 0.328±0.051 0.884±0.018 

ROC 0.084±0.025 0.070±0.016 0.009±0.004 0.330±0.055 0.883±0.019 

 

The statistical significance obtained from the hypothesis tests is presented 

in Table 7-8. Differences between the Awake state and LOC are detected by 

both ApEn and ρ, the latest providing the lowest p-value. The transition from 

LOC to steady state anesthesia (Anes) showed statistically significant 

differences for ApEn, FuzzyEn and CCE, with FuzzyEn showing the best 

results. As observed in the linearly filtered dataset, none of the metrics is able 

to assess differences between Anesthesia and BSR, nor between BSR and 

ROC. 
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Table 7-8 Statistical significance (p-value) of each entropy metric reflecting the 
ability to distinguish between consecutive anesthesia stages. 

From 

To 

AWAKE 

LOC 

LOC 

ANES 

ANES 

BSR 

BSR 

ROC 

ApEn 0.0090 0.0022 0.0350 0.0266 

SampEn 0.0272 0.0105 0.1329 0.0898 

FuzzyEn 0.0455 0.0015 0.0313 0.0264 

CCE 0.1268 0.0017 0.2047 0.2261 

ρ 0.0069 0.1908 0.1538 0.5517 

 

The use of the nonlinear filter lead to a wider group of entropy metrics 

providing statistically significant results. However, with both filter options, 

only transitions involving LOC showed changes in signal entropy.  

 

7.4.3 Confounding factors 

 

The entropy metrics analyzed as possible indicators of different 

anesthetic states could be influenced by other factors other than the anesthetic 

state. In order to assess possible confounding factors, correlations of the 

entropy metrics with patient demographics and other clinical signs were 

computed.  

The correlations between patient demographics as age, height, weight and 

body mass index (BMI) are illustrated in Table 7-9. In general, correlations 

are either low or very low and lack statistical significance. However, the states 

of Awake and Anes deserve a deeper look. In the Awake state, all entropy 

metrics show a moderate or high correlation with weight and BMI, all of them 

with statistical significance except for the regularity index when the nonlinear 

filter is used. This suggests that patients with higher weight or higher BMI 

present lower entropy in their REG signals for the Awake state. Those 

correlations turn into low or moderate during steady state Anes, most of them 

losing statistical significance. However, in the Anes state, age showed a 

moderate or high correlation with signal entropy for all metrics without 

exception, suggesting that the inherent entropy of the recordings is related to 
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patient demographics, reducing its complexity when age increases (negative 

correlation).  

Table 7-9 Spearman correlation of each entropy metric with patient demographics 
for every clinical state analyzed, either using the linear filter (left side) or the nonlinear 
filter (right side). Cells are colored (see Figure 7-19  for its meaning) as a function of 
the correlation value and statistical significance of the correlations is indicated in bold 
type. 

  Linear Filter Nonlinear Filter 

Awake Age Height Weight BMI Age Height Weight BMI 

ApEn -0.109 0.001 -0.647 -0.633 -0.060 -0.035 -0.646 -0.598 

SampEn -0.058 0.052 -0.605 -0.623 0.060 0.004 -0.521 -0.522 

FuzzyEn -0.094 -0.071 -0.639 -0.580 -0.037 -0.097 -0.667 -0.586 

CCE -0.162 0.002 -0.465 -0.470 0.003 -0.045 -0.498 -0.478 

ρ 0.002 -0.115 0.491 0.558 0.016 -0.080 0.326 0.324 

LOC                 

ApEn 0.155 -0.054 -0.053 -0.011 0.066 -0.072 -0.087 -0.042 

SampEn 0.178 -0.049 0.040 0.079 0.112 -0.103 -0.017 0.043 

FuzzyEn 0.140 -0.090 -0.113 -0.052 0.064 -0.072 -0.154 -0.112 

CCE 0.110 -0.024 0.081 0.076 0.158 -0.004 0.034 0.032 

ρ -0.251 -0.052 -0.176 -0.157 -0.178 -0.076 -0.244 -0.260 

Anes                 

ApEn -0.579 0.153 -0.386 -0.483 -0.615 0.014 -0.524 -0.564 

SampEn -0.547 0.220 -0.233 -0.359 -0.562 0.164 -0.342 -0.455 

FuzzyEn -0.553 0.023 -0.536 -0.581 -0.573 -0.063 -0.565 -0.567 

CCE -0.524 0.065 -0.257 -0.332 -0.597 0.008 -0.293 -0.340 

ρ 0.405 -0.265 0.058 0.179 0.460 -0.154 0.015 0.099 

BSR                 

ApEn -0.312 0.335 -0.167 -0.388 -0.248 0.229 -0.276 -0.404 

SampEn -0.347 0.299 -0.185 -0.421 -0.228 0.219 -0.185 -0.329 

FuzzyEn -0.292 0.206 -0.260 -0.406 -0.186 0.159 -0.228 -0.293 

CCE -0.199 0.067 -0.133 -0.181 -0.244 0.036 -0.149 -0.205 

ρ 0.171 -0.265 0.086 0.292 0.045 -0.285 0.042 0.195 

ROC                 

ApEn -0.159 -0.049 -0.144 -0.150 -0.250 0.006 -0.193 -0.211 

SampEn -0.078 -0.064 -0.108 -0.111 -0.147 -0.007 -0.069 -0.078 

FuzzyEn -0.194 -0.056 -0.214 -0.218 -0.241 0.014 -0.202 -0.222 

CCE -0.047 -0.078 -0.031 -0.025 -0.133 -0.075 -0.071 -0.085 

ρ 0.124 -0.037 0.078 0.112 0.150 -0.227 0.055 0.121 
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Figure 7-19 Spearman correlation values matching with colors and qualitative level. 

 

 

Once the relationship between patient characteristics and the entropy in 

each state was assessed, a second analysis was performed (Table 7-10) based 

on the correlations of patient demographics and the differences in entropy 

between consecutive anesthesia states (obtained from Table 7-7). 

Consistently with observations in Table 7-9, BMI and weight showed a 

moderate to high correlation with entropy values in the transition between 

Awake and LOC states, with statistical significance, suggesting that the higher 

the weight the smaller the absolute entropy differences between both states. 

The next transition, to steady state anesthesia, showed a clear dependency 

with age, indicating that the higher the age the lower the increase in entropy 

between LOC and Anes. Those correlations however are only significant 

when using the nonlinear filter for signal preprocessing. The two other 

transitions provide very few correlations to be pointed out, the most relevant 

one being a significant correlation of -0.72 between age and the transition 

between Anes and BSR for the nonlinear filtered data. Moreover, patient 

height showed a moderate significant correlation with ApEn and SampEn 

when moving from BSR to ROC, which was found to be low for the nonlinear 

filter group. 

 

Very High abs(R) ≥ 0.8

High 0.8 > abs(R) ≥ 0.6

Moderate 0.6 > abs(R) ≥ 0.4

Low 0.4 > abs(R) ≥ 0.2

Very low 0.2 ≥ abs(R)
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Table 7-10 Spearman correlation between patient demographics and differences in 
entropy metrics for every transition between consecutive clinical states analyzed, 
either using the linear filter (left side) or the nonlinear filter (right side). Cells are 
colored (see Figure 7-19 for its meaning) as a function of the correlation value and 
statistical significance of the correlations is indicated in bold type. 

  Linear Filter Nonlinear Filter 

Awake –  
LOC Age Height Weight BMI Age Height Weight BMI 

ApEn 0.147 0.189 0.599 0.563 0.149 0.138 0.534 0.511 

SampEn 0.132 0.101 0.611 0.611 0.087 0.079 0.524 0.526 

FuzzyEn 0.183 0.208 0.573 0.528 0.197 0.165 0.520 0.495 

CCE 0.174 -0.061 0.448 0.437 0.138 0.064 0.511 0.487 

Ρ -0.002 -0.157 -0.628 -0.622 -0.007 -0.064 -0.499 -0.526 

LOC –  
Anes                 

ApEn -0.540 0.041 -0.289 -0.357 -0.485 -0.014 -0.314 -0.346 

SampEn -0.496 0.098 -0.274 -0.378 -0.442 0.107 -0.265 -0.374 

FuzzyEn -0.528 0.003 -0.333 -0.384 -0.504 -0.058 -0.339 -0.349 

CCE -0.442 0.021 -0.242 -0.293 -0.543 -0.044 -0.262 -0.280 

ρ 0.530 -0.044 0.200 0.269 0.477 -0.083 0.290 0.366 

Anes- 
BSR                 

ApEn -0.014 -0.122 -0.235 -0.246 -0.061 -0.072 -0.240 -0.239 

SampEn 0.011 -0.176 -0.109 -0.107 0.113 -0.242 -0.145 -0.046 

FuzzyEn -0.086 0.007 -0.161 -0.239 -0.055 0.111 -0.326 -0.421 

CCE 0.073 -0.210 -0.249 -0.100 0.293 -0.386 -0.363 -0.171 

ρ 0.075 0.032 0.057 0.143 -0.720 0.129 0.106 0.004 

BSR- 
ROC                 

ApEn 0.196 -0.463 -0.046 0.182 0.248 -0.263 0.010 0.153 

SampEn 0.314 -0.481 -0.061 0.179 0.237 -0.361 0.058 0.254 

FuzzyEn 0.202 -0.385 0.038 0.221 0.201 -0.212 0.133 0.228 

CCE 0.029 -0.086 0.053 0.102 0.049 -0.129 -0.002 0.063 

ρ -0.040 0.416 0.015 -0.196 -0.044 0.164 -0.091 -0.199 

 

Finally, the correlation between the entropy changes in consecutive states 

and other collected clinical data was assessed (Table 7-11), to better identify 

the factors influencing those changes in signal complexity. HR was the clinical 

sign with highest correlation with entropy changes, particularly in the LOC-
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Anes transition. Furthermore, in this same transition, the correlation between 

CCE and CePropo was also moderate and significant. Even though all other 

correlations did not show statistical significance, MAP provides high and 

moderate correlations in the BSR to ROC transition that should be taken into 

account since the lack of statistical significance might be due to the limited 

number of patients that presented BSR states. 

Table 7-11 Spearman correlation between clinical variables related to depth of 
anesthesia and hemodynamics and differences in entropy metrics for every transition 
between consecutive clinical states analyzed, either using the linear filter (left side) or 
the nonlinear filter (right side). Cells are colored (see Figure 7-19 for its meaning) as 
a function of the correlation value and statistical significance of the correlations is 
indicated in bold type. 

  Linear filter Nonlinear Filter 

Awake - LOC HR Propo Remi MAP qCON HR Propo Remi MAP qCON 

ApEn 0.137 -0.375 -0.105 -0.262 0.027 0.179 -0.294 -0.040 -0.292 0.057 

SampEn 0.122 -0.364 -0.236 -0.309 0.104 0.062 -0.364 -0.240 -0.168 0.044 

FuzzyEn 0.159 -0.331 -0.084 -0.347 0.032 0.182 -0.275 -0.023 -0.413 0.077 

CCE 0.126 -0.181 0.206 -0.107 0.277 0.192 -0.151 0.047 -0.168 0.166 

ρ -0.005 0.273 0.242 0.298 0.131 -0.089 0.406 0.373 0.146 0.162 

LOC - Anes                     

ApEn 0.459 -0.269 -0.101 -0.019 0.135 0.430 -0.348 0.000 -0.053 0.176 

SampEn 0.556 -0.290 -0.192 -0.061 0.228 0.563 -0.316 -0.158 0.023 0.358 

FuzzyEn 0.445 -0.258 -0.081 0.036 0.105 0.408 -0.352 0.014 -0.098 0.153 

CCE 0.441 -0.420 -0.013 -0.070 0.269 0.421 -0.403 0.084 -0.146 0.232 

ρ -0.348 0.331 0.178 -0.070 -0.046 -0.132 0.176 0.191 -0.245 -0.124 

Anesth-BSR                     

ApEn 0.139 0.218 0.114 0.114 0.071 0.449 -0.157 0.164 0.037 -0.248 

SampEn 0.052 0.229 -0.118 -0.046 0.000 0.349 -0.136 -0.086 -0.324 -0.488 

FuzzyEn 0.366 0.057 0.132 0.169 0.016 0.247 -0.107 0.307 0.260 -0.207 

CCE 0.107 -0.146 -0.029 -0.201 -0.209 0.195 -0.014 -0.132 -0.219 -0.290 

ρ -0.109 -0.414 0.021 -0.228 -0.145 -0.415 -0.307 0.343 0.447 0.163 

BSR-ROC                     

ApEn 0.351 -0.174 0.153 -0.517 0.184 0.262 -0.426 0.285 -0.650 0.047 

SampEn 0.395 -0.222 0.200 -0.600 0.173 0.191 -0.224 0.342 -0.517 0.167 

FuzzyEn 0.312 -0.229 0.232 -0.533 0.234 0.240 -0.396 0.291 -0.550 0.124 

CCE -0.006 0.014 -0.063 0.383 0.101 0.062 -0.136 0.082 0.033 0.124 

ρ -0.114 -0.108 -0.222 0.467 0.022 -0.249 -0.065 -0.216 0.367 -0.168 
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7.5 Discussion of the results obtained in apnea 

detection 

 

All entropy metrics proposed, except for SE, provided evidence 

regarding the increased irregularity in apnea signals when compared to 

baseline recordings. However, those results showed to be dependent on the 

choice of the parameters needed for each entropy metric calculation and the 

selection of the filter used for preprocessing. For instance, CCE values 

increased with an increasing number of quantization intervals ε, and decreased 

with increasing m, while remained stable with increasing sequence length N 

for both filter options. The regularity index (ρ) decreased with the number of 

quantization levels ε, in accordance with the evolution of CCE since ρ reflects 

regularity instead of entropy. However, ρ increased with increasing signal 

length N indicating that a fewer number of new patterns were detected when 

signal length was extended. Those results are also coincident for both filters 

and are consistent with those published by Porta et al.[244], since REG waves 

show a quasi-periodic pattern. However, it should be noted that when using 

REG signals, the optimal number of quantization levels providing a better 

differentiation between apnea and baseline recordings, ε=20, is higher than 

the one proposed by Porta in his work, ε=6. 

Considering the performances of CCE and the regularity index ρ, the 

latter provided the lowest p-value when tested for differences between apnea 

and baseline recordings with linearly filtered data. However, this parameter 

showed inconsistencies when the nonlinear algorithm for noise removal was 

used, identifying baseline recordings as more regular than apneas depending 

on the pair of N and ε values used. CCE showed to be less sensitive to the 

selected filter, providing statistically significant results for both filter options, 

using the same signal length but a different number of quantization levels. 

(ε=20 for the linear filter, ε=30 for the nonlinear).  

Even though SE and CCE are both derived from the original definition 

of the Shannon Entropy, CCE provides significant results while SE does not. 

