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cDepartamento de Métodos Estad́ısticos, IUMA, Universidad de Zaragoza, Spain.

Abstract

A total dominating set of a graph G = (V,E) is a subset D of V such that every vertex
in V is adjacent to at least one vertex in D. The total domination number of G, denoted
by γt(G), is the minimum cardinality of a total dominating set of G. A near-triangulation
is a biconnected planar graph that admits a plane embedding such that all of its faces are
triangles except possibly the outer face. We show in this paper that γt(G) ≤ b2n

5
c for any

near-triangulation G of order n ≥ 5, with two exceptions.

Keywords: Total dominating sets, total domination number, near-triangulations,
maximal planar graphs.

1. Introduction1

Let G = (V,E) be a simple graph. A dominating set of G is a subset D ⊆ V such that2

every vertex not in D is adjacent to at least one vertex in D. The domination number of3

G, denoted by γ(G), is defined as the minimum cardinality of a dominating set of G. Total4

dominating sets are defined in a similar way. A subset D ⊆ V such that every vertex in V5

(including the vertices in D) is adjacent to a vertex in D is called a total dominating set6

(TDS for short) of G. The total domination number, denoted by γt(G), is the minimum7

cardinality of a total dominating set of G. Since a total dominating set of a graph G is8

also a dominating set of G, the following inequality trivially holds γ(G) ≤ γt(G) ≤ 2γ(G).9
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Figure 1: The two 12-vertex graphs H1 and H2

Domination and total domination in graphs have been widely studied in the literature.10

We refer the reader to [10, 9, 14] for excellent books on these topics and to [11] for a survey11

on total domination.12

Given a graph G, it is well-known that computing γ(G) or γt(G) is an NP-hard problem,13

even when restricted to planar graphs. Hence, studying lower or upper bounds on the14

(total) domination number in some classes of graphs has been of interest during the last15

few years. In particular, for planar graphs, Matheson and Tarjan proved in [18] that16

γ(G) ≤ bn
3
c for any n-vertex triangulated disc G. In the literature, triangulated discs are17

also called near-triangulations. A near-triangulation is a biconnected planar graph that18

has a plane embedding such that all of its faces are triangles except possibly the outer19

face. When the outer face is also a triangle, a near-triangulation is a triangulation or20

maximal planar graph. Note that removing an outer vertex from a triangulation gives a21

near-triangulation.22

In the same paper [18], it is also conjectured that γ(G) ≤ bn
4
c for any n-vertex triangu-23

lation G. King and Pelsmajer proved this conjecture in [15] for triangulations of maximum24

degree 6, and Plummer et al. proved in [20] that if G is an n-vertex Hamiltonian trian-25

gulation with minimum degree at least 4, then γ(G) ≤ max{d2n/7e, b5n/16c}. The upper26

bound n
3

for triangulations has been recently improved by Špacapan [22], showing that27

γ(G) ≤ 17
53
n for any n-vertex triangulation G, where n > 6.28

Maximal outerplanar graphs are a special class of near-triangulations. A maximal29

outerplanar graph, MOP for short, is a near-triangulation such that all of its vertices30

belong to the boundary of the outer face. MOPs have additional properties that allow31

one to improve (or to prove) bounds for different types of problems on graphs. In [18],32

in addition to proving that γ(G) ≤ n
3

for any n-vertex planar graph G, it is proved that33

this upper bound is tight for MOPs. In fact, the upper bound n
3

on the domination34

number in MOPs was already implicitly proved by Fisk [8]. In [1, 23], it is shown that35

γ(G) ≤ (n + k)/4, where k is the number of vertices of degree 2 in a MOP G. Dorfling36

et al. proved in [6] that γt(G) ≤ n+k
3

for a MOP G of order n with k vertices of degree 2.37

The same authors proved in [5] that apart from the graphs H1 and H2 shown in Figure 1,38
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γt(G) ≤ b2n
5
c for a MOP G of order n ≥ 5. In [17], Lemanska et al. presented an alternative39

proof of this last result. The reader is referred to [2, 3, 4, 12, 16] for other results in MOPs40

related to some variants of the domination concept.41

In this paper, we extend the result proved in [5, 17] to the family of near-triangulations42

and we show that γt(G) ≤ b2n
5
c for any near-triangulation G of order n ≥ 5, apart from43

the graphs H1 and H2. Thus, we improve the best known upper bound 6
11
n on the total44

domination number of n-vertex near-triangulations. This last bound follows from the fact45

that a near-triangulation is 2-connected and from the following result proved in [13]: If G46

is a 2-connected graph of order n > 18, then γt(G) ≤ 6
11
n.47

The upper bound b2n
5
c on the total domination number in near-triangulations is proved48

in Section 4. The proof is based on induction and combines common techniques used when49

proving results for MOPs, as the ones described in [17], with techniques related to what50

we call reducible and irreducible near-triangulations, and terminal polygons in irreducible51

near-triangulations. These concepts are defined in Section 4. In the induction process,52

the two exception graphs H1 and H2 can appear after removing some vertices or some53

edges from a near-triangulation. For these two graphs, induction cannot be applied since54

their total domination numbers are greater than b2n
5
c. For this reason, we explain in55

Section 3 how to obtain suitable total dominating sets for some graphs involving H1 and56

H2 that will be used in the inductive proof. Section 2 is devoted to review some known57

properties for near-triangulations, and to show some special cases in which the removal of58

some vertices or the contraction of some edges from a near-triangulation, results in another59

near-triangulation. These cases will be needed in the inductive proof. We conclude the60

paper with some remarks in Section 5.61

2. Near-triangulations and some of their properties62

For the sake of simplicity, throughout the paper the term near-triangulation will refer63

to a near-triangulation T = (V,E) that has been drawn in the plane without crossings,64

using straight-line segments, such that all of its faces are triangles except possibly the65

outer face (see Figure 2a). Such a drawing always exists by Fáry’s Theorem [7]. We66

assume that the boundary of the outer face is given by the cycle C = (u1, u2, . . . , uh, u1),67

with its h ≥ 3 vertices in clockwise order. In this way, we can refer to boundary edges68

and vertices (the edges and vertices of C), interior vertices (the vertices not in C), and69

diagonals (edges connecting two non-consecutive vertices of C). Recall that if h = 3, then70

T is a triangulation and if h = |V |, then T is a MOP.71

In [17], the authors use induction to prove that γt(T ) ≤ b2n
5
c for a MOP T of order72

n ≥ 21. The two main properties they use are that after contracting a boundary edge of T ,73

the resulting graph is again a MOP, and that there is always a diagonal dividing T into two74

MOPs, leaving 5, 6, 7 or 8 consecutive boundary edges of C in the smallest one. However,75

these two properties are not true for arbitrary near-triangulations. Sometimes, there are no76

diagonals dividing a near-triangulation T into smaller near-triangulations, and even in the77

case that such diagonals exist, a diagonal leaving 5, 6, 7 or 8 consecutive boundary edges78

in the smallest near-triangulation cannot be chosen. Besides, in general, after contracting79
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Figure 2: (a) A near-triangulation. The thick segments correspond to T [C]. (b) Removing a vertex of
degree 2 in T [C]. (c) Contracting the edge (ui, ui+1) to the vertex u′i.

