Dataset Proximity Mining
for Supporting Schema
Matching and Data Lake
Governance

Ph.D. Dissertation
Ayman Alserafi

UNIVERSITAT POLITECNICA
DE CATALUNYA
BARCELONATECH

Dataset proximity mining
for supporting schema
matching and data lake

governance

Ayman Alserafi

ADVERTIMENT La consulta d’aquesta tesi queda condicionada a l'acceptacio de les seguents
condicions d'Us: La difusi6 d’aquesta tesi per mitja del repositori institucional UPCommons
(http://Jupcommons.upc.edu/tesis) i el repositori cooperatiu TDX (http://www.tdx.cat/) ha
estat autoritzada pels titulars dels drets de propietat intel-lectual tnicament per a usos privats
emmarcats en activitats d’investigacio i docéncia. No s’autoritza la seva reproduccié amb finalitats
de lucre ni la seva difusié i posada a disposicié des d’'un lloc alié al servei UPCommons o TDX.
No s’autoritza la presentacié del seu contingut en una finestra o marc alie a UPCommons
(framing). Aquesta reserva de drets afecta tant al resum de presentacié de la tesi com als seus
continguts. En la utilitzacio o cita de parts de la tesi és obligatindicar el nom de la personaautora.

ADVERTENCIA La consulta de esta tesis queda condicionada a la aceptacion de las siguientes
condiciones de uso: La difusion de esta tesis por medio del repositorio institucional UPCommons
(http://Jupcommons.upc.edu/tesis) y el repositorio cooperativo TDR (http://www.tdx.cat/?locale-
attribute=es) ha sido autorizada por los fitulares de los derechos de propiedad intelectual
unicamente para usos privados enmarcados en actividades de investigacion y docencia. No
se autoriza su reproduccion con finalidades de lucro ni su difusion y puesta a disposicion desde
un sitio ajeno al servicio UPCommons No se autoriza la presentacién de su contenido en una
ventana o marco ajeno a UPCommons (framing). Esta reserva de derechos afecta tanto al
resumen de presentacion de la tesis como a sus contenidos. En la utilizacion o cita de partes
de la tesis es obligado indicar el nombre de la persona autora.

WARNING On having consulted this thesis you're accepting the following use conditions:
Spreading this thesis by the institutional repository UPCommons (http://upcommons.upc.edu/tesis)
and the cooperative repository TDX (http://www.tdx.cat/?locale- attribute=en) has been authorized
by the titular of the intellectual property rights only for private uses placed in investigation and
teaching activities. Reproduction with lucrative aims is not authorized neither its spreading nor
availability from a site foreign to the UPCommons service. Introducing its content in a window or
frame foreign to the UPCommons service is not authorized (framing). These rights affect to the
presentation summary of the thesis as well as to its contents. In the using or citation of parts of the
thesis it’s obliged to indicate the name of the author.

http://upcommons.upc.edu/tesis
http://www.tdx.cat/
http://upcommons.upc.edu/tesis)
http://www.tdx.cat/?locale-attribute=es
http://www.tdx.cat/?locale-attribute=es
http://upcommons.upc.edu/tesis
http://www.tdx.cat/?locale-attribute=en
http://www.tdx.cat/?locale-attribute=en

Dataset Proximity Mining
for Supporting Schema
Matching and Data Lake
Governance

Ph.D. Dissertation
Ayman Alserafi

Supervisors:
Prof. Alberto Abell6
Prof. Oscar Romero
Prof. Toon Calders

Dissertation submitted on November, 2020

A thesis submitted to Barcelona School of Informatics at Universitat Politec-
nica de Catalunya, BarcelonaTech (UPC) and the Faculty of Engineering at
Université Libre De Bruxelles (ULB), in partial fulfilment of the requirements
within the scope of the IT4BI-DC programme for the joint Ph.D. degree in
computer science. The thesis is not submitted to any other organization at the
same time.

Thesis title: Dataset Proximity Mining for Supporting Schema
Matching and Data Lake Governance

Thesis submitted: November, 2020

PhD Supervisors: Prof. Alberto Abell6
Universitat Politecnica de Catalunya, BarcelonaTech,
Spain

Prof. Oscar Romero

Universitat Politecnica de Catalunya, BarcelonaTech,
Spain

Prof. Toon Calders

Université Libre de Bruxelles, Brussels, Belgium and
Universiteit Antwerpen, Antwerp, Belgium

PhD Committee: Prof. Wolfgang Lehner
Technische Universitit Dresden, Germany
Prof. Patrick Marcel
Université de Tours, France
Prof. Jose Francisco Aldana Montes
Universidad de Malaga, Spain

PhD Series: Barcelona School of Informatics, Universitat Politec-
nica de Catalunya, BarcelonaTech

Doctoral Programme: The Erasmus Mundus Joint Doctorate in Informa-
tion Technologies for Business Intelligence - Doc-
toral College (IT4BI-DC)

© Copyright by Ayman Alserafi. Author has obtained the right to include the
published and accepted articles in the thesis, with a condition that they are
cited, DOI pointers and/or copyright/credits are placed prominently in the
references.

Printed in Spain, 2020

Abstract

A task is only as difficult as one perceives it. Everything can be
dissected into its smaller simpler parts. If a task seems
unattainable, break it into smaller pieces and it will seem
simpler and more interesting to achieve or study.

With the huge growth in the amount of data generated by information
systems, it is common practice today to store datasets in their raw formats
(i.e., without any data preprocessing or transformations) in large-scale data
repositories called Data Lakes (DLs). Such repositories store datasets from
heterogeneous subject-areas (covering many business topics) and with many
different schemata. Therefore, it is a challenge for data scientists using the DL
for data analysis to find relevant datasets for their analysis tasks without any
support or data governance. The goal is to be able to extract metadata and
information about datasets stored in the DL to support the data scientist in
finding relevant sources. This shapes the main goal of this thesis, where we
explore different techniques of data profiling, holistic schema matching and
analysis recommendation to support the data scientist. We propose a novel
framework based on supervised machine learning to automatically extract
metadata describing datasets, including computation of their similarities and
data overlaps using holistic schema matching techniques. We use the extracted
relationships between datasets in automatically categorizing them to support
the data scientist in finding relevant datasets with intersection between their
data. This is done via a novel metadata-driven technique called proximity
mining which consumes the extracted metadata via automated data mining
algorithms in order to detect related datasets and to propose relevant cate-
gories for them. We focus on flat (tabular) datasets organised as rows of data
instances and columns of attributes describing the instances. Our proposed
framework uses the following four main techniques: (1) Instance-based schema
matching for detecting relevant data items between heterogeneous datasets, (2)
Dataset level metadata extraction and proximity mining for detecting related

\%

datasets, (3) Attribute level metadata extraction and proximity mining for
detecting related datasets, and finally, (4) Automatic dataset categorization via
supervised k-Nearest-Neighbour (kNN) techniques. We implement our pro-
posed algorithms via a prototype that shows the feasibility of this framework.
We apply the prototype in an experiment on a real-world DL scenario to prove
the feasibility, effectiveness and efficiency of our approach, whereby we were
able to achieve high recall rates and efficiency gains while improving the com-
putational space and time consumption by two orders of magnitude via our
proposed early-pruning and pre-filtering techniques in comparison to classical
instance-based schema matching techniques. This proves the effectiveness of
our proposed automatic methods in the early-pruning and pre-filtering tasks
for holistic schema matching and the automatic dataset categorisation, while
also demonstrating improvements over human-based data analysis for the
same tasks.

Keywords: Data Lake Governance, Dataset Similarity Mining, Holistic Schema
Matching, Metadata Management, Supervised Machine Learning

Resum

Amb I’enorme creixement de la quantitat de dades generades pels sistemes
d’informacid, és habitual avui en dia emmagatzemar conjunts de dades en els
seus formats bruts (és a dir, sense cap preprocessament de dades ni transforma-
cions) en diposits de dades a gran escala anomenats Data Lakes (DL). Aquests
diposits emmagatzemen conjunts de dades d’arees tematiques heterogenies
(que abasten molts temes empresarials) i amb molts esquemes diferents. Per
tant, és un repte per als cientifics de dades que utilitzin la DL per a I’analisi
de dades trobar conjunts de dades rellevants per a les seves tasques d’analisi
sense cap suport ni govern de dades. L'objectiu és poder extreure metadades i
informaci6 sobre conjunts de dades emmagatzemats a la DL per donar suport
al cientific en trobar fonts rellevants. Aquest és 1’objectiu principal d’aquesta
tesi, on explorem diferents técniques de perfilacié6 de dades, concordanca
d’esquemes holistics i recomanacié d’analisi per donar suport al cientific.
Proposem un nou marc basat en 1’aprenentatge automatitzat supervisat per
extreure automaticament metadades que descriuen conjunts de dades, incloent
el calcul de les seves similituds i coincidencies de dades mitjancant técniques
de concordanca d’esquemes holistics. Utilitzem les relacions extretes entre
conjunts de dades per categoritzar-les automaticament per donar suport al
cientific del fet de trobar conjunts de dades rellevants amb la intersecci6 entre
les seves dades. Aix0 es fa mitjancant una nova tecnica basada en metadades
anomenada mineria de proximitat que consumeix els metadades extrets mit-
jancant algoritmes automatitzats de mineria de dades per tal de detectar
conjunts de dades relacionats i proposar-ne categories rellevants. Ens centrem
en conjunts de dades plans (tabulars) organitzats com a files d’instancies
de dades i columnes d’atributs que descriuen les instancies. El nostre marc
proposat utilitza les quatre tecniques principals segiients: (1) Esquema de
concordanga basat en instancies per detectar items rellevants de dades en-
tre conjunts de dades heterogenies, (2) Extraccié de metadades de nivell de
dades i mineria de proximitat per detectar conjunts de dades relacionats, (3)
Extraccié de metadades a nivell de atribut i mineria de proximitat per detectar
conjunts de dades relacionats i, finalment, (4) Categoritzacié de conjunts de
dades automatica mitjangant tecniques supervisades per k-Nearest-Neighbour

vii

(kNN). Posem en practica els nostres algorismes proposats mitjancant un
prototip que mostra la viabilitat d’aquest marc. El prototip s’experimenta en
un escenari DL real del mén per demostrar la viabilitat, 1’eficacia i I'eficiencia
del nostre enfocament, de manera que hem pogut aconseguir elevades taxes
de record i guanys d’eficiencia alhora que millorem el consum computacional
d’espai i temps mitjangant dues ordres de magnitud mitjancant el nostre es
van proposar tecniques de poda anticipada i pre-filtratge en comparacié amb
tecniques de concordanca d’esquemes basades en instancies classiques. Aixo
demostra l'efectivitat dels nostres metodes automatics proposats en les tasques
de poda inicial i pre-filtratge per a la coincidéencia d’esquemes holistics i la
classificacié automatica del conjunt de dades, tot demostrant també millores
en I'analisi de dades basades en humans per a les mateixes tasques.

Résumé

Avec I'énorme croissance de la quantité de données générées par les systémes
d’information, il est courant aujourd’hui de stocker des ensembles de don-
nées (datasets) dans leurs formats bruts (c’est-a-dire sans prétraitement ni
transformation de données) dans des référentiels de données a grande échelle
appelés Data Lakes (DL). Ces référentiels stockent des ensembles de données
provenant de domaines hétérogenes (couvrant de nombreux sujets commerci-
aux) et avec de nombreux schémas différents. Par conséquent, il est difficile
pour les data-scientists utilisant les DL pour 'analyse des données de trouver
des datasets pertinents pour leurs taches d’analyse sans aucun support ni gou-
vernance des données. L'objectif est de pouvoir extraire des métadonnées et
des informations sur les datasets stockés dans le DL pour aider le data-scientist
a trouver des sources pertinentes. Cela constitue 1'objectif principal de cette
these, ou1 nous explorons différentes techniques de profilage de données, de
correspondance holistique de schéma et de recommandation d’analyse pour
soutenir le data-scientist. Nous proposons une nouvelle approche basée sur
I'intelligence artificielle, spécifiquement ’apprentissage automatique super-
visé, pour extraire automatiquement les métadonnées décrivant les datasets,
calculer automatiquement les similitudes et les chevauchements de données
entre ces ensembles en utilisant des techniques de correspondance holistique
de schéma. Les relations entre datasets ainsi extraites sont utilisées pour caté-
goriser automatiquement les datasets, afin d’aider le data-scientist a trouver
des datasets pertinents avec intersection entre leurs données. Cela est fait via
une nouvelle technique basée sur les métadonnées appelée proximity mining,
qui consomme les métadonnées extraites via des algorithmes de data mining
automatisés afin de détecter des datasets connexes et de leur proposer des
catégories pertinentes. Nous nous concentrons sur des datasets plats (tabu-
laires) organisés en rangées d’instances de données et en colonnes d’attributs
décrivant les instances. L'approche proposée utilise les quatres principales
techniques suivantes: (1) Correspondance de schéma basée sur l'instance pour
détecter les éléments de données pertinents entre des datasets hétérogenes, (2)
Extraction de métadonnées au niveau du dataset et proximity mining pour
détecter les datasets connexes, (3) Extraction de métadonnées au niveau des

ix

attributs et proximity mining pour détecter des datasets connexes, et enfin,
(4) catégorisation automatique des datasets via des techniques supervisées
k-Nearest-Neighbour (kNN). Nous implémentons les algorithmes proposés
via un prototype qui montre la faisabilité de cette approche. Nous appliquons
ce prototype a une scénario DL du monde réel pour prouver la faisabilité,
l'efficacité et I'efficience de notre approche, nous permettant d’atteindre des
taux de rappel élevés et des gains d’efficacité, tout en diminuant le cotit en
espace et en temps de deux ordres de grandeur, via nos techniques proposées
d’élagage précoce et de pré-filtrage, comparé aux techniques classiques de
correspondance de schémas basées sur les instances. Cela prouve 1'efficacité
des méthodes automatiques proposées dans les taches d’élagage précoce et de
pré-filtrage pour la correspondance de schéma holistique et la cartegorisation
automatique des datasets, tout en démontrant des améliorations par rapport
a l’analyse de données basée sur '’humain pour les mémes taches.

Acknowledgements

We don’t work in isolation, but rather in stronger, more efficient and successful groups. [...]
Karma does take place, and we reap what we sow! Thus, treat others like you'd like to be treated.

This thesis would not have been possible if it was not for the support
of many people who helped me along the journey in many positive ways.
Firstly, I would like to thank my thesis supervisors for their huge efforts
with my thesis and all our fruitful discussions. I have learned a lot from
them in many useful ways. They taught me to achieve professional rigorous
research, to keep expanding my knowledge and to never give up along the
(rocky!) path till the finish line. I would also like to thank my family for
their continuous support during the most difficult times. They deserve all
the sincere appreciation in the world. All the grateful appreciation to my
sincere friends (you know yourselves!) who helped me adapt with all the new
experiences and for always being there when I need them (especially during
the low times). Without them I would not have been able to finish this PhD
project. I would like to thank all my colleagues from IT4BI-DC, UPC, and ULB
who made it an amazing work environment for learning and collaborating
together. I learned something useful from each and everyone of this big
research group (and academic family). I'm also really thankful for all the
assistance by the technical support staff at the ULB and UPC labs. This thesis
would not have been possible without the grateful funding and contributions
by the European Commission via the research grant that supported me to
complete my thesis and my international research stays. I am also thankful
for my country, the cradle of ancient civilisations, for making me who I am
and for engraving in me all the good values which support me in my life. It
taught me the love for all of humanity, and the respect for all our beautiful
diversity. Finally, I would like to end this with a dedication by wishing all
the prosperity for the nations and peoples of Europe, Africa, my homeland,
and the whole world. May God bless them all and their future generations of
scientists and engineers. With our continuous collaboration we will achieve a
better world and future for everyone and the whole of humanity!

27th of March, 2020

Xi

Contents

Abstract

Resum

Résumé

Acknowledgements
Listof Figures
Listof Tables

Abbreviations

Thesis Details

1 Introduction

1
2

Motivation Lo
Background and State-of-the-art
2.1 Data Lakes and Tabular Datasets
2.2 Data Lake Governance
Techniques and Challenges
3.1 Schema Matching
32 Dataset Similarity Computation
3.3 Similarity Models Learning
Thesis Objectives and Research Questions
Thesis Overview
5.1 Proximity Mining Framework
52 DL Categorization
53 Metadata Query Interface
Thesis Contributions
Structure of the Thesis
7.1 Chapter 2: Instance-level value-based schema matching
for mining proximity between datasets

Xii

Contents

7.2 Chapter 3: Dataset-level content metadata based prox-

imity mining Lo Lo 28
7.3 Chapter 4: Attribute-level content metadata based prox-
imity mining for pre-filtering schema matching 28
74 Chapter 5: Automatic categorization of datasets using
proximity mining L. 29
7.5 Chapter 6: Prox-mine tool for browsing DLs using prox-
imity mining oo 29

2 Instance-level value-based schema matching for computing dataset

similarity 31
1 Introduction 33
2 Related Work 35
3 Motivational Case-Study, 36
4 A Framework for Content Metadata Management 37
5 The CM4DL Prototype 39

5.1 Prototype Architecture 40

5.2 Ontology Alignment Component 41

53 Dataset Comparison Algorithm 43
6 Experimentsand Results 45
7 Discussion e 48
8 Conclusion and Future Work 49

3 Dataset-level content metadata based proximity mining for comput-

ing dataset similarity 51
1 Introduction 53
2 Problem Statement 54
3 Related Work 55
4 The DS-Prox Approach 56

4.1 The Meta-Features Distance Measures 57

42 TheApproach. 58
5 Experimental Evaluation 61

5.1 Datasets 61

5.2 Experimental Setup 62

5.3 Results 63

5.4 Discussion o o 64
6 Conclusion and Future Work 66

4 Attribute-level content metadata based proximity mining for pre-

filtering schema matching 68
1 Introduction 70
2 Related Work 72
3 Preliminaries 75

Contents

4 Approach: Metadata-based Proximity Mining for Pre-filtering
Schema Matching 79
4.1 Proximity Metrics: Meta-features Distances 79
42 Supervised Proximity Mining 81
4.3 Pre-filtering Dataset Pairs for Schema Matching 88
5 Experimental Evaluation 88
5.1 Datasets 89
52 Evaluation Metrics 92
53 Experiment 1: Attribute-level Models 94
54 Experiment 2: Dataset-level Models 95
5.5 Experiment 3: Computational Performance Evaluation . 103
5.6 Generalisability 105
6 Conclusion o L 105
5 Automatic categorization of datasets using proximity mining 107
1 Introduction 109
2 Preliminaries. L. 111
21 Proximity Mining: Meta-features Metrics and Models . 113
3 DS-kNN: a Proximity Mining Based k-Nearest-Neighbour Al-
gorithm for Categorizing Datasets 115
4 Experimental Evaluation 117
41 Dataset: OpenML DL Ground-truth 117
42 Experimental Setup 118
43 Results 121
44 Validation Experiment 131
5 RelatedWork 133
6 Conclusion 134
6 Prox-mine tool for browsing DLs using proximity mining 135
1 Introduction 136
2 DatalakeIndex. 137
3 Similarity Search oo o oo 137
4 Dataset Categorization, 138
5 Dataset Matching, 140
51 New Dataset Matching 141
6 Proximity Graph 143
7 Conclusions and Future Directions 148
1 Conclusions 149
2 Future Directions 150
Bibliography 152
References 152

Xiv

List of Figures

List of Figures

1.1

1.2
1.3

1.4
1.5

1.6
1.7
1.8
1.9

1.10

2.1
2.2
23
24
3.1
3.2
3.3
34
4.1
4.2
43

44

4.5

4.6

A flat structured dataset consisting of tabular data organised as

attributes and instances o L L
DL governance classification and tasks
An example of schema matching and dataset similarity compu-
tation
Classification of schema matching techniques
Example of a decision tree model for classification of related

datasetpairs
An ensemble of decision trees for classification
Overview of the proposed proxmity mining framework

The proximity mining metadata management process.
A proximity graph showing topic-wise groupings of interlinked

datasets in the DL with their similarity scores
DL content metadata management and analysis process

The Metadata Management BPMN Process Model
The EXP01 Metadata Exploitation Sub-Process Model
CM4DL System Architecture
Performance analysis of CM4DL in the OpenML experiments .