This different performance of SE and CCE exists because SE reflects the 

distribution of the patterns in a given sequence while CCE assesses differences 

between consecutive patterns. This phenomenon has been analyzed 

previously in other publications [251], referring to SE as an entropy measure 

and conditional entropy as an entropy rate.  
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Regarding the results for ApEn, SampEn and FuzzyEn using the linear 

filter approach, they all decrease with increasing r threshold. Nonetheless, 

their behavior with increasing time series length N and embedding dimension 

m differs. Figure 7-4 (a) shows increasing ApEn values for longer signals in 

apneas while effects of signal length in baseline recordings are negligible. The 

same trend can be observed for SampEn in Figure 7-4  (b), while FuzzyEn 

(Figure 7-4  (c)) shows stable entropy values for all signal lengths. SampEn 

was reported to be independent of signal length while ApEn is known to 

provide lower entropy estimates for short recordings [230]. Considering that 

the effect of signal length is only present in apneas, results could be interpreted 

as an increasing complexity in REG signals proportional to apnea duration, 

rather than just a weakness of the entropy estimators.  

The influence of the nonlinear filtering algorithm is assessed in Figure 

7-13. The dependence of those entropy metrics with signal length is reduced 

and does not show any clear trend, while the variation as a function of the 

threshold r is consistent with the one observed with the linear filter except for 

ApEn. A maximum of ApEn is identified at r=0.15, followed by a monotonic 

decrease of entropy as r grows. This is a consequence of the different noise 

patterns embedded in the REG signals after the preprocessing stage. 

One of the main differences between ApEn, SampEn and FuzzyEn is 

their evolution as a function of the embedding dimension m. SampEn 

(Figure 7-4 (b) and Figure 7-13 (b)) provides lower entropies for increasing 

m, while FuzzyEn (Figure 7-4 (c) and Figure 7-13 (c)) shows the opposite 

behavior and ApEn does not show a consistent behavior, since the highest 

entropy is obtained for m=3, followed by m=2 and m=4 (Figure 7-4 (a) and 

Figure 7-13 (a)). Those results are common for both linearly and nonlinearly 

filtered data. This inconsistency in ApEn might be due to the bias inherent in 

this estimation. Moreover, the use of the Heaviside function might be 

influencing the results in such a way that softening the similarity boundary 

with fuzzy membership functions provides the most consistent results in 

terms of entropy rates as a function of the embedding dimension for a fixed 

r value.  

No other inconsistencies were detected in ApEn, SampEn or FuzzyEn. 

Some authors have reported a flip-flop effect in entropy estimations [263] 

[264]. They observed that, given two groups of signals to be compared, some 

r values resulted in higher entropy for signals in one group, while other r 
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selections provided the opposite results. No flip-flop episodes were detected 

in this Apnea-Baseline Dataset. Moreover, considering the definition of 

Aktaruzzaman [265] of practical consistency, one can conclude that the three 

metrics were consistent since always identified higher entropies in the apnea 

group for a broad range of input parameters. However, looking at the 

evolution of the standard deviation of each entropy (Figure 7-7), FuzzyEn 

provides the lowest values, followed by SampEn. For ApEn, the Entropy 

standard deviation is not decreasing monotonically, since it shows a plateau 

around r=0.3. This suggests a higher variability of ApEn calculations when 

compared to the other estimators.  

Among ApEn, SampEn and FuzzyEn, ApEn provides the highest 

entropy values  (see Table 7-3 for linear filter results and Table 7-4 for 

nonlinear filter) and FuzzyEn the lowest, but they both provide significantly 

different results for apnea and baseline recordings, for one or more sets of N, 

m, r and n parameters. Optimal values for apnea detection were common to 

ApEn, SampEn and FuzzyEn – using n=2 for fuzzy membership functions- 

even though FuzzyEn showed to be less sensitive to parameter selection, 

providing significant results for all the parameter combinations tested. 

Nonetheless, it should also be noted that SampEn did not provide significant 

results in the analysis of REG signals nonlinearly filtered, while ApEn and 

FuzzyEn succeeded in both scenarios.  

Recommended values for r, m and N are slightly different from the ones 

reported by other authors with different types of signals. The embedding 

dimension, m=2, is coincident with most of the analysis published, but 

different from the one provided for plethysmograms [248], m=7. However, 

due to the limited length of the recording, using embedding dimensions m 

higher than 3 or 4 would require the use of very large r values, loosing 

information of the patterns in the time series. Values for the r threshold 

optimizing apnea detection are higher than the ones reported in other 

applications, usually ranging from 0.15 to 0.2 [258], [259]. Regarding the value 

of n in the FuzzyEn algorithm, recommendations of using the smallest 

possible value are consistent with the results herein presented, where n=2 

provided the better statistical significance for apnea detection with the linear 

filter option and was maintained for the analysis of the effects of using the 

nonlinear filter.  

For the first analysis, based on linear filters, FuzzyEn provided the best 

statistical significance and AUC for apnea detection in REG signals, followed 

by ApEn, CCE and SampEn, all of them identifying higher complexity in 
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apnea when compared to baseline signals (Table 7-3). When REG signals 

were preprocessed by means of the nonlinear algorithm, FuzzyEn remained 

as the best choice for apnea detection, followed again by ApEn and CCE. 

SampEn did not show the ability to distinguish apnea and baseline signals, 

while the regularity index ρ did. Previous publications have also compared the 

performance of different entropy metrics. For instance, Chen et al. [213] 

compared ApEn, SampEn and FuzzyEn in their ability to characterize surface 

EMG signals, where FuzzyEn outperformed the other metrics, both in terms 

of classification and by providing a lower standard deviation of the entropy 

metrics, as it is also observed in the present study. Xie et al. [261] also 

compared the same three entropy definitions with the objective of detecting 

muscular fatigue in EMG signals. FuzzyEn provided the best results while 

ApEn failed to detect muscular fatigue. Furthermore, while analyzing EEG in 

patients with Alzheimer’s disease compared to healthy subjects, FuzzyEn was 

also the best predictor when compared to ApEn and SampEn [236], and 

ApEn was again considered the poorest estimator. Even though SampEn is 

known to outperform ApEn [230], in this study ApEn provided a better 

discrimination between apnea and baseline signals. Analogously, Cuesta-Frau 

et al. [266] reached the same conclusion when studying body temperature 

records of critical patients as a predictor of survival. 

All time series processed in this study were sampled as 250 Hz. It is well 

known that sampling frequency affects the selection of the optimal parameters 

for entropy calculation [256], as well as signal to noise ratio [235]. However, 

due to the artefacts present in the recording because of movements, reducing 

the sampling frequency would have limited the length of the time series and 

therefore the range of dimensions m tested for each entropy definition. 

Therefore, sampling frequency was not included as an input variable in the 

estimation of entropy in the recorded dataset.  

The use of entropy metrics applied to physiological signals often aims at 

detecting a disease, as for example heart failure [225] or sick newborns [258] 

by means of the analysis of HRV signals. In those cases, lower entropies are 

associated to the disease condition. No previous studies on the regularity of 

REG signals have been published to the extent of the knowledge of the author. 

However, Pham et al. [248] analyzed plethysmograms, which share many 

properties with REG signals, and used the information for diagnosis purposes, 

aiming at detecting mental disorders. In the present study, participants were 

healthy volunteers performing a simple respiratory challenge to provoke CBF 
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changes. Therefore, rather than detecting a disease, entropy metrics were used 

to detect alterations in CBF reflected in REG waves. The results suggest that 

during apneas, in order to preserve a fixed amount of oxygen supplied to the 

brain, compensation mechanisms are activated that modify the REG pulse 

waves adding complexity to the signal. During baseline, oxygen and blood 

supply to the brain do not suffer alterations and REG signals are therefore 

more regular.  

Further studies are needed to confirm those findings, but results suggest 

that entropy analysis is suitable for CBF changes detection in REG signals 

produced by breath holding. Moreover, this analysis outperforms the classical 

approach used for REG signals, based in geometric features detection in the 

pulse waves, which provided a very limited performance in apnea detection.  

 

7.6 Discussion of the results obtained in anesthesia 

 

The analysis of the General Anesthesia Dataset1 was focused on the 

ability of the entropy metrics proposed to distinguish among different 

anesthesia stages. The parameters used to compute entropies were limited to 

those identified in the Apnea-Baseline Dataset. No previous studies have been 

found regarding the analysis of regularity of CBF during anesthesia. Therefore, 

results should be interpreted with caution since they cannot be compared to 

existing literature.   

All entropy metrics showed the same pattern, providing similar results in 

all the anesthesia stages proposed except for LOC, where entropy was lower 

(ApEn, SampEn, FuzzyEn and CCE) and the regularity index ρ showed its 

highest value. However, only a few set of metrics presented significative 

differences between the state of LOC and the preceding and subsequent states. 

When using the linear filter in the preprocessing of the dataset, ApEn was the 

only metric providing statistically significant differences between the awake 

and LOC states, while SampEn and CCE showed differences between LOC 

and anesthesia with CCE presenting the lowest p-value. In contrast, when 

using the nonlinear filter, both ApEn and ρ provided significant differences 

between Awake and LOC, while LOC and anesthesia were distinguished by 

ApEn, FuzzyEn and CCE. Among those, FuzzyEn showed the lowest p-value.  

Those results allow to conclude that there is a dependency of the results 

on the type of filter used in the preprocessing stage, but it should be 
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highlighted that ApEn preserves its ability to distinguish between Awake and 

LOC states despite the filter chosen as well as CCE maintains its capabilities 

to detect changes between LOC and Anes. 

All statistically significant differences of entropy metrics between 

anesthesia states involve the state of LOC. Once patients received the 

anesthetic dosages and LOC was assessed by the loss of eyelash reflex, 

patients were pre-oxygenated in preparation for the intubation. This 

oxygenation period is therefore associated with a lower entropy (and higher 

regularity) across all metrics proposed. Those results are consistent with the 

ones obtained for the Apnea-Baseline Dataset. Apneas were characterized by 

a higher entropy due to the lack of oxygen producing an increase in cerebral 

blood flow, translated into a higher complexity in REG signals. In this case, 

the increase of oxygen in the inspired air would provoke a decrease in cerebral 

blood flow, enhancing its regularity. After intubation, once mechanical 

ventilation started, patients recovered the same average entropy rates detected 

in the Awake state. This suggests that entropy metrics can track REG 

alterations due to differences in oxygen supply but remain unchanged under 

the effects of anesthetics, for the clinical states analyzed 

Furthermore, patient characteristics have demonstrated to play an 

important role in the complexity of REG signals during anesthesia. Entropy 

values in the Awake state are reduced in patients with higher weight or body 

mass index (BMI). This is consistent for instance with the reduction detected 

in the HRV for obese patients[267]. In the transition from Awake to LOC, 

weight and BMI also show a significant correlation with the change in entropy 

rate, indicating that higher weight is associated to a higher difference in 

entropy between both anesthesia stages. In contrast, during the process in 

which patients are intubated and put under steady-state anesthesia, both 

weight and BMI have a lower correlation with the entropy rates, while age 

appears to be more relevant: older patients present smaller changes in REG 

entropy.   

Besides the relationship between patient characteristics and entropy 

metrics, in this chapter entropy metrics and their correlations with other 

clinical variables collected during surgery were also analyzed. Among HR, 

CePropo, CeRemi, MAP and qCON values, the only variable providing 

significative correlations with entropy rates was HR. In the transition between 

LOC and steady state Anesthesia, ApEn, SampEn, FuzzyEn and CCE 
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showed a positive correlation with the differences in entropy of the linearly 

filtered signals. The higher the change in HR, the higher the change in entropy, 

suggesting once again that entropy metrics of REG signals are closely related 

to hemodynamic changes. An exception would be CCE, that is also 

moderately correlated to the propofol concentration in this transition, 

however this correlation is not significant anymore when the nonlinear filter 

is used. In contrast, ApEn, SampEn and CCE remain correlated with HR 

despite of the filter choice.  

Entropy algorithms applied to REG signals during anesthesia have 

proved to be useful to track hemodynamic changes during the procedure and 

influenced by patient demographics. However, due to the lack of significant 

differences between Awake and Anes states, results suggest that their ability 

to assess anesthetics stages is limited to the oxygenation and intubation period.  

 

7.7 Conclusions 

The findings presented in this study suggest that FuzzyEn is the entropy 

metric providing the best ability to distinguish between apnea and baseline in 

REG signals among the set of entropy metrics proposed, followed by ApEn 

and CCE. Nonetheless, a careful selection of the input parameters needed to 

compute those entropy metrics should be performed in advance, since values 

recommended for other applications are not suitable for REG signals. 

Moreover, the filter strategy used for preprocessing influences the obtained 

results, with ApEn being the metric showing less dependence on the filter 

selected.  

Entropy metrics also showed statistically significant differences when 

applied to REG signals during anesthesia. However, those differences were 

more related to hemodynamic changes rather than to anesthetic states and 

were correlated to the weight, BMI and age of the patients. Overall, the results 

presented in this chapter suggest that REG signals seem to be carrying CBF 

information that can be assessed by means of complexity analysis. 
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Chapter 8 
8. Classification of 

REG signals during 

general anesthesia 
 

 

 

 

 

Abstract 

REG signals have shown to present differences between different 

anesthetic states. This chapter aims at combining the information extracted 

through time domain analysis and Poincaré plot descriptors to classify REG 

signals as belonging to awake or anesthetized patients.  

  

8 
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8.1 Introduction  

The study of REG waves presented in Chapters 5, 6 and 7 suggests that 

they contain information related to cerebral hemodynamics, as for example 

CBF, both during respiratory challenges and general anesthesia procedures. 

This chapter aims at using the extracted REG features previously analyzed to 

predict the anesthetic state of a patient, to be used for general anesthesia 

monitoring.   

The elevated computational effort needed to execute some of the 

presented algorithms makes it unfeasible to include them in real time monitors. 

For instance, the nonlinear filter presents high execution times, mainly in 

noisy data, which would compromise CBF monitoring in real time. Moreover, 

even though entropy metrics provided interesting results in the post-hoc 

analysis of Chapter 7, their calculations are often cumbersome. For those 

reasons, all REG signals used in this chapter were preprocessed with the linear 

filter, and the set of parameters to be used as inputs for depth of anesthesia 

prediction were limited to those obtained from geometrical features extraction 

and Poincaré plot analysis.  

The combination of time domain and complexity features has often been 

used to build classifiers for diagnostic purposes. Begg et al. [268] developed 

an automatic gait classification algorithm combining linear features extracted 

from gait recordings with Poincaré plot descriptors. Both sets of parameters 

were used as inputs for a classifier aiming at differentiating gait signals 

recorded from young or elderly patients.  

Several authors have focused on the combination of linear and nonlinear 

parameters in HRV analysis. For instance, Melillo et al. [269] worked on the 

identification of possible fallers among hypertensive subjects. For that 

purpose, they used standard HRV processing together with Poincaré plot 

extracted features. The combination of geometric, nonlinear and frequency 

domain parameters lead to a better accuracy when compared to previous 

attempts to classify fallers among hypertensive subjects. Moreover, Nardelli 

et al. [270] also combined frequency domain, time domain and nonlinear HRV 

features in an emotions recognition system while Isler and colleagues [271] 

used a similar approach to detect congestive heart failure.  

In this chapter, the optimal classifier predicting the anesthetic state of 

patients under general anesthesia by means of REG extracted features was 

developed. After signals preprocessing and the calculation of the descriptors, 

a feature selection method was used to identify the input parameters 
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optimizing the classifier. Subsequently, several classifiers were tested and their 

performance compared to finally select the optimal classification algorithm 

for depth of anesthesia prediction.  

 

8.2 Methods  

 

8.2.1 Features selection 

One of the challenges in the process of building a classifier is the feature 

selection step. Several options are available to achieve it, focusing on reducing 

the computational time while exploring the interactions between the set of 

features under analysis. 