a boundary edge, the resulting graph is not a near-triangulation. Therefore, we cannot80

follow in our inductive proof the same steps as described in [17], although we will use some81

of the ideas given in that paper.82

We show in this section several cases in which the removal of some vertices or the83

contraction of some edges from a near-triangulation results in another near-triangulation.84

These cases will be enough for our purposes. Before stating them, we shall give some85

terminology and some properties.86

Given a near-triangulation T with boundary cycle C = (u1, u2, . . . , uh, u1), we use T [C]87

to denote the subgraph of T induced by the vertices in C (see Figure 2a). Observe that88

T [C] is always Hamiltonian and outerplane (all the vertices belong to the boundary of the89

outer face). The following result for a Hamiltonian outerplanar graph is well-known.90

Lemma 1. Let G be a Hamiltonian outerplanar graph of order n ≥ 4. Then, G contains91

at least two non-adjacent vertices of degree 2.92

Given a graph G = (V,E), the graph obtained from G by deleting the vertices {v1, . . . ,93

vk} and all their incident edges is denoted by G − {v1, . . . , vk}. It is straightforward to94

prove the following lemma for near-triangulations (see Figure 2b).95

Lemma 2. Let T be a near-triangulation of order n ≥ 4 with boundary cycle C. Then,96

T − {v} is a near-triangulation if and only if v is an interior vertex of degree 3 or v is a97

vertex of degree 2 in T [C].98

Let G = (V,E) be a graph and let e = (vi, vj) be an edge of G. We use G − e to99

denote the graph obtained from G by removing e, and G/e to denote the graph obtained100

from G by contracting the edge e, that is, the simple graph obtained from G by deleting101

vi, vj and all their incident edges, adding a new vertex w and connecting w to each vertex102

v that is adjacent to either vi or vj in G (see Figure 2c). Observe that by Euler’s formula,103

contracting an edge e = (vi, vj) from a triangulation T results in another triangulation if104

and only if vi and vj have exactly two common neighbors. Besides, the two endpoints of105

an edge e = (vi, vj) of T have exactly two common neighbors if and only if the edge e is106

not an edge of a separating triangle (a triangle containing vertices inside and outside).107
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We say that an edge e of a near-triangulation T is contractible if the graph T/e is also108

a near-triangulation. Since by adding a vertex w in the outer face of T and by connecting109

w to the vertices in C (the boundary cycle associated with T ) we obtain a triangulation,110

then we have the following lemma.111

Lemma 3. Let T be a near-triangulation with boundary cycle C and let e be an edge of112

T . Then, the edge e is contractible if and only if e is neither a diagonal of T nor an edge113

of a separating triangle of T .114

The following lemma summarizes some of the cases in which we obtain new near-115

triangulations after removing vertices from a near-triangulation.116

Lemma 4. Let T be a near-triangulation with boundary cycle C = (u1, . . . , uh, u1). Suppose117

that T contains at least one interior vertex and has no diagonals. Let ui be a vertex in C.118

Then:119

i) T − {ui} is also a near-triangulation.120

ii) Assuming that T contains at least two interior vertices, there exists a vertex uj with121

i ≤ j < i − 1 + h (mod h) and an interior vertex vj adjacent to uj such that122

T − {ui, ui+1, . . . , uj, vj} is a near-triangulation. In addition, the edge (uj, vj) is123

contractible in T .124

iii) If the edge ei = (ui−1, ui) is not contractible in T , then there exists an interior vertex125

vi adjacent to ui such that T − {ui, vi} is a near-triangulation.126

Proof. Since the starting vertex of C is arbitrary, we may assume without loss of generality127

that ui is u2.128

i) There are no diagonals in T , so the degree of u2 in T [C] is 2. Thus, the statement129

follows from Lemma 2.130

ii) Let u1, w1, . . . , wk, u3 be the set of neighbors of u2 in T , in counterclockwise order.131

Since there are no diagonals in T , u2 is a vertex of degree 2 in T [C] and k ≥ 1. By Lemma 2,132

after removing u2 we obtain a new near-triangulation T2 = T − {u2} with boundary cycle133

C2 = (u1, w1, . . . , wk, u3, u4, . . . , u1) (see Figure 3b).134

We repeat this operation and we remove from T2 the first vertex w of degree 2 in T2[C2],135

clockwise from u1. By Lemma 2, we obtain again a near-triangulation T3 = T − {u2, w}136

with boundary cycle C3. Iterating this process, we obtain a sequence of near-triangulations137

T2, T3, . . . , Tj, Tj+1, where Ti+1 is obtained from Ti, for i = 2, . . . , j, by removing from Ti138

the first vertex w of degree 2 in Ti[Ci], clockwise from u1, and where we have stopped the139

process the first time that w is an interior vertex in T . Hence, Tj+1 = T−{u2, u3, . . . , uj, vj},140

for some interior vertex vj. See Figure 3 for an illustration of this process. Next we prove141

the following claim.142

Claim 1. For i = 2, . . . , j, the boundary cycle Ci of Ti consists of the following vertices143

and in this (clockwise) order: The vertex u1, some vertices that are interior in T , and the144

boundary vertices ui+1, ui+2, . . . , uh.145
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Figure 3: (a) A near-triangulation T without diagonals. (b), (c), (d) and (e) Obtaining the near-
triangulations T2, T3, T4 and T5 by removing successively the vertices u2, u3, u4 and v4.

Proof of Claim 1. The proof is by induction. The claim is obviously true for T2, the146

base case. Assume that the claim is true for T2, . . . , Ti, where i < j, and that Ci is147

(u1, x1, . . . , xl, ui+1, ui+2, . . . , uh, u1), with x1, . . . , xl being interior vertices in T . Let us148

prove that Ti+1 satisfies the claim. By the construction of Ti+1 and since i < j, none of the149

vertices x1, . . . , xl has degree 2 in Ti[Ci]. Let us see that ui+1 is the first vertex of degree150

2 in Ti[Ci] from u1. Assume to the contrary that its degree in Ti[Ci] is greater than 2, so151

there is a diagonal (ui+1, y) in Ti[Ci]. Since T has no diagonals, the vertex y necessarily152

is one of the vertices in {x1, . . . , xl−1}, say xk. But then, by Lemma 1, in the subgraph153

induced by the vertices xk, xk+1, . . . , xl, ui+1 there is a vertex xj of degree 2 different from154

xk and ui+1, that also is a vertex of degree 2 in Ti[Ci], which is a contradiction. Hence,155

ui+1 is a vertex of degree 2 in Ti[Ci]. If we remove it from Ti, then the new cycle Ci+1156

corresponding to Ti+1 is obtained from Ci by adding the neighbors of ui+1 in Ti between157

xl and ui+2. Therefore, the claim follows. �158

From the claim, the set of boundary vertices removed to obtain Tj is {u2, . . . , uj}, as159

required. Let us now see that during the previous process, there is always a first time160

in which an interior vertex in T can be removed. Assume that the process does not161

finish before removing uh−1. By removing uh−1, we obtain a near-triangulation Th−1 with162

boundary cycle Ch−1 = (u1, x1, . . . , xl, uh, u1). By hypothesis, T contains at least two163

interior vertices, so Th−1 is not a triangle. Thus, by Lemma 1, Th−1[Ch−1] contains a vertex164

xj of degree 2, different from u1 and uh, that must be an interior vertex in T , and can be165
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removed from Th−1 to obtain a near-triangulation by Lemma 2.166