Similarity relationships between two pairs of datasets
DS-Prox: supervised machine learning
DS-Prox cut-off thresholds tuning
Recall-efficiency plots (left column) and recall-precision plots

(right column) for experiments 1,2,3 and 4 in each row

The stratified holistic schema matching approach at different
levels of granularity.
The dependencies of components in the metadata-based prox-
imity mining approach for pre-filtering schema matching. . . .
Final output of our approach consisting of similarity relation-
ships between two pairs of datasets.
An overview of the process to build the supervised ensemble
models in our proposed datasets proximity mining approach
using previously manually annotated dataset pairs.
Proximity Mining: supervised machine learning for predicting
related dataobjects. o oo o Lo
Different normal distributions for assigning weights to ranked
attribute linkages. oo oo oL

XV

76

78

List of Figures

4.7

4.8

49

4.10
4.11
4.12
413

4.14
4.15

5.1

52

5.3

54

55

5.6

6.1
6.2

6.3

6.4

6.5

An overview of the process to apply the learnt supervised
models in our approach for pre-filtering previously unseen
dataset pairs independent of the build process.. 87
A 10-fold cross-validation experimental setup consisting of
alternating folds in training and test roles. Image adapted
from the book: Raschka S (2015) Python Machine Learning. 1st

Edition. Packt Publishing, Birmingham, UK. 97
Classification accuracy from 10-fold cross-validation of dataset

pairs pre-filtering models. 98
Kappa statistic from 10-fold cross-validation of dataset pairs

pre-filtering models. 0L 98
ROC statistic from 10-fold cross-validation of dataset pairs pre-

filteringmodels. oo 98
Recall against efficiency gain for the different supervised models.100
Recall against precision for the different supervised models. . . 100
Recall against efficiency gain for the different metric types. . . 100
Recall against precision for the different metric types. 100

A visualisation of the output from DS-kNN data lake (DL) cate-
gorization. A proximity graph shows the datasets as nodes and
the proximity scores as edges between nodes. Fig.(a) complete
DL and Fig. (b) a zoomed-in view highlighted by the red box

N(A) . . e 110
The data lake categorization scenario using k-NN proximity
MININE o e 113
Performance of DS-kNN using k=1, different models, different
ground-truths, and different category sizes 122
Performance of DS-kNN using k=3, different models, different
ground-truths, and different category sizes 123
Performance of DS-kNN using k=5, different models, different
ground-truths, and different category sizes 124
Performance of DS-kNN using k=7, different models, different
ground-truths, and different category sizes 125

The input screen for the similarity search component of Prox-mine138
The output screen for the similarity search component of Prox-

MINE ot 138
The input screen for the dataset categorization component of
Prox-mine 139
The output screens for the dataset categorization component of
Prox-mine. 140
The input screen for the dataset matching component of Prox-
MINe e 141

Xvi

List of Figures

6.6

6.7

6.8

6.9

6.10

6.11

6.12

The output screens for the dataset matching component of

Prox-mine. Lo 142
The input screen for the new dataset matching component of
Prox-mine 143
The output screen for the new dataset matching component of
Prox-mine 144

The input screen for the proximity graph component of Prox-mine145
An overview of the output proximity graph component of
Prox-mine, where (a) gives a zoomed-out view and (b) gives a
zoomed-inview L 145
The search and filtration panel of the output proximity graph
component of Prox-mine, where (a) gives a view of the category
selector in the left-panel and (b) gives the result of applying the
filtrationstep 146
The selection of a specific dataset node in the proximity graph
and the relationships information panel shown on the right side 147

XVvii

List of Tables

List of Tables
1.1 Current types of metadata tools for data lakes 7
2.1 Description of OpenML datasets 36
2.2 Example Cross-dataset Relationships 43
2.3 Results of Manual Annotation. 47
3.1 DS-Prox meta-features 57
3.2 A description of the OpenML samples collected 62
3.3 An example of pairs of datasets from the all-topics sample from
OpenML 62
3.4 A description of the experiments conducted 63
41 Schema matching techniques state-of-the-art comparison 75
4.2 Schema matching pre-filtering functions. 76
4.3 Attribute level content meta-features 80
4.4 Description of the OMLO1 datasets 90
45 Example Cross-dataset Attribute Relationships from OMLO1. . 91
4.6 Description of the OML02 datasets 92
4.7 An example of pairs of datasets from the OML02 sample from
OpenML 92
4.8 The significance of the Kappa statistic 93
4.9 The significance of the ROC statistic 93
4.10 Performance evaluation of attribute pairs proximity models . . 95
411 Spearman rank correlation for the different meta-features. We

4.12

413

5.1

52

aggregate minimum (Min.), average (Avg.), maximum (Max.),
& standard deviation (Std. Dev.) for different meta-feature types. 99
The standard deviation of each evaluation measure for 10-fold
cross-validation of each dataset pairs pre-filtering model, where

ca=05 .. 101
The computational performance of our approach vs. the PARIS
implementation in terms of time and storage space 104

A description of the OpenML categorized datasets collected.
Datasets are categorized by subject and by entity for the 203 ds
sample, or by entity for the 118 ds sample. 119
The evaluation of DS-kNN for the minimum category size of
1+ with the different model types and ground-truth types. For
each setting, we only show here the best performing parameters
based on Fl-scores. 127

Xviii

List of Tables

5.3

54

5.5

5.6

5.7

The evaluation of DS-kNN for the minimum category size of
3+ with the different model types and ground-truth types. For
each setting, we only show here the best performing parameters
based on Fl-scores.
The evaluation of DS-kNN for the minimum category size of
5+ with the different model types and ground-truth types. For
each setting, we only show here the best performing parameters
based on Fl-scores.
The evaluation of DS-kNN for the minimum category size of
8+ with the different model types and ground-truth types. For
each setting, we only show here the best performing parameters
based on Fl-scores.
The evaluation of top performant DS-kNN settings for the
minimum category sizes of 1+, 3+ and 8+ with the 118 ds
validationsample.. oL oo
The evaluation of specific DS-kNN settings which met specific
criteria with the 203 ds sample. We re-validate them with the
118 dssample.

XixX

128

129

130

Abbreviations

Standardisation is the pinnacle of global human development.

BD: Big Data
BI: Business Intelligence
CSV: Comma-Separated Values
DB: Database
DL: Data Lake
DM: Data Mining
DS: Dataset
DW: Data Warehousing
ETL: Extract, Transform and Load
GUIL: Graphical User Interface
HTML: Hypertext Markup Language
k-NN: k-Nearest-Neighbour

Prox: Proximity

XX

Thesis Details

Thesis Title: Dataset Proximity Mining for Supporting Schema Matching

and Data Lake Governance

Ph.D. Student: Ayman Alserafi
Supervisors: Prof. Alberto Abell6, Universitat Politecnica de Catalunya,

BarcelonaTech, Spain (UPC supervisor)

Prof. Oscar Romero, Universitat Politecnica de Catalunya,
BarcelonaTech, Spain (UPC supervisor)

Prof. Toon Calders, Université Libre de Bruxelles, Brussels,
Belgium (ULB supervisor)

The main body of this thesis consists of the following papers:

(1]

(2]

Towards information profiling: data lake content metadata manage-
ment. Ayman Alserafi, Alberto Abell6, Oscar Romero, Toon Calders.
International Conference on Data Mining Workshop (ICDMW) on Data
Integration and Applications (2016).

DS-Prox: Dataset Proximity Mining for Governing the Data Lake. Ayman
Alserafi, Toon Calders, Alberto Abell6, Oscar Romero. International
Conference on Similarity Search and Applications (SISAP) (2017).

Keeping the Data Lake in Form: Proximity Mining for Pre-filtering
Schema Matching. Ayman Alserafi, Alberto Abell6, Oscar Romero, Toon
Calders. ACM Transactions on Information Systems (TOIS) 38(3): 26
(2020).

Keeping the Data Lake in Form: DS-kNN Datasets Categorization Using
Proximity Mining. Ayman Alserafi, Alberto Abells, Oscar Romero,
Toon Calders. International Conference on Model and Data Engineering
(MEDI) (2019).

poel

Thesis Details

[5] Prox-Mine: a Tool for Governing the Data Lake using Proximity Mining.
Ayman Alserafi, Alberto Abell6, Oscar Romero, Toon Calders. Under
submission (2020).

This thesis has been submitted for assessment in partial fulfillment of the PhD
degree. The thesis is based on the published or under-submission scientific
papers which are listed above.

Xxii

Chapter 1

Introduction

To start with, don’t just share a problem, present the solution
as well!

1 Motivation

Data are becoming highly abundant in large volumes, different structures,
and they are flowing to the enterprise at high velocities which leads to the
phenomenon of “Big Data" (BD) [1, 114]. This includes datasets created and
loaded near-real-time and in big amounts.

With the huge growth in the amount of data collected, it is more common
for data scientists to store raw tabular datasets from multiple sources and
sensors into Data Lakes (DLs) [13, 53, 107, 113, 118, 128], which is the new
generation of data repositories complementing the Data Warehouse (DW) for
business intelligence (BI) and data analytics purposes [80]. DLs support the
new era of data analytics where datasets are ingested in large amounts and
are required to be analysed just-in-time [82]. For this purpose, they store
datasets in their raw formats without any transformation or preprocessing,
which allows for the concept of schema-on-read, including “fusing” different
sources for analytical purposes on-the-fly during analysis requests [107].

However, it is a challenge for data wranglers [51, 69, 128] to prepare the
datasets for analysis. They need to understand their structure and commonali-
ties for DL governance purposes [15, 42, 80, 119]. Such repositories need to be
effectively governed to gain value from them; they require the application of
techniques for extracting information and knowledge to support data analysis

2. Background and State-of-the-art

and to prevent them from becoming an unusable data swamp [4] (a DL reposi-
tory which is not well governed, does not maintain appropriate data quality
measures, and which stores data without associated metadata, decreasing
their utility [13]). This involves the organised and automated extraction of
metadata describing the structure of data stored [132], which is the main focus
of this thesis. The main challenge for DL governance is related to information
discovery [95]: identifying related datasets that could be analysed together as
well as duplicated information to avoid repeating analysis efforts.

DLs should provide a standard access interface to support all its consumers
[54, 91], including analysis by non-technical-savvy users who are interested in
analysing these data [13, 30, 92, 128]. Such access should support those data
consumers in finding the required data in the large amounts of information
stored inside the DL for analytical purposes [132]. Currently, data preprocess-
ing, including the crucial step of information discovery, consumes 70% of time
spent in data analytics projects [128], which clearly needs to be decreased.
To handle this challenge, this thesis proposes an integrated framework for
extracting metadata describing the datasets stored in DLs and relationships
between those datasets. Thus, we propose using Data Mining (DM) techniques
to effectively and efficiently extract similarity between datasets. Currently,
there is a lack of such techniques for finding data patterns and similarity
between datasets [2, 40, 84, 99, 105]. This is the focus of this thesis.

2 Background and State-of-the-art

In this section, we introduce the preliminaries and the main concepts related
to DLs and their governance. We describe here the state-of-the-art of metadata
extraction and management for governing DLs. We present an overview of the
approaches used, including the short-comings faced which we aim to solve in
the thesis.

2.1 Data Lakes and Tabular Datasets

DLs are large repositories of raw data coming from multiple data sources
which cover a wide-range of heterogeneous topics of interest [4, 82, 107]. We
focus on DLs having datasets storing data in flat tabular formats as shown in
Figure 1.1. These are organised as attributes and instances, such as comma
separated values (CSV) files, hypertext markup language (HTML) web tables,
spreadsheets, HDFS tables in Hadoop!, etc. Such datasets are common in DLs
today [28, 42, 47].

These datasets have instances describing real-world entities, where each
is expressed as a set of attributes describing the properties of the entity. We

Thttps://hadoop.apache.org

https://hadoop.apache.org

2. Background and State-of-the-art

Attributes

Att1 Att3

Instances

Figure 1.1: A flat structured dataset consisting of tabular data organised as attributes and
instances

formally define a dataset D as a set of instances D = {I3, I, ...I;}. The dataset
has a set of attributes S = {A1, Ay, ...A}, where each attribute A; has a fixed
type, and every instance has a value of the right type for each attribute. We
distinguish between two types of attributes: continuous numeric attributes
with real numbers like ‘Att2” in Figure 1.1, and categorical nominal attributes
with discrete values like ‘Attl” and ‘Att3’.

2.2 Data Lake Governance

DL governance is concerned with management of the data stored appropriately
so that they are easy to find, understand, utilise and administer in a timely
manner [12, 53, 106, 113, 118]. This makes the DL more accessible (searchable),
data-driven, compliant to regulations, etc. It can be seen from two perspectives
as seen in the classification in Figure 1.2: (i) Policy administration and (ii)
Data management. The first is about enacting procedures, managing people
and responsibilities, implementing regulations, etc., while the latter is about
the technical implementation of protocols and technologies that help manage
the data stored as an asset for supporting users in analysing them. Figure 1.2
shows some of the main tasks required for each type of DL governance (this
is only a partial list of the most important tasks mainly based on [106] and
our adapted / expanded classification from it).
We describe the different tasks of DL governance as follows:

i. Policy Administration

¢ Data ownership and access rights: the policies of data stewardship
related to the procedures and regulations for data sources allowed
to be ingested in the DL, the persons responsible for managing
specific datasets and their metadata descriptions, and polices re-
garding how the data should be used (read, write and delete access

2. Background and State-of-the-art

Data Lake
Governance

Policy Administration Data Management

|

Data Ownership &|
Access Rights

Provenance & | Master
Lineage Data

Regulatory Law,
Privacy & Compliance

Data Curation & Data
Wrangling Categorization

Security &
Encryption

Metadata
Management

Data
Integration

Data Quality

Figure 1.2: DL governance classification and tasks

rights) and who is allowed to access specific data objects.

Security and encryption: the rules put in place to protect the
security of the data stored in the DL (e.g., anti-malware and denial-
of-service-attack protection), and how the data are encrypted for
specific users (management of encryption keys).

* Regulatory law, privacy and compliance: the rules and policies for

compliance with the regulatory law and for protecting the privacy
of data, e.g., with data protection laws like GDPR?.

ii. Data Management

* Provenance and lineage: the collection and management of infor-

mation about the processes implemented for data collection (data
sources), data manipulation, data transformation rules and the
sequence of such processes in a traceble pipeline which led to the
final data stored in the datasets of the DL (for more details and
examples, we refer the reader to [37, 54, 65]).

e Data quality: the techniques and tools used to guarantee certain

levels of data quality and data integrity according to the rules
defined. This includes referential integrity constraints, denial con-
straints, format and patterns compliance with master data, etc. (see
[7, 38, 95]).

* Master data: this includes tools and techniques for unifying data

records into a single consolidated master data collection which
consistently and uniformly describe entities stored in them. This
leads to a centralised view of core data (e.g., unified lookup tables

’https://gdpr.eu

https://gdpr.eu

2. Background and State-of-the-art

for entities and their identifiers), and is commonly called Master
Data Management [92].

¢ Data integration: this involves combining and mapping different
datasets together so that they can be used to answer analytical
queries. It tackles overall, high-level and generic data requirements.
For details see [14, 67, 93]. Other tasks include entity resolution
and deduplication [112, 56], and extract, transform and load (ETL)
for creating a consolidated global schema or views over the data
[63, 68, 97, 129].

* Data curation and wrangling: this includes the processes for
preparing data for BI and analytics, for structuring the data into
machine processable formats and schemata, and also using the
metadata describing datasets to identify commonalities between
them, commonly called schema matching (see Section 3.1). These are
commonly tasks targeting a specific analytical goal. The reader can
find more details in [125, 128].

* Metadata Management: this is a transversal task serving all the
other governance tasks. The datasets inside the DL need to be
described to include information about what they store (i.e., with
semantic definitions and data profiling statistics), how they are
stored (e.g., data formats and schema definitions), where are they
stored, how they are related to one another, etc. This is all con-
sidered metadata, and the management of them in a centralised
repository is the main task of concern here. For a detailed discus-
sion of the types of metadata needed for DLs, the reader can check
[25, 53, 54, 58, 108, 113, 119, 118, 122, 132]. As this is a core topic
for this thesis, we further describe specific metadata which need to
be collected and managed later in this section.

* Data categorization: we introduce this data management concept
for DLs as the task involving the identification of information over-
laps between datasets and data catalogues to understand what data
are owned in the DL. Such catalogues describe how the datasets are
classified into specific subject areas (topics). This is similar to data
classification [106] as it also tags datasets with a category from a
catalogue, however, for the purpose of this thesis, it is a data-driven
and automatic task rather than a manual data-tagging task. This is
also closely related to text-document categorization [19, 55], but it
categorizes tabular datasets as described in Section 2.1 rather than
free-text documents. We describe this further in Sections 2.2 and
5.2. Also see [16] and Chapter 5 for details.

2. Background and State-of-the-art

Data categorization is the data-driven task of automatically classifying
datasets into pre-defined topics-of-interest (i.e., business domains) based on
the overlap between data stored in them and the common information they
store (i.e., dataset similarity).

In this thesis, we focus on the data management perspective and when
we refer to our proposed approaches for DL governance we mean metadata
management for data categorization in specific, which we describe further in
this section.

Metadata Management for Data Categorization

There is currently a need for DL governance by collecting and managing
metadata about ingested datasets [14, 94, 95, 107, 119] to prevent the DL from
becoming a data swamp. In addition, proper DL governance should provide
an interactive data exploration interface that supports analysing relationships
between datasets.

It is important to govern the data ingested into the DL and to be able
to describe the data with metadata [95, 119]. The current tools supporting
metadata collection in a DL environment (examples given below) usually
include automatic and manual techniques for generating metadata. As can
be seen in Table 1.1, the tools are either automatically generating metadata
about data provenance or manually generating some data content descriptions
using user tagging. Examples of such tools which are able to integrate with
Hadoop and which were available for us to survey include Apache Atlas®
(open-source tool), Teradata Loom?* (free non-commercial use), DataRPM®
(proprietary tool), Waterline® (proprietary tool), Zaloni’ (proprietary tool),
and Podium Data® (proprietary tool). Other examples of tools which were not
available at hand but which claim to support some metadata management
tasks for DLs include: Collibra’ (proprietary tool), Palantir!® (proprietary
tool), and PoolParty Suite!! (proprietary tool).

Apache Atlas is mainly for general metadata management and it does not
use any DM techniques. It handles mainly the data provenance metadata for

3http: / /atlas.incubator.apache.org

4http: / /loom.teradata.com

5http:/ /datarpm.com

Ohttp:/ /www.waterlinedata.com/data-catalog-details

7htt—ps: / /resources.zaloni.com/webinars/zaloni-bedrock-and-mica-20-minute-
demonstration

8https:/ /www.podiumdata.com/product/podium-platform

9https: / /www.collibra.com/data-governance

1Ohttps: / /www.palantir.com

Uhttps:/ /www.poolparty.biz/

2. Background and State-of-the-art

Technique

Metadata Type

Description

Automatic

File-level metadata
(e.g. filename, creation
date, source)

The automatic processing
of files ingested in the DL
to collect provenance
metadata like file source,
data creation and update
date and time, data
ownership, etc.

Manual

User tagging of data

This includes the user
tagging the ingested data
with business taxonomies.
The user tagging is
executed using conditional
rules defined by the user
depending on the type of
data source, e.g., tag all
data files loaded from the
financial module of the
enterprise system as
“Financial". Another
possibility is the user
visually exploring the files
from each new data source
and individually tagging
the instances seen by the
user.

the DL rather than data categorization. The Waterline data management tool
complements Apache Atlas by adding capabilities for simple data profiling of
datasets ingested in the DL (e.g., the top values per field, number of unique
values, etc.), which they call “Data Fingerprinting”. They only implement
simple data profiling techniques which does not include DM or cross-datasets
profiling. Teradata Loom is mainly for data lineage and provenance man-
agement of files and data manipulations / ingestion job tasks. It does some
simple statistical calculations on the input data using an automatic technology
for data profiling called “Activescan”'?, but only at the column level. Finally,
DataRPM claims to have an automatic data curation platform (i.e., for data

Table 1.1: Current types of metadata tools for data lakes

12http:/ /blogs.teradata.com/data-points /overview-of-teradata-loom-technology

2. Background and State-of-the-art

discovery and data preparation for analytics, whose details about data cu-
ration can be found in [128]), but with little description, no case-study and
no published research papers. After investigating this tool it was found that
it is more focused on natural language processing, similar to IBM Watson'?.
Although they claim that they can automatically curate data sources in the
DL using machine learning14, there is little evidence in online material or
published research about their techniques. This might be because the company
developing the tool is a relatively new start-up.

Other tools also include Apache Falcon!® (designed for the Hortonworks
distribution of Hadoop) and the Cloudera Navigator!® (designed for the
Cloudera Hadoop distribution). Both tools handle two of the most popular
distributions of Hadoop. Concerning the support provided for handling
metadata and data governance, those tools are mainly focused on DL oper-
ations metadata like data provenance and lineage, in addition to manually
user-generated data catalogues. Both tools are targeting in newer versions
the gradual addition of more exploratory content analytics and metadata,
however, at the current time such support is very primitive and does not
include advanced techniques like schema matching [24], ontology alignment
[14, 126] or data mining [99].

The Waterline Data for Hadoop!” seems to be the closest solution available
to our envisioned metadata-based DL governance solution in this thesis. The
tool supports exploratory analysis and profiling of data ingested in the DL.
However, it is currently lacking in the following aspects described in the
research literature:

* Data and schema profiling [98, 115, 123]
* Schema and ontology matching [14, 24, 126]

* Machine learning and DM techniques for finding data patterns and
similarity [2, 40, 84, 99, 105]

* Ontology integration (semantic metadata) [2, 3, 94, 132]

Tools implementing some of the above techniques for automatic profiling
of datasets and metadata collection exist in the research literature. This in-
cludes semantic RDF profiling tools [2], ontology mapping tools like ODIN
[94], platforms for BD analysis like Metanome and Stratosphere data pro-
filer [8, 102], metadata visualization tools for BD like [46, 57, 70], and data
provenance metadata capture and management like [65]. Other research inves-
tigated specific research problems for metadata management like: automatic

3http:/ /www.ibm.com/smarterplanet/us/en/ibmwatson/what-is-watson.html
Yhttp:/ /www.kdnuggets.com/2014/06/ data-lakes-vs-data-warehouses.html
Bhttps:/ /falcon.apache.org

16h’ttps: / /www.cloudera.com/products/cloudera-navigator.html

7http:/ /www.waterlinedata.com /prod

2. Background and State-of-the-art

key and dependency detection [98], schema matching and evolution [120],
entity resolution and matching [120], schema mining from semi-structured
data [10, 23, 105], ontology mining [3], etc. Those independent techniques still
need to be directed and integrated in a coherent framework for profiling data
in the DL and managing metadata about the content of the files [128]. We
mainly propose in this thesis an automated metadata management framework
in Section 5.1 that augments many of those techniques in a novel approach
we call proximity mining, including: data and schema profiling, schema match-
ing (see Section 3.1), and machine learning & DM techniques for similarity
computations between datasets (see Section 3.3).

Most of the research literature [98] also demonstrates the shortcomings and
gaps of current data profiling techniques for automatic metadata management
over the DL. The current shortcomings of the tools in research and industry
indicate a lack of automatic data categorization capabilities which can be
summarised in the list below:

1. Efficiently collect cross-dataset metadata like relationships between them
using automatic techniques.

2. Automatically categorize datasets into pre-defined topics of interest.

3. Provide better presentation and querying interfaces of metadata discov-
ered from the DL which can make the data more accessible for Bl

As can be seen from the above list and Table 1.1, there is a need to have an
automatic process to generate the tagging (commonly called annotation [5]) of
data content ingested in the DL using more efficient techniques compared to
the manual visual scanning of the files. This includes automatic techniques
for data profiling and analysis of similarity of data content and relationships
between datasets ingested in the DL, which is the main purpose of this thesis.

It is currently a challenge to create an analytical environment where there
is an integrated, subject-oriented view of the DL which is similar to that in
the data warehouse [64]. This poses the need for annotation of the datasets to
facilitate finding the relationships between them [30], which includes collection
of metadata about the informational content of the datasets in the DL [58].

We propose to govern the DL by means of cross-dataset metadata collec-
tion and management so it does not become a disconnected group of data
silos where datasets can not be used together in meaningful analysis. This is
done by automating the data cataloguing tasks which include finding related
datasets and categorizing datasets into topical domains. Thus, we handle DL
governance from metadata management and dataset categorization perspec-
tives, where we aim to support the users in understanding what datasets they
own, how they are related to one another, and to support automatic dataset
categorization. This should ultimately support data analytics over these data.