The features selection algorithms are typically classified in filter, wrapper 

and embedded methods [272]. The former methods are characterized by using 

an evaluation metric independent of the type of classifier to be applied and 

are therefore compatible with all classification algorithms. The wrapper 

methods are iterative and complex methods, requiring a modeling algorithm, 

that select a set of input features under a leave one out strategy. Finally, the 

embedded methods are part of the classifier itself and are therefore algorithm 

dependent.  

For this application, the use of a filter method applied individually to all 

features under test was chosen: the Relief algorithm [273]. This method has 

the ability to provide a weighting score for each feature while taking into 

account feature dependencies, with relatively low computational cost and 

compatible to any classifier to be used subsequently. It was originally 

developed for binary classification and some extensions were published 

afterwards to deal with multiclass problems as well. However, in this work, 

the basic Relief algorithm was used since the number of classess is limited to 

two: the awake and anesthetized states.  

The Relief algorithm uses as input a set of attribute vectors (input 

candidates) associated to their classification. It is composed by k iterations, 

selected by the user. In each of those iterations, an array of attributes of an 

instance is randomly chosen (A), and two other instances are identified: (a) 

the closest one belonging to the same class (near hit, NH) and (b) the closest 
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belonging to the other class (near miss, NM). The weight of each attribute 

(Wa) is updated after every iteration following the equation [272]: 

 

Wa = Wa − (A − NH)
2 + (A − NM)2 (8.1) 

 

Therefore, the weight of a given input is decreased when the distance to 

the nearest neighbor of the same class is longer than the distance to the nearest 

neighbor in the alternative class. Once the k iterations have been performed, 

all weights are divided by the number of iterations used.  

In the initial algorithm provided by Kira and Rendell  [273], the selection 

of parameters after the application of Relief was done by chosing all the 

parameters with weights over a certain threshold. However, other applications 

have suggested to choose a subset of the most relevant parameters to optimize 

the classification and limit the computational load of the classifier.  

 

8.2.2 Classification algorithms 

 The performance of three different classifiers was compared in this study: 

logistic regression, naïve Bayes and classification trees. While logistic 

regression aims at estimating the probability of belonging to a defined class, 

based on the values of one or more predictors, naïve Bayes maximizes the a 

posteriori probability by applying the Bayes’ theorem, assuming independence 

among predictors [274]. The logistic regression classifier used in this work is 

based on a binomial distribution while naïve Bayes was implemented using a 

Gaussian kernel. 

Both classifiers have been often used in medical applications. Chhatwal 

et al. [275] developed a risk estimation model based in a logistic regression 

classifier that allowed to identify the malignancy of breast cancer. Moreover, 

this classifier was used by Combes et al. [276] to predict the length of stay of 

pediatric patients in the emergency departments with successful results.  

Naïve Bayes showed a similar accuracy compared to logistic regression in 

the study published by Wang et al. [277], in which both classifiers were used 

to predict brain metastasis from lung cancer. In another application, Morales 

at al. [278] developed a naïve Bayes classifier to predict dimentia in patients 

diagnosed of Parkinson’s disease, concluding that the most relevant factors 
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for dementia were cerebral white matter, volume of the lateral ventricle and 

volume of the hippocampus.  

Decision trees have also been used in clinical environments and are based 

on the classification and regression trees (CART) algorithm [279]. In those 

algorithms a prediction tree model is built in which each internal node 

evaluates conditions on predictors, branches represent the output of those 

evaluations and leaves indicate the class to be assigned to a set of attribute 

values.  

Decision trees were applied by Sims et al. [280] for cesarean delivery 

prediction due to the inexistence of a single factor indicating this risk. 

Comparable performance was obtained for decision trees and logistic 

regression algorithms, with the former needing a smaller number of inputs to 

reach the same performance.  

Tsien et al. also compared logistic regression and decision trees classifiers 

for the diagnosis of miocardial infarction [281]. Even though both provided 

similar outcomes in terms of AUC of the Receiver Operating Characteristic 

curve, outperforming classical methods used for infarction prediction, the 

authors considered that a decision tree was the best choice since it is easier to 

follow in rutine clinical practice.  

In this chapter, logistic regression, naïve Bayes and classification trees will 

be tested and compared for their ability to classify REG signals as belonging 

to an awake or anesthetized patient, using linear and nonlinear extracted 

features as inputs.  

 

8.2.3 Experimental dataset  

The use of REG features as inputs for a classifier to predict the anesthetic 

state of patients under propofol general anesthesia was developed on the 

General Anesthesia Dataset 2. This dataset is composed by data of 90 patients 

undergoing elective surgeries in Hospital CLÍNIC de Barcelona. Patients were 

continously monitored and REG signals from a few minutes before anesthesia 

induction until patient extubation were collected. Other clinical variables were 

collected simultaneously as described in Chapter 3, the most relevant one for 

this study being the depth of anesthesia index qCON.  
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8.2.4 Data processing 

An automatic artefact rejection algorithm was applied to the recorded 

signals, in order to avoid processing noisy data resulting from patient 

movements or the use of other devices, mainly the surgical knife. 

Subsequently, time series were processed in moving time windows of 2000 

samples length with 1750 samples overlap, thus providing new results every 

second.  

REG data were linearly filtered, and geometric features and Poincaré plot 

descriptors listed in Table 8-1 were calculated as previously detailed in 

Chapter 5 and Chapter 6, respectively. Since REG signals only provide relative 

values, all data were normalized to cancel out the interindividual variabilities.  

Table 8-1 Geometric and Poincaré parameters extracted from REG signals to be 
used as inputs for the classifier. 

GEOMETRIC FEATURES POINCARÉ PLOT DESCRIPTORS 

Range SD1 

Δtmax SD2 

Δtmin SDratio 

Δtmin-max SDarea 

Α CCM 

AreaSyst R 

Δmax  

Δrange  

CBVrel  

CBFest  

 

Before feature selection, an equalization of the input observations was 

performed to train and validate the classifiers with a similar number of events 

belonging to the awake and anesthetized classes. Since awake periods are 

siginificantly shorter, all awake events were selected for the classifier 

development and an equivalent number of events under anesthesia were 

randomly selected for each patient. Subjects for which only one class was 

identified or for which a class was represented by less than 10 observations 

were rejected.  
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The Relief algorithm was applied to the database and all inputs were 

storted from highest to lowest weights. The three developed classifiers were 

validated using a leave-one-out strategy, using a growing number of inputs 

form the sorted list. The metrics used to assess the performance of each 

classifier and compare the results among them were sensitivity, specificity and 

accuracy. 

Additionally, a second training and crossvalidation process was 

performed including the demographic data of the patients (age, weight and 

height), to analyze their role, if relevant, in the classifier. Results from both 

classifiers were then compared in terms of accuracy and number of inputs 

needed to reach the same accuracy level.  

 

8.3 Classification results  

 

The study was finally performed on data from 59 subjects, resulting in 

8996 datapoints, from which 4498 were recorded during the awake periods 

and another 4498 under general anesthesia.  

The Relief algorithm was applied to the full dataset with 5, 10, 15, 20 and 

25 nearest neighbors to assess the stability of the weights provided by the 

algorithm as a function of the number of neighbors chosen. The order of the 

first set of 10 parameters remained unchanged for 15, 20 and 25 neighbors 

and therefore the Relief output with 25 neighbors was used as the reference 

to build the classifiers. The weights obtained for each feature are illustrated in 

Figure 8-1, where each parameter is color coded depending on the linear or 

nonlinear origin of each feature.  

The first two parameters with higher weights were extracted from the 

geometric analysis of REG waves, with CCM being the most relevant input 

within the Poincaré descriptors set. Differences between consecutive 

minimums (Δtmin) and maximums (Δtmax) presented the highest weights, 

while the Range of the impedance signal appeared in the last position.  
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Figure 8-1 Weights calculated with the Relief algorithm for the geometric features 
(GEOM) and the Poincaré plot descriptors (Poincaré).  

 

A set of classifiers were trained using the Relief results to select the inputs. 

For each type of algorithm (logistic regression, naïve Bayes or classification 

tree), 16 different classifiers were built, with increasing number of input 

variables, from 1 up to the total number of available features, 16.  

The sensitivity, specificity and accuracy of all the classifiers measured 

across a leave-one-subject-out cross-validation strategy are shown in Figure 

8-2. The classification tree presents the lowest sensitivity, followed by the 

naïve Bayes and the logistic regression. In terms of specificity, naïve Bayes 

presents a stable trend, with values reaching almost 90%, followed by the 

classification tree and the logistic regression classifiers, which provide higher 

sensitivity when the number of inputs is increased. Overall, the accuracy of 

the logistic regression and the naïve Bayes classifiers is comparable, with 

values between 65% and 75% for all inputs, while the classification tree 

provides values on the 55 to 65% range.  
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Figure 8-2 Sensitivity (a), specificity (b) and accuracy (c) of the logistic regression, 
naïve Bayes and classification tree, as a function of the number of parameters used 
as inputs in the classifier, following the order provided by the Relief algorithm. 

All accuracies presented an increasing trend as the number of inputs 

increased. Analyzing the values obtained for accuracies across all the classifiers, 

a threshold of 70% could be considered as the best possible performance. 

Using this criterion, Table 8-2 summarizes the number of input parameters 

needed for each classifier to achieve a 70% of accuracy. The best results were 

obtained with the naïve Bayes algorithm, which needed only 2 parameters to 

present an accuracy of 70.31%. None of the input parameters combinations 

provided accuracies higher than 70% for the classification tree.  

 

Table 8-2 Number of input parameters needed for each classifier to reach at least an 
accuracy of 70%. 

CLASSIFIER NUMBER OF INPUTS ACCURACY 

Logistic Regression 4 72.22% 

Naïve Bayes 2 70.31% 

Classification tree - - 

 

The feature selection process was reformulated to include the main 

demographic data of the patients, provided that in previous chapters the 

extracted features showed significant correlations with patient characteristics. 

Age, height and weight were added to the list of input variables and the results 

obtained are depicted in Figure 8-3. The Relief algorithm associated the 

highest weights to demographic variables, followed by geometric features and 
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Poincaré plot descriptors.  The CCM parameter was again the most relevant 

Poincaré descriptor while Range was identified as the less relevant feature. 

 

Figure 8-3 Weights calculated with the Relief algorithm for the demographic 
variables (DEMOG), the geometric features (GEOM) and the Poincaré plot 
descriptors (Poincaré). 

 

Even though demographic data on their own were not considered likely 

to provide a successful classifier, the same steps previously presented were 

taken, building in this case 19 classifiers of each type with increasing number 

of inputs. The performance of the classifiers is presented in Figure 8-4. The 

sensitivity, specificity and accuracy values for 1 to 3 inputs clearly showed that 

the demographic features were considered relevant by the feature extraction 

algorithm due to the interindividual differences in REG signals, but as 

expected, they were not capable of providing an accuracy better than 50%.  
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Figure 8-4 Sensitivity (a), specificity (b) and accuracy (c) of the logistic regression, 
naïve Bayes and classification tree, as a function of the number of parameters used 
as inputs in the classifier, following the order provided by the Relief algorithm when 
demographic variables were included. 

Regarding the use of higher number of parameters, the trends for all 

classifiers were similar to those previously presented in Figure 8-2, providing 

similar values for accuracies, and with naïve Bayes and logistic regression 

providing similar accuracies.  

 

Considering a threshold of 70% in accuracy, the best option was again 

the naïve Bayes algorithm, which needed in this case 5 inputs to reach an 

accuracy of 70.31%. The second best classifier was the one based in logistic 

regression, needing just one more input, while the classification tree did not 

achieve a 70% of accuracy with any set of inputs (Table 8-3).  

 

 

Table 8-3 Number of input parameters needed for each classifier to reach at least an 
accuracy of 70% when including the demographic variables as inputs of the classifier. 

CLASSIFIER NUMBER OF INPUTS ACCURACY 

Logistic Regression 6 71.98% 

Naïve Bayes 5 70.31% 

Classification tree - - 
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8.4 Discussion of the results 

 

In this study, the naïve Bayes algorithm proved to be the best option 

among the classifiers under test to identify REG signals recorded in awake 

and anesthetized states. Nonetheless, the accuracies presented by naïve Bayes, 

and logistic regression were very similar to each other, the main difference 

being the number of input parameters needed to obtain a similar accuracy. 

Naïve Bayes needed only 2 inputs to reach a 70% accuracy, compared to the 

4 needed by the logistic regression. The classification tree did not reach the 

70% threshold.   

In previous studies in which different classifiers were compared, similar 

accuracies were also found among the algorithms under test[280], often 

chosing as the final solution the most comprehensive one for healthcare 

professionals [281]. In this case, the classifier is not designed to be used as a 

diagnostic tool and therefore this concept is not applicable. Moreover, the 

classification tree provided the lowest accuracy while values for the other two 

classifiers were comparable.    

The input variables providing the best naïve Bayes classifier were: Δtmin 

and Δtmax. They are both related to temporal features extracted from REG 

signals and more specifically to heart rate. The relationship between heart rate 

and depth of anesthesia is well-know and supported by those findings. For 

instance, one of the clinical scales used for anesthesia before the appearance 

of depth of anesthesia monitors was the PRST scale [282], that gathered 

information on blood pressure, heart rate, sweating and tears to evaluate the 

adequecy of anesthesia. 

In addition to the two time-related features, CCM was the third input 

used for the Naïve Bayes classifier and was included in the smallest set of 

parameters to reach a 70% accuracy with logistic regression. This suggests that 

geometric features are the most useful indicators extracted from REG signals 

for depth of anesthesia monitoring, but the contribution of nonlinear features 

should also be taken into account.  

Finally, it should be noted that the inclusion of demograhic data did not 

improve the accuracy of any of the classifiers under test, even though the 

dependence of both geometric and Poincaré features on those variables was 

assessed in previous chapters. The Relief algorithm identified demographic 
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data as relevant features, probably due to the existence of this dependence 

together with the limited size of the dataset.  

 

8.5 Conclusions 

 

The geometric features combined in a naïve Bayes classifier were able to 

predict the anesthetic state of the patient with a 70% accuracy. Those results 

indicate that CBF related features extracted from REG signals are not enough 

sensitive to be used for depth of anesthesia monitoring. However, the aim of 

using CBF features in anesthesia is not to replace existing depth of anesthesia 

monitors but to enhance the available information on cerebral activity and 

hemodynamics, to provide anesthesiologists with an extra source of 

information that allows the best equilibrium between unconsciousness, low 

brain activity and brain hemodynamics stability. In this way, in Chapter 9 the 

causal interactions between EEG and REG were analyzed, in order to identify 

the relevant CBF features providing additional information to the one 

currently available with depth of anesthesia monitors.  
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Chapter 9 
9. Causality analysis 

between EEG, REG 

and hemodynamics 

during anesthesia 
 

Abstract 

In this chapter, causal interactions between general hemodynamics, 

cerebral hemodynamics and brain activity are studied. A first analysis along 

complete surgical procedures is provided, followed by a breakdown of specific 

events such as patient positioning or drug infusion. Brain activity, represented 

by EEG related variables, showed a causal relationship with hemodynamics, 

suggesting that clinical decisions related to anesthesia should integrate CBF 

measurements to preserve hemodynamic stability at a general and cerebral 

level.  