Let vj be the interior vertex in T removed from Tj to obtain Tj+1. To finish this part167

of the proof, we need to show that uj and vj are adjacent and that (uj, vj) is contractible168

in T . Let Cj−1 = (u1, y1, . . . , ym, uj, uj+1, . . . , uh, u1) be the boundary cycle of Tj−1. By169

hypothesis, none of the vertices y1, . . . , ym, has degree 2 in Tj−1[Cj−1]. Since the vertex uj170

has degree 2 in Tj−1[Cj−1], it is not connected to any of {y1, . . . , ym−1}, so when removing171

uj from Tj−1, the only vertex among {y1, . . . , ym} that could decrease its degree in Tj[Cj]172

in relation to its degree in Tj−1[Cj−1] is precisely ym. Therefore, vj is either ym or one of173

the new vertices that appear in Cj. Since all of these vertices are neighbors of uj, then uj174

and vj are adjacent.175

Let us prove that (uj, vj) is contractible in T . Assume to the contrary that the edge176

(uj, vj) is not contractible. T has no diagonals, hence there exists a separating triangle177

∆ = (uj, vj, v) in T by Lemma 3. The vertex uj has degree 2 in Tj−1[Cj−1] and T has no178

diagonals, so all the neighbors of uj in T must belong to Cj except for uj−1. The vertex vj179

has degree 2 in Tj[Cj], hence the only neighbors of uj adjacent to vj are the predecessor180

and the successor of vj in Cj. Thus, v must be one of these two vertices. But in both cases,181

∆ would be empty, contradicting that ∆ is separating. Therefore, (uj, vj) is contractible182

in T .183

iii) Suppose that the edge (u1, u2) is not contractible. Since T contains no diagonals, by184

Lemma 3 this edge must belong to a separating triangle ∆ = (u1, u2, w) containing some185

vertices inside, with w being an interior vertex in T . If ∆ only contains a vertex wi, then186

T − {u2, wi} is clearly a near-triangulation by Lemma 2, because wi is an interior vertex187

of degree 3 and u2 is a vertex of degree 2 in T [C]. If ∆ contains two or more vertices, then188

part ii) of this lemma can be applied to the triangulation T ′ induced by ∆ and its interior189

vertices, so there is a vertex wi inside ∆ such that T ′−{u2, wi} is a near-triangulation. As190

a consequence, T − {u2, wi} is also a near-triangulation.191

To finish this section, we show that for a boundary vertex, there is always a contractible192

edge incident to it.193

Lemma 5. Let T be a near-triangulation of order n ≥ 5, with boundary cycle C =194

(u1, . . . , uh, u1), and let ui be a vertex in C. Then,195

i) If ui has a neighbor not in C, then there exists an interior vertex v such that the edge196

(ui, v) is contractible.197

ii) If all neighbors of ui are in C, then the edges (ui−1, ui) and (ui, ui+1) are contractible.198

Proof. i) Suppose that the edge e = (ui, v) is not contractible, with v /∈ C. Then e must199

be an edge of a separating triangle ∆ = (ui, v, w). All vertices inside ∆ are interior vertices200

in T , and the subgraph induced by ∆ and its interior vertices is a triangulation T ′. If ∆201

contains at least two vertices, then, by Lemma 4(ii), there exists an interior vertex v′ such202

that T ′ − {ui, v′} is a near-triangulation and (ui, v
′) is contractible in T ′. But this edge203

is also contractible in T . If ∆ only contains an interior vertex z, then the edge (ui, z) is204

clearly contractible in T .205

7



ii) Suppose that the edge e = (ui−1, ui) is not contractible. This edge is not a diagonal,206

hence there exists a separating triangle ∆ = (ui−1, ui, u) containing at least one interior207

vertex. Thus, at least one of these interior vertices must be adjacent to ui, which is a208

contradiction because we are assuming that all neighbors of ui belong to C. Therefore,209

(ui−1, ui) is contractible. By the same argument, the edge (ui, ui+1) is also contractible.210

3. Dominating sets for some near-triangulations211

In this section we show how to build (total) dominating sets in some special cases of212

near-triangulations. These dominating sets are needed in the proof of the main theorem.213

We first give the following results for triangulated pentagons and hexagons, and MOPs in214

general [5, 17].215

Lemma 6 ([5, 17]). Let T be a MOP of order 5 and let C = (u1, . . . , u5, u1) be its boundary216

cycle. For every vertex ui, there exists a TDS in T whose size is 2 and contains ui.217

Lemma 7 ([5, 17]). Let T be a MOP of order 6 and let C = (u1, . . . , u6, u1) be its boundary218

cycle. For every pair ui, ui+1 of consecutive vertices in C, there exists a TDS in T whose219

size is 2 and contains either ui or ui+1.220

Theorem 1 ([5, 17]). If T is a MOP of order n ≥ 5 and T /∈ {H1, H2}, then γt(T ) ≤ b2n
5
c.221

The following lemma provides total dominating sets in some cases that involve the222

graphs H1 and H2.223

Lemma 8. Let T be a near-triangulation with boundary cycle C = (u1, . . . , uh, u1).224

I) For every vertex ui ∈ C, T has a TDS of size 5 containing ui if one of the following225

cases holds:226

i) T is either H1 or H2.227

ii) T − ui is either H1 or H2.228

iii) T − {ui, vi} is either H1 or H2 for some interior vertex vi adjacent to ui.229

iv) T/e is either H1 or H2 by contracting some edge e incident with ui.230

II) For every edge ei = (ui, ui+1) (where i + 1 is taken modulo h), T has a TDS of size231

4 containing ui or ui+1 if T − ei is H1 or H2.232

Proof. We prove the lemma assuming that H1 is T or the graph obtained from T . The233

analysis is totally analogous if H2 is T or the graph obtained from T . Let ∆ be the central234

triangle of H1, consisting of the vertices w1, w2 and w3. See Figure 4a. The three triangles235

that contain the three vertices of degree 2 are denoted by ∆1,∆2 and ∆3, respectively,236

where wi is not adjacent to any vertex in ∆i, for i = 1, 2, 3.237

i) Suppose that T = H1. If ui belongs to ∆, say ui = w1, then w1, its two neighbors in238

C and two arbitrary vertices in ∆1 form a TDS D (see Figure 4a). If ui belongs to one of239

8



w3

∆

w1

w2

∆1

∆3 ∆2

(a)

v ui

w1

(b)

ui

vi

w1

w2 w3

(c)

v

w3

ui

w1

(d)

ui

w1

w2

ui+1

z

∆3

(e)

ui

w1

w2 ui+1 = w3

z

∆3

(f)

Figure 4: Illustrating Lemma 8. In each case, the squared vertices form a TDS of T . (a) The graph H1.
(b) Removing the vertex ui. (c) Removing the vertices ui and vi. (d) The vertex w3 is the vertex obtained
by contracting the edge (ui, vi). (e) and (f) Removing the edge (ui, ui+1).