3. Techniques and Challenges

We aim to automatically and efficiently collect two types of metadata: con-
tent metadata based on data profiling statistics and cross-dataset relationships
using DM (see Section 3.3) and schema matching (see Section 3.1). Tradi-
tional data profiling and schema extraction involves analysing raw data for
extracting metadata about the structural patterns and statistical distribution
of datasets [98]. There is currently a need for higher-level profiling, which
involves the analysis of data and schemas [58, 116] using DM techniques
[23, 87, 105]. This contributes to the computation of cross-dataset relationships
to support information discovery and interpretation, in addition to automatic
topical categorization of datasets, which are specific research challenges of DL
governance we tackle.

Metadata querying and visualization

Metadata collected about the datasets in the DL should be presented to the
users using querying and visualisation interfaces. Some examples of such
queryable metadata Graphical User Interface (GUI) include: [14] provides
a query engine using SPARQL over metadata stored in an RDF repository,
[34] provides a dataset search query engine over DLs, [54] provides keyword
search over the dataset names and storage location paths, and [33] provides a
query language to query the indexes of attributes found in datasets to retrieve
relevant ones. The goal is to retrieve datasets related to a specific subject-area
and all their datasets found in the enormous amount of data. We consider
that related datasets are those matched and found using the indexed metadata
stored in the repository. This should support in describing and extracting
similar data elements from data repositories, in order to reuse these data,
mash-up the data for more plausible business problems and questions, and to
be able to handle this data discovery process [125].

We aim to provide solutions to the current shortcomings of such metadata
discovery approaches for DLs. This includes the need for generic dataset
metadata handling which does not assume specific subject-areas (business
domains) or availability of pre-defined metadata like mapping to a global
ontology similar to the work in [14, 79, 96], context TF-IDF similarity of
words around a web table found on the same webpage like [133], or specific
pre-defined rules and patterns for data stored in the attributes like [134].

3 Techniques and Challenges

In order to support the DL governance tasks of automatic metadata collection
& management and dataset categorization, we utilise different techniques
including schema matching, dataset similarity computation and supervised
machine learning. We explain in this section those techniques, their current
short-comings and their challenges which we tackle.

10

3. Techniques and Challenges

3.1 Schema Matching

The datasets in the DL usually cover a wide range of heterogeneous topics
making it difficult for the data scientist to identify overlapping attributes. Data
wranglers must be able to find those datasets which have related data to be
used together in data analysis tasks [82, 89], commonly referred to as schema
matching [24]. This supports in the automatic collection of metadata about
cross-dataset relationships.

D,: 1992_city_data Sim(Dy,D;) = 0.7 D,: census_data Sim(D,D;) = 0.5 D,: health_data

A1l: salary {25k<A1<600k} « v A6: type {f,m,0} A11: gender {fem,mal,oth}
]) A12: Ethnicity
A2: age { 20<A2<97} A7: age { 0<A2<100} v\></v {EAEB,EC,ED, EE,EF}
— A3: family_Size { 2<A3<11} A8: race {01,02,03,04,05,06} — A13: age { 30<A3<60} o—
A4: identity {w,m,t,u} q A9: House_size { 0<A4<16} A14: Temp { 35<A4<42}

AS5: house_type {h,t,v,s,p,I} A10: sal { 50k<A5<300k} A15: H_rate { 40<A5<160}

Figure 1.3: An example of schema matching and dataset similarity computation

We show an example for schema matching in Figure 1.3 with three
datasets and their attributes (each numbered starting with ‘A’), namely
“1992_city_data”, “census_data” and “health_data”, where each dataset has
5 attributes. Attributes can be numerical like ‘Al’, ‘A7’, etc. which have
the ranges shown. On the other hand, the attributes can be nominal like
‘Ad’, ‘A12’, etc. where we show the distinct values for each attribute. The
goal of schema matching is to be able to find attributes between different
schemata (datasets) which store similar data. This is shown by the attributes
connected by arrows in the figure. Those attributes have similar values (and
possibly similar names as well), which should be automatically found using
schema matching techniques. Further, we label a similarity score we call *Sim’
between dataset pairs, which is a real number in the range of [0, 1] describing
the overall dataset pair similarity (this is explained in Section 3.2).

Schema matching usually requires Cartesian product comparisons of at-
tributes, entities and their values for calculating their similarity [73], with the
aim of finding connection strengths between similar concepts from different
pairs of datasets [27, 35, 83, 104]. The large-scale application of such a task to
BD repositories is referred to as holistic schema matching [18, 89, 104, 110, 133],
where the goal is to match multiple datasets together considering them all
in the matching task. With thousands of datasets and millions of attributes
stored, there is a need for efficient similar attributes search, filtering schema
matching comparison tasks, commonly called early-pruning [24], as simple

11

3. Techniques and Challenges

brute-force similarity search of all pairs of attributes from different datasets
becomes infeasible [54]. Alternatively, comparisons can be computed faster
using parallel computing techniques like the MapReduce framework [133].

It is a challenge for data wranglers using the DL to efficiently process
the datasets to detect their common features, as schema matching tasks are
generally expensive (involving huge amounts of string comparisons and
mathematical calculations) [14, 24, 27, 60, 71]. In this thesis, we propose novel
techniques to reduce those comparisons using pre-filtering techniques that
reduce the number of comparisons. With the rise of DLs, previous research
like [43] and [24] recommended using early-pruning steps to facilitate the
task using schema matching pre-filtering. Here, only datasets detected to be of
relevant similarity are recommended for further fine-grained schema matching
tasks, and dissimilar ones should be filtered out from further comparisons.
Such previous research like [24, 43] mentioned the need for early-pruning
steps but did not provide detailed solutions for this challenge. We explore
this with extensive details in Chapter 4.

Holistic schema matching techniques [110] seek to detect relationships
between different schemata stored in a data repository. This can include rela-
tionships between instances, which is called instance-based schema matching
and which is closely related to entity-resolution [24, 133], and also relation-
ships between attributes (fields storing common information in structured
data), which is commonly called attribute-based schema matching. We focus
in this thesis on the latter case within the environment of DLs. The goal
of using those techniques in the DL is to detect relationships between the
attributes inside different datasets. The output patterns from holistic schema
matching include multiple observations like: (i) Highly-similar and duplicate
pairs of datasets (having similar schemata and data), and (ii) Outlier datasets
which have no similarity with any other dataset in the DL (i.e., no similar at-
tributes in the DL). The main challenges concerning this include the efficiency,
scalability and handling the variety of topics found.

Current schema matching techniques are mainly based on Jaccard simi-
larity of exact value matches and overlaps between attributes from datasets
[33, 96, 101]. Those techniques fall short when values are coded differently
between different datasets and with the unavailability of extra semantic map-
pings to ontologies or word embeddings like [96]. For example, in Figure 1.3
we can see attribute “identity” (‘A4’) with the values “w”, “m”, “t” and “u” v.s.
attribute “type” (*A6’) with the values “f”, “m” and “0”. Both contain similar
information but with different representations and attribute names which
classical schema matching can not detect. This is also the same issue for ("A8’)
and ("A12’) with different attribute names and value coding. Other challenges
for state-of-the-art schema matching include normalised v.s. non-normalised
numeric attributes, encrypted values v.s. non-encrypted values, etc. In this
thesis, we develop approximate matching techniques based on statistical

12

3. Techniques and Challenges

metadata, which do not necessarily require exact value overlaps between
datasets.

Schema
Matching
Instance- Metadata-
based based
Value Dataset-level Attribute-level
matching matching matching

| String || Numerical Name strings| Contentstatistics| Name strings| Contentstatistics|
comparisons| |comparisons| |comparisons comparisons comparisons comparisons

Figure 1.4: Classification of schema matching techniques

Leading from the above discussion, for this thesis, we classify schema
matching as shown in Figure 1.4. Here, we can see on the left side the classical
schema matching techniques which seek to match values from instances in the
datasets. This is done using string comparisons of the values (and names of
attributes) or numerical comparisons for numerical attributes. This will have
good result with matching attributes like (“A1’) and ("A10") from Figure 1.3 as
they have similar overlapping numerical values and similar attribute names.

On the other hand, we propose a new type of schema matching which we
call metadata-based schema matching.

Metadata-based schema matching pre-filtering techniques extract meta-
data collected about the overall profiles of datasets or statistics about at-
tributes for alleviating schema matching comparison tasks. The metadata
is used to pre-filter dissimilar pairs of datasets to reduce the number of
comparisons from the Cartesian product of value strings matching from
instances to a lower number of comparisons over the overall attributes” and
datasets’ metadata.

For this purpose, we collect descriptive statistics about the attributes and
datasets to use them in the comparison task, which includes comparison of
name strings (e.g., using the edit distance [86]) and comparison of the statistics
collected about the content of the attributes (e.g., we can collect the number of
distinct values for attributes and compare this when matching attribute pairs).
We can collect such statistics at two levels: the dataset-level (e.g., the average
number of distinct values from all attributes in the dataset) or the attribute-
level (e.g., the distinct number of values for each independent attribute, then

13

3. Techniques and Challenges

aggregating this to the dataset-level by averaging all the matching output for
each independent attribute). For example, in Figure 1.3, dataset D; has an
average of 4.5 distinct values for nominal attributes (3 for “A4” and 6 for ‘A5’)
while dataset D, has an average of 3 distinct values for nominal attributes (2
for ‘A6’ and 4 for ‘AY).

Attribute-level comparisons are obviously at a more detailed level of
granularity than the dataset-level. For example, in Figure 1.3, if we consider
the distinct values for each attribute to find the similarity between dataset
D, and D3 , we will find that they both have matching nominal attributes:
‘A6’ and ‘A11’ with 3 distinct values each, and ‘A8’ with ‘A12” with 6 distinct
values each. Therefore, if we consider individual attributes they will have 100%
matching nominal attributes, considering only ‘number of distinct values’.
Such metadata-based schema matching is further explained in Chapters 3
and 4, where the former investigates dataset-level matching and the latter
investigates attribute-level matching.

Locality Sensitive Hashing

Locality sensitive hashing (LSH) [31, 44] is a family of techniques for grouping
together objects of high probability of similarity'®. Objects assigned to the
same block are further compared using more expensive computational tech-
niques [117], like schema matching tasks involving string comparison of values
and statistical computations of similarity from data profiles of attributes.

The challenge is to find an adequate LSH algorithm with a relevant simi-
larity function and a list of features to use to compute an approximation of
the similarity between objects inside the datasets [28, 33] to support schema
matching. For example, in [44] they propose LSH based on the MinHash
algorithm for entity resolution in ontologies using term frequencies. We apply
similar LSH techniques in this thesis when implementing instance-based value
matching in Chapter 2.

3.2 Dataset Similarity Computation

As low-level instance-based schema matching is computationally expensive,
there is a need for a filtering strategy that computes similarities of datasets in a
cheaper way so that schema matching is conducted only in similar cases. This
is done by applying a pre-filtering task before schema matching (i.e., early-
pruning), where there needs to be dataset similarity computation techniques
that can assign an estimation of the overall similarity score between datasets.
This can be seen in Figure 1.3, where we give a similarity score between
datasets using the connecting arrows between the dataset names. For example,

18Contrary to the classical hashing goals for database partitioning, where the goal is to put
similar objects into different groups.

14

3. Techniques and Challenges

datasets D; and D, have an overall similarity of 0.7 (on a range of [0, 1], i.e.,
70% similarity) considering the attributes they store and the overlaps between
them.

Most similarity comptuation algorithms utilise attribute names string
comparisons when computing dataset similarity [28, 33, 35, 36, 59, 79, 88,
100, 104, 117, 133]. This becomes problematic in real-world scenarios when
attributes are not properly named or are named using generically generated
codes [27, 96].

The current state-of-the-art mainly includes expensive computations that
involve string-matching of values found in attributes. The shortcoming of such
techniques is that they can only match exact values of strings and can therefore
not produce approximate similarity computations which compare the overall
similarity of attributes even if the values are coded differently. For example,
[28, 33, 96, 101, 117, 133] aim to index and find similar attributes based on the
exact values they store, mainly using Jaccard similarity computations like in
[28, 96,101, 117]. Other research like [60, 59, 96] use semantic based dictionary
search of synonyms over values to improve the matching process. In [59], they
also use extra query log metadata to find related attributes commonly used
together in search queries. Extra schema metadata like common primary keys
between datasets can also be used as an indicator for dataset similarity [54].

Other techniques like [134] assume that datasets have attributes storing
values according to a specific format or template (sequence of codes) which are
pre-defined by the data analyst. Values are defined according to convertible
values using conversion rules (e.g., measurements in inches and feet). Those
techniques are restricted to only matching those attributes which store those
specific values defined by the format rules, therefore limiting the generalis-
ability of their application with different domains and heterogeneous topics
of interest. We tackle those challenges and shortcomings in our proposed
proximity mining approach introduced in the next section and Section 5.1.

3.3 Similarity Models Learning

We propose a novel approach (see Section 5.1) that learns similarity models
which are capable of detecting similar and dissimilar datasets to support the
approximation of dataset similarity computation and the early-pruning task
of holistic schema matching. This is done using supervised machine learning.
Supervised machine learning is a group of classical techniques used in
artificial intelligence and data mining for automatically learning models from
data examples to support future estimation, classification or prediction of
similar cases. This has been discussed extensively in textbooks like [127]
and [32]. The main idea is to be able to make a computer (machine) learn
from training examples to classify, predict, or estimate a dependent variable
(the output, also called target variable) for new examples (commonly called

15

3. Techniques and Challenges

unseen instances) based on similarity to previous already seen instances with
known classification or values for the dependent variable (commonly called
training instances). This similarity needs to be measured according to a set
of features that describe information about the instances. In contrast with
supervised machine learning, there is also unsupervised machine learning. In
such learning problems, the instances do not have a predefined classification
or value for a dependent variable, rather, one common goal is to use the
features describing such instances to segment them into groups of highly
similar instances (commonly called clustering) so we can automatically detect
if there is meaningful grouping which can classify the instances into classes
(i.e., the goal is to define the classification classes for instances which we do
not already know in advance). This type of unsupervised learning does not
require any training data (i.e., no pre-advanced annotated examples needed).

Supervised machine learning algorithms create models which are capable
of getting an input set of features about unseen instances, to apply a group
of functions that check the similarity of those instances against previously
seen instances based on those features, and to output a classification (if the
output is binary or categorical) or estimation (if the output is a continuous
number) for the dependent variable. The model created could be a decision
tree, a probabilistic statistical model, a mathematical regression, etc.

We give an example of a supervised learning model in Figure 1.5. This
model should be the resulting output from running a learning algorithm
with some training instances. The figure shows the outcome consisting of
a decision tree where the parent (top) node has an input of a previously
unseen instance. In this toy example, we use the topic of this thesis, where we
consider input descriptions for a pair of datasets, which we call D, and D.,
in order to decide if they are related to each other or not. The input features
could include a percentage of the difference between the attribute names and
attribute values from both datasets. Each node in the tree is a decision which
takes as input one of those features and decides which branch of the tree to
take based on the condition in the node. The leaf nodes (lowest children in the
tree visualised as shaded boxes) give the output classification by the decision
tree. In this example, the output is binary: ‘0’ for not related and ‘1’ for related
datasets. For example, if more than 80% of the attributes have similar names
then they are considered to be related (as they are < 20% different), while
if they have more than 50% difference in the attribute names and more than
25% in their values, then they are considered not to be related. Decision trees
are one type of supervised models for classification, but other types exist as
discussed earlier (e.g., naive Bayes probabilistic approaches, lazy learners!'”
like k-nearest neighbour (k-NN), logistic regression for binary classification,

19They are called lazy learners because they do not create a model in advance, rather, they
check unseen instances against all previously stored examples of classified instances in a database
in order to recommend a classification based on the most similar instances found.

16

3. Techniques and Challenges

New dataset
pair
[Dy.D,]

Attribute names
difference
<20%

l—Yes

Related
(1)

Attribute names
difference
< 50%

Yes

Attribute values
difference

Attribute values
difference
<25%

liYes NO—l rYeS No—)

Related Not Related Related Not Related
(1) (0) (1) (0)

Figure 1.5: Example of a decision tree model for classification of related dataset pairs

linear regression for real-value estimation, etc.).

To create a better performing machine learning model capable of more
accurately classifying new instances, it is common to create a grouping of
independent models from multiple algorithms to create a single model com-
bining them to give a single output. The combination can be a weighted
aggregation or combination of the output from the independent models. This
is illustrated in Figure 1.6, where we give an example of a decision tree ensem-
ble consisting of multiple decision trees (from 1 to n). The output is combined
using a weighted function (with weights “W’) to give a single classification as
a final output. Common ensemble algorithms include boosting techniques
like AdaBoost [49], decision tree ensembles like RandomForest [29], etc.

One of the common pitfalls of supervised machine learning is the dilemma
of overfitting, where there is a trade-off between highly accurate models and
overfitting of those models. Overfitting has a negative connotation as it means
that the models are highly matching the exact cases in the training instances,
to the extent that even the noise in such instances (i.e., instances which are
misclassified, erroneous, exceptional, etc.) are incorporated in the models.

17

4. Thesis Objectives and Research Questions

Decision Tree 1 Decision Tree 2 Decision Tree n

Final
Classification

Figure 1.6: An ensemble of decision trees for classification

This makes such overfitted models not generalisable to other instances from
another sample not seen in the training, leading to lower performance and
accuracy when applied to them. This problem is commonly avoided by: doing
cross-validation evaluation of models and optimising the performance for
all runs of the validation process, removing noise from the input data (for
example by data cleansing), removing irrelevant or correlated features used in
the training of the models, selecting more relevant features for training, using a
bigger data sample, using a supervised learning algorithm which intrinsically
leads to less bias and variance like RandomForest ensemble learners, etc.

We aim to develop a similarity technique for dataset pairs based on a set
of meta-features we collect to describe them, and then applying supervised
machine learning algorithms (including ensemble techniques) to create accu-
rate models which can support the similarity computation task. The main
challenge is finding adequate features and a generalisable approach to handle
such similarity computations accurately and efficiently. We use supervised
machine learning techniques to compute dataset similarity in Chapters 3 and
4.

4 Thesis Objectives and Research Questions

The goal of this thesis is to implement an effective framework that can fill
the research gaps presented in the previous discussion. This includes the
following objectives:

18

4. Thesis Objectives and Research Questions

* Objective A: Formulate techniques that can efficiently and effectively
compute approximation of dataset similarity.

¢ Objective B: Develop a framework based on approximate dataset similar-
ity techniques that can support DL governance, mainly cross-dataset rela-
tionships metadata management, holistic schema matching pre-filtering
and automatic dataset categorization.

* Objective C: Validate our proposed framework in a real-world DL envi-
ronment.

For Objective A, we formulate techniques which are able to approximate
overall dataset similarity based on metadata we collect from them, including
attribute profiles. In order to compute dataset similarity, we utilise supervised
machine learning algorithms (e.g., RandomForest ensemble learners [29]).
Such algorithms are able to learn from training examples to distinguish
between different classification categories, where in this thesis we aim to
differentiate between similar and dissimilar dataset pairs based on the overlap
between their data. We propose an approach that uses those techniques
to effectively and efficiently compute such similarity using the metadata
extracted.

Then, for Objective B, we exploit the output dataset similarity computations
in specific DL governance tasks. This includes supporting the early-pruning
goal for holistic schema matching, in addition to supporting dataset topical
classification using automatic categorization techniques. The thesis defines a
framework for extracting the schema metadata from flat tabular datasets using
classical techniques, in addition to experimentation with novel techniques
that can successfully tackle extraction of cross-datasets relationships, which
include computation of attribute similarity between different datasets.

Finally, for Objective C, we validate our proposed framework and its
utilised techniques on a real-world DL called OpenML? in our experiments
[131], which has a large amount of datasets intended for analytics from
different subject areas. OpenML is a web-based data repository that allows to
upload different datasets used in DM experiments. OpenML stores datasets
in the ARFF tabular format which consists of diverse raw data loaded without
any specific integration schema. This allows us to evaluate our approach in a
real-life setting where datasets come from heterogeneous domains.

The above objectives can be translated into specific research questions as
follows:

¢ Dataset Similarity Computation

— Research Question RQ1: How can we use instance-based schema
matching techniques for computing dataset similarity?

Dhttps:/ /www.openml.org

19

https://www.openml.org

5. Thesis Overview

— Research Question RQ2: How can we use schema and data pro-
files in computing proximity between structured datasets using
supervised machine learning techniques?

* Metadata Exploitation for Governing DLs

— Research Question RQ3: How can we use proximity scores be-
tween datasets to pre-filter schema matching comparisons for early
pruning purposes?

- Research Question RQ4: How can we use proximity scores be-
tween datasets to automatically and correctly categorize datasets
into pre-existing categories of interest?

— Research Question RQ5: How can the content metadata be used to
browse the DL and to support the users in finding relevant datasets
with overlapping data?

5 Thesis Overview

In this section we present an overview of the thesis, including the proposed
proximity mining framework, the DL categorization challenge and how we
tackle it, and finally the metadata query interface.

5.1 Proximity Mining Framework

We formulate a framework that caters for the current shortcoming of a for-
malized metadata management process in the DL, with the goal of ingesting
flat tabular datasets, extracting metadata describing them, using the metadata
to find relationships, and finally categorising them in order to support gov-
ernance. This is visualised in Figure 1.7, where we see at the bottom a set of
datasets. First, we ingest them into the DL, parsing them to check that they
have no errors and extract their schema, which includes description of the
attributes found, their names and data types. All metadata extracted is stored
in a database (stored as “schema metadata”), where each dataset is annotated
with its corresponding schema description.

In the data digestion stage, we profile the datasets to extract distributions
and statistics about their attributes, which are stored as “dataset content
metadata”. Then, we apply the proposed proximity mining techniques to
extract relationships between different datasets, including similar schema (and
duplicate schema with very high similarity), and we store this as cross-schema
relationships.

20

5. Thesis Overview

,'A * ___ \

/ Metadata i

" Browse Data \ Cross-Schema F------- .):'
Relationships H

........ Lake .\ Metadata !

D ta Lak : SR Cross(li’)rofile :
y,Datalake - Matching ionshin i :
’ 'Categorization : Pre-filterigg Relationships annotation '
Digest Data *)

3] 4 < Profile —> Dataset | _______ >
ol : Proxinit] annotation Content !

: Metadat: :

Profiling : Mining A s !
1 IngestData » i

: Schema —» gchema .