9 



9 EEG and REG Causality 208 

 

9.1 Introduction 

 

As previously mentioned in Chapter 2, during propofol general 

anesthesia, both CBF and EEG signals suffer changes due to the induced loss 

of consciousness and depressed hemodynamic activity. This chapter aims at 

analyzing the causal relationships between both physiological signals during 

anesthetic procedures.  

Causal interaction techniques are based on Granger’s econometric 

models [283]. Given two signals, R and S, n being the present time with 

current samples Rn and Sn, and p past samples such that  Rn
p
=

 [Rn−1 ⋯ Rn−p]T  and Sn
p
= [Sn−1 ⋯ Sn−p]T , under the time 

domain analysis, the parametric representation of a restricted regression 

(meaning that time series only depend on their own past samples) is presented 

in Equations 9.1 and 9.2:  

Rn = Ã ·  Rn
p
+ Ũn (9.1) 

Sn = B̃ ·  Sn
p
+ W̃n (9.2) 

in which Ã, and B̃ have dimension p and Ũn, W̃n are prediction errors. The 

assumption of causality between Rn and Sn leads to an unrestricted regression 

model, allowing each time series to depend on the past samples of both signals, 

as represented in Equations 9.3 and 9.4: 

Rn = A · Sn
p
+ B · Rn

p
+ Un (9.3) 

Sn = C · Sn
p
+ D · Rn

p
+Wn (9.4) 

where A, B, C and D are the parametrization matrices and have dimension p, 

while Un,Wn are the new prediction errors.  

Time domain causality can be expressed as in Equations 9.5 and 9.6, 

where σ2 indicates residual variance. CS→R indicates how past samples of the 

time series S are able to improve prediction of R: a 0 value implies that past 

samples of S do not provide any additional information for the prediction of 

R, while a value of 1 indicates that using values of S for Rn prediction results 

in a perfect prediction. The analogous reasoning should be performed for 

CR→S [284].  
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CS→R =
σŨ
2 − σU

2

σŨ
2  (9.5) 

CR→S =
σW̃
2 − σW

2

σW̃
2  (9.6) 

In the equations provided to illustrate causality linear regressions have 

been used for simplicity. However, several publications in the field suggest 

that non-linear models, such as non-linear autoregressive models (NAR) or 

non-linear autoregressive exogenous models (NARX) show a better 

performance [285] [286], and that model free approaches could improve 

causality systems results [287]. The analysis herein presented will be based in 

AR models built from the time series under analysis, as discussed in the 

Methods section. Furthermore, even though causality analysis can be 

performed either in time domain, frequency domain or information domain, 

this chapter will focus on the time domain causality. 

The causality analysis of different phyisiological signals has gained 

popularity in the last decade. Several publications are centered in the 

interactions between RR intervals and systolic blood pressure, for instance for 

baroreflex assessment [284][246]. It has been reported that classical 

approaches such as cross-spectral interactions are not enough for 

understanding the underlying mechanisms and methods for interaction 

analysis need to account for causality [288].  

Even though most of the causality studies of biomedical signals have 

been published with two variables, some of them are using more complex 

systems, for example by analyzing causal relationships between heart period, 

systolic arterial pressure (SAP) and respiration [287] [289]. Relevant clinical 

results have arisen from those publications: for example, Rield et al. [290] 

explored short term couplings between respiration, systolic and diastolic 

blood pressure and heart, in order to have a deeper understanding on pre-

eclampsia, which is responsible for significant neonatal and maternal mortality; 

they concluded that respiration might have a key role in pre-eclampsia, as 

affected patients showed increased respiratory influence on the diastolic blood 

pressure. 

Additionally, Porta et al. [291] studied the causal interactions between 

heart period, respiration and systolic arterial pressure at rest and after the 
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administration of different drugs, concluding that Granger causality is a 

suitable tool to describe cardiovascular control and describe the effects of the 

administered drugs.   

Besides interactions in the hemodynamics system, several publications 

have focused on the application of Granger Causality in EEG signals. For 

example, Juan et al. [292] studied the connectivity across EEG bands in 

patients with Alzheimer’s disease,  detecting increments of connectivity in the 

δ band, together with decremental connectivities in other EEG bands. They 

concluded that Granger Causality (GC) was suitable for Alzheimer diagnosis, 

since the disconnection among different brain regions is a well-known effect 

of the disease. Another application of GC in EEG signals was presented by 

Coben et al. [293], who analyzed pre and post-ictal periods of epileptic 

seizures to study the connectivity between brain regions in epileptic patients. 

Additionnally, Lee et al. [294] analyzed the neural connectivity during NREM 

sleep and detected a decreased local connectivity at low frequencies (4Hz) 

during consciouss periods when compared to unconsciousness.  

The GC principles have also been applied to EEG signals during 

anesthesia. Nicolaou et al. [295] developed a system capable of classifying 

EEG signals as belonging to awake or anesthetized patients with a 96% 

accuracy, using as inputs the interactions between EEG signals from different 

brain areas.  Moreover, in another study [296], an accuracy of 98% was 

obatined for loss of consciousness detection, suggesting that GC could be 

used as an awareness detection system.  

Barrett et al. [297] analyzed steady state EEG signals during propofol 

induced anesthesia recorded from the anterior and posterior brain areas, 

detecting a bilateral increase in GC for the power spectral density in the β and 

γ bands during loss of consciousness.  

The interactions between the brain and the hemodynamic system have 

also been the target of many research projects. Duggento et al. [298] analyzed 

functional MRI data, respiration and heart beat recordings, concluding that 

GC is a suitable tool to assess causality among brain and heart activity. In [299], 

Greco et al. studied the causality between hemodynamics and EEG activity 

during the exposure to pleasant or unpleasant visual stimulation, to relate the 

reaction to emotions with the changes at the cardiovascular and brain level. 

Pleasant images increased the coupling from the left hemisphere to the heart, 

while unpleasant images increased the coupling with the right one, when 

compared to GC indices at rest.  
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Faes et al. [285] analyzed causal relationships brain-heart and brain-brain 

during sleep, and concluded that both kind of interactions were effectively 

taking place. Moreover, brain-heart interactions were also studied by Wo et al. 

[300] for different sedation levels in anesthetic procedures. EEG spectral 

power and heart rate signals were analyzed, showing a higher connectivty from 

brain to heart when compared with the opposite direction for all sedation 

levels, finding as well a higher coupling in deeper sedation states.  

Those findings support the hypothesis that interactions between EEG 

and REG signals should exist during general anesthesia, and that this 

connectivity could be assessed by means of GC. For this reason, causal 

relations between EEG spectral energy and the geometric and Poincaré REG 

descriptors were studied through data recorded during surgical procedures 

under propofol anesthesia.  

 

9.2 Methods 

 

9.2.1 Granger Causality  

 

Granger Causality (GC) is a probabilistic tool to assess causality between 

pairs of variables. It relies on a hypothesis test in which the null hypothesis is 

that, given two variables x(t) and y(t), y(t) does not cause x(t).  In order to 

assess the causality between the signals, two autoregression models (AR) are 

built: the restricted and the unrestricted model. The restricted model (equation 

9.7) uses only past values from the signal x(t) to predict its future values, while 

the unrestricted model uses past values from both x(t) and y(t) to predict 

values of x(t).   

x(t) =  ∑αix(t − i)

∞

i=1

+ c1 + v1(t) (9.7) 

x(t) =  ∑αix(t − i)

∞

i=1

+ ∑βjy(t − j)

∞

j=1

+ c2 + v2(t) (9.8) 
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The GC principle states that if the prediction of the unrestricted model 

is more accurate than the one provided by the restricted model, there is a 

causal relationship from y(t) to x(t).  

Equations 9.7 and 9.8 consider infinite AR models. In practice, the 

optimal lags for the models must be computed as a prior step to assess 

causality. For that purpose, an empirical approach was used, testing all 

possible lags up to 10 samples (i.e. 10 seconds) for each model, and evaluating 

its goodness of fit.  

Several algorithms are available to evaluate the adequacy of proposed AR 

models, the most commonly used being the Bayesian Information Criterion 

(BIC) [301] and the Akaike Information Criterion (AIC)[302], whose analytic 

expression is provided in equations 9.9 and 9.10: 

  

AIC =  −2 log L(θ̂) + 2k (9.9) 

BIC =  −2 log L(θ̂) + k log(n) (9.10) 

 

where θ represents the set of parameters in the model, L(θ̂) the likelihood of 

the model under evaluation, k the number of parameters in the model and n 

the number of observations.  

For the study herein presented, BIC was chosen over AIC since it has 

been published to be more consistent [303] and it demonstrated, in previous 

studies, to provide reliable values for EEG models under general 

anesthesia[304].  

In the comparison of several models, the absolute minimum among the 

computed BIC values indicates the model that fits best the data, while 

differences between BIC values (dBIC) should be interpreted as the strength 

of the evidence supporting the superiority of a model over another, following 

a short set of rules of thumb [305]: 

• dBIC<2: poor evidence 

• 2 ≤ dBIC < 6: positive evidence 

• 6 ≤ dBIC < 10: strong evidence 

• dBIC > 10: very strong evidence 
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In this study, both the restricted and unrestricted AR models are 

optimized using the BIC algorithm and the variances of the prediction errors 

of both models are compared through an F test. Statistical significance is then 

corrected as a function of the comparison among multiple groups derived 

from the number of lags tested, resulting in a corrected F probability that 

should be lower than 0.05 to consider statistical significance.  

In case differences with statistical significance are detected between the 

restricted and unrestricted models, the causality index is computed as: 

 

CY→X =
σR
2 − σU

2

σR
2  (9.11) 

 

where σR
2  is the variance of the restricted model and σU

2  the variance of the 

unrestricted model. This index allows to quantify the strength of the causality 

from one signal to another, and together with the occurrence of causalities 

provides a way to characterize the interactions between sets of selected signals. 

To further detail the steps followed to assess causality among pairs of 

signals belonging to the selected database, a step-by-step example is herein 

illustrated. Let x(t) be the depth of anesthesia index qCON (Figure 9-1a), and 

y(t) the propofol effect site concentration CePropo (Figure 9-1b), both 

recorded simultaneously from a patient undergoing general anesthesia. The 

qCON index should decrease because of increased drug dosages and vice 

versa, hypothesizing that a causal relationship should exist from CePropo to 

qCON. To prove this assumption, Granger Causality was applied following 

the steps herein listed: 

Step 1 - An AR model is built, called the restricted model, in which the 

signal x(t) is predicted using samples from its own past by means of a least 

squares linear regression . To obtain the AR model optimizing the variance of 

the residuals, an AR model is generated for each possible time lag and the 

metric BIC is assessed for all models. In this case, the maximum allowable 

time lag for x(t) was set to 10 samples.  

Step 2 - Among the set of restricted AR models calculated, the one 

minimizing the metric BIC is selected. In this particular case, as illustrated in 
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Figure 9-2, the minimum BIC was obtained for xlag=1 sample, resulting in 

an AR model with an associated BIC of -1.313*104 and total error variance of 

 σR
2 = 0.003. 

 

 

Figure 9-1 (a) Normalized qCON data and (b) normalized propofol effect site 
concentration recorded during a general anesthesia procedure. 

 

 

Figure 9-2 BIC values as a function of the selected xlag for the restricted AR model. 

 



215 Chapter 9 

 

 

Step 3 - A second AR model is searched, called the unrestricted model, 

allowing samples from y(t) to be used in the prediction of x(t). The maximum 

ylag considered was 10 samples and the algorithm used to compute the AR 

model was the same as previously used for the restricted model. One model 

candidate was defined for each possible time lag to be considered.  

Step 4 - The best unrestricted model (i.e. the one minimizing BIC) is 

chosen among the set of unrestricted AR models. In this example, the 

minimum BIC was obtained for ylag=1 sample (Figure 9-3). This resulted in 

an unrestricted AR model with an associated BIC of -1.315*104, and a total 

error variance of σU
2 = 0.002. 

 

 

Figure 9-3 BIC values as a function of the selected ylag for the unrestricted AR 
model. 

Step 5 - Causality is assessed by comparing the BIC values and computing 

the F-statistic and the causality index (CY→X). The differences (dBIC) between 

the BIC values obtained for the restricted (BICR) and unrestricted models 

(BICU) reveal the superiority of the unrestricted model over the restricted one 

when dBIC values are negative and with a high absolute value. In this example, 

dBIC=-20.71, thus indicating that the unrestricted model is the best option.  

Besides a negative dBIC value, statistical significance is also required to 

conclude that one variable Granger causes the other one. The null hypothesis 

in this case is that y(t) does not Granger cause x(t). F-statistic is used to reject 

(or not) the null hypothesis by comparing its value to the critical value. The 

F-statistic is calculated as: 
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F =

(SSER − SSEU)
ylag⁄

SSEU
(N − DF)⁄

 (9.12) 

 

where ylag is the lag minimizing the BIC for the unrestricted model, SSE the 

sum of the squared residuals of the restricted (SSER) and the unrestricted 

models (SSEU), N the number of samples available and DF the degrees of 

freedom (equation 9.13). The critical value is obtained using the F inverse 

cumulative distribution function considering 95% confidence intervals.    

 

DF = xlag + ylag + 1 (9.13) 

 

Whenever the F statistic is greater than the critical value, the null 

hypothesis is rejected and causality from the timeseries y(t) to x(t) is 

considered to take place. In this example, the computed F statistic equals 

20.78 while the critical value is much lower (3.84). Therefore, causality is 

detected from CePropo to the qCON index. The strength of this causal link 

is assessed by means of the causality index, computed as indicated in equation 

9.11. Considering the causality from propofol dosage to qCON, since σR
2 =

0.003 and σU
2 = 0.002, the causality index results in CY→X = 0.33.  Therefore, 

CePropo proved to Granger cause qCON with statistical significance.  

 

9.2.2 Experimental dataset  

 

The analysis of causal interactions between physiological signals related 

to hemodynamic processes and those associated to brain activity was 

performed on the General Anesthesia Dataset 2. This dataset is composed by 

data from 88 female patients scheduled for elective gynecological surgeries 

under general anesthesia with propofol and remifentanil TIVA. REG signals 

were collected throughout the surgery, together with other clinical variables 

such as HR, MAP, EEG, the EEG index qCON and drug dosages. Details 

on the recorded dataset can be found in Chapter 3.  
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9.2.3 Data processing  

 

REG data were screened for artefact rejection and preprocessed with 

linear filters. Geometric and Poincaré plot descriptors were calculated in 8s 

sliding windows, resulting in a new index value every second. In case artefacts 

were detected within the processed window, a NaN value was assigned. 

Segments with more than 50% of NaN values were excluded from analysis. 

Once all the time series for each proposed parameter were calculated, they 

were synchronized with all other data collected during the surgical procedures, 

such as hemodynamic variables, drug infusion dosages and events recorded 

during surgery. 

The final set of variables to be analyzed for causality were: REG 

geometric features (Range, Δtmax, Δtmin, Δtmin-max, Slope (α), AreaSyst, 

δmax, δrange, CBVrel and CBFest), REG Poincaré plot descriptors (SD1, 

SD2, SDratio, SDarea, CCM and R), global hemodynamics (HR, MAP), the 

effect site concentrations of propofol and remifentanil (CePropo, CeRemi, 

respectively) and EEG parameters related to depth of anesthesia (qCON and 

the EEG bands δ, θ, α, β). The drug concentrations were directly recorded 

from the infusion pumps and required no further processing. The qCON 

index was also collected from the Conox device. Nonetheless, the energy in 

the canonic EEG bands was computed by means of the integral of the Fast 

Fourier Transform (FFT) of the EEG signal, downsampled at 256 Hz, accross 

the frequencies belonging to each frequency band.   