∆1,∆2 and ∆3, say ∆1, then D is also a TDS by choosing ui as one of the vertices of ∆1240

in D.241

ii) Suppose that T − ui is H1. In this case, ui has at least two neighbors in T that242

necessarily are consecutive vertices on the boundary of H1 (see Figure 4b). Hence, ui has243

a neighbor v in one of the triangles ∆1,∆2 and ∆3, say triangle ∆1. Then, ui, v and the244

three vertices of a TDS of the MOP H1 −∆1 of order 9 define a TDS of T .245

iii) Suppose that T − {ui, vi} is H1 for some interior vertex vi adjacent to ui. Assume246

first that ui has a neighbor v in one of the triangles ∆1,∆2 and ∆3, say triangle ∆1. As247

in the previous case, ui, v and the three vertices of a TDS of the MOP H1−∆1 of order 9248

define a TDS of T .249

Assume now that none of the vertices in ∆1,∆2 and ∆3 is adjacent to ui. In this case,250

since T is a near-triangulation and ui a boundary vertex, then vi must be adjacent to all251

the vertices of at least one of the triangles ∆1,∆2 and ∆3, say ∆1 (see Figure 4c for an252

example). Therefore, ui, vi, and the three vertices of a TDS of the MOP H1−∆1 define a253

TDS of T .254

iv) Suppose that H1 is obtained from T by contracting an edge e = (ui, vi) incident255

with ui, and let w be the new vertex obtained after contracting this edge. If w is one of256

the vertices of ∆1,∆2 or ∆3, say ∆1, then the set formed by ui, vi and the three vertices257

9



of a TDS of H1 −∆1 is a TDS of T .258

On the contrary, suppose that w is one of the vertices of ∆, say w3 (see Figure 4d for259

an example). In this case, ui has a neighbor v in T belonging to either ∆1 or ∆2. Assume260

that v belongs to ∆1. The set formed by ui, v and the three vertices of a TDS of H1 −∆1261

is a TDS of T .262

II) Suppose that T − e is H1 for some edge (ui, ui+1). Let z be the third vertex of263

the triangle in T containing e. Then z belongs to one of the triangles ∆, ∆1, ∆2 or ∆3.264

Suppose first that z belongs to ∆. We may assume that z = w3 (see Figure 4e). Then, ui265

belongs to ∆1 and ui+1 to ∆2 or viceversa. According to Lemma 6, there is a TDS D of266

size 2 containing w2 in the triangulated pentagon defined by w1, w2 and ∆3. Therefore,267

ui, ui+1 and D define a TDS of size 4 in T .268

Now suppose that z belongs to one of the triangles ∆1, ∆2 or ∆3, say ∆1 (see Figure 4f).269

Thus, one of the vertices of {ui, ui+1} is the vertex of degree 2 of ∆1 and the other one270

is w2 or w3, say w3. If D is a TDS of size 2 containing w2 in the triangulated pentagon271

defined by w1, w2 and ∆3, then D together with w3 and a vertex in ∆2 adjacent to w3272

form a TDS of size 4 in T .273

To finish this section, we give some bounds on the size of a (total) dominating set of a274

near-triangulation under the contraction operation. Given a simple graph G = (V,E), we275

say that a vertex v ∈ V dominates a vertex u ∈ V if v and u are adjacent in G. Thus, a276

vertex v ∈ V dominates all its neighbors in G but not itself.277

Lemma 9. Let T be a near-triangulation of order n ≥ 5 with boundary cycle C =278

(u1, . . . , uh, u1). Suppose that for some vertex ui there is a contractible edge e = (ui, vi) of279

T such that T/e has a TDS of size s. Then:280

I) T has a set of vertices D satisfying one of the following conditions:281

i) D is a TDS of size s+ 1 in T such that ui and vi belong to D,282

ii) D is a set of vertices of size s such that neither ui nor vi belong to D and D283

dominates all vertices of T except possibly one of ui or vi.284

II) There is a dominating set D of size s+ 1 in T such that D contains ui and either D285

is a TDS of T or D dominates all vertices of T except possibly ui.286

Proof. I) The result follows from the same well-known result for abstract graphs: If G/e is287

the graph obtained by contracting an edge e = (ui, vi) of G to a new vertex w, according288

to whether w belongs to a TDS D′ of size s in G/e or not, either i) the set D = {D′−w}∪289

{ui, vi} is a TDS of G or ii) D = D′ dominates all vertices of G except possibly ui or vi.290

II) As before, if the new vertex w belongs to a TDS D′ of size s in G/e, then D =291

{D′−w}∪{ui, vi} is a TDS of G. Otherwise, the set D = D′ ∪{ui} dominates all vertices292

of T except possibly ui.293
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4. Upper bound for near-triangulations294

In this section we prove the main result of this paper: the upper bound b2n
5
c on the295

total domination number in near-triangulations of order n. Before proving it, we define296

the two main concepts required in its proof: reducible near-triangulations and terminal297

polygons.298

Let T be a near-triangulation with some interior vertices and boundary cycle C =299

(u1, u2, . . . , uh, u1). We say that T is reducible if it contains a triangle (ui, ui+1, v) with v300

a vertex not in C. In this case, by removing the boundary edge uiui+1, we obtain a new301

near-triangulation T ′ with boundary cycle C ′ = (u1, . . . , ui, v, ui+1, . . . , uh, u1). Obviously,302

γt(T ) ≤ γt(T
′), and T ′ contains fewer interior vertices than T . If T ′ is also reducible, then303

we can obtain a new near-triangulation T ′′ with fewer interior points than T ′. Iterating this304

process, we reach either a near-triangulation without interior vertices (a MOP), or a near-305

triangulation with interior vertices that is irreducible, that is, a near-triangulation with306

interior vertices such that for every boundary edge (ui, ui+1), the vertex v in the triangular307

face (ui, ui+1, v) adjacent to (ui, ui+1) is also in C. See Figure 5 for some examples of308

irreducible near-triangulations.309

With these definitions, note that if T is a near-triangulation, then T is either reducible,310

or irreducible, or a MOP. Also note that if a near-triangulation T is irreducible, then311

an interior vertex together with its neighbors induce a wheel of order at least 4 such312

that every boundary edge of the wheel is an internal edge in T (otherwise T would be313

reducible). Therefore, the order of an irreducible near-triangulation is at least 7. Figure 5a314

shows the simplest irreducible near-triangulation. As a consequence, if n ≤ 6 then every315

near-triangulation is either reducible or a MOP.316

Let T be an irreducible near-triangulation with boundary cycle C = (u1, u2, . . . , uh, u1).317

The diagonals of the subgraph T [C] divide the interior of C into several regions whose318

interiors are disjoint. These regions are simple polygons that can be non-empty or empty,319

depending on whether they contain interior vertices of T or not (see Figure 5b). Let320

P1, . . . Pk denote the polygons obtained in this way such that they contain some interior321

vertex of T . The irreducible near-triangulation shown in Figure 5b contains five non-empty322

polygons P1, P2, P3, P4 and P5. Observe that, by definition, every side d of a polygon Pi323

has to be a diagonal of T [C], and that Pi has no diagonals. Therefore, a side d of a polygon324

Pi divides T into two non-empty near-triangulations Tin(Pi, d) and Tout(Pi, d) sharing d,325

where Tin(Pi, d) denotes the near-triangulation containing the polygon Pi. In Figure 5b,326

Tin(P5, (u, u
′)) is the near-triangulation of order 6 containing P5.327

We say that a non-empty polygon Pi is terminal if at most one of the near-triangulations328

Tout(Pi, d) corresponding to the sides d of Pi (diagonals in T [C]) contains interior vertices.329

Hence, if Pi is a terminal polygon with k sides, then at least k−1 of the near-triangulations330

Tout(Pi, d) are MOPs with at least three vertices. The irreducible near-triangulation shown331

in Figure 5b contains three terminal polygons P2, P3, P5. The following lemma shows that332

an irreducible near-triangulation has at least one terminal polygon.333

Lemma 10. Let T be an irreducible near-triangulation of order n ≥ 7 with boundary cycle334

C. Then, T contains at least one terminal polygon.335
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(a)

P1

P2

P3

P4 P5

u

u′

(b)

Figure 5: (a) The simplest irreducible near-triangulation H. The squared vertices form a total dominating
set. (b) An irreducible near-triangulation T . Thick lines correspond to the subgraph T [C]. The diagonals
of T [C] define a set of adjacent polygons, five of which are non-empty and three are terminal, P2, P3 and
P5.