Parse R Extract N annotation | oonema ... >
Dataset : Schema

| | 1
z = = D

Figure 1.7: Overview of the proposed proxmity mining framework

Metadata

(Oooo
oo
)
0000
(W]
oo
1

We define proximity mining as a data mining process for the extraction of
cross-dataset similarity using metadata-based supervised machine learning
models.

Our proposed framework integrates DM techniques in the DL for enabling
analytical discovery of cross-dataset content relationships. We introduce in
Chapters 3 and 4 a novel supervised machine learning technique for com-
puting cross-dataset similarity, which makes the basis of proximity mining.
We mainly adapt the classical techniques of DM to the new environment of
the DL and BD. This includes application of DM to discover similar dataset
profiles and related attributes between them.

Finally, the extracted metadata are exploited in the top-most stage, where
the user (commonly a data wrangler [51, 69, 128]) is able to browse the DL
for finding relevant datasets with overlapping data. In addition, they are able
to categorize the datasets ingested based on the most similar ones already
existing, and applying pre-filtering steps to prune unnecessary comparisons
of dataset pairs before running schema matching techniques. We use DM tech-
niques for the pre-filtering task in Chapter 4 and the automatic categorization
of datasets in Chapter 5.

DM techniques (especially, supervised machine learning) are utilised in
the thesis to extract useful metadata about the content of the datasets and

21

5. Thesis Overview

metadata about the relationships between them. This includes data profiles
and relevant information for the data scientist. Therefore, this thesis uses the
contributions of the DM field and applies it in the data management context
to achieve our thesis objectives. Examples of such application of DM include:

¢ Using supervised machine learning DM techniques to compute proxim-
ities between datasets and to detect patterns in their metadata for the
schema matching process.

* Using nearest-neighbour techniques with the metadata to automatically
find topical categories of datasets in the DL.

¢ Finding outliers which constitute abnormal data content which is not
related to other datasets in the DL.

We model our approach as a 3-stages framework where each higher stage
does less data analysis and gives more concise (summarised) information.
The lowest ingestion stage has to scan the complete raw dataset files to check
their correctness and extract their schema, the digestion stage only has to scan
attributes to extract data profiles and proximity metrics, and finally the highest
stage of exploitation only scans metadata without going through the raw data
inside each dataset.

The proposed framework can be applied in the context of Bl inside large
business organizations with huge amounts of data or in the context of gov-
ernment administrations requiring a coherent framework of DL governance.
Our framework also helps the data consumers understand the information
owned in the DL in a quick and easy fashion. As a result, organizations can
discover new analytical opportunities for BI and improve the time-to-value of
analysing the DL.

B & h
gz go1 cr B o)
a Samp e the datasets'
c £ Sdégg'zef{sm instances for profiling
& Analyse DL
£
o
o
o
c
s
: v
]
& I RS RS oG
< o8 D\G01 & & DIG02 (Ch4) D\GO3 (Cha) DIGO4 (Ch2/3/4)
b .EDS Profile the(data)sets Profile the attributes Find top matching Compute dataset-level
s [a] u inside the datasets attributes proximity
o0
c
£ |
2 I
2
£
I =
£ 58 $ExPO1 (Ch3) EXP02 (Ch4) # Expo3 (Chs)) EXPO4 (Ch6)
ac Find duplicate and Filter the dataset pairs to Categorize datasets Browse DL proximit
35 k] related schema in be compared using using proximity 5 ph Y
s datatsets proximity mining mining output E3R) Datasets annotated

Figure 1.8: The proximity mining metadata management process

22

5. Thesis Overview

In order to implement the proposed proximity mining framework in
Figure 1.7, we instantiate it using prototypical implementations which use the
techniques described earlier in this chapter (Section 3). This is visualised in
Figure 1.8 as a BPMN process where each activity starts with an identifier
for the activity (e.g., INGO01’), followed by the chapter number(s) where the
component is described in parentheses, and a description. The process is
organised into the three stages from Figure 1.7. In ingestion, the schema is
extracted in INGO1 and a random sample of the instances is collected in ING02
for passing it to the next level of digesting the data.

Digestion starts with the dataset content metadata extraction using data
profiling techniques. The datasets are profiled in DIG01 based on the sam-
pled instances from the previous activity. In DIG01, we compute high-level
summary statistics that describe the whole dataset. In DIG02, we compute
finer-grained statistics about each individual attribute inside the datasets.

Then, we compute the cross-schema relationships metadata by matching
attributes between different datasets, where their data profiles (and their
attributes) are compared in DIG03 in order to find related attributes with
similar data profiles and mapping each attribute to its top matching attribute
from the other datasets. The output from this activity is fed to the proximity
mining models in DIG04 in order to compute overall dataset-level similarity
scores.

Once the datasets are profiled and cross-schema relationships are com-
puted, the metadata generated are stored in a repository and are utilised for
different tasks and applications. In EXP01, dataset pairs with high proximity
scores are marked as related schema if they exceed a specific similarity thresh-
old, or duplicated schema if the dataset pair is highly similar. Based on the
output from EXP01, we aim in activity EXP02 to support the early-pruning
task for holistic schema matching by pre-filtering dissimilar dataset pairs with
a low similarity score from any further comparisons. We also aim in EXP03 to
categorize datasets with unknown topics into a recommended topic grouping
based on the most similar datasets found in the DL. Finally, in EXP04, all the
metadata collected are provided to the DL user in order to browse the datasets
in the DL by topics or by finding dataset pairs with highly similar schemata
(possible overlapping data). This can be presented as a proximity graph where
nodes represent datasets and edges represent the proximity scores between
those datasets. We describe how we present the proximity graph and the
output of exploitation in the following sub-sections.

5.2 DL Categorization

One of the tasks of DL Governance is effective data categorization. This means
finding the subject areas in the datasets and classifying them accordingly. This
supports data discovery which includes finding related datasets [10, 95] that

23

5. Thesis Overview

can be analysed together, duplicate datasets for data quality checks [56], and
outlier datasets [74].

; Topi
Topic 1 ogzgo:? =
1~8=0-90 s=0.15_—185 000/ N\s=0.27
s=0.1 s=0.29(3 5=0.96
20 15)5-0.73 L
5=0.82
2 & s=0.19 19
s=0.33 s$=0.99
$=0.29

Figure 1.9: A proximity graph showing topic-wise groupings of interlinked datasets in the DL
with their similarity scores

We seek to detect topic-wise categories of datasets in the DL describing
similar real-life subject areas and business domains. This includes groupings
of highly related datasets with similar data components stored inside them,
as depicted in the proximity graph in Figure 1.9. Here we show groupings of
datasets into topic-wise clusters. Each numbered node is a dataset and the
edges connecting them show a similarity score, where 1 means most similar
and 0 means most dissimilar. The goal is to be able to maintain such groupings
over the DL, where each topical cluster consists of interlinked datasets that
are similar to each other.

We tackle this challenge by first extracting metadata describing the content
of the datasets in the DL in order to implement this categorization. We use
the relationships detected between pairs of datasets to find their proximity
(similarities). Then, we use a measure of proximity between datasets using
those detected relationships within the categorization algorithm, and finally
we allocate datasets to the topics existing in the DL based on their most similar
cluster found in the DL or indicating that a dataset is an outlier that does not
belong to any such topic if no highly similar datasets are found [10, 105].

We allocate Chapter 5 to discuss the concept of automatic dataset catego-
rization into pre-existing topics-of-interest where we are able to group datasets
containing data about the same topic into the same grouping. This is a first
step toward fully automatic dataset categorisation for governing diverse DLs.

24

6. Thesis Contributions

5.3 Metadata Query Interface

= —_—
Data Lake Content Schema
Ingested Profile DB

Datasets DB

1
G Annotate the datasets with
metadata

& 2 (@ 2
User analysis of output <——— Executing dgta mining and |_
metadata and relationships schema matching algorithms to

compute dataset similarity

0/

Q
2]

Cross-Profile
Relationships

Figure 1.10: DL content metadata management and analysis process

Our ultimate goal is to be able to store all content metadata and cross-
dataset relationships extracted within our framework in a common repository
which could be queried by data scientists to find relevant data in the DL.
This can be seen in the process visualised in Figure 1.10. It is a 3-steps
process, where first the datasets ingested in the DL are annotated with their
schema metadata and content profiles (output statistics about datasets and
their attributes using data profiling). This is stored in metadata DBs. Then,
these metadata are consumed by the proximity mining (see Section 5.1) and
schema matching techniques (see Section 3.1) in order to compute dataset
similarity between pairs and to store relationships between them in a cross-
profile relationships repository. Finally, the output metadata and cross-profile
relationships are presented to the user in a queryable GUI. We demonstrate
this process in Chapter 6.

6 Thesis Contributions

This thesis covers different techniques to collect useful metadata about the
content of the DL, which supports in better understanding the datasets stored

25

6. Thesis Contributions

and their relationships, including automatic algorithms for that collection. The
research undertaken is expected to contribute to multiple fields, but mainly to
the data management community. The outcome directly contributes to data
management by creating new knowledge about managing metadata, which in-
cludes techniques to efficiently and effectively gather them to support holistic
schema matching, information discovery and information summarisation.

Thus, the thesis formalises the DL metadata management process for
governance purposes, experimenting with some schema matching techniques
for detecting relationships, and using DM techniques to compute proximity
between pairs of datasets. This includes reviewing the different techniques
previously utilised in the research literature and adapting/improving those
techniques in a holistic process to answer the research questions in Section
4. In addition, we experiment with the data ingestion process of metadata
extraction, which allows for the utilisation of schema matching and ontology
alignment techniques, like those in [126], to successfully compute similarity
and cross-schema relationships between datasets. A novel DM-based approach
to compute data profile similarity to find duplicates and relationships is also
evaluated for the early-pruning step of holistic schema matching, making
some new development and advancement for this topic.

For information discovery, the techniques proposed help discover data
profiles and relationships between datasets to support identification of do-
mains within the DL and identification of related datasets. As for information
summarisation, the techniques investigated support producing statistical sum-
maries and patterns from the data which efficiently describe their content.
Finally, data schemas are extracted to maintain knowledge about dataset
structures and how they can be used together to improve data utilisation.
In addition, the output metadata are managed to enhance integration and
querying for analytical discovery, which helps in the utility of the DL.

We implement and experiment with new proximity mining techniques
(we describe them in Section 5.1) and prove their capabilities in accurately
and efficiently computing similarities between heterogeneous schemata. We
propose generic techniques that do not assume any specific topic or business
domains, and improve the performance of the schema matching pre-filtering
task, outperforming the state-of-the-art instance-based schema matching tech-
niques. In our proposed techniques, we use metadata-based approximation
when matching datasets and their attributes instead of the current state-of-the-
art involving exact-value string-matching techniques. This helps in finding
related attributes and datasets where the data are coded or named differently
between datasets. Thus, we handle the shortcomings of current techniques
for dataset similarity computation (see Section 3.2) by developing a proximity
mining based approach in Chapters 3 and 4 which achieves the following:

e Extract automatic metadata about the data content stored in datasets at

26

7. Structure of the Thesis

the attribute- and dataset- levels.

* Propose similarity approximation techniques which do not depend on
exact value matching and name based string-matching only.

* Propose generic approaches which do not assume the existence of any
specific attribute value formats, conversion rules, topic domains, or
the existence of pre-defined metadata describing the datasets and their
attributes like ontology mappings.

This thesis examines multiple directions of research in data management,
where the main contributions include answering the RQs in Section 4 as
follows:

1. [RQ1] Develop an approach for dataset similarity computation using
instance-level schema matching between datasets.

2. [RQ2] Formulate a supervised machine learning technique to find prox-
imity between heterogeneous datasets covering diverse topics.

3. [RQ2] Develop an approximate metadata-based schema matching ap-
proach where the goal is not to depend solely on syntactic string-based
matching but also on data profiles.

4. [RQ3] Experiment with techniques for schema matching early-pruning
and introduce the concept of pre-filtering using proximity mining.

5. [RQ3, RQ4] Propose a framework that utilises proximity mining in DL
governance, mainly for dataset categorisation and schema matching
pre-filtering.

6. [RQ5] Develop a GUI to query and use the output from our work to
help in discovering the datasets stored in the DL and their relationships.

7 Structure of the Thesis

We aim to conduct the following tasks: (i) Framework conceptualisation and
formalisation for the holistic proximity mining and metadata management in
the DL, (ii) Prototyping with instance-based techniques for matching datasets,
(iii) Implementing efficient and effective proximity mining techniques for
early-pruning within holistic schema matching, (iv) Efficient pre-filtering
schema matching implementation, and (v) Effective categorization techniques
for segmenting the DL.
The thesis is organised as follows:

27

7. Structure of the Thesis

7.1 Chapter 2: Instance-level value-based schema matching
for mining proximity between datasets

This chapter focuses on Objectives A and C and tackles Research Question
RQ1. The goal is to apply instance-level value-based schema matching tech-
niques to find related attributes between datasets and to compute overall
dataset-level similarity. This includes the implementation of dataset similarity
computation based on probabilistic value-based string matching techniques
[126]. The computed relationships are aggregated to give overall dataset-
level proximity scores between datasets. We experiment with different string
matching techniques and different instance sampling sizes, where we test our
proposed approach on a sample from a real-world DL to prove its effectiveness.
The experiment includes comparison of performance of our proposed auto-
mated approach against human-based analysis, where our approach was able
to achieve a better performance when compared to humans. The approach
was found to be effective as a first step towards fully automated metadata
collection and management framework fro DLs. However, some shortcomings
were found, including the expensive computations required for the schema
matching task which need to improve by using a more efficient approach.
This is achieved in Chapters 3 and 4 using higher-level approximate schema
matching pre-filtering techniques.

The chapter incorporates the tasks ING01, ING02, DIG03 and DIG04 from
Figure 1.8. As this approach handles the raw dataset and does not use any
content-based metadata, it does not need to implement tasks DIG01-02.

7.2 Chapter 3: Dataset-level content metadata based proxim-
ity mining
This chapter focuses on Objectives A and C and tackles research question
RQ2. We introduce the concept of proximity mining where we collect high-level,
overall dataset content metadata using data profiling techniques, and we use
these metadata in supervised machine learning techniques for computing
cross-dataset proximity (similarities) and duplicate schemata. We experiment
our proposed techniques on a real-world DL, where we are able to detect

related and duplicated datasets using high recall rates and efficiency gains.
This includes tasks DIG01, DIG04 and EXP01 from Figure 1.8.

7.3 Chapter 4: Attribute-level content metadata based prox-
imity mining for pre-filtering schema matching

This chapter focuses on Objectives A, B, and C and tackles research question
RQ3. We aim to improve the proximity mining techniques from Chapter 3
by computing finer-granularity proximity scores between attributes and then

28

7. Structure of the Thesis

computing overall dataset-level proximities by aggregating the individual
proximity scores between the top-matching attributes for a dataset pair. We
demonstrate an application of our proposed techniques by pre-filtering schema
matching comparisons effectively and efficiently. Here, we are able to filter
irrelevant dataset pairs with a low proximity score from further detailed
value-based schema matching at the instance-level. We compare our approach
against the state-of-the-art instance-based matching techniques and prove that
our proposed approach is more efficient and effective in detecting related
datasets. This supports the goal of early-pruning, where we reduce the
amount of comparisons for schema matching. This includes tasks DIG02,
DIGO03, DIG04 and EXP02 from Figure 1.8.

7.4 Chapter 5: Automatic categorization of datasets using prox-
imity mining
This chapter focuses on Objectives B and C and tackles research question
RQ4. The goal is to identify a category of a dataset based on the most similar
datasets already existing inside the DL. We devise a k-nearest-neighbour
based approach to handle this task, where we find the top-k most similar
datasets depending on the extracted cross-dataset relationships metadata
and we allocate the most common category among those datasets as the
appropriate category. We experiment using a real-world DL sample and find

that our approach is highly effective in terms of recall and precision. This
includes task EXP03 from Figure 1.8.

7.5 Chapter 6: Prox-mine tool for browsing DLs using prox-
imity mining

This chapter focuses on Objective C and tackles research question RQ5. Here,
we integrate the different components and techniques of our approach into
a single prototype to demonstrate the value of proximity mining techniques
in a real-world setting. We implement a prototype that can handle dataset
ingestion, digestion and metadata exploitation for browsing the DL. This
includes tasks EXP04 from Figure 1.8, in order to support the DL user in the
following tasks:

* Find related and duplicated datasets.

¢ Identify the category of a new dataset based on the most similar datasets
existing in the DL.

* Identify the top-matching attribute candidates between a dataset pair
for detailed schema matching.

29

7. Structure of the Thesis

* Browse the DL based on a proximity graph visualisation that shows
the relationships between datasets inside the DL using their computed
proximity scores.

30

Chapter 2

Instance-level value-based
schema matching for
computing dataset similarity

Everything starts as an experimental prototype under
development, then it keeps changing, learning, evolving, and
adapting over time. Everything that gets measured eventually
gets managed. One never stops learning!

This chapter has been published as a paper in the proceedings of the 16th
International Conference on Data Mining Workshops (ICDMW) (2016) [15].
The layout of the paper has been revised
DOI: https://doi.org/10.1109/ICDMW.2016.0033

IEEE copyright / credit notice:

© 2016 IEEE. Reprinted with permission from Ayman Alserafi, Alberto Abelld,
Oscar Romero, Toon Calders. Towards Information Profiling: Data Lake
Content Metadata Management, ICDM workshops, 2016.

31

Abstract

There is currently a burst of Big Data (BD) processed and stored in huge raw data
repositories, commonly called Data Lakes (DL). These BD require new techniques
of data integration and schema alignment in order to make the data usable by its
consumers and to discover the relationships linking their content. This can be provided
by metadata services which discover and describe their content. However, there is
currently a lack of a systematic approach for such kind of metadata discovery and
management. Thus, we propose a framework for the profiling of informational content
stored in the DL, which we call information profiling. The profiles are stored as meta-
data to support data analysis. We formally define a metadata management process
which identifies the key activities required to effectively handle this. We demonstrate
the alternative techniques and performance of our process using a prototype imple-
mentation handling a real-life case-study from the OpenML DL, which showcases the
value and feasibility of our approach.

32

1. Introduction

1 Introduction

There is currently a huge growth in the amount, variety, and velocity of data
ingested in analytical data repositories. Such data are commonly called Big
Data (BD). Data repositories storing such BD in their original raw-format are
commonly called Data Lakes (DL) [128]. DL are characterised by having a
large amount of data covering different subjects, which need to be analysed by
non-experts in IT commonly called data enthusiasts [91]. To support the data
enthusiast in analysing the data in the DL, there must be a data governance
process which describes the content using metadata. Such process should
describe the informational content of the data ingested using the least intrusive
techniques. The metadata can then be exploited by the data enthusiast to
discover relationships between datasets, duplicated data, and outliers which
have no other datasets related to them.

In this chapter, we investigate the appropriate process and techniques
required to manage the metadata about the informational content of the DL.
We specifically focus on addressing the challenges of variety and variability of
BD ingested in the DL. The metadata discovered supports data consumers in
finding the required data in the large amounts of information stored inside
the DL for analytical purposes [132]. Currently, information discovery to
identify, locate, integrate and reengineer data consumes 70% of time spent
in data analytics project [128], which clearly needs to be decreased. To
handle this challenge, this chapter proposes (i) a systematic process for the
schema annotation of data ingested in the DL and (ii) the systematic extraction,
management and exploitation of metadata about the datasets’ content and their
relationship by means of existing schema matching and ontology alignment
techniques [13, 24, 126].

The proposed process allows for the automation of data governance tasks
for the DL. To our knowledge, the proposed framework is the first holistic
approach which integrates automated techniques for supporting analytical
discovery of cross-DL content relationships, which we call information profiles as
explained below. This should cater for the current shortcoming of a formalized
metadata management process to prevent the DL from becoming a data swamp;
that is a DL that is not well governed and can not maintain appropriate
data quality. Data swamps store data without metadata describing them,
decreasing their utility [13].

Information Profiling. Traditional schema extraction and data profiling
involves analysing raw data for detecting structural patterns and statistical
distributions [98]. There is currently a need for higher-level profiling which
involves analysing information about the approximate schema & instances
relationships between different datasets instead of just single datasets [58],

33

1. Introduction

which we specifically define as Information Profiling. This involves the
analysis of metadata and schema [58, 116] extracted from the raw data
using ontology alignment techniques [24, 126]. Such techniques exploit 1.
schema metadata and 2. data profile metadata to match different attributes
from different datasets, generating the information profile. A schema
profile describes the schema of datasets, e.g. how many attributes, their
data types, and the names of the attributes [1]. The data profiles considered
describe the values of the dataset, i.e. the single-attribute statistics of values
[98]. Information profiles, the 3" type of content metadata, exploits the
patterns from data profiles and data schemas [132]. For example, annotating
attributes which can be linked based on approximate similarity of data
distributions and data types.

Content Metadata. Content metadata is the representation of all types
of profiles in the DL. Of our interest is augmenting metadata describing
the informational content of datasets as first-class citizens, in order to
support exploratory navigation of the DL. This involves representing the
schema and profiles of data ingested in semantic-enabled standards like
RDF (https:/ /www.w3.org/RDF), which is a recommendation of the W3C
for representing metadata. It is important to have metadata in semantically-
enabled formats, because it supports information profiling using schema
matching and ontology alignment techniques like [24, 126].

Contributions. The main contribution here is an end-to-end content metadata
management process which provides a systematic approach for data governance.
We identify the key tasks and activities for content metadata management
in the DL for alignment purposes [76]. We focus on detecting three types of
relationships: duplicate datasets, related datasets (i.e. “joinable" data attributes
between datasets), and outlier datasets. This includes (i) identification of
what content metadata must be collected for detecting relationships between
datasets. In addition, (ii) identification of methods to collect such metadata to
annotate the datasets. Finally, (iii) we prove the feasibility of our approach
using a prototype applied to a real-life case-study. With the challenge of new
formats of raw data flowing inside the DL and the high variability of such
data, the answer to these challenges is non-trivial. Difficulties here include
effective techniques for sampling the data to improve efficiency, applying
the right matching techniques and efficiently using them for convergence.
We propose a framework catering for those challenges which considers the
schema, data, and information profile metadata managed.

34

2. Related Work

For the remainder of the chapter: we review related work in Section 2;
we demonstrate our approach using a motivational case-study in Section 3;
we propose a framework & process for managing such metadata in Section
4; we showcase a prototype implementing our approach in Section 5; we
follow with results from experimenting with the prototype on the DL from
the motivational example in Section 6; and we conclude the chapter with a
discussion of the metadata management approach and recommendations for
future research in Sections 7 and 8.

