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Analytical and numerical results on the ordering role of external random fluctuations
in excitable systems are presented. Our study focuses on a simple model for excitable
systems. Regular waves are created and sustained out of noise when the system is forced
with random perturbations. Explicit results for the generation and dynamics of rings
and targets are presented.
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1. Introduction

We do know now that stochastic environments or external fluctuations can generate

counter-intuitive effects such as ordered macroscopic phases, patterns, regular oscil-

lations, etc.1,2 Physical mechanisms of such ordering role of the stochasticity have

been elucidated and explained in simple modelizations. The most commonly ac-

cepted origin of this unexpected phenomenon is the cooperative interaction between

fluctuations, nonlinearities and spatial coupling.

We will focus here in the so-called excitability scenario in which wave prop-

agation appears naturally. There is a rich variety of physical,3,4 chemical,5,6 or

biological7 among other systems which present an excitable regime exhibiting

wave propagation phenomenology. These systems show a large diversity of spatio-

temporal patterns, ranging from planar waves to much more complicated structures

such as targets or scroll rings. Similar problems are discussed in the contribution

by L. Schimansky-Geier in this paper.

A theoretical modelization based on Stochastic Partial Differential Equations

(SPDE) is the most common tool for the description and study of wave dynamics
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in fluctuating media.8 The question of integration of SPDE is also presented in the

contribution by R. Mannella. Numerical simulations of these type of equations do

show clearly the ordering effects induced by noise. Analytical, although nonexact,

calculations also prove the possible existence of transitions from disorder to order as

the intensity of the fluctuations is increased. This surprising scenario has recently

received an important experimental support by a series of experimental evidences of

these counter-intuitive ordering effects out of noise under well-controlled laboratory

setups.9–12

Our objective in this paper is to present the theoretical approach to SPDE’s,

with special emphasis in its predictive strength. Numerical simulations are used as

a test of the reliability and accuracy of our treatment, because a more rigorous

mathematical approach to SPDE’s is not yet available.

This paper is organized as follows. In Sec. 2 we present the main aspects of our

analytical and numerical methodology. Section 3 contains the explicit results for

a very simple modelization of an excitable system. Finally we end up with some

conclusions and perspectives.

2. Modelization and Methodology

2.1. Stochastic Partial Differential Equations (SPDE)

The common framework to model pattern formation phenomenology is by the use

of partial differential equations (PDE) for the local densities of the material com-

ponents. The most simple situation which presents waves has two variables called

activator, u(x, t), and inhibitor, v(x, t), with different time scales, u(x, t), is the fast

variable. These equations have the general form,

∂tu = D∇2u+ fu(u, v, b) ,

∂tv = fv(u, v) ,
(1)

where fi are the reactive terms and, quite often, it is assumed that the inhibitor

variable diffuses so slowly that one can discard its contribution. The conditions

fi = 0 determine the null-clines whose intersection points give the homogeneous

stationary states of the system. The relative stability or nature of these points can

be obtained by a simple linear analysis. b is an external parameter which controls

the excitability properties of the medium. In the experiments on the photosensitive

Belousov–Zhabotinsky reaction, the parameter b will represent the intensity of the

incident light.9–12 This parameter can be handled easily by using opto-electronic

devices and, as a consequence, controlled fluctuations can be introduced through it

as, b→ b+η(x, t). Then one can arrive to the following generic system of stochastic

partial differential equations (SPDE) which will be the framework of all our studies,

∂tu = D∇2u+ fu(u, v, b) + gu(u)η(x, t) ,

∂tv = fv(u, v) ,
(2)
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where η(x, t) is a Gaussian noise with zero mean and a correlation,

〈η(x′, t′)η(x, t)〉 = 2σ2δ(t− t′)δ(x− x′) . (3)

Now depending on the modelization involved in a particular system, different

reactive functions fi and gi, are proposed.

The set of Eqs. (2)–(3) with appropriate boundary and initial conditions define

the system we want to study. Thus, we deal with nonlinear SPDE’s whose analy-

tical solution is impossible. Nevertheless analytical information is highly valuable

and, as a consequence, some efforts should be invested in this direction. Numerical

simulations of these equations have to complete this study.

2.2. Effective dynamics

Here we will outline the most suitable theoretical approach to understand how

ordering effects out of fluctuations could appear. The idea is very simple. The initial

conjecture is that fluctuations not only have a dispersive or disordering effects but

also the systematic ones. If it is so, one can try to guess where is the source of

them. A preliminary analysis of Eq. (2) shows that the noisy term g(u)uη(x, t) has

a nonzero mean value given by:

〈gu(u)η(x, t)〉 ≡ 〈Φ(u)〉 6= 0 , (4)

in spite of the zero average of the noise. We are using the Stratonovich calculus

to deal with the multiplicative noise. This is the usual interpretation when we face

with realistic noise. The above contribution will be the source of the systematic

and quite often ordering effects of the noise.1 By adding and subtracting Φ(u) to

the equation of motion for u in Eq. (2), we arrive at:

