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I. EXTENDED ABSTRACT

A common task in Earth Sciences is to infer climate
information at local and regional scales from global climate
models. An alternative to running expensive numerical models
at high resolution is to use statistical downscaling techniques.
Statistical downscaling aims at learning empirical links be-
tween the large-scale and local-scale climate, i.e., a mapping
from a low-resolution gridded variable to a higher-resolution
grid that incorporates observational data.

Seasonal climate predictions can forecast the climate vari-
ability up to several months ahead and support a wide range
of societal activities. The coarse spatial resolution of seasonal
forecasts needs to be downscaled or refined to the local scale
for specific applications.

In this study, we present super-resolution (SR) techniques
for the task of downscaling climate variables with a focus on
temperature over Catalonia. Our models are trained using high
and medium resolution (~5 and ~25 km) gridded climate
datasets with the ultimate goal of increasing the resolution
of coarse resolution (~100 km) seasonal forecasting systems.
Taking the gridded data from ~100 to ~5 km implies a 20x
upscaling factor. It is worth pointing out that handling such
large upsampling factor is not typical in computer vision,
where most applications focus in 4x factors while 16x is
considered as extreme SR.

A. Super-resolution for statistical downscaling

Statistical downscaling of gridded climate variables is a
task closely related to that of SR in computer vision, consider-
ing that both aim at learning a mapping between low- and high-
resolution images. Unsurprisingly, several deep learning-based
approaches have been explored by the climate community in
recent years [1], [2].

For this study, we work with data from two reanalysis
datasets: ERAS [3], produced by the European Centre for
Medium-range Weather Forecasts (ECMWF), and UERRA
MESCAN-SURFEX [4]. ERAS provides hourly estimates of
a large number of atmospheric, land and oceanic climate vari-
ables at a resolution of 0.25° (~25 km). UERRA MESCAN-
SURFEX provides temperature, precipitation and wind at a
resolution of 0.05° (~5 km). We focus on temperature at
two meters above the ground from both ERA5 and UERRA,
selecting the period between 1979 and 2019 at a daily temporal
resolution, resulting in about 14k temporal samples. The
inference is performed on the ECMWEF’s seasonal forecast
system, SEAS5 [5] to downscale its coarse temperature grids
from ~100 to ~5km resolution in a transfer learning fashion.
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Fig. 1.  Panel (a) shows the architecture of our SR CGAN generator,
while panel (b) shows the architecture of our SR CGAN discriminator. The
architecture of the supervised ResNets is the same of the CGAN generators.
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B. Methods

Four different deep learning-based methods were imple-
mented for downscaling temperature gridded fields: ResNet-
INT, ResNet-SPC, and their conditional adversarial coun-
terparts, CGAN ResNet-INT and CGAN ResNet-SPC. The
ResNet-SPC is based on the EDSR [6] SR model, with
residual blocks using skip connections and without batch-
normalization. On the panel (a) of Fig. 1, we show the
architecture of our ResNets. These networks share the main
section, inside the dotted-line box, composed of convolutional
layers and a stack of twenty residual blocks. The ResNet-
INT, short for residual neural network with pre-upsampling
via bicubic interpolation, is a model that learns an end-to-
end mapping from interpolated LR images to HR images. HR
UERRA/ERAS5 images are downsampled by a given factor to
create LR counterparts. These are then upsampled to match the
size of the HR image before entering the network. The ResNet-
SPC works in a post-upsampling framework using subpixel
convolution layers [6]. This model learns a mapping from LR
to HR images, of different sizes, in low-dimensional space and
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requiring less computations.

Our CGAN ResNet-INT and CGAN ResNet-SPC are Con-
ditional Generative Adversarial Networks (CGAN) [7] that use
either the ResNet-INT or ResNet-SPC as generators. GANs
are generative models that rely on a generator that learns to
generate new (HR) images (from a LR counterpart), and a
discriminator that learns to distinguish synthetic (HR) images
from reference (HR) images. CGANs are supervised GANs
that are trained with paired samples. We concatenate to all our
input samples a topographical map and a land-ocean binary
mask, as proposed in [1]. The addition of these fields, as image
channels, improves the reconstruction of high-frequency details
while downscaling the temperature fields.

To achieve a 20x upscaling factor, our models are com-
posed of a stack of two networks, each one trained separately:
LR to MR (4x, using ERAS5) and MR to HR (5x, using
UERRA). The inference is performed progressively. We tested
training single models to jump from LR to HR resolution
directly but the results were poor in general. All the networks
were trained with sixty-four filters per layer and convolution
kernels of size 3x3. The supervised ResNets and the CGAN
ResNets were trained for 180 and 60 epochs respectively using
the Adam optimizer. The supervised ResNet optimize a mean
absolute error (MAE) loss function. A holdout of eight years
was used for testing the performance of the trained models.
During training, a validation dataset was used to monitor the
behavior of the loss function and avoid overfitting.

C. Results

Figure 2 shows a side-by-side comparison of the four
different SR algorithms developed for downscaling SEASS
temperature from its native 1° to the 0.05° resolution. This
temperature grid corresponds to a single date and a single
SEASS ensemble member. Table I summarizes the perfor-
mance of each model in terms of the spatial RMSE and
Pearson correlation. These metrics are computed per each pair
of images: the model prediction and its reference from the
holdout UERRA dataset. Based on these metrics and on visual
inspection, we argue that the CGAN ResNet-SPC stands out
at recovering high-frequency details while downscaling SEAS5
grids not seen during training. Additionally, we have compared
our results with those of a traditional technique for statistical
downscaling, the KNN-based analogs method. This method

TABLEL  VALIDATION METRICS FOR EACH SR METHOD
CNN model | MSE | Pearson correlation
ResNet-INT 0.6379 0.9865
ResNet-SPC 0.5153 0.9912
CGAN R-INT 0.6472 0.9860
CGAN R-SPC 0.4960 0.9917
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Comparison of the SR models proposed in this study with respect to a LANCZOS4 interpolation for a single SEASS5 temperature grid.

delivers higher RMSE and lower correlation, but is on par
with the deep learning-based models in terms of the ranked
probability skill score, a metric used for validating seasonal
forecasts.

D. Summary

In this study, we developed SR models for the task of
downscaling temperature fields and showed their superior per-
formance with respect to a LANCZOS4 interpolation baseline.
We thoroughly tested different architecture choices, such as
the type of upsampling or the training strategy (adversarial vs
non-adversarial). In the future, we will perform more rigurous
ablation studies for tuning these networks and explore tailored
loss functions (beyond MAE and reconstructive losses) for
improving the skill of the seasonal forecasts.
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