2 Related Work

There is currently missing a holistic approach of informational content meta-
data management to support the data enthusiast [128, 91]. The DL also
needs to have accompanying metadata to prevent it from becoming a data
swamp [13]. Currently, data profiling and annotation is of great importance
for research in DL architectures and is currently a hot topic for research
[132, 105, 92]. Some techniques and approaches were previously investigated,
but are mainly focused on relational content metadata [98, 1], free-text meta-
data [92], or data provenance metadata [128, 65]. Most of the current research
efforts are suggesting the need for a governed metadata management process
for integrating different varieties of BD [58, 92, 30]. This is currently handled
by manual inspection of the data in the DL which consumes a lot of time and
results in a big analytical latency [30]. Our proposed framework handles this
metadata using automatic techniques.

Many research efforts are targeting extraction of schema and content metadata.
Those provide an overview of techniques, algorithms and approaches to
extract schemas, matching schemas, and finding patterns in the data content
of data files [92, 130]. There is also research to detect cross-data relationships
which aim at detecting similar data files with similar informational concepts
[30, 90].

Ontology alignment and schema matching techniques which are based
on finding similarity between data schemas and instances of data can also
be utilised to integrate datasets [24]. This can be achieved by extracting
the schema and ontology from the data and then applying the matching
techniques [130].

The current shortcoming of research about managing metadata in the DL is
that the available techniques are not formally defined as a systematic process
for data governance, it is still applicable only to relational data warehouses,
and does not handle the automatic annotation of informational content of
datasets in the DL. We cover this gap by proposing an automatic content
metadata management process. The ontology alignment techniques were also
classically applied to discover similarity between two large ontologies [126],

35

3. Motivational Case-Study

Table 2.1: Description of OpenML datasets

Domain Datasets IDs Datasets

Vehicles 21,455,967,1092 car,cars,cars,Crash

Business 223,549,841 Stock,strikes,stock

Sports 214 baskball

Health 13,15,37 breast-cancer,breast-w,diabetes
Others 48,50,61,969 tae,tic-tac-toe,Iris,Iris

but have not been sufficiently applied before to duplicate detection, outlier
detection and cross-datasets relationships extraction on multiple discrete
datasets.

3 Motivational Case-Study

In order to demonstrate the feasibility and value of our systematic approach for
content metadata discovery, we implement a prototype called Content Metadata
for Data Lakes (CM4DL). This prototype is tested with a real-life example of a
DL called OpenML!. OpenML is a web-based data repository which allows
data scientists to contribute different datasets which can be used in data
mining experiments [131]. The OpenML platform supports loading different
types of data which are stored in the WEKA? format (i.e. ARFF). OpenML
stores datasets which represent diverse data domains, and can be considered a
DL because it involves raw data loaded without a specific integration schema
and which represent diverse subject-areas intended for analytics. A subset of
this DL involving 15 datasets categorized into 5 subject-areas were used in
our experiments and can be seen in Table 2.1 (it uses the OpenML dataset-ID,
which can be used for retrieving the data using the OpenML API®. The dataset
names from OpenML are given in the last column).

OpenML provides pre-computed data profiles for each dataset as JSON
files (retrievable by the API too), which we have parsed in our prototype and
used to compare the datasets with each other. This includes the statistical
distribution of numerical attributes and the value frequency distribution of
nominal attributes [131]. The datasets will be used in our experiments as
input datasets. They will be automatically annotated to describe their content
(attributes and instances). Each dataset consists of a number of attributes for
each instance. Each instance of a dataset shares the same attributes.

http:/ /www.openml.org
2http: //www.cs.waikato.ac.nz/ml/weka
Shttp:/ /www.openml.org/guide

36

4. A Framework for Content Metadata Management

x = [d(d —1)/2] * m? (2.1)

The number of attributes is 10 per dataset on average. In order to compare
all attributes together from those datasets, there needs to be about 10500
comparisons according to Equation 2.1. This approximates the number of
comparisons x in terms of d number of datasets and m number of attributes,
not comparing a dataset to itself or to other datasets twice. This is very
difficult for a human to achieve and will require a huge effort (as will be
described in the experiments in Section 6). Therefore, it is important to
have an automatic process which is capable of efficiently executing those
comparisons and capturing the important informational relationships between
the datasets. Challenges which arise include efficiently handling the large
varieties of datasets in OpenML. The automated process handling this is
described in the next Section.

4 A Framework for Content Metadata Management

In this section, we propose a framework for the automatic management of
metadata about the DL. The goal is a cross-datasets relationships aware DL
which can be navigated easily. This framework integrates the different schema
matching and ontology alignment techniques for the purpose of information
profiling. Metadata annotation can be efficient and does not heavily affect
processing times of datasets in the DL as shown in related experiments like
[92, 65] and in our experiments in Section 6.

Yo INGO1 INGOZ *‘ £0% INGO3
L+ Parse the Extract |
EDD provenance ingested schema from :
o |[= metadata dataset dataset H
£ New dataset H
=y .
=
e 1
L
=72 /-
£ *. Y
S8 |%%DIG0T % DpiGo2 DIGO3 —
0l Profile the Sample the data Executemformatlon o3
c EOD data & for information rofiling algorithms Metadata
g |0 schema profiling P galg Reposito
T H
Ed
©
-]
S
1] ©
P I E O P SRR
o35 EXPO1
[N Analyze relationships
N o between datasets Dataset tated
s = ataset annotate

Figure 2.1: The Metadata Management BPMN Process Model

37

4. A Framework for Content Metadata Management

Dataset
Profiles Metadata

EXP01-3

Annotate

|

|

| .

i : Y SeR dataset as
i . EXPO1-1 EXPO1—2 outlier
a Analyze if related Analyze if

|

|

|

datasets with similar dataset is an
. metadata profiles exist] outlier

i EECEERPPEERPPPPPEPPRES: EXPO1-4

| Annotate cross-profile
. relationships with other
| matching profiles

Cross-Profile
Metadata

Figure 2.2: The EXP01 Metadata Exploitation Sub-Process Model

The framework involves 3 main phases. The first phase is data ingestion
which includes discovering the new data by its provenance metadata, parsing
the data, extracting the schemas from the data (similar to [130]), and storing
the data in the DL with its annotated schema metadata. The second phase is
data digestion which means analysing the data flowing to the DL to discover
informational concepts and data features. This phase includes data profiling,
schema profiling and ontology alignment to extract information profiles (i.e.
extraction of all content metadata artefacts). The datasets are annotated with
their profiles in the metadata repository. The third phase includes metadata
exploitation like discovering relationships between datasets. This involves in-
formation profiling which exploits the content metadata from the data digestion
process to detect and annotate the relationships of a dataset with other related
datasets which can be analysed together [132]. Those are called cross-dataset
relationship metadata.

The framework is implemented by a structured metadata management
process, which can be seen in Figure 2.1. This facilitates systematically col-
lecting and maintaining the metadata throughout the lifetime of the DL. To
define the activities for this framework, we present a BPMN process model.
Each activity in the BPMN model is described below by the technique along
with its computational complexity, and description of what is achieved.

Start & data ingestion. The dataset annotation process starts when a signal
arrives to the metadata engine, indicating that a new dataset is uploaded
to the DL. In INGO01, the dataset is located using its provenance metadata
in O(1) time. Then it is parsed in INGO02 to verify its structural correctness
in O(n) time, where 1 is number of instances. The dataset is then analysed
in activity INGO3 to extract and annotate the schema semantics in O(m)
time, where m is the number of attributes. This is done using RDF ontology

38

5. The CM4DL Prototype

extraction techniques like in [130]. The generated metadata are stored in a
semantic-aware metadata repository (i.e. RDF Triplestore?).
Data digestion. The dataset is then digested to extract the content metadata.
This starts by DIGO1 which creates the data profile and schema profile using
simple statistical techniques and profiling algorithms similar to [98]. This is
done in O(n) time. The following activity DIG02 samples the data instances
to improve the efficiency of the information profiling algorithms in the next
activity, which is completed in O(1) time. In DIG03, the dataset and its profiles
are compared to other datasets and their profiles using ontology alignment
techniques, which requires O(m?) in worst case scenario [76]. We propose
an algorithm to reduce this complexity in Section 5. There should be certain
cut-off thresholds of schema similarity (like [92, 130, 90]) and data profile
similarity [105] to indicate whether to align two datasets together, in order to
decrease the number of comparisons made in this activity. Ontology alignment
is used to extract metadata about the relationships with other datasets. The
existing alignment techniques we utilize first hash and index the values from
the data instances like [124], then use an alignment algorithm like [126] to
match the attributes from the datasets. The dataset is analysed to extract its
information profile and then goes to the exploitation phase of the framework.
Metadata exploitation. This starts in the EXP01 subprocess which detects
relationships with other datasets using the content metadata stored in the
Metadata Repository. This can be seen in Figure 2.2. This includes EXP01-1
which checks if similar attributes in other datasets exist by comparing the
similarity stored between datasets’ attributes against a specific threshold.
If the similarity of attributes exceeds the threshold then related datasets
exists, and the flow follows with EXP01-4 which annotates the cross-profile
relationships and stores this as the Cross-Profile Metadata. We also discover
duplicate datasets in EXP01-4. Those are datasets with the same profiles
including the same schema structure, with the same number of attributes, and
similar data profile (i.e. overlapping value frequency distributions). Otherwise,
if there is no related datasets detected in EXP01-1, the dataset is checked in
EXP01-2 to see whether it is an outlier [1]. The dataset is an outlier if it has no
matching attributes with other datasets found in the metadata repository, and
is annotated as an outlier in EXP01-3.

The remainder of this chapter discusses an instantiation of this process
and experimental results from its implementation.

5 The CM4DL Prototype

In order to instantiate the BPMN model in Figures 2.1 & 2.2 and to prove its
feasibility, we implement a prototype called Content Metadata For Data Lakes

4https: / /www.w3.org/wiki/LargeTripleStores

39

5. The CM4DL Prototype

Data Lake DatasetsH Data Ingestion Engine H Content Metadata Middleware ‘ ‘ Ontology Alignment Engine
Java Data Deliver /
Parser sample 4%
Deliver = ontology d Ha.
" parsed chema for profiling <!
Ingest dataset files» data - 4 Extractor | 8
ARFF to CSV 2l RDF-based Ontology
Parser . Alignment Engine
Jena Deliver cross-
— RDF Engine dataset
= — oeee > relationshi|
" - @ : metadata
OpenML :)
AR'iF 'i'les OpenML ,2::2’::; Dataset k/leta?atta g Legend
JSON Metadata gata profile| | Schema AMMOWAON | o o gy
: Ontology. | |------ » Metadata Flow
@Java-based component
JSON -
x
Parser 'TDB RDF Store 403 3rd-party tools and APIs

Figure 2.3: CM4DL System Architecture

(CM4DL in short). The prototype consists of multiple components and the
system architecture can be seen in Figure 2.3. The prototype is based on a
Java implementation. Tools and APIs which are developed by 3rd-parties, but
which are utilised are shown using a different symbol as seen in the legend.

5.1 Prototype Architecture

The prototype consists of three main layers, in addition to the DL dataset
files. The DL files containing the datasets are first read along with their
accompanying JSON metadata from OpenML (using the OpenML Java-based
API library). This retrieves the ARFF datasets and JSON metadata objects
from the OpenML library and stores it on the local server machine. In the
data ingestion engine layer, a Java data parser component is utilised. The
data parser reads the ARFF files using the WEKA Java API and converts the
datasets to CSV files. This conversion is based on mapping the ARFF attributes
to CSV columns. The parser utilises the JSON metadata files provided by the
OpenML API which describe each attribute and its data-type. This provides
us with pre-computed data-profiles describing the dataset and each attribute
in the dataset. For numeric attributes, the metadata includes min, max, mean,
and standard deviation. For nominal and string attributes, it provides the full
frequency distribution of values.

The next layer is the main component for content metadata management,
which is called Content Metadata Middleware. It is responsible for first
converting the datasets from OpenML to RDF schemas. This is done using the
schema extractor which loads the CSV files into a Jena TDB RDF triplestore.

40

5. The CM4DL Prototype

Those files are sampled for a specific number of instances, and are then
parsed using the Jena RDF library for Java®. The output leads to a mapping
of each ingested dataset with an RDF N-triple ontology representing the
schema and its sampled instances. Each dataset is represented as an RDF
class and each attribute as an RDF property. Finally, a metadata annotator uses
the generated ontology mappings to discover relationships between datasets
consisting of similar attributes. This matching task is done using the ontology
alignment engine in the last layer which detects schema- and instance- based
relationships between datasets, and returns them to the metadata annotator
to be stored in the Metadata Repository.

Each component in the system architecture of the prototype implements
and automates activities from the BPMN process in Figure. 2.1. The Java
Data Parser handles the activities ING01 and ING02. The schema extractor in
the middleware layer handles activity ING03. The data and schema profile
is ingested in the OpenML JSON metadata and JSON parser which provide
the profile metadata for the middleware. The metadata annotator in the
middleware is able to exploit this profile metadata and the schema metadata to
detect duplicates using profile querying and ontology alignment respectively.
This handles activity DIG03. To detect relationships between datasets, EXP01
is implemented in the ontology alignment layer to detect related datasets
and their related attributes by analysing the information profiles extracted in
DIGO03.

5.2 Ontology Alignment Component

In the CM4DL prototype, we utilize the existing ontology alignment engines
to facilitate our approach. The field of ontology alignment is very developed
and to understand the basic techniques of such tools you can refer to the
following references: [24, 126, 124]. In order to select an appropriate tool for
our task, we evaluated the research literature for a tool which supports the
following:

* Schema- and instance- based ontology alignment: the tool needs to analyse
both the schema (attribute types and dependencies) and the instances (values
for the attribute) to check for similarity. [24] compares such techniques.

¢ Indexing and hashing techniques (like the MinHash algorithm [124]): this
is essential to speed-up the comparison of the datasets and to make this
more efficient.

¢ Different techniques of instance-based similarity: the tool should imple-
ment different techniques for comparing values of instances like different

Shttps:/ /jena.apache.org

41

5. The CM4DL Prototype

string-comparison techniques (e.g., normalised identities [126], shingling-
MinHash distances [124], etc.). The different similarity comparison tech-
niques can yield different effectiveness with different types of data. Therefore,
it is important to study different comparison techniques for effectiveness and
efficiency in our task.

Open-source Java API: the tool must expose an open-source API which is
integrable within our developed prototype.

From the short-listed tools, according to the above criteria, we identified
COMA++ [24] and PARIS probabilistic ontology alignment [126] as possible
candidates. We selected PARIS because of its simplicity in integration with
a Java-based API and being cited for having high effectiveness with large-
scale ontology alignment when compared against other tools and benchmarks
(see [76]). PARIS aligns ontologies [126] by finding RDF subclasses which in
our case indicates the similarity of datasets, and RDF subproperties indicating
similarity of attributes in the datasets. Similarity is given as a percentage;
higher values means more similar.

The ontology alignment tool is capable of reading two ontologies and
detecting the degree of similarity between the two ontologies based on the
schema and instances in the ontology [126]. The ontology must be defined
in N-Triples® RDF representation. The metadata annotator component can
send any two datasets in N-Triples format and then the tool will return the
similarity of classes (i.e. datasets) from both ontologies (coefficient between
0 and 1) along with similarity between both datasets attributes (modelled as
RDF properties). The similarity is based on comparing instances (modelled as
RDF concepts) using string matching techniques. In PARIS [126], there are two
techniques provided, which we have used in our prototype: the identity-based
exact match [126] and the shingling-based MinHash approximate matching
[124]. For the identity-based approach the attribute values are normalized by
removing punctuation marks and converting the characters to lower-case. The
normalized text are then compared for exact matches. This works best for
numeric attributes with exact values. The shingling-based approach compares
n-grams of text (i.e. specific number of character sequences) and is better
suited for approximate matching of strings.

Relationships detected in this layer include examples like those in Table
2.2 which are based on the OpenML datasets used in the experiments. The
table compares attributes from two datasets by showing their relationship.
Each dataset is described by its OpenML ID and dataset name. The attribute
name from each dataset is then given. Finally a relationship is listed as either:
related, duplicate, or outlier. The relationship related is used to identify similar
attributes which can be used to “link" the datasets together. The relationships

Ohttps:/ /www.w3.org/TR/n-triples

42

5. The CM4DL Prototype

Table 2.2: Example Cross-dataset Relationships

No. | Dataset 1 Dataset 2 Attribute 1 | Attribute 2 | Relationship
1 37 (diabetes) | 214 (baskball) | age age related

2 455 (cars) 549 (strikes) model.year | year related

3 455 (cars) 967 (cars) all all duplicate

4 455 (cars) 1092 (Crash) | name model related

5 455 (cars) 1092 (Crash) | weight Wt related

7 50 (tic-tac-toe) | N/A all N/A outlier

are identified by analysing the similarity of the actual value distribution of the
attributes as exhibited by the instances of data in the dataset [126]. Related
attributes should have an overlapping distribution of values which can be
used to link the attributes together. The ontology alignment algorithms should
be capable to detect that attributes like those in relationships no. 2, 4, and
5 are related. Although the attributes have different names in the schema,
their values are overlapping and hold similar character- or numeric- values.
Therefore, it is important to use ontology alignment which is instance-based
to detect such relationships.

In addition, when all attributes are related with attributes of another
dataset we call this relationship a duplicate relation. This means the datasets
contain similar informational content in all their attributes. This can be seen
for example in Table 2.2 row 3. Detecting duplicates can help in data cleansing
and de-duplication by eliminating or merging them to maintain high data
quality in the DL with less redundancy. It is based on taking a cut-off threshold
of similarity generated by the ontology alignment tool to indicate if datasets
are duplicates (e.g. taking 0.8 for similarity of all attributes). Finally, an outlier
is a dataset which has no related attributes in any of the other datasets in the
data lake. For outliers, all attributes of a dataset have no matching attributes
in any other dataset.

5.3 Dataset Comparison Algorithm

In order to match the datasets we use Algorithm 1. It automates the infor-
mation profiling activity DIG03 in Figure 2.1, however, note that the BPMN
describes the handling of each separate dataset while the algorithm describes
the overall collective handling of datasets. The matching algorithm is based
on the ontology alignment similarity measure [126] and the average data and
schema profile similarity. The profile similarity is calculated as the average of
the difference between the normalized profile features from each dataset. The
list of profile features used includes: the number of attributes in the dataset,
number and percentage of numerical/binary/symbolic attributes, the number
of classes for the target variable, the size and percentage of the majority and

43

5. The CM4DL Prototype

Algorithm 1: DatasetSimilarityMatching

Input: DLNTripleFiles, ProfileMetadata, ProfileThreshold, RelationThreshold, DuplicateThreshold
Output: Duplicates, Relationships, Outliers
begin

1 D « (DLNTripleFiles, ProfileMetadata)

2 Duplicates, Relationships, Outliers «— {}

3 foreach d € D do

4 P «— D\{d}

5 foreach p e P do

6 psimilarity < AvgProfileSimilarity(d, p)

7 if psimilarity > ProfileThreshold then

8 Sem «— parisSimilarity(d, p)

9 foreach r € Sem do

10 if s(r) > RelationThreshold then

1 | Relationships «— Relationships U {r}

12 End If

13 if Va; € Attributes(d), 3a, € Attributes(p) A (d,al,p,a2,s) € Sem A s >
DuplicateThreshold then

14 L Duplicates «— Duplicates v {(d, p)}

15 | EndIf

16 | D« D\{d}

17 D « (DLNTripleFiles, Pro fileMetadata)

18 foreach d € D do

19 if ﬂ(d,a,dz,az,s) € Relationships then

20 | Outliers « Outliers L {d}

21 | EndIf

22 return Duplicates, Relationships, Outliers

minority classes of the target variable, the number of instances in the dataset,
percentage of instances with missing values, and the dimensionality measure.
This subset of features were selected because they are the most frequently
occurring in the OpenML JSON metadata.

The algorithm consists of input DL N-Triple files (DLNTriples), the JSON
metadata features (ProfileMetadata), and the thresholds for matching datasets
on the basis of profile metadata (ProfileThreshold), or thresholds for matching
attributes in the ontology alignment tool as related (RelationThreshold) or
duplicates (DuplicateThreshold). The output of the algorithm is 3 sets consisting
of discovered relationships. If two datasets d; and d, are duplicates of each
other they are added to the Duplicates set as a tuple (d1,d,), if they are not
related to any other dataset then they are added to the Outliers set as a tuple
of the dataset identifier (dy) and if they are related to other datasets then the
exact attributes from both datasets a; and a, with relationships (similarity
measure s between 0 and 1) between them are added to the Relationships set as
a tuple ‘r’ of (dy,a1,dp,a2,s).

The algorithm loops (Lines 3-16) on each dataset (and its accompanying
profile) and compares it with each of the other datasets (in set ‘P’ from Line
4) based on the similarity of their data and schema profiles psimilarity. If

44

6. Experiments and Results

the psimilarity is bigger than the assigned threshold in the input then the
ontology similarity is computed within the inner-loop of Lines 5-15 which
compares each dataset with each of the other datasets not checked before
by the algorithm. This filtration If-statement (Line 7) is used to prevent non-
necessary expensive comparisons with ontology alignment tools for datasets
with disjoint profiles. To prevent any filtration in this step, we can set the
ProfileThreshold to 0. The psimilarity is calculated as the average similarity
of all data-profile and schema-profile metadata features in ProfileMetadata
for both datasets in AvgProfileSimilarity(d;,d;). In Line 8 we compute the
ontology similarity parisSimilarity [126] between each attribute of the dataset
and attributes of the other datasets not checked by the algorithm before
(we guarantee not double checking datasets by removing them from the
comparison list of ‘D’ at the end of the loop in Line 16). The set Sern in Line 8
contains relationships tuples ‘r’. In Line 13, if all the attributes between both
datasets have relationships with similarity exceeding the DuplicateThreshold,
then we add the datasets to the Duplicates set. In Lines 18-21, if the dataset
is not related to any other dataset (i.e. does not have any member tuple in
the Relationships set), then we add it to the Outliers set in Line 20. To make
the algorithm more efficient we take samples of instances for comparison in
the N-Triples of each dataset element of ‘D’. The worst-case complexity of the
algorithm is given in Equation 2.1.