∂tu = D∇2u+ fu(u, v, b) + Φ(u) +R(u, t) ,

∂tv = fv(u, v) .
(5)

R(u, t) = g(u)η(x, t) − Φ(u), is a more complicated random term which has now

a zero mean value and whose fluctuating and nonsystematic effects can be safely

discarded for not very large noise intensities. Then one arrives to the effective

deterministic model,

∂tu = D∇2u+ fu(u, v, b) + Φ(u) ,

∂tv = fv(u, v) ,
(6)

which can be studied using the standard techniques for PDE’s. In the explicit exam-

ple we will study in the next section, the new reactive term Φ(u) can be absorbed

in the old one fu(u, v, b) through a renormalization of the model parameters in

such a way that its systematic influence can be evaluated using already developed

techniques for PDE’s.

Our analytical approach relays on the evaluation of Φ(u). This is a simple task

for a white noise,1 but it is much involved for spatio-temporal structured noise.13
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2.3. Numerical simulations

In order to see how is the phenomenology of systems described by SPDE’s such as

Eqs. (2) and (3) and also to test the accuracy of the theoretical predictions we have

to proceed with the numerical simulation of this type of equations. We will follow

the Heun method (a second order Runge–Kutta algorithm) extended for SPDE’s.1

The set of Eqs. (2) and (3) are discretized in a d-dimensional lattice with N squared

cells, each one of the linear size ∆x. The fields u(x, t) and v(x, t) transform into

N time-dependent variables ui(t) and vi(t) where i is the position index. In the

discrete lattice we have N couples of ordinary stochastic differential equations. The

Laplacian operator transform according to the standard prescription,

D∇2u→ Di(u) =
D

∆x2

∑
j

uj(i)− 2dui

 , (7)

where uj(i) are the 2d next neighbors of ui. The noise is also discretized accordingly,

η(x, t)→ ηi(t), with a correlation,

〈ηi(t)ηj(t)〉 = 2σ2δ(t− t′) δij
∆xd

. (8)

Now the Heun algorithm reads explicitly,

ui(t+ ∆t) = ui(t) +
∆t

2
(fu(u, v) + fu(ũ, ṽ) +Di(u) +Di(ũ))

+
1

2
(g(u)u + g(ũ)u)Xi ,

vi(t+ ∆t) = vi(t) +
∆t

2
(fv(u, v) + fv(ũ, ṽ)) ,

(9)

where the predictor values ũ and ṽ are obtained from the Euler algorithm,

ũi = ui(t) + ∆t(fu(u, v) +Di(u)) + g(u)uXi ,

ṽi = vi(t) + ∆tfv(u, v) .
(10)

Xi is random process given by:

Xi =

√
2σ2∆t

∆xd
γi , (11)

where γi are Gaussianly distributed random numbers with zero mean and variance

equal to 1. This noise prescription generates a Gaussian white noise in a lattice.

The simulations have been done either in a one- or two-dimensional lattices with

appropriate ∆x and ∆t which will be indicated in the figure captions corresponding

to the numerical results.

Choosing appropriate initial conditions for each case, respectively a circular

spot, ring, spiral or a planar wave, one can observe the dynamics of a particular

structure under the presence of the external fluctuations.
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3. The Barkley Model

3.1. Explicit predictions

Our theoretical approach can be applied to any FitzHugh–Nagumo-like schemes to

describe active systems. For the sake of simplicity and unless it is explicitly said, we

will use Barkley modelization for a generic active media.14 This model has simple

polynomial reactive terms,

fu(u, v, b) =
1

ε
u(1− u)

(
u− v + b

a

)
,

fv(u, v) = u− v ,
(12)

where ε controls the time scale of the activator and a is another system parameter.

Including the fluctuations in b the multiplicative noise reactive term is:

gu(u) =
1

aε
u(1− u) . (13)

Explicit calculations of the stochastic average defined in Eq. (4), using the

Stratonovich interpretation, gives1,13

〈gu(u)η(x, t)〉 = C(0)〈gu(u)g′u(u)〉 , (14)

where C(0) = σ2/∆x2 is the effective noise intensity in the lattice. This gives, for

our model,

Φ(u) =
C(0)

a2ε2
u(u− 1)(2u− 1) . (15)

This systematic contribution is incorporated into the activator equation as a new

reactive term. Finally the whole reactive term can be reorganized and it happens

that the new effective reactive term is of the same form as the original deterministic

one, but with the following new model parameters,

a′ = a− 2C(0)

aε
, b′ = b− C(0)

aε
, ε′ =

ε

1− 2C(0)/a2ε
. (16)

As parameter b controls the excitability of the system one can expect important

changes. In particular the decrease of b as the noise intensity increases will drive

the system to more excitable regimes. These aspects will appear clearly in our

simulations.