Proof. Since T is irreducible, it must contain non-empty polygons. Consider the dual graph336

G = (V,E) associated with T [C], where the vertices of G are the faces defined by T [C]337

and two vertices are adjacent in G if their corresponding faces are adjacent. Since T [C] is338

a Hamiltonian outerplane graph, G must be a tree. Note that each non-empty polygon of339

T [C] is a vertex of G.340

If there is only one non-empty polygon, then it is terminal. Otherwise, observe that341

terminal polygons correspond to the leaves of the minimal subtree of G containing all the342

vertices corresponding to non-empty polygons. Since every non-trivial tree has at least two343

leaves, then the lemma follows.344

We are now ready to prove the main result of the paper, Theorem 2. To this end, we345

also need the following two lemmas. The first one was proved in [19, 21] and the proof of346

the second one is straightforward.347

Lemma 11 ([19, 21]). Given a MOP G of order n ≥ 10 and a boundary edge (ui, ui+1) of348

G, there exists a diagonal d of G that partitions G into two MOPs, one of which contains349

exactly 6, 7, 8 or 9 vertices of G and does not contain (ui, ui+1).350

Lemma 12. Let n, k, d be positive integers. If n−k ≥ 5 and d/k ≤ 2/5, then b2(n−k)
5
c+d ≤351

b2n
5
c.352

Theorem 2. If T = (V,E) is a near-triangulation of order n ≥ 5, different from H1 and353

H2, then γt(G) ≤ b2n
5
c.354

Proof. Let f(n) = b2n
5
c. Thus, f(n− k) + d ≤ f(n) if n− k ≥ 5 and d/k ≤ 2/5.355

We proceed by induction on the number m of interior vertices of T and the number n356

of vertices of T . For m = 0, the base of the induction, T is a MOP and the result is true357

by Theorem 1.358
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Let T be a near-triangulation of order n, with m > 0 interior vertices and boundary359

cycle C = (u1, . . . , uh, u1). Suppose that γt(T
′) ≤ f(n′) for any near-triangulation T ′ of360

order n′ ≥ 5 such that one of the following conditions holds:361

� T ′ is different from H1 and H2, and T ′ has m′ < m interior vertices.362

� T ′ has m′ = m interior vertices and n′ < n vertices.363

Under this assumption, we need to prove that γt(T ) ≤ f(n). To make further reasoning364

easier, we prove the following claim.365

Claim 2. Let T be a near-triangulation of order n ≥ 6, with m interior vertices and with366

boundary cycle C = (u1, . . . , uh, u1). Assume that the previous induction hypotheses hold,367

that is, γt(T
′) ≤ f(n′) for any near-triangulation T ′ of order n′ ≥ 5 such that one of the368

following conditions holds:369

� T ′ is different from H1 and H2, and T ′ has m′ < m interior vertices.370

� T ′ has m′ = m interior vertices and n′ < n vertices.371

Then, for any vertex ui ∈ C, there exists a dominating set D of size at most f(n−1)+1372

such that D contains ui and all the vertices of T are dominated except possibly ui.373

Proof of the claim. Assume that T is neither H1 nor H2. By Lemma 5, there is always374

a contractible edge e = (ui, vi) with ui as one of its endpoints. Note that T/e has either375

fewer interior vertices than T or the same number of interior vertices but n − 1 vertices.376

Thus, if T/e is not H1 or H2, then γt(T/e) ≤ f(n − 1) by the induction hypotheses. In377

this case, the result follows from Lemma 9 (II). If T/e is H1 or H2, then the order of T is378

13 and the result follows from Lemma 8 (I) (iv), since f(12) + 1 = 5. Finally, if T is H1 or379

H2, then Lemma 8 (I) (i) ensures the result because f(11) + 1 = 5. �380

Let us go into the details of the proof of the theorem. Assume first that T is reducible.381

Hence, by removing a suitable boundary edge (ui, ui+1) we obtain a near-triangulation T ′382

of order n with m − 1 interior vertices. If T ′ is H1 or H2, then T has 12 vertices and383

Lemma 8 (II) guarantees that γt(T ) = 4 = f(12). Otherwise, the induction hypothesis can384

be applied to T ′, so γt(T ) ≤ γt(T
′) ≤ f(n).385

Assume then that T is irreducible, hence n ≥ 7 and T contains at least one terminal386

polygon P by Lemma 10, with k ≥ 3 sides d1 = (u′1, u
′
2), d2 = (u′2, u

′
3), . . . , dk = (u′k, u

′
1).387

Note that the vertices u′1, . . . , u
′
k of P correspond to vertices in C and assume that they388

are in clockwise order. Without loss of generality, we may assume that u′1 = u1. For389

j = 1, . . . , k, every near-triangulation Tout(P, dj) = Mj is a MOP, except possibly one of390

them, say Tout(P, dk) = Mk. Let Mj denote the near-triangulation Tin(P, dj), so |Mj| +391

|Mj| = n+ 2. Observe that, since P is non-empty and has no diagonals, Mj is a reducible392

near-triangulation, for j = 1, . . . , k, because dj can be removed from Mj (see Figure 6).393

We prove that γt(T ) ≤ f(n) by applying induction to a suitable near-triangulation394

obtained after some graph operations. We distinguish cases according to the sizes of the395

MOPs Mj.396
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Removing vertices from one MOP397

We begin analyzing the cases when there is a MOP Mj such that either |Mj| ∈398

{4, 6, 7, 8}, or |Mj| = 9 and dj is contractible in Mj, or |Mj| > 9. These cases are the399

same as those described in [17], except for the case |Mj| = 4, and the analysis is totally400

analogous. For the sake of completeness, we include them. Note that Mj contains interior401

vertices, so it is neither H1 nor H2, and has at least 6 vertices (because T is irreducible).402