Several events known to alter hemodynamics and/or EEG activity were 

selected in order to be analyzed for causality: 

a) Steady state anesthesia (n=84): 400s periods in which effect site 

concentrations of propofol and remifentanil were constant and no 

surgical events took place.  

b) Propofol infusion (n=29): periods from 200s before to 200s after the 

change of the target effect site concentration of propofol, while 

remifentanil was kept constant.  

c) Remifentanil infusion (n=16) periods from 200s before to 200s after 

the change of the target effect site concentration of remifentanil, while 

propofol was kept constant. 
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d) Atropine infusion (n=16): periods from 200s before to 200s after the 

administration of atropine. 

e) Ephedrine infusion (n=7): periods from 200s before to 200s after the 

administration of ephedrine. 

f) Trendelenburg position (n=12): periods from 200s before to 200s 

after the positioning of the patient from the horizontal supine position 

to the Trendelenburg position.  

g) Passive leg raising (n=48) periods from 200s before to 200s after the 

elevation of patient legs in preparation for surgery. 

As an example, Figure 9-4 includes a set of data recorded from one 

subject participating in the clinical trial. The anesthesia induction started at 

t=500s approximately, with the infusion of remifentanil and propofol. A 

decrease in qCON took place as a consequence of the effect of the drugs, 

resulting in the transition from the awake state to anesthesia around t=700s. 

In this example, events (a) steady state anesthesia and (c) remifentanil infusion 

can be observed: the first one begins right after the drug concentrations of 

propofol and remifenanil are lowered and stabilized, at t=1000s, and lasts for 

1000s. Immediately afterwards, the remifentanil effect site concentration was 

increased, originating the new clinical event (c) to be processed. 

For each type of event - from (a) to (g) - all possible causalities between 

pairs of variables were assessed through GC. The objective of this research is 

to study the causality between different physiological systems. For this reason, 

causalities among pairs of REG features were not considered for analysis, as 

well as the causal links between pairs of EEG-based parameters. 

Among the set of clinical events in which causality was studied, the 

periods of steady state anesthesia were used as the reference: the results from 

the other events, such as atropine infusion or Trendelenburg positioning, were 

compared to those obtained during stable anesthesia. Besides the existence or 

absence of causality, and its occurrence along the clinical database, the time 

lags needed for each pair of variables to build the AR models required for GC 

causality assessment were also studied and compared to the reference clinical 

state of steady state anesthesia.     
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Figure 9-4 Example of clinical data recorded during an anesthetic procedure: (a) 
qCON index, (b) EEG frequency bands, (c) propofol and remifentanil effect site 
concentrations, (d) heart rate and mean arterial pressure and (e) δmax and SDratio 
REG features.  

 

Causality diagrams were drawn for each event. Given a pair of variables 

X and Y, causality indices CX→Y and CY→X were compared through statistical 

hypothesis testing. Normality of the data was assessed by means of a 

Kolmogorov-Smirnov test and subsequently, a student t-test or Mann-

Whitney test was performed accordingly, considering statstical significance for 

p<0.05. Whenever causality indices were higher in one-way, with statistical 
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significance, a single direction of causality was considered, represented in the 

causality diagrams with a single arrow. If the statistical test could not be 

performed because there were not enough events available, both directions 

were considered in two different arrows. In case no statistical differences were 

detected between CX→Y and CY→X, a double arrow was used and the causality 

was interpreted as a closed loop interaction.  

Moreover, for each event, Spearman correlations between the causality 

indices and patient demographics were calculated and considered as 

confounding factors for p<0.01, due to the large number of correlations being 

analyzed simultaneously. Only correlations reaching absolute values above 0.5 

were included for analysis. Additionally, differences in age, height, weight or 

BMI, between the group of patients showing a causal relationship and the 

group of patients not presenting this interaction were assessed my means of 

hypothesis testing. A student T-test was used when samples were normally 

distributed, and a Mann-Whitney test otherwise. In both cases, the statistical 

significance was set to p<0.01, to account for the multiple testing performed 

even though the number of groups is limited to 2. 

 

9.3 Results  

9.3.1 Steady state anesthesia 

 

Data from steady state anesthesia were processed to study GC among 

each pair of variables. The restricted and unrestricted models were built, 

resulting in the time lags provided in Figure 9-5 for the GC – caused variable 

(x) and in Figure 9-6 for the causing variable (y). The maxmium lag allowed 

for both was 10 samples  (i.e. 10 seconds), however none of the pairs of 

variables under study reached this maximum.  

Regarding x lags, REG parameters tended to show larger values, mainly 

for those related to the derivative of REG – δmax, δrange, CBVrel and 

CBFest - while other variables provided shorter optimal lags for the AR 

unrestricted models. The same situation is detected for y lags, where 

interactions among REG based parameters are the ones presenting the largest 

lags, while other pairs present lags typically smaller than 3 samples.  
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Figure 9-5 Optimal time lags for the GC caused variable (x lag) in the unrestricted 
AR model during steady state anesthesia. Columns contain the causing variables and 
rows the caused ones.  
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Figure 9-6 Optimal time lags for the GC causing variable (y lag) in the unrestricted 
AR model during steady state anesthesia. Columns contain the causing variables and 
rows the caused ones. 

 

 

Once the time lags were defined, causality among each pair of variables 

was assessed. Figure 9-7 shows the causal relationships between MAP and 

the geometrical features extracted from REG. All the geometric features 

showed causal relationships with MAP, the most significant ones being closed 

loop interactions between MAP and the slope of the REG wave (slope α), its 

maximum derivative (δmax) and CBVrel, and the causality from δrange 

towards MAP.   
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Figure 9-7 Causal relationships diagram between MAP and REG geometric features, 
where n represents the number patients presenting each causal interaction. 

 

 

The causal relationships between REG linear features and HR are 

depicted in Figure 9-8: HR showed causal relationships with REG extracted 

features more often than MAP, with 33 patients presenting a closed loop 

interaction between δmax and HR. The slope (α), the Range, CBVrel and 

CBFest also showed closed loop interactions with HR. Moreover, unilateral 

causal relationships were also detected, with δrange, Δtmax and Δtmin 

presenting a causal effect on HR.  
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Figure 9-8 Causal relationships diagram between HR and REG geometric features, 
where n represents the number patients presenting each causal interaction. 

 

 

The interactions between the Poincaré plot descriptors and MAP and HR 

are represented in Figure 9-9. HR showed stronger links than MAP. While 

all 6 descriptors presented closed loop relationships with MAP in a range of 

patients (n) between 10 and 20, SD2 and SDratio and R had a closed loop link 

with HR for 35, 32 and 31 patients, respectively. SDarea and, to a lesser extent, 

SD1, showed causal effects towards HR that were not recyprocal, while CCM 

was the feature presenting less occurences of causality.  
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Figure 9-9 Causal relationships diagram between MAP and HR and REG Poincaré 
plot descriptors features, where n represents the number patients presenting each 
causal interaction.  

 

 

Besides the causality among different measurements related to global and 

cerebral hemodynamics, the interactions between brain activity assessed by 

the EEG and REG features were also studied. The causal relationships 

between REG linear features and EEG energy bands is graphed in Figure 

9-10. The relative energy in the δ band showed a closed loop relationship with 

Δtmax in more than 10 patients. Almost all REG geometric parameters, 

except δmax, presented causal relationships with this energy band, the 

majority of them being unilateral, from REG features towards δ band, except 

for Δtmax and δrange, that were closed loop interactions, and CBVrel, that 

presented a causal link from the δ band. Regarding θ, α and β bands,those 

showed less occurrences of causality with the geometric features extracted 

from REG signals, overall suggesting that lower frequencies are more related 

to linear changes in CBF than the higher ones, at least during steady state 

anesthesia.  



9 EEG and REG Causality 226 

 

 

Figure 9-10 Causal relationships diagram between the energy of the EEG bands and 
REG geometric features, where n represents the number patients presenting each 
causal interaction. 

 

Regarding the interactions between Poincaré plot descriptors and the 

energy in the canonical EEG bands (Figure 9-11), a low occurrence of causal 

relationships was detected, the majority being in the same direction, from the 

Poincaré plot descriptors towards the EEG bands, suggesting a stronger 

interaction from CBF to EEG than vice versa. It should also be noted that 

the β band was the one showing causal relationships with the fewest set of 

Poincaré descriptors, indicating that, as observed with linear REG features, 

lower frequencies present more causal links with REG descriptors.  
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Figure 9-11 Causal relationships diagram between the energy of the EEG bands and 
REG Poincaré plot descriptors, where n represents the number patients presenting 
each causal interaction.  

 

The depth of anesthesia index, qCON, integrates information from all 

the EEG spectrum and was analyzed as well for causal interactions with REG 

features. Figure 9-12 depicts the relationship between qCON and the REG 

geometric features, showing a low occurrence of causal events. These results 

should be interpreted with caution and together with those provided under 

specific clinical scenarios detailed in this section, since due to the steady state 

conditions of anesthesia, qCON and frequency bands are not expected to 
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reveal important changes in the signal dynamics, resulting in lower causal 

intereactions.  

 

Figure 9-12 Causal relationships diagram between the qCON index and REG 
geometric features, where n represents the number patients presenting each causal 
interaction.  

 

SD1 is the Poincaré plot descriptor with a stronger causality link with the 

depth of anesthesia index qCON, presenting a bilateral interaction, followed 

by SD2 (Figure 9-13). R and SDratio had a causal link from the qCON index 

towards the REG features, while SDarea showed the opposite causal direction 

and CCM revealed no relationship with the qCON index. 
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Figure 9-13 Causal relationships diagram between the qCON index and REG 
Poincaré plot descriptors, where n represents the number patients presenting each 
causal interaction.  

 

An overview of the main interactions between HR, MAP, all EEG 

parameters, and CBF linear and nonlinear features is provided in Figure 9-14. 

REG geometric features represent the linear CBF estimators (CBF lin) while 

REG Poincaré plot descriptors correspond to the nonlinear CBF estimators 

(CBF PP). The occurrence of each interaction between a pair of variables in 

two groups was computed as the number of patients presenting at least a 

statistically significant causal relationship between any pair of features 

belonging to the two groups under analysis. Up to 99% of the analyzed 

patients showed a bilateral causal relationship between CBF lin and CBF PP 

parameters, since both sets of variables come from the same time series. 

Regarding the interactions between HR and CBF features, causalities from 

CBF to HR were more frequent than in the opposite direction, with the linear 

CBF features showing a stronger role over the nonlinear ones. This relevance 

of the linear features is preserved in the causality study from and to MAP, 
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even though in this case the causalities from MAP to the CBF features are 

more frequent than the opposite ones.   

 

Figure 9-14 Main interactions between global hemodynamics (HR and MAP), EEG 
features and REG geometric features (CBF lin) and REG Poincaré plot (CBF PP) 
parameters during steady state anesthesia.  

Both global and cerebral hemodynamics presented causal relationships 

with EEG activity. EEG had a similar occurrence of causality towards HR 

and MAP, while HR presented a higher rate of causality towards EEG than 

MAP. Regarding cerebral hemodynamics, the most relevant results rely on the 

65% of causality from the CBF linear features to the EEG variables, which is 

one of the highest occurrences of interactions of the full system considered 

and therefore strongly suggests a modulation of EEG activity as a result of 

changes in the REG signals represented by their linear features. The Poincaré 

extracted features showed a lower occurrence of causality on EEG variables, 

but still higher than the ones provided by global hemodynamics. Finally, the 
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causality from EEG to CBF features was also higher for the linear features 

when compared to the nonlinear parameters extracted from REG signals. 

No correlations were found between the causality indices and patient 

demographics. However, hypothesis testing comparing the age, height, weight 

and BMI of patients presenting causal relationships among pairs of variables 

with patients not presenting them showed statistical significant differences as 

summarized in table Table 9-1.  

 

Table 9-1 Statistical differences of the hypothesis testing comparing the age, height, 
weight and BMI of patients presenting causal relationships among pairs of variables 
during steady state anesthesia with patients not presenting them.  

FROM TO DEMOGRAPHIC P-VALUE 
CAUSALITY 

↑ 

Δtmax HR age 0.0011 ↓age 

qCON Δtmin-max age 0.0067 ↓age 

qCON AreaSyst age 0.0067 ↓age 

α SD1 age 0.0085 ↓age 

Range δ age 0.0055 ↓age 

Δtmin-max α age 0.0099 ↓age 

AreaSyst α age 0.0099 ↓age 

SD1 α age 0.0083 ↓age 

SD2 α age 0.0041 ↓age 

SDarea α age 0.0031 ↓age 

CBFest δ weight 0.0004 ↑weight 

HR θ weight 0.0016 ↑weight 

Range θ weight 0.0096 ↑weight 

slope(α) θ weight 0.0087 ↑weight 

Range α weight 0.0094 ↑weight 

δrange α weight 0.0023 ↑weight 

CBVrel α weight 0.0023 ↑weight 

CBFest β weight 0.0008 ↑weight 

δrange α BMI 0.0039 ↑BMI 

CBVrel α BMI 0.0039 ↑BMI 
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Lower aged patients were prone to present causal links from REG 

features to EEG α band, through Δtmin-max, AreaSyst, SD1, SD2 and 

SDarea. Additonally, causality from Range to the δ band, from qCON to 

AreaSyst and Δtmin-max, from Δtmax to HR, and from the α band to SD1 

was also identified in the patients presenting lower ages. While height did not 

show to be a significant factor, higher weight and BMI were detected in 

patients presenting causality links towards the EEG bands. The factors linked 

to those bands were CBFest, HR, Range, REG slope, δrange and CBVrel, and 

were mainly affecting the α and θ bands. Therefore, the link between REG 

features and EEG parameters seems to be enhanced by lower age and higher 

weight and BMI.  

 

9.3.2 Propofol infusion 

 

The time lags obtained for the combination of all the variables under 

analysis are provided in Figure 9-15 and Figure 9-16. Regarding the lags for 

the Granger-caused variable (x lag), those related to REG variables are slightly 

lower than the ones obtained under steady state conditions, suggesting a closer 

coupling in the time domain. The propofol effect site concentration, CePropo, 

was added to the analysis since it is not constant in this scenario. However, it 

should only be considered as a causing variable, since it is collected from 

infusion pumps, resulting from the calculation of pharmacokinetic models 

and is not influenced by other physiological systems. CePropo showed smaller 

lags for EEG variables and higher values for interactions with cerebral 

hemodynamics.  

The values obtained for the lags of the Granger causing variables (y lags) 

are represented in Figure 9-16, providing similar values to those obtained for 

anesthesia steady state conditions, with the propofol concentration reaching 

values between 1 and 2 samples.  
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Figure 9-15 Optimal time lags for the GC caused variable (x lag) in the unrestricted 
AR model during changes in propofol concentration. Columns contain the causing 
variables and rows the caused ones. 
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Figure 9-16 Optimal time lags for the GC causing variables (y lag) in the unrestricted 
AR model during changes in propofol concentration. Columns contain the causing 
variables and rows the caused ones. 