6 Experiments and Results

In this section, we describe the results of executing the prototype on the
OpenML DL. To compare the automated approach and algorithm with the
manual approach, we conduct an experiment with OpenML data. Our goal is
to test the feasibility and effectiveness of our automated approach as compared
to manual human checks. For the sample data of 15 datasets related to
different domains as described in Table 2.1, we present these data to 5 human-
experts to analyse the relationships (like those listed in Table 2.2) and then
compare this to our automated approach. The human participants consisted
of postgraduate pharmacists representing data enthusiasts. We have also
independently analysed the datasets in 6 hours and have created a gold-
standard of relationships, duplicates, and outliers for evaluating the manual
and automatic approaches against. Such relationships detection includes
analysis of two main types of attributes described below:

Numeric attributes: Those include attributes represented as integers or real
numbered values. They have a data profile involving statistical value distri-
butions like mean, min, max, and standard deviations. An example would
be the attributes in row no. 5 in Table 2.2 showing the continuous numeric
value of the weight of cars in kilograms (e.g., 3000).

45

6. Experiments and Results

Nominal and String attributes: Those include attributes having discrete
values of nominal numbers or strings of characters. Their data profile mainly
involves frequency distributions of their distinct values. An example would be
the attributes in row no. 4 in Table 2.2 showing the name of the car models in
the dataset in character strings. For example, the strings “volkswagen_type_3"
and “Volkswagen". Although the values are represented in different strings
of characters, they still hold the same information about Volkswagen cars and
should be detected in the experiments as similar values.

For the automated CM4DL implementation, the thresholds used with
Algorithm 1 were 0.5 or 0.0 for ProfileThreshold, 0.5 for RelationThreshold and
0.75 for DuplicatesThreshold. All experiments were executed on an i7-5500U
Quad-core CPU, 8GB of memory and 64-Bit Windows 7 machine. We examine
using the following alternatives:

Different sampling sizes: we execute random sampling on the data instances
to speed-up the ontology alignment task. We test using samples of sizes 100,
500, and 700 instances.

Different iteration counts until convergence: In order to align the ontologies,
the techniques used are usually iterative in nature and require multiple
iterations until convergence [126]. The iterative nature allows for refinement
of the matching results [76]. We test different number of iterations until we
stop the alignment task. We test using 3,5,7, and 10 iterations.

Different similarity detection approaches: We test two alternative approaches
for similarity detection between attributes: the identity-based and the shingling-
based matching. We also combine both approaches to detect relationships by
running them both on the data and merging the output.

Different profile similarity thresholds: We examine using the average profile
similarity between datasets as a filtering technique to eliminate comparisons
using ontology alignment. This involves eliminating datasets having a profile
similarity below a threshold. We test two thresholds: 0.5 and 0. For the later
threshold, it means we do not filter any comparisons.

We compare the overall standard precision, recall and F1 measures [86]
for the relationships detected. For the human-experts, their results are sum-
marized in Table 2.3. As can be seen, it takes considerable effort and time to
manually compare the datasets. It took on average more than 2 hours and up
to 4 hours to annotate the datasets by a human. The precision average is also
considerably low at 57.5% (with a min of 20.5% and max of 91.3%). For the
recall, it was also at a low average of 61.1%. The overall F1 mean is at 55.6%
which shows a need for improvement by automated techniques.

The graphs in Figure 2.4 show the assessment of the F1 measure and
computational efficiency (timing) of executing the automated algorithm on

46

6. Experiments and Results

Table 2.3: Results of Manual Annotation

Participant Time Taken Precision Recall F1
1 0.66 hours 91.3 55.3 68.9
2 4 hours 66.0 92.1 76.9
3 3 hours 20.5 421 27.6
4 2.66 hours 28.8 60.5 39.0
5 1.5 hours 80.8 55.3 65.6
100 155
0.5-100- 0.5-100-
identity+shingling 145 __/ identity+shingling
135
85 0.5-500- 0.5-500-
. —— identity+shingling 125 /ﬁ- identity+shingling
3 0.5-700 - = 115 [0.5-700 -
g 70 identity+shingling g 105 identity+shingling
= =
- no - 100 - =95 no - 100 -
identity+shingling 85 identity+shingling
——n0-500- 75 ——n0-500-

identity+shingling . identity+shingling

0 no-700- 55 no-700-

3 5 7 10 identity+shingling 3 5 7 10 identity+shingling
No. of Iterations No. of Iterations

(a) (b)

Figure 2.4: Performance analysis of CM4DL in the OpenML experiments

the experiment data. The time durations include the following: loading the
datasets along with the JSON metadata to the triplestore, the tasks of the
content metadata middleware in parsing the data and converting them into
RDF N-Triples, and the ontology alignment execution time between all the
datasets in the experimental setting. We test and compare for different number
of iterations for the ontology alignment and matching execution, different
sampling and different threshold of data profile similarity filtration. Graph
(a) shows the F1 for the combined identity-similarity and shingling-similarity
instance-matching techniques, and graph (b) shows the corresponding execu-
tion time of the Algorithm 1. Each line in the graphs represent the following
as indicated in the legend: ProfileThreshold for Algorithm 1-sampling size-
similarity technique. ProfileThreshold was tested at 0.5 and without any limit
(as indicated by ‘'no’).

From the graphs in Figure 2.4, it can be seen that the automatic approach
yields good F1 scores between 82% and 91% for sample sizes between 500
and 700 instances. Generally, sampling negatively impacts the F1 score of
the algorithm, however it has a bigger effect on smaller sample sizes like 100
instances which yielded F1 between 46% and 50%. Filtering the data profiles
before comparisons proved to be effective in improving computational times
while not severely impacting the F1 score. For a sample of 700 instances, we
can still achieve 87% F1 (just 3% downgrading from comparing all datasets)
while considerably saving computation time from 151s to 92s. It was noted,
as expected, that more iterations of the ontology alignment algorithm yields

47

7. Discussion

more time for computations. However, there is no big downgrades from using
less iterations, while it can considerably save processing time.

We only demonstrate the results from the combined approach in the graphs
of Figure 2.4. However, it must be noted that the identity-similarity matching
outperformed the shingling-similarity matching in all experiments. Shingling
had an F1 score between 35% and 49% while taking more computation time
between 63s and 82s for no filtering and 40s to 50s for filtering the data
profiles. On the other hand, identity had an F1 score between 86% and 89%
for sample sizes between 500 and 700 instances. For 100 instances samples,
the effectiveness deteriorated sharply between 50% and 55%.

7 Discussion

As can be seen in the results, the automated techniques outperforms human
subjects in both effectiveness (in terms of F1 measure) and efficiency (in terms
of time for computation). By interviewing the human subjects, it was noted
that they mainly focus on analysing nominal attributes without delving into
numerical attributes analysis. In some subjects, there were almost no relations
made within numeric attributes in the whole exercise, although they were
instructed to do so. The automated techniques are more adept at comparing
numeric features. On the flip side, humans are good at analysing nominal
attributes as they can understand the semantic meanings behind them, which
is difficult for a machine, e.g., for relationship no. 2 in Table 2.2, it is obvious
for humans that a year 1975’ is similar to ‘75" but the automated algorithms
considering shingling-sizes of 3 or 4 can not easily detect this relationships (as
was experienced in our experiments). Also, the general feedback from human
subjects expresses that they feel reluctant when making correlations between
data. Such data enthusiasts simply do not want to spend considerable time to
take the same systematic approach as a machine.

The results show that sampling can considerably minimize the algorithm’s
execution duration while not severely impacting the performance of the
algorithm. It was observed, as expected, that smaller sample sizes negatively
impact effectiveness measured by F1. However, this impact becomes sharp
with very small sample sizes only. For slight sampling variations in larger
sample sizes, the F1 measure is not severely impacted. The results indicate
that higher number of iterations for the alignment algorithms can yield better
results, however, a more optimal number of less iterations can be selected
without severely impacting the effectiveness of the algorithms. The efficiency
gains from less iterations and more sampling can save considerable time.
Sampling the data profiles from the datasets before comparison using ontology
alignment techniques also saves sufficient computational time while not having
considerable negative impact on the F1 score.

48

8. Conclusion and Future Work

Duplicates were overall really well detected in all experiments applying
the identity-based matching algorithm. Relationships in numeric attributes
were better detected using identity-based matching, and for string attributes
they were better detected using shingling-based matching. Combining both
matching approaches led to the highest overall F1 score.

Shingling matching techniques generally have a low recall and precision
but are good in detecting approximate relationships for string-based attributes.
Shingling adds considerable errors especially in numeric attributes which
reduces the precision. Identity-based techniques have high recall and precision
but miss the cases of quasi-similarity string matching. Identity techniques
have a high rate of recall and can easily detect duplicated datasets. It is
therefore advisable to use multiple techniques in ontology alignment between
datasets to improve the effectiveness in detecting the relationships between
them.

The automated end-to-end process saves the huge manual effort required
to analyse the datasets and annotating the metadata to the datasets. The
automation results in some tens of seconds for metadata extraction and man-
agement instead of the multiple hours required by manual human inspection.

8 Conclusion and Future Work

We have presented our content metadata management framework which fa-
cilitates alignment in DL. We have demonstrated our approach within the
OpenML DL environment. Our experiments shows the feasibility of our auto-
matic approach in detecting relationships between the datasets. The results
show that filtering the datasets for comparison, using sampling techniques,
and using different ontology matching techniques can improve the efficiency
of the approach while still achieving good effectiveness. We have also demon-
strated the types of content metadata to collect for: schema, data profiles, and
information profiles. This content metadata was used in a structured process
to detect relationships between datasets, in order to facilitate the navigation
and analysis of the DL.

For the future, we will examine the utilization of different supervised
learning techniques to find the optimum similarity thresholds and weightings
of the similarity measures to use in our algorithm. We will also investigate
how to dynamically select the sample size based on a measure of heterogeneity
of the datasets being compared together. We also acknowledge that we can
improve the efficiency of the algorithm by creating a 3" reference integration
ontology after each ingestion to decrease the number of comparisons by the
algorithm to this single-integrated ontology. To improve the efficiency of
our algorithm we are planning to parallelize the computations in a parallel-
computing framework like MapReduce.

49

8. Conclusion and Future Work

Acknowledgements. This research has been funded by the European Com-
mission through the Erasmus Mundus Joint Doctorate (IT4BI-DC).

50

Chapter 3

Dataset-level content
metadata based proximity
mining for computing dataset
similarity

A simpler solution with less knots and more abstraction can be
better than a complex entangled monster stuck in the details!

This chapter has been published as a paper in the proceedings of the
International Conference on Similarity Search and Applications (SISAP) (2017)
[18].

The layout of the paper has been revised
DOI: https://doi.org/10.1007/978-3-319-68474-1_20

Springer copyright / credit notice:

© 2017 Springer, Cham. Reprinted with permission from Ayman Alserafi,
Toon Calders, Alberto Abell6, Oscar Romero. DS-Prox: Dataset Proximity
Mining for Governing the Data Lake, SISAP, 2017.

51

Abstract

With the arrival of Data Lakes (DL) there is an increasing need for efficient dataset
classification to support data analysis and information retrieval. Our goal is to use
meta-features describing datasets to detect whether they are similar. We utilise a
novel proximity mining approach to assess the similarity of datasets. The proximity
scores are used as an efficient first step, where pairs of datasets with high proximity
are selected for further time-consuming schema matching and deduplication. The
proposed approach helps in early-pruning unnecessary computations, thus improving
the efficiency of similar-schema search. We evaluate our approach in experiments
using the OpenML online DL, which shows significant efficiency gains above 25%
compared to matching without early-pruning, and recall rates reaching higher than
90% under certain scenarios.

52

1. Introduction

1 Introduction

Data Lakes (DL) [4] are huge data repositories covering a wide range of
heterogeneous topics and business domains. Such repositories need to be
effectively governed to gain value from them; they require the application
of data governance techniques for extracting information and knowledge to
support data analysis and to prevent them from becoming an unusable data
swamp [4]. This involves the organised and automated extraction of metadata
describing the structure of information stored [132], which is the main focus
of this chapter.

The main challenge for data governance posed by DLs is related to in-
formation retrieval: identify related datasets to be analysed together as well
as duplicated information to avoid repeating analysis efforts. To handle this
challenge it was previously proposed in [15] (see Chapter 2) to utilise schema
matching techniques which can identify similarities between attributes of
different datasets. Most techniques proposed by the research community [24]
are designed for 1-to-1 schema matching applications that do not scale up to
large-scale applications like DLs prone to gather thousands of datasets.

To facilitate such holistic schema matching and to deal with the sheer size
of the DL, [24] proposed to utilise the strategy of early pruning which limits
the number of comparisons of pairs of datasets. We apply this approach in
this chapter by proposing a technique which approximates the proximities of
pairs of datasets using similarity-comparisons of their meta-features. More
specifically, we use a supervised machine learning approach to model topic-
wise related classification of datasets. We then utilise this model in assigning
proximities between new datasets and those already in the DL, and then
predicting whether those pairs should be compared using schema matching
(i-e., have related information) or not. We implement this technique in the
datasets-proximity (DS-Prox) approach presented in this chapter. Our focus
is on early-pruning of unnecessary dataset comparisons prior to applying
state-of-the-art schema matching and deduplication (the interested reader is
referred to [24, 110] for more details on such techniques).

Our contributions include the following: 1. a novel proximity mining
approach for calculating the similarity of datasets (Section 4), 2. applying our
new technique to the problem of early-pruning in holistic schema matching
and deduplication within different scenarios for maintaining the DL (Sections
2, 3), and finally, 3. testing the proposed proximity mining approach on a
real-world DL to demonstrate its effectiveness and efficiency in early-pruning
(Section 5).

The chapter is organised as follows: we present a description of the
problem in Section 2, we present related work in Section 3, we present our
proposed dataset proximity mining approach in Section 4, we experimentally

53

2. Problem Statement

evaluate our approach on a real-world DL in Section 5 and finally we conclude
and present future work in Section 6.

2 Problem Statement

Our goal is to automate information profiling, defined in Chapter 2, which
aims at efficiently finding relationships between datasets in large heteroge-
neous repositories of flat data (i.e., tabular data like CSV, web tables, spread-
sheets, etc.). Those repositories usually include datasets uploaded multiple
times with the same data but with different transformed attributes. We focus
on two types of attributes: continuous numeric attributes and categorical nom-
inal attributes, and two types of relationships for pairs of datasets [Dj, D,]:

Rel (D1, Dy): Related pairs of datasets describe similar real-world objects or
concepts from the same domain of interest. These datasets store similar in-
formation in (some of) their attributes. Typically, the information contained
in such attributes partially overlap. An example would be a pair of datasets
describing different human diseases, like one for diabetes patients and
another for hypertension patients. The datasets will have similar attributes
(partially) overlapping their information like the patient’s age, gender, and
some common lab tests like blood samples.

Dup(D1, D;): Duplicate pairs of datasets describe the same concepts. They
convey the same information in most of their attributes, but such information
can be stored using differences in data. For example, two attributes can
describe the weight of an object but one is normalised between 0 and 1 and
the other holds the raw data in kilograms. Both attributes are identified to
be representing similar information although their data are not identical.

Examples. We scrutinise the relationship between two pairs of datasets in
Figure 3.1. Each dataset has a set of attributes. An arrow links similar
attributes between two datasets. For example, attributes “‘Al” from D; and
D3 are nominal attributes with two unique values, making them similar. A
numeric attribute like ‘A2’ in D, holds similar data as attributes ‘A3’ and ‘A4’
from D3, as expressed by the intersecting numeric ranges. In our approach
we extract meta-features from the datasets (for this example, the number
of distinct values and means respectively) to assess the similarity between
attributes of a given pair of datasets. The Rel and Dup properties are then

54

3. Related Work

used to express datasets similarities. For example, Dup(D1, D;) returns ‘1’
because they have similar information in most attributes (even though ‘A5” and
‘A3’ do not match). Based on these two properties, our proposed approach
will indicate whether two datasets are possibly related (e.g., Rel(D,, D3) =1")
and should be considered for further scrutinising by schema matching, or if
they are possibly duplicated (e.g., Dup(Dj, Dy) ='1") and should be considered
for deduplication efforts.

D,: 1992_city_data Dup(D,,D,) = 1 D,: census_data Dup(D,,D,) =0 D;: health_data

Al: salary {25k<A1<600k} x| o Al: type {fm} Al: gender {female,male}
A2: age { 20<A2<97} A2: age { 0<A2<100} < A2: Ethnicity {AS,AF,ER,LT}
— A3: family_Size { 2<A3<11} — A3:race {01,02,03,04} ’x‘ A3: age { 30<A3<60} —
A4: identity {w,m,t} i A4: Household { 0<A4<16} ™ A4: Temp { 35<A4<42}
AS5: house_type {h,t,v,s,p,I} A5: income { 50k<A5<300k} A5: H_rate { 40<A5<160}

Figure 3.1: Similarity relationships between two pairs of datasets

Scenarios. We aim at governing the DL by maintaining the Rel and Dup rela-
tionships between the datasets it contains. We consider two typical scenarios.
In scenario (a), we want to dredge a data swamp which we don’t know any
relationships for, thus, for all pairs in the DL we need to find if they are related
or duplicated. In scenario (b), we have an existing DL for which we know
all relationships between the datasets. However, given the dynamic nature
of DLs new datasets are frequently ingested. Thus, we need to compare this
dataset against the datasets already in the DL to find its relationships with
them.

3 Related Work

As described in [132], metadata describing the information stored in datasets
need to be collected to effectively govern BD repositories. Such metadata are
usually automatically collected across multiple datasets using data profiling
techniques like schema matching [98], which seeks to identify schematic
overlaps between datasets. This involves detecting related objects (instances or
attributes) and matching instances between two different schemata [24]. The
main line of research in this field is focused around improving the efficiency
of matching techniques for two very large schemata. In our research, however,
we focus on matching attributes between multiple large amounts of schemata,
closely related to the field of holistic schema matching [24, 110]. A more
restrictive case of schema matching involves deduplication [110]; finding highly
overlapping instances [39]. Similar to our special requirements for schema

55

4. The DS-Prox Approach

matching, we also seek to detect duplicated schemata instead of instances. This
is when schemata have similar overlapping attributes, not necessarily the same
instances.

As described in [24], it is recommended to utilise early-pruning mecha-
nisms for holistic schema matching, which filters out unnecessary matching
efforts using less complex techniques. This is commonly done using similar-
ity search techniques which seek to eliminate unnecessary comparisons of
datasets [103]. Several techniques for instance-based matching were proposed
including techniques like clustering [20, 39, 48], hashing [103], and indexing
[81, 103]. Alternatively, we propose to focus on attribute-based matching across
multiple-schemata for governing the DL which needs new and efficient tech-
niques. This field was not sufficiently studied before, with only preliminary
results in [125]. We propose a new approach utilising a novel technique of
computationally cheaper meta-features proximity comparisons. We seek to
prevent unnecessary and expensive schema matching computations in further
steps. We propose a machine learning approach for early-pruning that is
based on metadata collected from datasets. Such learning techniques were
proposed for future research in similarity search [26] where they use a su-
pervised machine learning model based on SVM to find similar strings for
deduplication. [26] shows that using machine learning leads to more accurate
similarity search from different domains of knowledge.

4 The DS-Prox Approach

We propose a proximity computation based on overall meta-features extracted
from the datasets, which we call DS-Prox. We are seeking to have approximate
similarity comparisons of pairs of datasets for the early-pruning task. Here
we apply cheap computation steps for the overall similarity search, to prevent
further expensive detailed analysis of the content of datasets which are es-
timated to be dissimilar. Similar to our previous work in [15] (see Chapter
2), we seek to profile the datasets ingested in the DL by extracting some
meta-features describing the overall content and attributes in the datasets. We
compute distances between each of the meta-features as proximity metrics.
We take a sample of pairs of datasets which are analysed by a data analyst
and annotated whether they hold related or duplicate data by means of the
Rel and Dup properties. Rel and Dup are boolean functions retrieving ei-
ther 1 (similar/duplicate respectively) or 0 (dissimilar/not duplicate). We
then use machine learning techniques over the proximity metrics to create
two independent models which can classify pairs of datasets according to
Rel(D1, Dy) and Dup(Dq, D;) respectively. The classification models are used
to score pairs of datasets with a similarity measure Sim (D1, D). The similarity
score ‘Sim’ is defined independently for each of the relationships Rel(Dy, D7)

56

4. The DS-Prox Approach

and Dup(D1, D;) as a number between 0 and 1, where 0 means dissimilar and
1 means most similar: Sim(Dy, D5) € [0, 1].