Therefore, the induction hypothesis can be applied to Mj, if necessary.403

Case 1: |Mj| = 4.404

Suppose that there is a MOP Mj of order 4 (M5 in Figure 6)1. One of u′j or u′j+1 is a405

dominating set of Mj (the vertex u′6 in Figure 6). Suppose that u′j+1 is such a vertex (the406

same reasoning can be applied in the other case). Note that Mj has n− 2 vertices and is407

reducible because the edge (u′j, u
′
j+1) can be removed from Mj. Let (u′j+1, ui) be the other408

boundary edge of Mj incident with u′j+1.409

From Mj, we build another reducible near-triangulation Mj
′

of order n, by adding two410

vertices w1 and w2 and the edges (u′j+1, w1), (u
′
j+1, w2), (w2, w1) and (ui, w2) in the outer411

face, that is, a MOP of order 4 is joined to the edge (u′j+1, ui). Since Mj
′

is reducible, the412

induction hypothesis can be applied to Mj
′
, so it has a TDS D of size at most f(n). Recall413

that Lemma 8 (II) guarantees the same bound for D, even in the case that either H1 or414

H2 is obtained after the reduction.415

From D, we build as follows another TDS D′ of Mj
′
such that |D′| ≤ f(n), D′ contains416

u′j+1 and does not contain w1 or w2. The degree of w1 in Mj
′

is 2, hence at least one of417

u′j+1 and w2 must belong to D so that w1 is dominated. Suppose that u′j+1 belongs to418

D. If neither w1 nor w2 belongs to D, we are done. Otherwise, since the neighbors of w1419

and w2 are also neighbors of u′j+1, by removing w1 and w2 from D (at least one belongs to420

D) and by adding a neighbor of u′j+1 to D (if no neighbor of u′j+1 different from w1 and421

w2 belongs to D), we obtain such a set D′. On the contrary, suppose that u′j+1 does not422

belong to D but w2 does. Thus, by removing w2 from D and by adding u′j+1 to D (and423

removing w1 and adding a neighbor of u′j+1 different from w1 and w2 if w1 belongs to D),424

such a set D′ is obtained. Since u′j+1 dominates the vertices of Mj, then D′ is a TDS of T425

and γt(T ) ≤ f(n).426

Case 2: |Mj| = 6.427

Suppose that there is a MOP Mj of order 6 (M3 in Figure 6). Since Mj is a triangulated428

hexagon, by Lemma 7, either u′j and one of its neighbors, or u′j+1 and one of its neighbors429

form a TDS of the triangulated hexagon Mj. Assume that {u′j, u} is such a set (the other430

case is analyzed in the same way). By Claim 2, Mj has a set D of size at most f(n−5) + 1431

containing the vertex u′j and dominating all the vertices of Mj except possibly u′j. But432

1We remark that particular graphs Mi are drawn in Figures 6 and 7, but our claims apply for all
possible graphs and drawings.
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M1

M2
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M5

M6

M7

u′1 = u1

u′2

u′3 u′4

u′5

u′6

u′7

P

u′

u

Figure 6: A terminal 7-gon P with 6 MOPs M1,M2,M3,M4,M5 and M6 of orders 9, 5, 6, 8, 4 and 3,
respectively, around it.

then, the set D ∪ {u} is a TDS of T with size at most f(n− 5) + 2 = f(n).433

Case 3: |Mj| = 7.434

Suppose that there is a MOP Mj of order 7. In this case, a TDS of Mj has size at435

most f(n − 5) by the induction hypothesis. This set can be transformed into a TDS436

of T by adding a TDS of Mj that consists of two vertices by Theorem 1. Therefore,437

f(n− 5) + 2 = f(n), so γt(T ) ≤ f(n).438

Case 4: |Mj| = 8.439

Suppose that there is a MOP Mj of order 8 (M4 in Figure 6). Let {u′j = uk, . . . ,440

uk+7 = u′j+1} denote the vertices of Mj. Let ∆ = (u′j, u
′
j+1, u

′) be the triangle adjacent to441

the edge (u′j, u
′
j+1) in Mj. If u′ is uk+1, uk+2, uk+5 or uk+6, then either (u′j, u

′) or (u′j+1, u
′)442

defines a MOP of order 6 or 7, and we can argue as in Cases 2 or 3, respectively.443

Assume that u′ = uk+3 (the case u′ = uk+4 is symmetric). By removing the vertices444

uk+1, uk+2, uk+4, uk+5, uk+6 from T , we obtain a new near-triangulation T ′ of order n−5 ≥ 7445

and m interior vertices. By the induction hypothesis, T ′ has a TDS D′ of size at most446

f(n− 5) that necessarily contains either u′j or u′j+1 since the degree of u′ in T ′ is 2.447

If D′ contains u′j, then by adding u′ and a suitable vertex v adjacent to u′ in the448

triangulated pentagon {u′, uk+4, uk+5, uk+6, u
′
j+1}, we obtain a TDS of T with size at most449

f(n− 5) + 2 = f(n). If D′ contains u′j+1, applying Lemma 6 to the triangulated pentagons450
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{u′j+1, u
′, uk+4, uk+5, uk+6} and {u′j+1, u

′
j, uk+1, uk+2, u

′}, we can then obtain a TDS in T451

of size at most f(n − 5) + 2, by adding one additional vertex in each one of these two452

triangulated pentagons.453

Case 5: |Mj| = 9 and dj is contractible in Mj.454

Suppose that there is a MOP Mj of order 9 (M1 in Figure 6). Let ∆ = (u′j, u
′
j+1, u)455

be the triangle adjacent to the edge (u′j, u
′
j+1) in Mj and let {u′j = uk, . . . , uk+8 = u′j+1}456

denote the vertices of Mj. If u is uk+1, uk+2, uk+3, uk+5, uk+6 or uk+7, then either (u′j, u)457

or (u′j+1, u) defines a MOP of order 6, 7 or 8, and we can argue as in Cases 2, 3 or 4,458

respectively.459

Assume that u = uk+4. In this case, the sets of vertices {u′j, uk+1, uk+2, uk+3, u} and460

{u, uk+5, uk+6, uk+7, u
′
j+1} induce two triangulated pentagons. Since dj is contractible in461

Mj, then Mj/dj is a near-triangulation of order n− 8 ≥ 5 with m interior vertices. Thus,462

Mj/dj is different from H1, H2 and has a TDS of size at most f(n − 8) by the induction463

hypothesis.464

As a consequence, by Lemma 9(I), Mj has either a TDS D of size at most f(n− 8) + 1465

containing u′j and u′j+1, or a set D of size at most f(n − 8), not containing either u′j or466

u′j+1, and dominating every vertex of Mj except possibly u′j or u′j+1. In the first case, by467

Lemma 6 we can add to D a suitable vertex in each one of the two previous triangulated468

pentagons, so that the resulting set is a TDS of T of size at most f(n− 8) + 3 ≤ f(n). In469

the second case, by Theorem 1, there is a TDS D′ of size 3 in Mj. Therefore, D ∪D′ is a470

TDS in T of size f(n− 8) + 3 ≤ f(n).471

Case 6: |Mj| > 9.472

Suppose that there is a MOP Mj of order greater than 9. By Lemma 11, there is a473

diagonal d in Mj such that it partitions Mj into two MOPs, one of which, M ′, has 6, 7, 8474

or 9 vertices and does not contain the edge (u′j, u
′
j+1). Therefore, we can also argue as in475

Cases 2, 3, 4 and 5 by removing M ′ from T , since d is contractible in the near-triangulation476

obtained after removing M ′.477

Removing vertices from two or more MOPs478

We now study irreducible near-triangulations where all MOPs Mj are of order 3, 5 or 9.479