 

The interactions from the propofol effect site concentration towards all 

the collected physiological data are represented in Figure 9-17. Causality in 

the opposite direction was not assessed since it does not have any clinical 

interpretation as previously stated. Among all the EEG bands, CePropo has 

the highest interaction with α, with similar results for its causality towards the 

qCON index. This indicates that the changes in propofol dosages are mainly 

affecting the α band and therefore projected in the overall depth of anesthesia 

assessment represented by the qCON index. The influence of CePropo in HR 

was detected in 21% of the patients, while causal relationships with MAP were 

limited to one patient. Regarding the effects of CePropo in the linear features 

extracted from REG signals, the causal relationships with higher occurrence 

were those towards Δtmin-max and AreaSyst, identified in 34% of the patients, 

followed by a 31% occurrence of causalities towards CBVrel, δmax and 

δrange. The less frequent interactions took place from CePropo to Δtmax and 

Δtmin.  The Poincaré plot descriptors showed smaller occurrences, the higher 

ones associated to SD1, SDratio and R, suggesting that CePropo is affecting 

the short term variability of REG signals rather than the long term one.  
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Figure 9-17 Causal interactions from CePropo to (a) EEG and global 
hemodynamics, (b) REG geometric features and (c) REG Poincaré plot descriptors. 

 

Besides the direct effects of propofol concentration changes in all the 

physiological variables under study, the causal relationships among 

hemodynamics and EEG might also be affected by the administration of the 

hypnotic drug. Figure 9-18 shows an overview of the existing causal 

interactions between general hemodynamics, cerebral hemodynamics and 

EEG related variables. Even though the detected interactions are similar to 

those during steady state anesthesia, several differences can be appreciated. 

For instance, the occurrence of causal interactions from HR and MAP 

towards CBF PP, CBF lin and EEG are higher, suggesting that changes in HR 

caused by propofol are projected in CBF and EEG. Additionally, causal 

effects from CBF lin to HR and EEG are also more frequent under propofol 

infusion, while the interactions between MAP and HR have a lower 

occurrence. Overall, changing the propofol effect site concentration ellicits a 

higher number of interactions from both cerebral and global hemodynamics 

towards EEG.  
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Figure 9-18 Causal interactions between EEG parameters, HR, MAP, REG 
geometric features (CBF lin) and REG Poincaré plot descriptors (CBF PP) during 
changes in propofol concentration. 

 

 

Considering the influence of patient demographics in the causal analysis 

(Table 9-2), the group of patients in which the range of REG Granger-

Caused HR showed to be taller than the group of patients not presenting 

interactions. Additionally, patients with higher BMI tent to present higher 

prevalence of causality from MAP to the REG slope (α) than those with lower 

BMI.  
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Table 9-2 Statistical differences of the hypothesis testing comparing the age, height, 
weight and BMI of patients presenting causal relationships among pairs of variables 
during changes in propofol concentration with patients not presenting them. 

FROM TO DEMOGRAPHIC P-VALUE 
CAUSALITY 

↑ 

Range HR height 0.0031 ↑height 

MAP Slope (α) BMI 0.0097 ↑BMI 

 

The causality indices and patient demographics did also show statistically 

significant correlations during changes in propofol effect site concentration 

(Table 9-3). Age proved to be correlated to the causality indices computed 

from REG features towards MAP, with the highest correlations obtained for 

the REG slope (α), δrange, CBFest, SDratio and R. Among those, the linear 

parameters presented increasing causality indices for increasing ages, while for 

the Poincaré based features the opposite behaviour was detected. Moreover, 

qCON also showed a causal link towards the REG slope (α) positively 

correlated with age.  

The influence of patient’s height in the causality indices was only relevant 

for the causal links from SDratio and R to MAP, with taller patients presenting 

higher causality indices. In contrast, weight showed a more determinant role: 

patients with higher weight presented lower causality indices from CePropo 

to MAP, from Δtmin to MAP and from CBFest to the EEG α band. 

Nonetheless, the highest correlations were detected for the causality links 

from the EEG θ band to Δtmin and AreaSyst, for which patients with higher 

weight resulted in higher causality indices.  

Finally, BMI demonstrated to be relevant in the interactions between 

REG features and EEG. BMI was positively correlated with the causality 

indices form the EEG θ band to Δtmin-max and AreaSyst, while it presented 

a negative correlation with the indices calculated from Δtmin-max and 

AreaSyst to the δ band. 
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Table 9-3 Spearman correlation between the causality indices and patient 
demographic presenting statistical significance (p<0.01) during changes of propofol 
effect site concentration. 

FROM TO 
DEMO-

GRAPHIC 
ρ P-VALUE 

CAUSALITY 

↑ 

Slope (α) MAP age 0.523 0.0051 ↑age 

δrange MAP age 0.548 0.0031 ↑age 

CBFest MAP age 0.573 0.0018 ↑age 

SDratio MAP age -0.553 0.0028 ↓age 

R MAP age -0.535 0.0040 ↓age 

qCON Slope (α) age 0.574 0.0011 ↑age 

SDratio MAP height 0.537 0.0039 ↑height 

R MAP height 0.543 0.0035 ↑height 

CePropo MAP weight -0.551 0.0029 ↓weight 

Δtmin MAP weight -0.577 0.0016 ↓weight 

θ Δtmin weight 0.621 0.0003 ↑weight 

θ AreaSyst weight 0.618 0.0004 ↑weight 

CBFest α weight -0.537 0.0026 ↓weight 

θ Δtmin-max BMI 0.518 0.0040 ↑BMI 

θ AreaSyst BMI 0.504 0.0054 ↑BMI 

Δtmin-max δ BMI -0.524 0.0035 ↓BMI 

AreaSyst δ BMI -0.569 0.0013 ↓BMI 

 

 

9.3.3 Remifentanil infusion 

 

The optimal lags obtained for the caused variable in the analysis of 

segments in which remifentanil effect site concentration was modified are 

presented in Figure 9-19. No differences between those lags and the ones 

obtained for steady state anesthesia were detected. In this case, the 

concentration of remifentanil was included in the lag analysis since it is 

modified as well over time. However, only causalities from CeRemi towards 

other variables should be taken into account since, as discussed for CePropo, 

CeRemi data are the result of the calculation of a theoretical model and are 

not affected in any way by other physiological data: they only depend on 

patient demographics.  
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Results for the y lag analysis are depicted in Figure 9-20. Even though 

lags from previous analysis are preserved, slightly lower lags are obtained for 

the causal GC interaction among linear and nonlinear features of CBF. 

 

 

 

 

 

Figure 9-19 Optimal time lags for the GC caused variable (x lag) in the unrestricted 
AR model during changes in remifentanil concentration. Columns contain the 
causing variables and rows the caused ones. 
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Figure 9-20 Optimal time lags for the GC causing variable (y lag) in the unrestricted 
AR model during changes in remifentanil concentration. Columns contain the 
causing variables and rows the caused ones. 

 

Causal interactions from CeRemi towards EEG, global hemodynamics 

and CBF linear and nonlinear features are depicted in Figure 9-21. The effects 

of CeRemi on EEG variables have occurrences up to 25%, almost inexistent 

towards the qCON index, but slightly higher for α, θ and δ bands. However, 

GC relationships between CeRemi and global hemodynamics represented by 

HR and MAP were more frequent, reaching an incidence of 31% and 38%, 

respectively. Regarding the causal effects of CeRemi towards the linear 

features of CBF, the highest occurrences took place in the causality from 

CeRemi to CBVrel (up to 50%), followed by δrange and δmax (44%). The 

weakest causality was detected towards Δtmin-max and AreaSyst, and this is 

one of the main differences when comparing causal effects ellicited by 

CePropo and CeRemi. Finally, for the REG Poincaré plot descriptors, the 

most frequent interaction was from CeRemi to SD1, as detected as well in the 

CePropo analysis, suggesting that changes in remifentanil infusion did also 

affect short term variability of REG signals.  
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Figure 9-21 Causal interactions from CeRemi to (a) EEG related parameters ang 
global hemodynamics, (b) REG geometric features and (c) REG Poincaré plot 
descriptors. 

 

The occurrence of causal interactions between HR, MAP, EEG and CBF 

linear and nonlinear parameters is presented in Figure 9-22. When compared 

to steady state anesthesia, the causal effects of HR on EEG and CBF linear 

features are enhanced, as well as the effects of CBF PP on EEG. On the 

contrary, causal relationships of CBF linear features on EEG have lower 

occurrence. Moreover, when comparing CeRemi changes to CePropo 

changes presented in section 9.3.2, causality from HR to EEG is much more 

frequent under CeRemi analysis, while causality from MAP to EEG decreases, 

allowing to consider that CePropo modulates EEG changes through MAP 

while CeRemi influences EEG by means of HR. With respect to other 

significant differences, it should also be mentioned that CBF linear and 

nonlinear features have less frequent causal links with EEG variables, when 

compared to the analysis of CePropo changes. This finding is consistent with 

the fact that propofol is acting at a cerebral level, reducing brain metabolism, 

while CeRemi has a less pronounced influence in EEG signals.  
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Figure 9-22 Causal interactions between EEG parameters, HR, MAP, REG 
geometric features (CBF lin) and REG Poincaré plot descriptors (CBF PP) during 
changes in remifentanil concentration. 

 

No statistically significant differences were detected between patients 

presenting or not presenting causal relationships among the physiological 

variables under study. However, the causality indices obtained for several pairs 

of variables were highly correlated with patient demographics as summarized 

in Table 9-4. Age presented a positive correlation with the causality indices 

from CCM towards MAP, hence indicating that older patients presented 

higher causality indices between those two physiological parameters. 

Nonetheless, patient weight was the demographic variable showing more 

influence in the causal interactions detected under remifentanil dosage 

changes. For instance, the causality indices from Δtmin-max and AreaSyst 

towards HR showed a negative correlation with weight, suggesting that 

causality from REG to HR is enhanced in patients with lower weight. A 
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negative correlation was also obtained for the causal link from CBVrel to 

qCON, from EEG θ band to the slope of REG, and from the δ band to the 

Poincaré descriptor R, while positive correlations were found for the 

interactions from α to Δtmax, from β to δmax, from HR to SD1 and from 

HR to the θ band. Some of those results were replicated for the BMI analysis, 

namely the causality from β to δmax and from δ to R. Additionally, BMI 

presented a positive correlation with the causality index from CeRemi to SD2, 

and a negative one from δ to SDratio.   

 

Table 9-4 Spearman correlation between the causality indices and patient 
demographic presenting statistical significance (p<0.01) during changes of 
remifentanil effect site concentration. 

FROM TO DEMOGRAPHIC ρ P-VALUE CAUSALITY ↑ 

CCM MAP age 0.668 0.005 ↑age 

CBVrel qCON weight -0.698 0.003 ↓weight 

Δtmin-max HR weight -0.707 0.002 ↓weight 

AreaSyst HR weight -0.673 0.004 ↓weight 

α Δtmax weight 0.752 0.001 ↑weight 

θ Slope (α) weight -0.643 0.007 ↓weight 

β δmax weight 0.640 0.008 ↑weight 

HR SD1 weight 0.646 0.007 ↑weight 

δ R weight -0.639 0.008 ↓weight 

HR θ weight 0.672 0.004 ↑weight 

β δmax BMI 0.637 0.008 ↑BMI 

CeRemi SD2 BMI 0.645 0.007 ↑BMI 

δ SDratio BMI -0.658 0.006 ↓BMI 

δ R BMI -0.695 0.003 ↓BMI 

 

Those correlations suggest that links between general hemodynamics, 

EEG activity and REG descriptors under changes of remifentanil dosage are 

sensitive to the main characteristics of the patients being monitored, with 

weight being the key factor to be considered, influencing causality from REG 

to EEG and HR and from all frequency bands to REG descriptors.  
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9.3.4 Atropine infusion 

 

Results for the x lag analysis obtained between each pair of variables 

during atropine infusion are presented in Figure 9-23. Differences were 

detected for all REG features when those were considered as the caused 

variables, presenting significantly lower time lags than those obtained for 

steady state anesthesia. However, regarding the EEG bands as caused 

variables, x lags were slightly increased, suggesting a different coupling under 

antropine anesthesia.  

 

Figure 9-23 Optimal time lags for the GC caused variable (x lag) in the unrestricted 
AR model during atropine infusion. Columns contain the causing variables and rows 
the caused ones.  

 

Analogously, those changes were also observed for y lags when compared 

to steady state anesthesia (Figure 9-24). Lags related to REG descriptors were 

reduced while those associated to the EEG frequency bands were either kept 

similar or slightly increased.   
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Figure 9-24 Optimal time lags for the GC causing variable (y lag) in the unrestricted 
AR model during atropine infusion. Columns contain the causing variables and rows 
the caused ones. 

 

Figure 9-25 presents an overview of the interactions between EEG 

parameters, HR, MAP and CBF extracted features. Causalities emerging from 

HR were lower towards MAP and CBF lin when compared to steady state 

anesthesia, but higher towards CBF PP and EEG. Regarding MAP, the causal 

link towards CBF PP showed a higher occurrence for atropine infusion, while 

all other links were detected with a lower frequency. Finally, the analysis of 

the interactions between EEG and REG descriptors was enhanced during the 

administration of atropine, suggesting that this drug affects the electrical brain 

activity.  
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Figure 9-25 Causal interactions between EEG parameters, HR, MAP, REG 
geometric features (CBF lin) and REG Poincaré plot descriptors (CBF PP) during 
atropine infusion. 

 

No statistical differences were detected between patients presenting or 

not presenting causal relationships among the set of variables under study. 

However, several correlations between the causality indices and the 

demographic data of the patients were identified as significant (Table 9-5). 

Age presented a negative correlation with the causality indices from qCON to 

δrange and from MAP to SD1, and a positive one from the REG features 

Δtmax, Δtmin and SD2 towards the EEG β band. This indicates that older 

patients present stronger causal links from REG to EEG.  

Several correlations between height and the analyzed set of causal links 

were also found to be significant. For instance, the causality from the EEG α 

band to Δtmax had a negative correlation with height, while positive 

correlations were obtained from β to δrange, from θ to SD1, from θ to SDarea 
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and from HR to θ. Therefore, the links between EEG and CBF features 

during atropine infusion seem to be dependent on patient height.  

Finally, weight was positively correlated with the causality index 

computed from CBVrel to the EEG δ band, as well as BMI. Additionally, 

BMI showed positive correlations from δmax, CBFest and SDarea towards 

the δ band, and from Δtmax towards β. Increased BMI is hence related to 

enhanced causality from REG features towards electrical brain activity.  

 

Table 9-5 Spearman correlation between the causality indices and patient 
demographic presenting statistical significance (p<0.01) during atropine infusion. 