3.2. Numerical simulation results

First we will study the transition between a nonexcitable regime and the excitable

one. In a nonexcitable regime, any initial pattern or perturbation will decay to the

uniform state u = v = 0, and no propagation is observed. Under this conditions,

we can see how increasing the intensity of the noise will arrive to an excitable regime

in which the initial pattern is sustained and propagates. In Fig. 1 we find this

behavior in numerical simulations. The first column in Fig. 1 has been included to
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Fig. 1. Two-dimensional sub-excitable system with a circular-like initial condition. The first
column corresponds to the effective model with C(0) = 0.001. The second one corresponds to the
same system with white noise (σ2 = 0.00001). The last column corresponds to the deterministic
model in the sub-excitable regime. There are 3 t.u. between each snapshot (512 × 512 pixels,
a = 0.7, b = 0.02, ε = 0.07, ∆x = 0.1 s.u., ∆t = 0.001 t.u.).

appreciate the effective model mimics qualitatively and quantitatively the behavior

found in simulations.

The transition from an excitable to an oscillatory regime can be predicted from

the study of the null-clines. In Fig. 2 plots of the null-clines and stationary points

are presented for the deterministic and stochastic effective models.

One can see how the stability of one of the steady points change with the

presence of fluctuations. In particular the deterministically stable steady state in

an excitable regime transforms, due to the presence of noise in the unstable steady

point of an oscillatory regime.

This theoretical prediction has been tested by numerical simulations and a rep-

resentative evolution is presented in Fig. 3. Here we observe how a system in an

excitable regime of expanding rings without noise, changes to an oscillatory regime

with concentric rings (targets) when noise is present. As in the former case, the

first column in Fig. 3 shows that the effective deterministic model explains indeed

this result.
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Fig. 2. (a) Null-clines of the deterministic model (12). (b) Null-clines of the effective deterministic
model: Eq. (12) with parameters (16). Empty circles are the unstable steady points and full circles
are the stable ones.

Fig. 3. Two-dimensional excitable system with a circular-like initial condition. The first column
corresponds to the effective model with C(0) = 0.001. The second one corresponds to the same
system with white noise (σ2 = 0.00001). The last column represents the evolution of the deter-
ministic model in the excitable regime. The snapshots are taken at 0.03, 0.09, 0.15, and 0.18 t.u.
respectively. (256 × 256 pixels, a = 0.7, b = 0.02, ε = 0.04, ∆x = 0.1 s.u., ∆t = 0.001 t.u.).
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Fig. 4. Mean velocity (•) and mean oscillatory period (◦) of noisy wave trains on a one-
dimensional nonexcitable media versus the noise intensity. Points calculated with an average of
25 realizations. Velocities and periods correspond to the effective model with the renormalized
values of the parameter, Eqs. (12)–(16) ( ). Parameters of the model are: a = 0.7, b = 0.02,
ε = 0.04, ∆x = 0.1 s.u., ∆t = 0.001 t.u.. Vertical lines show the transitions among different kinds
of excitability regimes.

In order to characterize in a more quantitative form the transitions we have

identified before, we have to choose a kind of order parameter whose drastic change

would indicate the transition points. The transition from nonexcitable to excitable

conditions can be defined quite easily by looking at the velocity of the wave: zero

in the nonexcitable regime and nonzero in the excitable one. This criteria is use-

less to find the transition to the oscillatory regime. For this case we choose the

period of the oscillations, or for practical purpose, the interval of time between two

consecutive waves in a wave train. This period is not defined in nonexcitable and

excitable regimes but it is finite in the oscillatory regime, diverging at the transition

point. This analysis is shown in Fig. 4, by using numerical simulation data in one-

dimensional systems from the stochastic and effective models. These two transitions

appear clearly and the effective model gives very reliable results. Main differences

appear in the oscillatory regime due to the very large noise intensities used.

In all the cases if noise is switched off then the properties of the pattern recover

the regime of the noise-free system.
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4. Conclusions and Perspectives

We have shown analytically and numerically that noise modeled in terms of Stochas-

tic Partial Differential Equation can produce ordering effects. We have focussed our

study on excitable model systems. Theoretical predictions have been checked satis-

factorily by numerical simulations. Our results are not restricted to nonexcitable–

excitable-oscillatory transitions. Recently we have proved that external fluctuations

can also control a transition between bistable and excitable regimes.15

It is worth to comment here that in our analytical study we have assumed that

the external noise is white in time and in space. This assumption has no problems

in the lattice, but in the continuum description a colored noise in space has to be

considered instead.

Certainly white noise assumption is a drastic simplification of the spatio-

temporal structured nature of fluctuations in real experiments. Nevertheless experi-

mental evidence of these noisy effects have been also tested in chemical experiments

with the Belousov–Zhabotinsky reaction and, of course, with truly realistic noises.12

The theoretical analysis of this problem with real fluctuations or spatio-temporal

structured noise has been done in Ref. 16.

Thus we can conclude that the ordering effects of the external fluctuations are

not a academic result but a real fact in nature.
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