Besides, the case of a MOP Mj of order 9 must be analyzed only when dj is not contractible480

in Mj. In this situation, we have to remove vertices from more than one MOP. Most of481

the cases can be solved by removing vertices from two consecutive MOPs Mj and Mj+1482

around the terminal polygon P . We recall that Mk can be a MOP or not. Since we are483

studying irreducible near-triangulations, if Mk is not a MOP, then it has interior vertices484

and is either irreducible or reducible such that dk is the only boundary edge that can be485

removed from Mk. This implies that necessarily |Mk| ≥ 6. If Mk is a MOP, we can assume486

that it is the largest one, among all MOPs Mj adjacent to P (by renumbering them if487

necessary).488

If there exist at least two MOPs of different sizes, then we can assume that there are489
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two consecutive MOPs Mj and Mj+1 such that {|Mj|, |Mj+1|} are either {5, 3}, or {9, 3},490

or {9, 5} Otherwise, all the MOPs are of order either 3 or 5 or 9. For the sake of clarity491

and since, as we will see, the reasoning used in the proof holds for every pair of consecutive492

MOPs of different order, we assume that these MOPs of different order, whenever they493

exist, are M1 and M2 and that |M1| > |M2|.494

Let M denote the near-triangulation obtained by removing from T the vertices of M1495

and M2 that are not in P . Hence, |M | = n − (|M1| − 2) − (|M2| − 2) and (u′1, u
′
2) and496

(u′2, u
′
3) are boundary edges of M . Observe that |M | ≥ 2 + |Mk|, since P is at least a497

triangle containing at least one interior vertex and Mk is included in M . Therefore, the498

induction hypothesis can be applied to M when necessary, since |M | ≥ 5 and it is not499

either H1 or H2 (M contains interior vertices). Next, we analyze all possible combinations500

of the sizes of Mj’s.501

Case 7: |M1| = 5 and |M2| = 3.502

Since M1 is a triangulated pentagon, M1 has a TDS formed by the vertex u′2 and one503

of its neighbors u′ by Lemma 6 (see Figure 7a). Besides, P does not contain diagonals, so504

there is no diagonal incident to u′2 in M . By Lemma 2, M − {u′2} is a near-triangulation505

of order n − 5. Recall that if Mk is a MOP, then |Mk| ≥ 5 and if it is not a MOP, then506

|Mk| ≥ 6. It follows that the induction hypothesis can be applied to M − {u′2} because507

n − 5 = |M | − 1 ≥ |Mk| + 1 ≥ 6 (the interior vertices of P belong to M and there is at508

least one).509

Suppose that M − {u′2} is neither H1 nor H2, so it has a TDS D of size at most510

f(n − 5) by the induction hypothesis. Thus, D ∪ {u′2, u′} is a TDS of T of size at most511

f(n− 5) + 2 = f(n). On the contrary, if M − {u′2} is either H1 or H2, then Lemma 8 (I)512

(ii) guarantees that M has a TDS D′ of size 5 containing u′2. Therefore, D′∪{u′} is a TDS513

in T of size 6, so γt(T ) ≤ f(n) since the order of T is 17 and f(17) = 6.514

Case 8: |M1| = 9, |M2| = 3 and d1 = (u′1, u
′
2) = (u1, u9) is not contractible.515

Arguing as in Case 5, we may assume that ∆ = (u1, u9, u5) is the triangle adjacent to516

the edge (u1, u9) in M1, because otherwise a MOP of order 6,7 or 8 could be removed. Thus,517

the vertices {u1, u2, u3, u4, u5} and {u5, u6, u7, u8, u9} induce two triangulated pentagons,518

P ′ and P ′′, respectively (Figure 7b). Applying Lemma 6 to P ′ and P ′′, there exist two519

vertices u′ ∈ P ′ and u′′ ∈ P ′′ such that {u5, u′, u′′} is a TDS of M1.520

Since d1 = (u′1, u
′
2) is not contractible in M1, then it is also not contractible in the521

near-triangulation T ′ induced by the vertices of the terminal polygon P and the vertices522

inside P . T ′ has no diagonals, hence there exists a vertex v2 inside P by Lemma 4(iii), such523

that v2 is adjacent to u′2 = u9 and T ′ − {u′2, v2} is a near-triangulation. As a consequence,524

M − {u′2, v2} is a near-triangulation of order n − 10 ≥ 7 (recall that |Mk| ≥ 6). If525

M − {u′2, v2} is neither H1 nor H2, then it has a TDS D of size at most f(n− 10) by the526

induction hypothesis. Thus, D ∪ {u5, u′, u′′, u′2} is clearly a TDS of T with size at most527

f(n − 10) + 4 = f(n), so γt(T ) ≤ f(n). On the contrary, if M − {u′2, v2} is either H1 or528

H2, then n = 22 and Lemma 8 (I) (iii) ensures that there exists a TDS D containing u′2 of529

size 5 in M . The set D ∪ {u5, u′, u′′} is a TDS of T with size 8 = f(22).530
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Figure 7: (a) Case 7: u′2 and u′ define a TDS in M1. (b) Case 8: u5, u
′ and u′′ form a TDS in M1. (c)

Case 9: u′1, u
′
2, u

′, u′′ and u′′′ are a TDS in M1 ∪M2. (d) Case 11: u5, u
′, u′′, w, w′ and w′′ form a TDS

in M1 ∪M2. (e) Case 12: Removing the MOPs M1,M2,M3 and M4, and the vertices u′2, u
′
3, u

′
4 and v′4 to

obtain the near-triangulation M . The squared vertices form a TDS of {M1 ∪M2} ∪ {M3 ∪M4}.

Case 9: |M1| = 9, |M2| = 5 and d1 = (u′1, u
′
2) = (u1, u9) is not contractible.531

Arguing as in Case 8, we may assume that ∆ = (u1, u9, u5) is the triangle adjacent to the532

edge (u1, u9) in M1 (so {u1, u2, u3, u4, u5} and {u5, u6, u7, u8, u9} induce two triangulated533

pentagons, P ′ and P ′′), and that M − {u′2, v2} is a near-triangulation of order n− 12 ≥ 7.534

By Claim 2, M − {u′2, v2} has a set D of size ≤ f(n− 13) + 1 containing the vertex u′1535

and dominating all the vertices of M − {u′2, v2} except possibly u′1. We add u′2 to D and,536

by Lemma 6, we can also add to D a vertex u′ to dominate P ′, a vertex u′′ to dominate537

P ′′ and a vertex u′′′ to dominate M2 (see Figure 7c). Therefore, D ∪ {u′2, u′, u′′, u′′′} is a538

TDS of T with size at most f(n− 13) + 5 ≤ f(n).539

Case 10: All MOPs Mj are of order 3, so |M1| = |M2| = 3.540

This case is similar to Case 1. M is reducible (any of (u′1, u
′
2) and (u′2, u

′
3) can be541

removed), hence the graph M
′

of order n, obtained from M by adding two vertices w1, w2542

in the outer face and the edges (u′2, w1), (u
′
2, w2), (w2, w1), (u

′
3, w2), is also reducible by543

removing (u′1, u
′
2). Arguing as in Case 1, M

′
has a TDS D′ of size at most f(n) containing544

the vertex u′2 and not containing either w1 or w2, even in the case that M
′

is reducible to545
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either H1 or H2
2. Therefore, γt(T ) ≤ f(n) since D′ is also a TDS of T .546