FROM TO DEMOGRAPHIC ρ P-VALUE CAUSALITY ↑ 

qCON δrange age -0.638 0.0079 ↓age 

MAP SD1 age -0.736 0.0027 ↓age 

Δtmax β age 0.780 0.0010 ↑age 

Δtmin β age 0.689 0.0064 ↑age 

SD2 β age 0.694 0.0059 ↑age 

α Δtmax height -0.748 0.0021 ↓height 

β δrange height 0.715 0.0040 ↑height 

θ SD1 height 0.693 0.0060 ↑height 

θ SDarea height 0.664 0.0095 ↑height 

HR θ height 0.664 0.0095 ↑height 

CBVrel δ weight 0.679 0.0095 ↑weight 

δmax δ BMI 0.798 0.0010 ↑BMI 

CBVrel δ BMI 0.749 0.0030 ↑BMI 

CBFest δ BMI 0.723 0.0048 ↑BMI 

SDarea δ BMI 0.688 0.0084 ↑BMI 

Δtmax β BMI 0.692 0.0078 ↑BMI 
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9.3.5 Ephedrine infusion 

 

The values obtained for the x lags of the GC unrestricted AR model are 

presented in Figure 9-26. Lags obtained when using the EEG bands as 

caused variables were similar to those computed for steady state anesthesia 

and atropine infusion. However, x lags for qCON and HR were higher under 

ephedrine infusion than for the other two scenarios. With respect to x lags for 

REG features, the obtained results were lower than for steady state anesthesia 

intervals but higher than under atropine infusion.  

 

Figure 9-26 Optimal time lags for the GC caused variable (x lag) in the unrestricted 
AR model during ephedrine infusion. Columns contain the causing variables and 
rows the caused ones. 

 

Regarding the y lags (Figure 9-27), those were slightly lower when 

compared to steady state anesthesia and to atropine infusion intervals. 

Especifically, links between REG features and energy in the canonical EEG 

bands presented lower lag values for ephedrine in both directions.  
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Figure 9-27 Optimal time lags for the GC causing variable (y lag) in the unrestricted 
AR model during ephedrine infusion. Columns contain the causing variables and 
rows the caused ones. 

 

As with the previous clinical scenarios analyzed, the interactions between 

the main sets of physiological variables were analyzed to assess the 

relationship between hemodynamics and brain activity (Figure 9-28). One of 

the most relevant changes when compared to steady state anesthesia was the 

occurrence of the EEG causality towards CBF parameters, as well as the one 

from CBFlin to EEG and all causal links emerging from HR and MAP, 

suggesting that the cardiovascular effects of ephedrine are also projected in 

brain activity. Some of those effects were also detected during the infusion of 

another vasoactive drug, atropine, even though in that case the causalities 

emerging from MAP and HR were in general lower, while those from EEG 

to CBF PP and from CBFlin to both MAP and EEG were enhanced.  
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Figure 9-28 Causal interactions between EEG parameters, HR, MAP, REG 
geometric features (CBF lin) and REG Poincaré plot descriptors (CBF PP) during 
ephedrine infusion. 

 

No statistical differences were detected between patients presenting and 

not presenting causal relationships. Table 9-6 reflects the correlations 

between the causality indices and patient demographics. Age was not a 

relevant factor during ephedrine infusion. Decreasing height was associated 

to increased causality between CCM and the α EEG band. The highest 

correlation was detected between weight and the cauality index from the EEG 

δ band towards the REG slope (ρ=-0.955), followed by the one from the δ 

band towards the REG range (ρ=-0.901). Both correlations were also detected 

for BMI, suggesting that lower weight and BMI are associated to higher 

causality from EEG towards CBF features.  
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Table 9-6 Spearman correlation between the causality indices and patient 
demographic presenting statistical significance (p<0.01) during ephedrine infusion. 

FROM TO DEMOGRAPHIC 
ρ P-

VALUE 

CAUSALITY 

↑ 

CCM α height -0.906 0.0095 ↓height 

δ Range weight -0.955 0.0040 ↓weight 

δ Slope(α) weight -0.901 0.0095 ↓weight 

δ Range BMI -0.955 0.0040 ↓BMI 

δ Slope(α) BMI -0.901 0.0095 ↓BMI 

 

 

 

 

9.3.6 Trendelenburg position 

 

The transition of anesthetized patients from a supine position to  

Trendelenburg was assessed for causality. The x lags (Figure 9-29) were in 

general lower than the ones obtained for steady state anesthesia, with the 

caused variables Range and SD2 showing the highest x lags across all the 

possible causing parameters. Moreover, lags when considering HR as the 

caused variable were higher, mainly when the causing variables were CBF PP 

and EEG based features. Regarding the values obtained for the lags of the 

caused variables (Figure 9-30), y lags, those are almost coincident with those 

for steady state conditions, with a small decrease in the lags where interactions 

between different REG features were involved.  
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Figure 9-29 Optimal time lags for the GC caused variable (x lag) in the unrestricted 
AR model during Trendelenburg positioning. Columns contain the causing variables 
and rows the caused ones. 
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Figure 9-30 Optimal time lags for the GC causing variable (y lag) in the unrestricted 
AR model during Trendelenburg positioning. Columns contain the causing variables 
and rows the caused ones. 

 

 

Considering the interactions between hemodynamics and brain activity 

signals (Figure 9-31), HR showed less influence in MAP when compared to 

steady state anesthesia, but higher causal effects on CBF features, up to 83% 

for the linear ones. On the contrary, MAP caused lower interactions than in 

steady state, except for CBF PP, which were significantly higher. Moreover, 

while causal links between EEG and CBF PP were enhanced during 

Trendelenburg positioning when compared to stable anesthesia, links between 

EEG and CBF linear features showed lower occurrence.  
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Figure 9-31 Causal interactions between EEG parameters, HR, MAP, REG 
geometric features (CBF lin) and REG Poincaré plot descriptors (CBF PP) during 
Trendelenburg positioning. 

 

Regarding the influence of demographic characteristics of the patients in 

the causal relationships previously analyzed (Table 9-7), age showed a high 

negative correlation with the causality indices from HR to AreaSyst and 

Δtmin-max, indicating that the younger the patients the higher the causality 

from HR towards REG features.  

The causality index from the depth of anesthesia index, qCON, towards 

Δtmin-max and AreaSyst was negatively correlated with height, as well as the 

causality index from CCM to the EEG α band and from HR to β, suggesting 

that taller patients presented weaker causal links among those pairs of 

variables. The role of weight was limited to two statistically significant 

correlations: one from δmax to qCON, presenting higher causality in patients 
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with less weight, and a second one from MAP to SD2, in which taller patients 

had higher causality index associated.  

Finally, lower BMI was associated to an enhanced causality from several 

REG features (δmax, δrange and CBVrel) to the qCON index while higher 

BMI resulted in a stronger causality from δ to Range, from MAP to SD2 and 

from SD1 to θ. 

 

Table 9-7 Spearman correlation between the causality indices and patient 
demographic presenting statistical significance (p<0.01) during Trendelenburg 
positioning. 

FROM TO 
DEMO-

GRAPHIC 
ρ P-

VALUE 

CAUSALITY 

↑ 

HR Δtmin-max age -0.866 0.0003 ↓age 

HR AreaSyst age -0.894 0.0001 ↓age 

qCON Δtmin-max height -0.789 0.0023 ↓height 

qCON AreaSyst height -0.789 0.0023 ↓height 

CCM α height -0.732 0.0068 ↓height 

HR β height -0.732 0.0068 ↓height 

δmax qCON weight -0.746 0.0053 ↓weight 

MAP SD2 weight 0.872 0.0005 ↑weight 

δmax qCON BMI -0.825 0.0017 ↓BMI 

δrange qCON BMI -0.769 0.0053 ↓BMI 

CBVrel qCON BMI -0.769 0.0053 ↓BMI 

δ Range BMI 0.734 0.0091 ↑BMI 

MAP SD2 BMI 0.782 0.0070 ↑BMI 

SD1 θ BMI 0.769 0.0053 ↑BMI 
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9.3.7 Passive Leg Raise 

 

The x lags obtained for the unrestricted AR model used to calculate GC 

between all the pairs of physiological variables analyzed are presented in 

Figure 9-32. It can be observed that all lags are lower than 6 for any pair of 

parameters and, therefore, smaller than those computed for either steady state 

anesthesia or the Trendelenburg positioning. The same effect takes place for 

y lags (Figure 9-33), even though in that case differences are smaller since 

those lags already presented small values in the aforementioned states.  

 

Figure 9-32 Optimal time lags for the GC caused variable (x lag) in the unrestricted 
AR model during passive leg raising. Columns contain the causing variables and rows 
the caused ones. 
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Figure 9-33 Optimal time lags for the GC causing variable (y lag) in the unrestricted 
AR model during passive leg raising. Columns contain the causing variables and rows 
the caused ones. 

 

An overview of the global interactions among the physiological systems 

under study is presented in Figure 9-34. Besides the bidirectional link 

between linear and nonlinear CBF features, the most frequent causality during 

passive leg raising (PLR) takes place from CBF linear parameters towards 

EEG, suggesting that changes in cerebral hemodynamics are projected in 

brain activity. When compared to steady state anesthesia, higher casualities are 

detected, mainly from HR to CBF PP and EEG, from MAP to CBF features 

and, bilaterally, between CBF features and EEG. Addtionally, causality from 

EEG to CBF PP is increased during patient positioning.  

Since both Trendelenburg and passive leg raise provoke hemodynamic 

changes, it is worth comparing the causal interactions between both situations. 

Causalities emerging from MAP have higher occurrence under passive leg 

raising, as well as the interactions from CBF features to brain activity variables, 



9 EEG and REG Causality 258 

 
and from EEG to CBF lin. However, causality from EEG to CBF PP is 

decreased, as well as from HR to CBF parameters.   

 

Figure 9-34 Causal interactions between EEG parameters, HR, MAP, REG 
geometric features (CBF lin) and REG Poincaré plot descriptors (CBF PP) during 
passive leg raising. 

 

No statistically significant correlations were found between the causality 

indices and patient demographics, suggesting that the detected interactions 

were not dependent on patient characteristics. Additionally, patients 

presenting and not presenting causal relationship did not show any statistical 

difference in terms of age, height, weight or BMI.   
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9.4 Discussion 

This chapter focused on the causal relationships existing between global 

hemodynamics, cerebral hemodynamics and EEG activity during steady state 

anesthesia as well as during certain events occurring during surgery, such as 

anesthetic concentration changes, the administration of vasoactive drugs and 

patient positioning.  

Even though literature on causal interactions involving REG signals is 

not available, several studies on brain activity and general hemodynamics 

describing the so-called heart-brain interactions have been published during 

both natural sleep and anesthesia. For example, Faes et al. [285] analyzed 

causal relationships among HRV and EEG during a full night sleep of 10 

subjects, observing a strong link between nonlinear beat-to-beat analysis and 

the power spectrum of the δ EEG band. Analogously, this EEG band was 

the one found in this study having a more frequent coupling with CBF 

measurements. A direct comparison of the incidence of this causality is not 

possible due to two main reasons: Faes and colleagues used the recordings of 

several hours, performed in 10 patients only, while in this study sample size 

was of 84 subjects but including only a few minutes of data. Nonetheless, 

other studies do also support this link between hemodynamics and brain 

networks, such as the ones presented by Jurysta et al. [306], [307]. 

A brain-heart causality study during propofol anesthesia was published 

by Wo et al. [300], concluding that causalities increased with depth of 

anesthesia and were stronger in the brain-heart direction than from the heart 

to the brain. Results obtained for the analysis herein presented suggest in fact 

that the most frequent interactions took place from cerebral hemodynamics 

to the EEG spectral densities(rather than in the opposite direction), that HR 

and MAP had closed loop relationships with cerebral hemodynamics and the 

depth of anesthesia index presented bilateral causal links with cerebral 

hemodynamics. Even though a larger physiological system was considered in 

this chapter, the obtained results are not consistent with those presented by 

Wo et al. Some differences exist in the study design, mainly based on the 

lowest age of the patients enroled in Wo’s study, with a majority of males, and 

receiving as well midazolam. Further data should be collected under the same 

circumstances to figure out the root cause of the differences between both 

studies, since patient demographics have shown to play an important role both 

in the occurrence of causality and its strength.    
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Overall, the analysis of causal interactions during steady state anesthesia 

showed that hemodynamics and EEG activity are closely linked, often under 

closed loop interactions, and even though there is no consensus on the 

direction and strength of those links, their existence has been published by 

several research groups and has turned neurocardiology into a relevant topic 

under analysis[308], [309]. 

Besides the study of causal interactions among heart and brain 

hemodynamics and EEG activity during stable anesthesia periods, changes in 

the concentration of propofol were also analyzed to assess its influence in 

these causal links. The effects of propofol on hemodynamics are well-known, 

characterized by a MAP and HR depression, cerebral vasoconstriction and 

reduced CBF while preserving CAR[6]. However, no publications regarding 

the causality between hemodynamics and EEG during the infusion have been 

found by the author. The study performed in this work reveals that during a 

change in propofol dosage, the number of interactions between 

hemodynamics and brain activity increases. Changes in HR and MAP 

provoked changes in CBF and EEG, with CBF linear and nonlinear features 

causing EEG modulation. Moreover, one of the strongest links was found 

between the propofol effect site concentration and the EEG α band, which is 

consistent with the fact that propofol provokes a shift of the EEG energy 

towards this band [101]. Additionally, a causal link between the propofol 

concentration and the qCON index was detected as expected, since changes 

in hypnotic dosages should translate into changes in depth of anesthesia.  

As presented in chapter 2, several propofol pharmacokinetic-

pharmacodynamic models are used in routine clinical practice for induction 

and maintenance of propofol anesthesia. The parameters used in those 

models are exclusively based on patient demographics but do not take into 

account hemodynamics. Given the causal relationships between brain activity 

and hemodynamics, the inclusion of HR, MAP or CBF data in the models 

would probably make them more patient-specific and improve their 

accuracies. Several studies have been published on this topic. Sahinovic et al. 

[310] raised a concern on the use of propofol models in patients with brain 

tumours, since those might alter propofol kinetics and dynamics and loose 

accuracy. Furthermore, a new set of models called Physiologically-Based PK 

Models (PBPK) have been developed to account for the effects of 

hemodynamics in the currently used compartments models [311], since 

hemodynamic variables such as cardiac output have shown to be determinant 

for predicting the effects of propofol infusion [312], [313]. The results for 

propofol infusion in this work support the hypothesis that those new models 
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should be key for anesthesia personalization, thus enhancing the accuracy of 

TCI.  

Similar conclusions can be drawn from the analysis of remifentanil 

concentration changes. The use of remifentanil is associated to depressed 

hemodynamics, preserving CAR but lowering CBF [6], and its administration 

together with propofol is known to produce some synergies in the modulation 

of the EEG waves and resulting depth of anesthesia index [314], [315]. The 

causal interactions between CeRemi and EEG related parameters revealed 

that the highest causality took place from CeRemi to the δ frequency band, 

followed by α, θ and β, but was almost inexistent with the qCON index. Those 

results are consistent with the EEG spectral analysis under remifentanil 

infusion published by Kortelainen et al.[316], that highlighted the influence of 

remifentanil in the EEG spectrogram rather than to limit its effects to 

synergies with propofol. Hence, remifentanil modified the spectral content of 

the EEG of the patients under study while the qCON index remained 

unaffected.  

The causal relationships detected during CeRemi changes suggest that its 

causal effects in EEG, either directly or through hemodynamics, are less 

pronounced than those obtained for propofol, which is consistent with the 

fact that propofol is an hypnotic drug while remifentanil is an analgesic. 

Moreover, HR seems to be the link between CeRemi infusion and brain 

activity, while MAP played a more relevant role in propofol infusion.  