4.1 The Meta-Features Distance Measures

Table 3.1: DS-Prox meta-features

Type Meta-feature Description
Number of Instances The number of instances in the dataset
General Number of Attributes The number of attributes in the dataset
Dimensionality The ratio of number of attributes to number
of instances
Attributes by Type Number per Type The numbgr of attributes per type (Nominal
or Numerical)
Percentage per Type The percentage of attributes per type (Nomi-
nal or Numerical)
Average Number of Values The average number of distinct values per
Nominal Attributes nominal attribute
Standard Deviation of Number | The standard deviation in the number of dis-
of Values tinct values per nominal attribute
Minimum/Maximum Number | The minimum and maximum number of dis-
of Values tinct values per nominal attribute
Average Numeric Mean The average of the means of all numeric at-
Numeric Attributes tributes
Standard Deviation of the Nu- | The standard deviation of the means of the
meric Mean numeric attributes
Minimum/Maximum Numeric The minimum and maximum mean of nu-
Mean meric attributes
Missing Attribute Count The number of attributes with missing values
Missing Attribute Percentage The percentage of attributes with missing val-
Missine Val ues
tssing vatues Minimum/Maximum Number The minimum and maximum number of in-
of Missing Values stances with missing values per attribute
Minimum/Maximum Missing | The minimum and maximum percentage of
Values Percentage instances with missing values per attribute
Mean Number of Missing Val- | The mean number of missing values from
ues each attribute
Mean Percentage of Missing Val- | The mean percentage of missing values from
ues each attribute

For each dataset in the DL, we extract meta-features using data profiling
techniques. This includes general statistics about the dataset and its attributes
as described in Table 3.1. Our purpose for those meta-features is to describe the
general structure and content of the datasets for an approximate comparison
using our proximity metric and classification models. We compute distances
for each meta-feature m; from Table 3.1 between each pair of datasets [D1, D;]
using equation 3.1 which gives the relative difference as a number between 0
and 1. Those distances we feed to the supervised machine learning algorithm
in our approach.

max{m;(D1),mi(D2)} — min{m;(D1), m;(D2)}
max{m;(Dy),m;(Dz)}

diStmi (Dq, Dz) = (31)

57

4. The DS-Prox Approach

4.2 The Approach

The approach proposed for early-pruning depends on classical machine learn-
ing which is divided into two phases: Supervised Learning Phase and Scoring
and Classification Phase. In the first phase, which can be seen in Figure 3.2,
we build a classification model for each of the properties Rel and Dup using
supervised learning techniques. First, for each dataset we extract its meta-
features from Table 3.1 which returns its data profile (In Figure 3.2 we see
a sample of two meta-features: number of attributes ‘nAttr’, and number of
instances ‘nIns’). Then, for each dataset, we generate all pairs with each of the
other datasets and compute the distances between their meta-features using
Equation 3.1. We also present the pairs of datasets to a human-annotator who
manually decides whether they satisfy (assign ‘1) or not satisfy (assign ‘0)
Rel(D1, Dy) and Dup(D1, D). Any pair annotated as a match for Dup(D1, D;)
must also be annotated as a match for Rel(D;, D,) (i.e., all duplicate pairs of
datasets are also related). We feed both the annotated pairs of datasets with
their distances as training examples to a learner which creates two classifiers:
Mrel and Mdup'

Dataset | |Dataset Dataset
D1 D2 - Dn

Annotate Pairs A nAttr_Anins === Rel Dup
Rel(1,2) ='1'
6 D1 | D2 D:P(“ 2))=.0. DI D2 055 073 == +* = —
S93: .
iy Rel(1,n) ='1'
‘\n‘ D1 PN] Cantim = 0] DI Dn 050 042 .. + —
Extract Meta-Features D2 pn |Re'@En ="1"
" |bup(@n) =1 D2 Dn 0.09 054 ... 4 +
l Generate Training Set l x2
7 N 7 B\ Tuples -
Profile 1 Profile 2 Profile n -
FnAttr = 0.55] —
nAttr 10 nAttr 22 nAttr 20 D1 D2
lAnins = 0.73
nins 320 nins 1200 nins 550 5 Att."OSO
o P e) nAttr = 0.
i b1 bn Anlns. _:_0‘42 Run Machine Learning
02 | on PnAtr = 0.09 Technique 7
PR N Anins = 0.54
1 3
Lo Rel(D1,D2) Dup(D1,D2)
Classifier Classifier

Compute distances
per pair

Figure 3.2: DS-Prox: supervised machine learning

In the second phase, we apply the classifiers to the scenarios discussed in
Section 2, to score each new pair of previously unseen datasets. In scenario (a),
we have a setting where there are two DLs. DL has a group of datasets which
have previously known annotations of all their Rel(Dj, D;) and Dup(D1, D)
relationships between all pairs of datasets. On the other hand, DL, is without
any annotations of such relationships and is therefore a data swamp we would
like to dredge. Therefore, we need to learn the models for Rel(D;, D;) and
Dup(Dy, Dy) from DLy and apply them to DL, which has different datasets.
In scenario (b), we have an existing DL for which we know all relationships

58

4. The DS-Prox Approach

between the datasets. We need to deal with a new dataset as it arrives in this
DL. We learn the models from the DL, and we apply them to each new dataset
D; ingested within the same DL. The models should identify all datasets in
the DL which are related or duplicate of D;.

When applying the classifiers, we compute for each pair of datasets the
similarity score of Sir, (D1, D2) and Simg,,(D1, D) using the classifiers ex-
tracted in the previous phase. The Sim score is the positive-class distribution
value generated by each classifier. The predicted distribution-value achieved
for the ‘true’ class from each classifier is checked against a minimum threshold
to indicate whether the pair of datasets are overall related or duplicates. In our
approach, pairs of datasets are evaluated first if they match the Dup(Dy, D;)
relationship (indicating that it also matches Rel(D1, D5)). If it fails this dupli-
cate test, then we evaluate if the pair still satisfies Rel(D1, D;). The output
classifiers can classify in the future any new pairs of datasets as either related
or duplicate according to two matching approaches: 1-to-1 matching or cluster
matching.

1-to-1 matching: all pairs satisfying Rel(D1, Dy) and Dup(D;, D7) need to
be selected for further schema matching and deduplication. The calculations
are performed under the assumption that each and every pair of matching
datasets should be correctly identified using our models.

Cluster-based matching: It is common to use clustering based approaches
for the matching process [20, 24, 48]. Groups of datasets with close proximity
are segmented into clusters. In our case, the relationship Rel can be used
to cluster the datasets in the DL, after all relationships are discovered. We
therefore relax our requirements for the second phase so that a new dataset
should match with any single dataset in the same cluster in order to consider
it a positive match. Therefore, if a dataset matches one or more dataset(s)
from a cluster, we consider all pairs of datasets in this cluster as positively
matching pairs (even if the classifier did not indicate a positive match for
some of those pairs separately). The rationale behind this approach is that
in a real holistic schema matching setting, a new dataset ingested should be
compared to all the datasets in a cluster it matches to. Clustering can take
place after schema matching identifies the relationships between datasets
(which is outside the scope of this chapter, but the reader can refer to [20, 48]
for such clustering in instance-based matching).

We illustrate our general approach with a toy example in Figure 3.3. Sup-
pose we have two meta-features nlns and nAttr for each dataset. To classify

59

4. The DS-Prox Approach

a pair [(nlnsy, nAttry) , (nlnsy, nAttry)] we compute the relative differences.
In Figure 3.3(a) we have plotted (Anlns, AnAttr) for all pairs in the training
data. ‘+” indicates a matching pair, - a non-matching pair. Based on this data
we learn a classifier, for instance a separating hyperplane as shown in Figure
3.3(a) by the red line. Here, for simplification, we show pairs of datasets
plotted based on the distances of only two meta-features (nlns and nAttr).
The actual approach would consider all meta-features in Table 3.1.

AnAttr AnAttr

+ + —_
R =
+ + 3
4 ” = —
4
———— = Malns

Cut-off ‘I'hreshoid—t:’ .
(a) (b)

Figure 3.3: DS-Prox cut-off thresholds tuning

Most classification models produce a score instead of a binary output.
In the example of the separating hyperplane the obtained distance to the
hyperplane can be used as a score. This score can be compared against
different cut-off thresholds to decide on the final classification ‘+” or ’-". The
threshold can be chosen to lead to different results, as seen in Figure 3.3(b). If
we choose the cut-off threshold ‘C1” we restrict the classifier to return less pairs
of high proximity (i.e., low distance), leading to lower recall but less work.
Alternatively, if we alter the cut-off threshold to ‘C2’, we relax the classifier
to return pairs of lower proximity. This leads to more pairs (i.e., more work)
returned by the classifier as positive matches and higher recall of positive
cases, but, with more pairs marked incorrectly as matching. Therefore, the
cut-off threshold can be tweaked by the data scientist according to practical
requirements in order to increase recall at the expense of more work or vice
versa. This is the trade-off which we seek to optimise in our experiments when
selecting different thresholds. We can use different thresholds “c,,;" and “c4,,”
for each of the classifiers evaluated. This means that we consider a positive
match if the classifier scores a new pair of datasets with a score greater than
the threshold as in Equations (3.2) and (3.3).

1, Simrel(Dl/DZ) > Crel
0, otherwise

1, Simdup(Dlr Dy) > Cdup

3.3
0, otherwise 33)

REZ(Dl, Dz) = { (32) Dup(Dl,Dz) = {

60

5. Experimental Evaluation

The complexity of our approach is quadratic in the number of datasets,
however, it applies the cheapest computational steps for early-pruning (just
computing distances in Equation 3.1 and the classifier scoring model on each
pair). This way, we save unnecessary expensive schema matching processing
in later steps.

5 Experimental Evaluation

We tested an implementation of the DS-Prox approach on OpenML!, which
can be considered an online DL. It consists of different datasets covering
heterogeneous topics, each having a name and a description.

5.1 Datasets

The main challenge is to create the ground-truth which we use to evaluate our
approach. To achieve this, we created an experimental environment where we
extracted the following independent sets of datasets from OpenML:

* Restricted-topics sample: First, we extract some datasets by topic us-
ing 11 keywords-search over OpenML, e.g., “Disease”, “Cars",“Flights",
“Sports", etc. This restricted sample consists of 130 datasets and we
consider them to be similar if they belong to the same topic.

* All-topics sample: This is an independent set of other datasets collected
from OpenML. To collect this sample, we scraped the OpenML repository
to extract all datasets not included in the restricted-topics sample and
having a description of more than 500 characters. Out of the 514 datasets
retrieved we selected 213 with descriptive descriptions (i.e., excluding
datasets whose descriptions do not allow to interpret its content and to
assign a topic).

Therefore, we created two new groups of datasets from OpenML for our
experiments, each having its own independent set of datasets without any
overlap. Having two independent sets strengthens our results and allows
us to generalise our conclusions. A domain expert and one of the authors
collaborated to manually label the pairs of datasets with the same topic as
duplicated and / or related. The interested reader can download the two
annotated datasets from GitHub?. The details of each sample is summarised
in Table 3.2, which lists the number of datasets, the number of topics, top
topics by the number of datasets, and the number of related and duplicated
pairs per sample.

Thttp:/ /www.openml.org
Zhttps:/ / github.com / AymanUPC/datasets_proximity_openml

61

5. Experimental Evaluation

Table 3.2: A description of the OpenML samples collected

Sample Datasets | Topics | Top Topics Rel(D1,D,) | Dup(Dy,D;)
Restricted- 130 29 Diseases (45), Health (31), Cars | 1205 72
topics (13), Academic Courses (6),
Sports (5)
All-topics 213 79 computer software defects (17), | 570 128
citizens census data (12), digit
handwriting recognition (12),
Diseases (11)

Table 3.3: An example of pairs of datasets from the all-topics sample from OpenML

No. | DID1 | Datasetl | DID2 | Dataset2 Topic Relationship

1 23 cme 179 adult Census Data related

2 14 mfeat- 1038 gina_agnostic | Digit =~ Handwriting | related
fourier Recognition

3 55 hepatitis 171 primary- Disease related

tumor

4 189 kin8nm 308 puma32H Robot Motion Sensing | duplicate

5 1514 micro- 1515 micro-mass Mass Spectrometry | duplicate
mass Data

Some of the pairs from the all-topics sample can be seen in Table 3.3.
Dataset with ID 23 should match all datasets falling under the topic of ‘census
data’ like dataset 179. Both datasets have data about citizens from a population
census. In rows 4 and 5 we can see examples of duplicated datasets, which
have highly intersecting data in their attributes. Duplicate pairs in row 4
have the same number of instances, but described with different number of
attributes, which are overlapping. The duplicate pairs in row 5 have identical
number of attributes, yet, the attributes are transformed using pre-processing
techniques and there are different number of instances between both datasets,
so in essence the second dataset is a transformed and cleaned version of the
first. We aim to detect such kind of scenarios using our DS-Prox approach.

5.2 Experimental Setup

In order to evaluate our approach, we create an experimental setup where
we have two sets of datasets for each experiment: 1. Training set and 2. Test
set. The training set is used in the supervised learning phase to create the
classification models. The classification models are then evaluated using the
test set. We use the restricted-topics sample as a training set, and we use both
the restricted-topics and the all-topics samples in the scoring phase as test sets
to evaluate our approach. We describe how we used those samples to create
the training and test sets within our experiments for the two scenarios from
Section 2:

* Scenario (a) from Section 2: We evaluate our approach by using the
restricted-topics sample as the training set and the all-topics sample as
the test set. In this case the testing set is an independent collection of
datasets. We evaluate both of the 1-to-1 matching and cluster matching

62

5. Experimental Evaluation

approaches for Rel(Dq, D;). We also evaluate the 1-to-1 matching with
Dup(Dy, Dy).

* Scenario (b) from Section 2: We evaluate our approach using a leave-one-
out (LOO) variant evaluation method and the restricted-topics sample.
Here we remove a dataset and all its pairs from the original training
set and we use those pairs for evaluation of the output classifiers as a
separate test set. We also remove all duplicate pairs of this dataset from
the training set to guarantee independence between the training and
evaluation environments. We repeat this for every dataset in the input
training set. We use the 1-to-1 matching approach in our evaluation.

To execute our experiments, we profile the datasets to extract their meta-
features. We use the training set of annotated datasets with the WEKA3
tool to create the classification models using different supervised techniques:
Bayesian (Bayesian Network with K2 search, Naive Bayes) , Regression (Log-
itBoost) , Support Vector Machines (Sequential Minimal Optimization) , and
Decision Trees (Random Forest). We also use Ensemble Learners [45]: Ad-
aBoost (with Decision Stump classifier), Classification Via Regression (with
M5 Tree classifier), and Random Subspace (with Regression Tree classifier).
We tested different techniques because it was suggested by [45] that some
individual techniques can outperform the ensemble learners in classification
problems. We evaluate the classifiers with 10 different cut-off thresholds for
‘crer” and “cgy,,” from Equations (3.2) and (3.3), in order to cover a wide range
of values. We benchmark the techniques against the decision table technique
[72] which simply assigns the majority class based on matching the features
to a table of learned examples.

5.3 Results

Table 3.4: A description of the experiments conducted

Experiment | Graphs in Figure3.4 | Matching Approach | Scenario | Relationship
1 row 1: (a) and (b) 1-To-1 (b) Rel(Dy, Dy)
2 row 2: (c) and (d) 1-To-1 (a) Rel (D1, Dy)
3 row 3: (e) and (f) Cluster-based (a) Rel(D1,Dy)
4 row 4: (g) and (h) 1-To-1 (a) Dup(D1,D,)

We evaluate the effectiveness of our approach using the recall, precision,
and efficiency-gain measurements, as described in Equations (3.4),(3.5) and
(3.6) respectively. Here, TP means true-positives which are the pairs of
datasets correctly classified by the classifier. FN are false negatives, FP
are false-positives, TN are true-negatives, and N indicates the total number

3 https:/ /weka.wikispaces.com/Use+WEKA+in+your+Java+code

63

5. Experimental Evaluation

of possible pairs of datasets. The efficiency gain measures the amount of
reduction in work required, in terms of number of pairs of datasets eliminated
by the classifier.

TP
recall = ——— (3.4) . TP . . TN + FN
TP+ FN precision = TPLED (3.5) ef ficiency — gain = -~ (3.6)

We change the cut-off thresholds, and we aim to maximize this as much as
possible while maintaining the highest recall possible. The effectiveness of our
approach is evaluated by recall and precision. By applying our approach with
the different scenarios and relationships, we conduct 4 sets of experiments as
in Table 3.4. The results are depicted in the graphs in Figure 3.4.

The measures shown in the graphs are all averages from all datasets
involved in the test sets for a specific data mining technique and a certain
cut-off threshold for the proximity score (darker points have higher cut-off
values). The common measure for all graphs, which is the recall plotted on the
y-axis, is highlighted by having some of its main values labelled on each graph.
Graphs (a) and (b) are the same graphs as (c) and (d) respectively but for the
1-to-1 matching approach applied with the different scenarios. We select for
the experiments certain target results, which are minimum expected values for
each measure. All area above those values are shaded as follows: Min. recall:
0.75 for 1-to-1 matching & 0.9 for cluster matching, Min. efficiency gain: 0.33
for 1-to-1 matching & 0.25 for cluster matching, Min. precision: 0.25 for all
approaches. This means that we were targeting at least 75% recall rate for
1-to-1 matching and 90% recall rate for the cluster based matching (which
improves our previous results in [15] described in Chapter 2). We aimed for at
least 25% efficiency gains with the cluster matching approach, which exceeds
those achieved in [20]. However, we acknowledge that their approach applied
to instances-matching within the same dataset, not cross-schema attribute-
matching as in our case. For experiment 4 for Dup(D1, D;), we aim for a
min. recall of 0.9, min. efficiency gain of 0.75, and min. precision of 0.33.
In real-world applications, the data scientist can choose different minimum
thresholds for each measure according to practical requirements.

5.4 Discussion

General trend. From the results depicted in Figure 3.4, the optimum technique
and cut-off threshold is the one in the top-right quadrant of each graph,
optimising both measures plotted. The recall-precision and recall-efficiency
plots follow the general trend expected which indicate the trade-off between
both measures in each plot, yet, more optimised solutions are possible for
balancing recall-efficiency, as seen by the classifiers performing in the top-right
quadrant. As the cut-off thresholds increase, there is a drop in recall against
an increasing efficiency gain. Still, the top mining techniques and thresholds
can be used to achieve high efficiency gain and recall. This is discussed for

64

5. Experimental Evaluation

each property below. As the precision rates are generally low, we conclude
that our approach can only be used as an early-pruning step, and should be
followed by other more expensive and more detailed matching steps. Yet, a
good compromise can still achieve high recall and efficiency gains; efficiency
gains up to 0.5 for Rel and 0.8 for Dup. Such efficiency gains can make an
important difference for computationally-expensive applications of holistic
schema matching in the DL environment.

Rel evaluation. The recall-efficiency plots indicated that it was possible to
achieve an optimum technique and threshold in the top-right quadrant, which
represent the compromise of not sharply losing recall with higher efficiency
gain. For example, from Figure 3.4 (e) for experiment 3, using the AdaBoost
technique at a threshold of 0.5 can lead to 0.42 efficiency gains while still
maintaining 0.95 recall. If a recall of 1.0 is required, then this can be achieved
by the cut-off threshold of 0.3 for the same technique, but only 0.13 efficiency
gain is achieved. The data scientist will have to decide if this efficiency gain
is sufficient and whether a recall rate of 100% is critical in their application,
else, a 0.05 drop in recall should be allowed to achieve much higher efficiency
gain using the techniques and thresholds in the top quadrant. For the 1-to-1
matching in Figure 3.4 (c), we can achieve 0.75 recall and 0.35 efficiency gain.
There is a drop in recall, as would be expected, because the classifier has
more challenges in matching all possible ‘related” datasets, while in the cluster
matching approach, a single match to a dataset in a cluster acts like a pivot
which results in matching all the required related datasets in the same cluster.
The cluster-matching approach shows an improved performance over the
1-to-1 matching approach, therefore it is recommended to use DS-Prox with
the clustering-based approach.

Dup evaluation. For the results in Figure 3.4 (g) and (h), the top performing
techniques were Random subspace and Random Forest at 0.2 cut-off thresh-
olds. This achieved about 0.97 recall and 0.76-0.8 efficiency gain. The baseline
method was not able to differentiate at different cut-off thresholds, and had
best recall of 0.65, except for the lowest cut-off of 0.1 where it achieved a jump
to 0.94 recall. Since the recall was very high for our target efficiency gain
using the 1-to-1 approach, the cluster-based approach did not yield any better
results.

Baseline comparisons. Different techniques can yield better results than the
baseline for several of our experiments. There is not one single technique
which is best, yet, ensemble learners tend to perform better than their counter-
parts. However, simple techniques like logistic regression and Naive Bayes
can still have good performance as seen in the graph (e) top-right quadrant.
The baseline technique was never in the top-quadrant of graph (e) and many
techniques outperformed it. In the 1-to-1 matching in graphs (a) and (c),
the baseline classifier was comparable with the other techniques. The top
techniques include the iterative optimiser in graph (c) with 0.75 recall and

65

6. Conclusion and Future Work

0.35 efficiency gain. Nearly 1.0 recall was possible using the same classifier
at a lower threshold, yet with only 0.09 efficiency gain. For experiment 1,
Random Forest and Random Subspace outperformed the baseline with 0.3
cut-off thresholds.

Generalizability. Although our approach is generic and does not apply to a
specific domain only, we note that we do not claim that the classifiers for one
type of data or of a certain domain will have the same guaranteed effectiveness
when applied in another setting. The approach might need to be adjusted and
retrained within other settings. Albeit, our results from experiments 2 and
3 show a positive indicator of the possibility to train the model on specific
domains, independent of those used in the test set (or real-world setting),
and still be effective. We think that this needs further experimentation in the
future.

6 Conclusion and Future Work

This chapter presented a novel approach of similarity search within a DL based
on a proximity mining technique for early-pruning in holistic dataset schema
matching and deduplication applications. The approach uses supervised ma-
chine learning techniques based on meta-features describing semi-structured
datasets. Experiments on a real-life DL demonstrate the effectiveness in achiev-
ing high recall rates and efficiency gains. Proposed techniques support data
governance in the DL by identifying relationships between datasets. The
drawback of our approach, however, is that it needs some manual effort to
annotate training examples for the classifiers. In the future, we will test the
generalizability of applying the same classifier to different data sources. We
plan to experiment with more detailed meta-features which might lead to
improved results. We will also test our approach on other kinds of semi-
structured data (like RDF or XML).

Acknowledgements. This research has been funded by the European Com-
mission through the Erasmus Mundus Joint Doctorate (IT4BI-DC).