Case 11: All MOPs Mj are of order 9 and all dj are not contractible.547

We have |M1| = |M2| = 9 and d1 and d2 are not contractible. As in case 8, we548

may assume that ∆ = (u1, u9, u5) is the triangle adjacent to the edge (u1, u9) in M1, so549

{u1, u2, u3, u4, u5} and {u5, u6, u7, u8, u9} induce two triangulated pentagons, P ′ and P ′′.550

Therefore, there exist two vertices u′ ∈ P ′ and u′′ ∈ P ′′ such that D1 = {u5, u′, u′′} is a551

TDS of M1. The same happens in M2, so M2 has a TDS D2 = {w,w′, w′′} of size 3 (see552

Figure 7d).553

Since P contains no diagonals, M
′
= M−{u9} is a near-triangulation of order n−15 ≥ 7554

by Lemma 2. We claim that M
′

is neither H1 nor H2. We recall that M
′

must contain555

Mk. If Mk is not a MOP, then it contains interior vertices, so M
′

is neither H1 nor H2.556

Assume to the contrary that Mk is a MOP, so |Mk| ≥ 9 by hypothesis, and that M
′

is H1557

(the same reasoning applies if M
′

is H2). P is terminal, hence some vertices of H1 must558

be interior vertices in M , implying that dk is a diagonal of H1. Thus, by the symmetry of559

H1 (see Figure 1), dk can only be one of the edges (3, 7), (3, 6) and (4, 6). If dk is (3, 6) or560

(4, 6), then it defines a MOP of size at least 10 and we are in Case 6. If dk is (3, 7), then561

it defines a MOP of size 9, where (3, 7) would be contractible in Mk and we would be in562

Case 5. Hence, M
′

is neither H1 nor H2.563

As a consequence, M
′

has a total dominating set D of size at most f(n − 15) by the564

induction hypothesis. Therefore, D∪D1∪D2 is a TDS in T of size at most f(n−15)+6 =565

f(n).566

Case 12: All MOPs Mj are of order 5.567

The case |Mj| = 5 for every MOP Mj is the only case left. We recall that (u′1, u
′
2),568

, . . . , (u′k, u
′
1) denote the diagonals d1, . . . , dk of T defining the terminal polygon P , and569

that Mk can also be a MOP when P is the only non-empty polygon of T . If it is the case,570

then Mk must also have 5 vertices. Next, we explain how to obtain a TDS of size at most571

f(n), by removing vertices from several consecutive MOPs.572

Let T ′ be the near-triangulation induced by P and its interior vertices. We distinguish573

whether T ′ has one interior vertex or more than one.574

Assume first that T ′ has at least two interior vertices. By Lemma 4(ii), there is a575

vertex u′j in T ′, 2 ≤ j < k, and an interior vertex v′j adjacent to u′j such that the graph576

T ′ − {u′2, . . . , u′j, v′j} is a near-triangulation. As a consequence, by removing the vertices577

in the MOPs M1,M2, . . . ,Mj that do not belong to P , and the vertices u′2, u
′
3, . . . , u

′
j, v
′
j,578

we obtain a near-triangulation M
′

of size |M ′| = n− 3j − j = n− 4j ≥ 6 (see Figure 7e).579

Since every MOP Mi is a triangulated pentagon, observe that the vertex u′i, 2 ≤ i ≤ j, a580

neighbor vi−1 of u′i in Mi−1 and another neighbor vi of u′i in Mi, form a TDS of size 3 of581

Mi−1 ∪Mi.582

Suppose that j is an even number. If M
′

is neither H1 nor H2, it contains a TDS D of583

2In fact, a detailed analysis of cases shows that M
′

can be neither H1 nor H2.
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size at most f(n− 4j) by the induction hypothesis. If M
′

is either H1 or H2, by Lemma 8584

(I) (ii) there exists a TDS D in M
′ ∪ {v′j} of size 5 containing v′j. Therefore, the set D585

together with the 3-vertex sets {vi−1, u′i, vi}, for i = 2, 4, . . . , j, form a TDS of T with size586

at most f(n − 4j) + 3j/2 in the first case and with size 5 + 3j/2 in the second case. By587

Lemma 12, f(n−4j)+3j/2 ≤ f(n) because 3j/2
4j

< 2
5
, and trivially 5+3j/2 ≤ b2

5
(12+4j)c588

for even j ≥ 2. Hence, γt(T ) ≤ f(n).589

Suppose now that j is an odd number. By Claim 2, even if M
′

is either H1 or H2, we590

can obtain a set D of vertices in M
′

such that the size of D is at most f(n− 4j − 1) + 1,591

D contains the vertex u′1 and D dominates all vertices of M
′

except possibly u′1. Since592

M1 is a triangulated polygon, u′1 and one of its neighbors, say v1, form a TDS of M1.593

Thus, by adding to D the vertex v1 and the 3-vertex sets {vi−1, u′i, vi}, for i = 3, 5, . . . , j,594

we obtain a TDS of size at most f(n − 4j − 1) + 1 + 1 + 3
2
(j − 1). By Lemma 12,595

f(n−4j−1) + 1 + 1 + 3
2
(j−1) ≤ f(n) because 2+3(j−1)/2

4j+1
≤ 2/5, hence γt(T ) ≤ f(n). Note596

that vj is dominated by u′j.597

Finally, assume that T ′ has only one interior vertex v, so T ′ is a wheel. By removing the598

vertices in M1, . . . ,Mk−1 not in P , the vertices u′2, . . . , u
′
k−1 and the vertex v, we obtain a599

near-triangulation M
′
that coincides with Mk, and we argue as in the previous paragraphs600

depending on the parity of j. We remark that M
′

can be neither H1 nor H2, and that if j601

is an odd number and M
′
= Mk is a triangulated pentagon (so Claim 2 cannot be applied),602

then we chose a TDS of size 2 including u′1 in M
′
.603

5. Final remarks604

In this paper, we proved that the total domination number for any n-vertex near-605

triangulation is at most b2n
5
c with two exceptions. The proof is by induction and is based606

on a new decomposition of some near-triangulations (the irreducible ones) into several607

near-triangulations, using what we call terminal polygons.608

To finish this paper, we give the following conjecture.609

Conjecture 1. For any triangulation T of order n ≥ 6, γt(T ) ≤ bn
3
c.610

The conjecture is based on the following. The bound b2n
5
c on the total domination611

number in near-triangulations is tight, since there are near-triangulations achieving the612

bound. Figure 8a shows one of these near-triangulations. However, all the examples613

reaching the bound that we know are MOPs. For triangulations, we feel that the total614

domination number should be smaller and close to n/3. This bound would be tight because615

there are triangulations reaching it. Figure 8b shows one of them. It consists of an616

octahedron containing in its interior other k−1 octahedra. The inter-octahedra region can617

be triangulated in any way. It is not difficult to see that any TDS for this triangulation618

must contain at least two vertices of each octahedron.619
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(a) (b)

Figure 8: (a) A MOP T of order n such that γt(T ) = b 2n5 c. Any TDS must contain at least two vertices of
each MOP of order 5. (b) Triangulating in any way the inter-octahedra region, a triangulation T of order
n is obtained such that γt(T ) = bn3 c.
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