Together with the effects of propofol and remifentanil in the EEG 

activity, the causal relationships induced by vasoactive drugs such as atropine 

and ephedrine were also studied in order to find out to which extent those 

drugs could affect brain activity and depth of anesthesia. Both drugs are often 

administered during anesthesia to compensante bradycardia and/or 

hypotension prokoved by hypnotics and analgesics, and are therefore 

producing HR and MAP increases to achieve hemodynamic stability. The 

results presented in this chapter provide information supporting the 

hypothesis that effects of atropine and ephedrine in EEG activity take place 

through the causal links between MAP, HR and CBF features towards EEG 

parameters, and vice versa.  

In a recently published case study [317], atropine was administered to a 

patient presenting very low depth of anesthesia values, including EEG 

suppression and a bradycardia episode. After the atropine infusion, 
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hemodynamic stability was recovered together with recommended depth of 

anesthesia values. The authors relate this episode to cerebral hypoperfusion, 

therefore suggesting that causal interactions exist between hemodynamics and 

brain activity, and that those are modulated through CBF.  

Analogously, Ishiyama et al. reported an increase in the depth of 

anesthesia index BIS as a consequence of ephedrine administration [318], 

further supporting the existence of EEG effects of vasoactive drugs due to 

the existing coupling between hemodynamics and brain activity.  

Patient positioning was also considered as a potential factor influencing 

causal relationships between hemodynamics and EEG activity. Two different 

positions were assessed besides the standard supine position in steady state 

anesthesia: Trendelenburg and PLR. Both positioning strategies are known to 

provoke changes in general hemodynamics, mainly in MAP [319] [320], but 

information on their influence in EEG is scarce. Mallick et al. [321] reported 

the dependence between the depth of anesthesia index and the steepness of 

the Trendelenburg position, establishing a relationship between both variables. 

Considering the causal occurrences calculated in this work, HR and MAP do 

not seem to modulate directly EEG changes, but through alterations in CBF 

features that are further projected into EEG activity.  

As part of the causality analysis, the role of patient demographics was 

assessed through correlation and hypothesis testing. Patient characteristics 

such as age, height, weight and BMI should be taken into account since those 

might enhance or prevent the existence of causal relationships and the 

intensity of the existing causal effects. For instance, during steady state 

anesthesia, lower ages were associated to a higher occurrence of causal links 

from CBF to EEG, as well as lower weight and BMI. However, the size of 

the database under study impaired a more detailed analysis of patient 

demographics in heart-brain links during anesthesia, being one of the 

limitations of this study.  

Other limitations that should be noted are the low number of recordings 

for some of the analyzed events, such as atropine or ephedrine infusions, and 

the concomitant effects of different factors, as for example patient positioning 

taking place before or after a drug dosage change or the administration of a 

vasoactive drug. For example, the Schnieder model was used for the 

calculation of CePropo, while some authors have suggested that the ke0 time 

effect constant in this model should be larger [104]. This would imply that 

causal effects of CePropo are assessed with inaccurate time lags and therefore 

do not reflect the real brain effect of propofol but a faster version provided 
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by the models. Finally, all patients enrolled in the clinical trial were women, 

therefore not allowing to extend the conclusions to a generic population.  

During the causality study, linear and nonlinear CBF features have been 

independently considered in order to assess their individual performance. 

Even though they showed a 100% of causal effects among them in the 

majority of events under test, they revealed different occurrences of causal 

relationships with brain activity and global hemodynamics. As an example, 

during propofol infusion, bilateral causality between linear CBF features and 

HR was much more frequent than between Poincaré plot descriptors of REG 

signals and HR, while those showed similar values during steady state 

anesthesia. In contrast, during atropine infusion, effects of MAP on CBF 

parameters were more frequent towards the Poincaré descriptors.  The use of 

a larger dataset would allow to further compare the performance of both 

algorithms, but results herein presented suggest that they are closely related to 

each other but the integration of the information contained in both sets of 

features improves the assessment of causality.  

 

 

9.5 Conclusions 

As a conclusion, results from this study confirm the hypothesis that 

during general anesthesia causal interactions among global hemodynamics, 

cerebral hemodynamics and EEG neural activity take place. And, as a 

consequence, clinial decisions made to achieve hemodynamical stability have 

effects at a neural level, as well as changes in anesthetic dosages would 

interfere both in global and brain hemodynamics.  

REG signals provided an assessment of brain hemodynamics, with both 

linear and nonlinear features contributing to the heart-brain interactions, 

revealing its potential as a monitoring tool for anesthesia management. Even 

though CBF estimators are not able to accurately predict anesthetic depth on 

their own as shown in Chapter 8, they contain information allowing to 

understand the coupling between hemodynamics and neural activity, and 

should therefore be integrated in routine clinical care, mainly in patients in 

which causal relationships might be impaired or altered due to pathological or 

intrinsic conditions, such as brain tumours or obesity, respectively.  
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Chapter 10 
10.  

Conclusions and 

Future Work 
 

 

 

 

 

Abstract 

In this chapter, the most important contributions and findings of this 

Doctoral Thesis are summarized and discussed, highlighting the key concepts 

and limitations of the REG signal’s ability to detect CBF changes during 

anesthetic procedures. Furthermore, to overcome the aforementioned 

limitations, several topics deserving further work are described.   

10 
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10.1 Conclusions 

The main objective of this Thesis was to assess the possibility to use 

rheoencephalography (REG) technology to track cerebral blood flow (CBF) 

changes during general anesthesia, applying advanced signal processing 

techniques for that purpose. In order to provide an answer to this research 

question, a roadmap with intermediate milestones was designed.   

Firstly, a literature review of other CBF monitoring solutions was 

presented in Chapter 2, showing that the most accurate ones are invasive, 

while those adapted to routine clinical pratice are often surrogates of CBF, 

such as near infrared spectroscopy (NIRS) or Transcranial Doppler. This 

scenario places REG as a candidate to fill the gap of a cost effective, real time, 

noninvasive, bedside CBF monitor. However, previous publications on REG 

based on the extraction of linear features from the time domain representation 

of the signal showed poor correlations with clinical outcomes. For that reason, 

a review of possible techniques to be applied to REG recordings was 

performed, finally chosing Poincaré plot analysis and Entropy metrics as the 

two algorithms to be analyzed in this project, together with the classical 

approach of geometric features extraction. 

Due to the noise typically embedded in physiological signals, before the 

application of any of the three aforementioned solutions, a filtering strategy 

was needed to cancel the noise in the recorded signals. Two options were 

assessed: classical time domain filters and a nonlinear filtering algorithm 

applied to the reconstructed attractor of REG signals. The comparison of 

those two filtering techniques showed that the nonlinear algorithm presented 

better performance assessed by the percentage root-mean-square error (PRD), 

especially in very noise datasets. However, there is a tradeoff between the 

accuracy in the recovered signals and the exectution time of the filters, with 

the linear filter showing a significantly smaller computational complexity. 

Therefore, both filtering options were used prior to the application of the 

geometric, Poincaré and Entropy processing to evaluate their effect in the 

information extracted from REG signals.  

The first technique to be tested was the extraction of geometric features 

in the time domain, which was considered as a reference since it is the standard 

methodology followed in REG signal processing. A first feasibility test was 

performed using a respiration challenge to assess the ability of REG features 

to detect apneas. Only one of the paremeters, the systolic area of the pulse 

wave, showed significant differences between apnea and baseline recordings, 
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while all others remain unchanged or presented changes smaller than the 

variabiliy of their values. Despite of this poor outcome, the same geometric 

features were used to identify different anesthetic states in REG data recorded 

from surgical procedures under general anesthesia. Under this scenario, many 

parameters provided statistically significant differences, mainly in the 

identification of the transition between loss of consciousness (LOC) and 

steady state anesthesia. No clear advantages were found for the application of 

the nonlinear filter, thus suggesting that the linear filter would be a better 

option in a real time REG based monitor.  

The second technique to be tested was the Poincaré plot analysis. The 

steps taken to process REG signals were analogous to those used for the 

standard processing through geometrical features. A first study in the REG 

signals recorded during apnea challenges showed that the performance of the 

Poincaré plot descriptors was better than the one obtained with the extraction 

of geometric features. This finding was key in the development of this 

research, since it demonstrated that nonlinear features outperformed the 

linear analysis and therefore new information could be obtained from REG 

signals that, to the extent of our knowledge, had not been explored before. 

Due to their relevance, the results from this analysis were compiled and 

published in an indexed journal. The Poincaré plot descriptors were also 

extracted from REG signals collected during general anesthesia and were able 

to identify differences among the states Awake, LOC and steady state 

anesthesia, both using the linear and nonlinear filters.  

The third technique applied to REG recordings was based on the 

calculation of Entropy metrics. This strategy resulted in higher computational 

costs due to the calculation of the correlation integral, thus compromising its 

use in real time monitoring scenarios. As with the other two signal processing 

techniques, a first assessment was performed with signals recorded during 

apnea and baseline periods, followed by the analysis os REG signals collected 

during anesthetic procedures. Results were similar to those obtained for the 

Poincaré plot analysis, outperforming the geometrical features approach, and 

due to this relevance, were also published. Detection of apnea and differences 

among the anesthetic state of Awake, LOC and steady state anesthesia were 

possible through the entropy metrics proposed, namely by means of 

Approximate Entropy (ApEn) and Fuzzy Entropy (FuzzyEn). 
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The comparison of the three processing methods suggested that the 

extraction of the geometric features was not optimal to detect CBF changes 

in REG signals, presenting poor results for apnea detecton but similar results 

to the other two techniques for data recorded during anesthesia. The choice 

of the algorithm to be used for processing was much more relevant than the 

choice for the linear and nonlinear filter, which presented very limited impact 

in the obtained results. It should be noted that despite the statistically 

significant differences detected for many descriptors from the three types of 

analysis, they all presented large variabilities. Those might be due to the noise 

and fluctuations of the recorded signals as well as to the variability among 

patients. For that reason, age, weight, height and body mass index (BMI) were 

considered as potential confounding factors and the correlations between 

these demographic data and REG descriptors were caclulated. Age, weight 

and BMI were often correlated with the extracted features and their rates of 

change among anesthetic states, suggesting that patient characteristics 

influence the information on CBF carried by REG signals. Moreover, other 

clinical variables collected during anesthesia also provided significant 

correlations with the changes in the selected descriptors. The anesthetic depth 

assessed by the qCON index, heart rate (HR), mean arterial pressure (MAP) 

and the propofol dosage were correlated with the rates of change of the 

descriptors, as well as the remifentanil dosages even though, in this case, to a 

lesser extent.  

Therefore, the geometric features extraction, the Poincaré plot 

descriptors and entropy metrics were able to track CBF changes provoked by 

an apnea challenge and different anesthetic states, influenced by patient 

characteristics and other physiological systems.  Those results were considered 

promising for the use of REG in depth of anesthesia monitoring. Thus, the 

variables suitable for real time monitoring (geometric features and Poincaré 

plot descriptors, obtained from linearly filtered data) were used as inputs for 

a classifier aiming at assessing patient’s wakefulness in anesthetic procedures. 

The obtained accuracy was limited, reaching a value of 70%, suggesting that 

REG features by themselves could not identify the wakefulness of the patients 

under general anesthesia. However, this accuracy was considered high enough 

to include the use of REG combined with other physiological data for patient 

monitoring during anesthetic procedures.  

The causal relationships between REG signals and other physiological 

data were assessed to explore the adequacy and need for REG monitoring 

during surgery. Overall, considering all the surgical procedures, interactions 

between general hemodynamics, brain hemodynamics and 
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electroencephalographic activity (EEG) were detected, confirming the 

hypothesis that CBF is linked to both the hemodynamic stability and the brain 

activity modulated by anesthetic drugs. Additionally, specific events during 

the anesthetic procedures were analyzed as well, such as drug infusion, patient 

positioning and the administration of vasoactive drugs. In all those cases, 

causal interactions were detected, showing that decisions on drug dosages and 

patient positioning should be made considering both the hemodynamic 

stability and depth of anesthesia simultaneously, since hemodynamic changes 

might induce brain activity levels to increase or decrease, and viceversa.  

Those findings confirm the initial hypothesis, showing that REG signals 

do carry information on CBF that would be useful for depth of anestheia 

monitoring. Some limitations should however be considered. Firstly, all 

patients participating on the general anesthesia based clinical trials were 

females, thus limiting the obtained results to this population. Secondly, REG 

outcomes were not cross validated with a widely accepted CBF monitor. The 

noninvasive monitors available in the market are usually CBF surrogates and, 

without prior evidence, decision was made not to perform a clinical trial with 

invasive methods due to ethical reasons. However, this Thesis provides 

enough background to justify the comparison with invasive and accurate CBF 

measurements to explore the possibility of using REG for standard clinical 

practice CBF monitoring. 

The limitations herein mentioned have been used to define the future 

work priorities, to enhance the validity of the results obtained in this Doctoral 

Thesis. Nonetheless, the analyses developed so far have been key from a 

scientific, clinical and business perspective. From a scientific perspective, the 

results of this research project justify a new opportunity for REG signals, since 

the application of advanced signal processing techniques has shown to be 

effective in tracking CBF information embedded in REG recordings. 

Moreover, the interaction among different physiological networks has been 

further assessed and quantified, contributing to the knowledge on the effects 

of anesthetics in the brain and the mechanisms cooperating to achieve a 

succesful and stable anesthetic state. Considering the clinical benefits, CBF 

monitoring through REG could be extended to all kind of patients, even to 

those initially at low risk, making it possible to reduce the occurrence of 

adverse events that might sometimes have deleterious effects for patients.  
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Last, but not least, this research project has business implications. In 

addition to the publication of a patent, those results support the possibility of 

using an existing cardiac output monitor manufactured by Quantium Medical 

for CBF monitoring, broadening the clinical claims and applications of this 

medical device.  

 

10.2 Future work 

Even though the main findings herein described are promising for REG 

inclusion in standard clinical practice, further studies are needed to confirm 

this. For instance, the causal relations between EEG based variables and 

cerebral hemodynamics should be validated in larger databases including 

participants from both genders. Moreover, the clinical data used for 

development and validation in this Thesis are limited to anesthetic procedures 

performed under propofol and remifentanil total intravenous anesthesia 

(TIVA), and therefore clinical trials under other anesthetic regimens should 

be carried out as well to extend the potential use of REG to all anesthetic 

options. 

Nonetheless, the main challenge should be validating REG outcomes 

with other CBF monitors available in the market. The most commonly used 

for bedside monitoring are surrogates of CBF, such as CBF velocity (CBFv) 

or NIRS, and a validation against those would not have allowed a conclusion 

on the feasibility of REG for CBF monitoring. The most accurate ones, such 

as Xenon-based methods, are invasive, and were not ethically justified without 

prior data supporting the advantages of using REG. The outcome of this 

Thesis provides evidence suggesting the utility of REG monitoring and 

therefore opens the possibility for interventional clinical trials that should be 

carried out. Moreover, those trials should integrate information on respiration, 

expired CO2 and blood density of each patient, to turn the relative 

measurements herein presented in absolute CBF values.   

Furthermore, other applications besides anesthetic procedures could 

benefit from the use of REG, such as critically ill subjects and /or patients 

with brain tumors or trauma. In this research field, clinical trials are also being 

considered to evaluate the capabilities of REG under those circumstances, to 

integrate this low-cost technology in diagnostic flows to improve patient care.  
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