66

6. Conclusion and Future Work

1.0 1.0
0.9020
o 0.9
0.8981 0.8162 0.8674
0.8162
o8 0.7794 0.7781 0.8
_ o7 0.7532 0.7144 _ o7 E
2 0.6410 2
£ o6 & o6
< 0.483! £ T
S .4835 S =
2 05 2 05 #rgir10.4835
= = 0.4924
B > =2)
3 0.3760] X
£ oa =y 2 oa 0.3973 v « 0:3760
o= = 05 0.3267% . _o.3076
0.2930 & 4t O 0.2305
3 v+
02 02 > o0.2232 = C-2027
0.1919 =2 o.1925 e
0.1 0.0860< 0.1 <0.0860
0.0 o 0.0 o
0001 02 03 04 05 06 07 08 09 1.0 00 01 02 03 04 05 06 07 08 0.9
Efficiency Gain Positive Class Precision
(@ (b)
0.9939 1o
0 0.9743 .
0.0 0.9083 0.9203 0.9
0.8785 0.8007
i o.8
0.8 0.7747- 107541 0o
= 0.7127 -
= o7 3 °7
8 0.6819 2 >
% 06 = oe 4P
= = =
S S ©0.5269
2 os 2 05 v
G g)
8 o0a a O
& ° 0.4113 %a & 04 ‘%
0.3 2 0oz F =l
0.26260] e o0.2688
&l o V> 0.1800
0.2 0.2 R oo 0.1513
0.1761 + 179, °0Y o goos3s
0.1 2 0.1 01388 (M., . 01232 40O D042
0.0 0.0
00 01 02 03 04 05 06 0.7 08 09 1.0 0001 02 03 04 05 06 07 08 09 1.0
Efficiency Gain Positive Class Precision
(c) (d)
1.05
1.0000
1.00) 0 %
o ©
o.95
0.9699 |
0.90 o9 %
o.85 <0.8313
0.8 v
0.80 y - };ﬁgo 77117 §75°°
= 0.75 Sfokx %?oo 7289 © o - v <©0.7289
g 5 S o7 >
g 0.70 Y 3
8 o.e988x< |7 o = o.60ss + 07108 Z
% 0.65 0.6807 2
2 50594 2 o = =
S o0.60 o=t S o + 06145 , 3o, vo.s783
2 o.s5 05783 5
20 0.5181¢% o5 o.518100
Iy + 8 =
o 0.4639 = s 0.4639
0.40 o - +
0.3s 0.3735 0.3735
0.30 0.3
0.25
2 0.2
o-=0 0.1747Q, 001747
0.15
0.1
00 01 02 03 04 05 06 07 08 09 1.0 0001 02 03 04 05 06 0.7 08 09 1.0
Efficiency Gain ive Class Precision
(e)
1.00
1.00
0.9661 0.9684
0.0 09741 0.0684
0.9385 0-95 0.9385
0.90 0.9144 0.9155
= 0.8833 0.90 0.9144
= = o
s s
g 0.8443 0.8430 g
& 0.85 S 0.8443 +
b 0.8374 = o 0.8626
4 +0.8204 2 0.8374 10.8308 -
S 0.80 CUEES) 3 2 0.8213 ~<I0.8076 0.8204
2 2 0.80 0.794201
0.7799 =2 0.7795 +<€1 C0.7823
2 s 0.7753 < 3 bATA)
3. v r0.7392 < 0.75 0.7295 0.7446 0.7576 +0.7392
0.7266 i "9 > O | o ++0.7253
0.70 0.7033 e 1 0.7033 - a2 ! o 0.7220
< 0.70 > 3 >;$§90 o
oes s oS 0.6807
- v 0.65 0.6645 706440
0.6440
0.60 0.60
0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.05 0001 02 03 04 05 06 0.7 08 09 1.0
Efficiency Gain Positive Class Precision
Techniques Decision Table (Baseline,
a %k {) Cut-offValues = 01 02, 03] 04

O AdaBoost <] BayesNet $¢ ClassificationViaRegression oIterativeCIassiﬁerOprimizer

DNaiveBayes [RandomForest =kRandomsubspace VLngitBnost A SMO .0'5 . 0.6 . 07 .0-75 . 08 .0-85

Figure 3.4: Recall-efficiency plots (left column) and recall-precision plots (right column) for
experiments 1,2,3 and 4 in each row

67

Chapter 4

Attribute-level content
metadata based proximity
mining for pre-filtering
schema matching

Everything is continuously changing and to be successful, one
must embrace change and swiftly adapt to it. Improvement is a
lifetime journey.

This chapter has been published as a paper in the ACM Transactions on
Information Systems (TOIS) (2020) [17].
The layout of the paper has been revised
DOI: https://doi.org/10.1145/3388870

ACM copyright / credit notice:

© 2020 ACM. Reprinted with permission from Ayman Alserafi, Alberto Abell6,
Oscar Romero, Toon Calders. Keeping the Data Lake in Form: Proximity
Mining for Pre-Filtering Schema Matching, TOIS, 2020.

68

Abstract

Data Lakes (DLs) are large repositories of raw datasets from disparate sources. As more
datasets are ingested into a DL, there is an increasing need for efficient techniques to
profile them and to detect the relationships among their schemata, commonly known as
holistic schema matching. Schema matching detects similarity between the information
stored in the datasets to support information discovery and retrieval. Currently, this
is computationally expensive with the volume of state-of-the-art DLs. To handle this
challenge, we propose a novel early-pruning approach to improve efficiency, where we
collect different types of content metadata and schema metadata about the datasets,
and then use this metadata in early-pruning steps to pre-filter the schema matching
comparisons. This involves computing proximities between datasets based on their
metadata, discovering their relationships based on overall proximities and proposing
similar dataset pairs for schema matching. We improve the effectiveness of this task
by introducing a supervised mining approach for effectively detecting similar datasets
which are proposed for further schema matching. We conduct extensive experiments
on a real-world DL which proves the success of our approach in effectively detecting
similar datasets for schema matching, with recall rates of more than 85% and efficiency
improvements above 70%. We empirically show the computational cost saving in
space and time by applying our approach in comparison to instance-based schema
matching techniques.

69

1. Introduction

1 Introduction

Today, it is more and more common for data scientists to use Data Lakes (DLs)
to store heterogeneous datasets coming from different sources in their raw
format [128]. Such data repositories support the new era of data analytics
where datasets are ingested in large amounts and are required to be analysed
just-in-time [82]. However, it is a challenge for data wranglers [51, 69, 128]
preparing the datasets for analysis to understand their structure and common-
alities for DL governance purposes [15]. They must extract those datasets
which have related data to be used together in data analysis tasks [82, 89].
This is commonly referred to as schema matching, where the aim is to find
connection strengths between similar concepts from different pairs of datasets
[27, 35, 83, 104]. When applied on large-scale heterogeneous repositories like
DLs, it becomes a case of holistic schema matching [18, 89, 104, 110].

Holistic schema matching: The large-scale application of schema matching
to BD repositories like DLs, where the goal is to match multiple datasets
together considering them all in the matching task.

We focus on DLs having datasets storing data in flat tabular formats. Flat
datasets are organised as attributes and instances, such as tabular data, comma
separated values (CSV) files, hypertext markup language (HTML) tables, etc.
(see Section 3). It is a challenge with such DLs to efficiently process the datasets
to detect their common features, as schema matching tasks are generally
expensive (involving huge amounts of string comparisons and mathematical
calculations) [24, 27, 71]. In this chapter, we propose novel techniques to
reduce those comparisons using pre-filtering techniques that generate less
comparisons. To illustrate this, consider the different types of comparisons in
Figure 4.1. Traditionally, schema matching makes many comparisons of data
values of instances from different datasets (see the instance-based matching
box). With the rise of DLs, previous research [18, 43, 24] recommended using
early-pruning steps to facilitate the task using schema matching pre-filtering.

Schema matching pre-filtering means that only dataset pairs detected to
be of relevant similarity are recommended for further fine-grained schema
matching tasks, and dissimilar ones are filtered out from further compar-
isons. This supports the goal of early-pruning of the number of required
comparisons in order to improve the efficiency of schema matching in
large-scale environments like DLs.

70

1. Introduction

Figure 4.1 reflects this stratified approach that filters by means of extracted
metadata at the dataset and attribute level before going for expensive instance-
based approaches. For example, consider a DL with 1000 datasets, with
15 attributes and 1000 instances each. Since schema matching techniques

generate w comparisons, it would result in 499500 comparisons at the
dataset level, 113 million at the attribute level and about 500 billion at the
instance level. Clearly, fine-grained comparisons do not scale and pre-filtering
is necessary.

We propose a pre-filtering approach based on different levels of granularity,
at which we collect metadata using data profiling techniques. Our approach
collects metadata at two different levels: at the dataset and attribute level. This
metadata are then used in a supervised learning model to estimate proximity
among pairs of datasets. Such proximity is then used for pruning out pairs
less likely to be related. This is illustrated in Figure 4.1, where our goal is to
filter candidate pairs of datasets before conducting computationally intensive
instance-based schema matching techniques. The scope of this chapter is the
early-pruning at the top two granularity tiers. We refer the interested reader
to previous research about classical instance-based schema matching which is
outside the scope of this chapter [24, 27, 83, 111, 121].

G:oal Cost J‘ : P

DS-Prox =

: : e
i (Dataset Proximity mining) ‘**’ D';‘;:'
features/

Attribute-level matching >} Attribute-Prox >

i (Attribute Proximity mining) ‘ Atribute

‘ Dataset-level matching

Meta-

Filtering More @

pairs to h ™ Instance- |~ -
comparisons \ | <
generate less ™" 44 | based Schema matching :]

Imatching| i (st !(‘,9,’,3,?,@?9‘,'?,?!',‘?','5“1',‘!/),,,J‘* Altribute

" Content-based
v metadata)
*.._(Relationships) .-

comparisons
: Values

Figure 4.1: The stratified holistic schema matching approach at different levels of granularity.

It is a challenge to compute dataset similarities for pre-filtering tasks due
to the difficulty of finding adequate similarity metrics and features to use [18].
This chapter is an extension of our previous work in [18] and Chapter 3, and it
presents a novel proximity! mining approach (see Section 4) between datasets.
The similarity functions are based on automatically extracted metadata and
can be effectively used for pre-filtering in a stratified approach (see the DS-
Prox and Attribute-Prox boxes attached to the matching steps in Figure 4.1).

n this chapter, we use proximity and similarity interchangeably.

71

2. Related Work

To our knowledge, no other approach uses automatically extracted metadata
for this purpose.

To show the feasibility of our approach, we assess its performance by using
it on a real-world DL. Our approach was able to filter the number of fine-
grained comparisons by about 75% while maintaining a recall rate of at least
85% after filtration. Our early-pruning approach also saves computational
costs in terms of space and time requirements by at least 2 orders of magnitude
compared to instance-based matching.

Contributions. We present an approach for pre-filtering schema matching
tasks. We propose techniques for detecting similar schemata based on meta-
data at different levels of granularity. This supports in early-pruning of the
raw-data instance-based schema matching tasks. We present an expanded
and cross-validated experiment for the DS-Prox technique from our previous
work in [18] (see Chapter 3) and comparisons against combining it with our
new proposed attribute-level proximity metrics to find the most appropriate
metrics to assign similarities between pairs of datasets. We demonstrate a
detailed analysis of the different proximity metrics based on different types
of meta-features (name-based and content-based). Our improvements out-
perform our previous work in terms of effectiveness measures like recall and
lift-scores.

The chapter is organised as follows: Section 2 presents the related work,
Section 3 introduces the main concepts in our research, Section 4 presents our
proximity mining based approach for early-pruning tasks of holistic schema
matching, Section 5 presents our experimental evaluation, and finally, we
conclude in Section 6.

2 Related Work

State-of-the-art schema matching techniques either use schema-level metadata
(mainly names and data types of schema components) [35, 36, 100, 104] or
instance-level values of data objects [27, 35, 43, 52, 83, 100, 126]. Some others
use a hybrid approach utilising schema metadata and data instances [24, 109].
At the schema-level, these techniques usually use the syntactic similarity of the
names of the schema components for the matching task. At the instance-level,
values are usually compared using Jaccard similarity of intersecting exact
values [89]. This can also be achieved by first matching duplicate instances
and finding the correspondences between their schema components [27].
Further, these algorithms can be domain-specific or generic [83].

Schema matching is a computationally intensive task that requires large
amounts of comparisons [15, 18, 24] because they typically generate a Carte-
sian product between the values to be compared. Moreover, other approaches
also exploit the semantic or linguistic similarity of values, which requires fur-

72

2. Related Work

ther computations to translate data values (finding synonyms and hypernyms)
or to map them to ontologies [83].

The current focus of the schema matching research community is to imple-
ment efficient holistic schema matching that improves performance by reduc-
ing the number of actual comparisons to conduct [89]. To handle this challenge,
multiple techniques were proposed. For example, several approaches use
clustering techniques as a pre-filter of datasets to match [9, 22, 104]. Only
datasets falling in the same cluster are matched, or datasets from one cluster
are only matched against representative datasets from other clusters. This
is similar to the concept of “blocking” for record linkage [124], where items
having equal data values in some or all of their attributes are placed in the
same bucket for comparison. The work in [124] focuses on matching instances
of data (rows in tabular data) rather than attributes in schemata (columns in
tabular data). We propose in this chapter a supervised learning technique that
can classify dataset pairs (schemata) for a decision whether they are related
(should be compared) or not related, rather than unsupervised techniques like
blocking and clustering. In addition, we tackle the similar schemata search
problem (i.e., schema matching) rather than similar records search (i.e., record
linkage or entity resolution).

In [104], they cluster the schemata and attributes of datasets based on
TF-IDF similarity scores of their textual descriptions. In [9], they exploit
the structural properties of semi-structured XML documents, i.e., data ele-
ments embeddings and hierarchies, to cluster the datasets before applying
instance-based schema matching. In [22], they use the textual descriptions
and keywords of the datasets to cluster them using TF-IDF and WordNet. In
this chapter, we do not consider textual descriptions of datasets, which could
be misleading or missing, but rely on metadata that can be automatically
extracted from any dataset. Metadata describing datasets, their schemata,
and the information stored in them can be collected using data profiling
techniques [1, 15, 75, 82, 98]. Different types of metadata can also describe
the information inside datasets at different levels of granularity, e.g., overall
dataset level [18] (see Chapter 3) or attribute descriptions like we propose in
this chapter.

The pre-filtering of dataset pairs which are less-likely to have interrelated
data before performing schema-matching is called early-pruning [15, 43, 24],
and it was implemented in previous research on semi-structured datasets,
like XML, by finding the similarity of hierarchical structures between named
data objects [9]. Other works have investigated schema matching with semi-
structured datasets like XML [83, 100] and JSON [52]. In the web of data,
previous research like [41] investigated recommendation of RDF datasets in
the semantic web using pre-defined annotations such as the sameAs property.
In this chapter, we consider flat datasets without such a hierarchy of embedded
data objects and without pre-defined semantic linkages.

73

2. Related Work

To facilitate the early-pruning tasks for schema matching, we can apply
the same approaches and concepts from collaborative filtering and adapt them
to the holistic schema matching problem [6, 62]. The goal is to use profiling
information for comparison and recommendation, which was applied to
multimedia in [6] and semi-structured documents in [52]. Content-based
metadata was also used to predict schema labels [36]. They use minimum
and maximum values for numeric attributes, and exact values for nominal
attributes, including the format of values. We propose to apply similar
techniques but at the dataset granularity level. Accordingly, we adapt such
techniques and find the appropriate similarity metrics for tabular datasets.

Another line of research aims at optimising the schema matching process
by using computational improvements [43, 109]. This can be done using
partitioning techniques that parallelise the schema matching comparison task
[109]. Another approach uses efficient string matching comparisons. Such
techniques are very useful in the case when schema components are properly
named in the datasets. However, such techniques fail when the components
are not properly named (e.g., internal conventionalism, like sequential ID
numbering of the components). In [43], they introduce intelligent indexing
techniques based on value-based signatures.

Schema matching can also be automated using data mining techniques
[35, 36, 52]. In [35], they use hybrid name-based and value-based classification
models to match dataset attributes to a mediated integration schema. Their
approach is focused on one-to-one mediation between two schemata, while
our approach targets all datasets in a DL by holistic schema matching using
coarser meta-features. In [36], they use content-based meta-features in multi-
value classification models to match schema labels of attributes across datasets.
Decision trees were also used to profile semi-structured documents before
schema matching [52]. In this chapter, we also use data mining classification
models, however the goal differs from [35], [36] and [52] as it tackles the early-
pruning and pre-filtering task rather than instance-based schema matching.

We summarise the state-of-the-art in Table 4.1. This table gives a com-
parison of the most relevant techniques discussed with our approach based
on the main features discussed in this section. As a result, we can see that
we propose an approach based not only on string matching, but also on
content metadata matching involving statistics and profiles of data stored in
the datasets. Content metadata are matched based on approximate similarities
and not just exact value-matches at the instance-level [82, 89]. We focus on
proposing novel early-pruning techniques that use supervised learning to pre-
filter irrelevant dataset pairs and to detect likely-to-be similar pairs. Finally,
the table shows that our technique makes a novel contribution to the schema
matching pre-filtering problem that is not achieved by other state-of-the-art
techniques.

74

3. Preliminaries

Table 4.1: Schema matching techniques state-of-the-art comparison

COMA++ PARIS LOD Data | XML Ontology Proximity
[109] [126] Linking Semantic- Clustering | Mining
[22] based [91 [this
Matching work]
[71]
Type of | Tabular, RDF Semantic Semi- Semi- Tabular
Data semi- RDF structured structured,
structured, XML Semantic
Semantic OWL
OWL
Instance- v v v v X X
based
Metadata Attribute- X Ontology Attribute- Attribute- Dataset-
used level map- level level level
schema pings, RDF | schema structural content
names schema names and | metadata and name,
names, structural Attribute-
Textual de- | metadata level
scriptions content
and name
Data Min- | X X Clustering X Clustering Supervised
ing based learning
Approximate x X v X v v
Matching

3 Preliminaries

We consider DLs with datasets having tabular schemas that are structured as
attributes and instances like Figure 1.1 as described in Section 2.1. We focus on
two types of attributes: numeric attributes (consisting of real numbers) and
nominal attributes (consisting of discrete categorical values). We differentiate
between those two types of attributes, similar to previous research like [35, 36,
100], because we collect different profiling metadata for them. The resulting
statistics collected are called content meta-features, and are as follows:

* Nominal attributes: frequency distributions of their distinct values.

* Numeric attributes: aggregated statistical value distributions like mean,
min, max, and standard deviations.

For pairs of datasets and attributes, we compute the functions in Table 4.2
and describe them in the rest of this section.

We aim at finding the relationship between a pair of datasets Rel(Dy, D).
We determine such relationship directly using dataset-level meta-features and
by computing the relationships between their pairs of attributes (A;, A;), being
A; from Dy and Aj from D, as could be seen in Figure 4.2. The figure shows
an overview of our proposed proximity mining approach.

The goals of the approach is to use efficient and effective techniques to
accurately predict Rel(Dy, D;) for the pre-filtering task. As could be seen in
Figure 4.2, this can be done using metadata and similarity collected at the
dataset level (right-side) or by using the attribute level Sim(A;, A;) to predict

75

Preliminaries

Table 4.2: Schema matching pre-filtering functions

Relationship

Function Type

Output

Object Type

Description

Rel(A,, A;)

Binary

Z e {0,1}

Attribute
pair

Related attributes storing
data about the same real-life
concept which contain over-
lapping information in their
values. 1 means positively
related and 0 means not.

Continuous

R e [0,1]

Attribute
pair

A value R to measure the
attribute similarity in the
range [0,1].

Rel(Dy, D)

Binary

Ze (0,1}

Dataset pair

Related datasets which con-
tain information about the
same real-life object. 1
means positively related and
0 means not.

Sim(Dy, D>)

Continuous

Re[0,1]

Dataset pair

A value R to measure the
dataset similarity in the
range [0,1].

Attribute-level
Proximity

Dataset-level
Proximity

Attribute Content
Meta-features

Dataset Content

Meta-features Datasets Names

Pm
computation

Levenshtein
distance

Pm Levenshtein
computation

distance

M, /

Meis-nom-attr

'cls-num-attr

Rel(A;A)

Figure 4.2: The dependencies of components in the metadata-based proximity mining approach
for pre-filtering schema matching.

it (left-side). The figure shows the steps required for combining attribute-level
similarity with the dataset-level similarity to predict Rel(Dy, D;). Here, we
only use Sim(A;, Aj) as an auxiliary step that supports us in the main task
of predicting Rel(D,, D). This is possible because the attribute metadata are
of finer granularity which can be aggregated to a single similarity score at
the dataset-level with an aggregation function Agg like averaging Sim(A;, A;)

76

3. Preliminaries

scores. When predicting Rel(Dy, D;), typically the dataset pair will have infor-
mation contained in some of their attributes which are partially overlapping,
satisfying Rel(A;, Aj), where 3A; € Dy n Aje D, = Rel(A;, A]') =1. An
example would be a pair of datasets describing different human diseases,
(e.g., diabetes and hypertension). The datasets will have similar attributes
(partially) overlapping their information like the patient’s age, gender, and
some common lab tests like blood samples.

The intermediate output leading to Rel(A;, A;) and Rel(Dy, D7) in our pro-
posed proximity-based approach, seen in Figure 4.2, is a similarity score
consisting of a real number in the range of [0,1], which we indicate using
Sim(A;, Aj) and Sim(Dy, D) respectively.

The similarity scores are computed based on proximity models we con-
struct using ensemble supervised learning techniques [127], which we denote
as M;—4s for models handling dataset-level metadata and M sy, attr OF
M.is—nom—attr for models handling attribute-level metadata (depending on the
attribute type, numerical or nominal respectively). The models take as input
the distance between the meta-features describing content of each object pair,
whether dataset pair or attribute pair for Sim(Dy, D) and Sim(A;, A;) respec-
tively, and we call the distance in a specific meta-feature ‘m’ a proximity metric
which is denoted as PY (D,, D) for dataset pairs or PA(A;, Aj) for attribute
pairs. The names of objects can also be compared using Levenshtein string
distance comparison [86] to generate a distance score. The output from the
models is a score we compute using the positive class distribution (see Section
4.2).

We convert the intermediate similarity scores to the final output consisting
of a boolean value for the binary relationships using Equations (4.1) and
(4.2). The sim score computed for each relationship type is checked against a
minimum threshold in the range of [0, 1] to indicate whether the pair involved
is overall related ‘1" or unrelated ‘0’, and therefore whether they should be
proposed for expensive schema matching or otherwise filtered out. Using
cut-off thresholds of similarity rankings for the collaborative filtering task
and schema matching is a common practice [43, 62, 82]. We can use different
thresholds ‘c;” and ‘c,” for each of the relationship evaluated at the dataset
level and attribute level respectively. This means that we only consider a pair
similar if their similarity score is greater than the threshold as in Equations
(4.1) and (4.2).

1, Sim(Dy,D;) > c4
0, otherwise

1, Szm(A,,A/) > Cq

4.2
0, otherwise *2)

Rel(Dy, D) = { 1) Rel(A;, A) = {
To summarise Figure 4.2, the hierarchy to compute the final output is: Rel
is based on Sim similarity scores, which in turn are based on P, proximity

metrics of meta-features. To convert from P, to Sim we use an ensemble

77

3. Preliminaries

supervised model M, ;; which takes the P, proximity metrics as input. The
output Sim is compared against a minimum threshold, and those passing
the threshold are positive cases for Rel to be considered for further detailed
schema matching.

D,: 1992_city_data Rel(D,,D,) =1 D,: census_data Rel(D,,D;) = 1 D,: health_data

Al: salary {25k<A1<600k} »| Rel(A,A) =1 4 A6: type {f,m} A1l1l: gender {female,male}
Rel(Ag A,y =1

A2: age { 20<A2<97} A7:age { 0<A2<100} | A12: Ethnicity {AS,AF,ER,LT}
— A3: family_Size { 2<A3<11} — AS8:race {01,02,03,04} "x‘ A13: age { 30<A3<60} —
~

A4: identity {w,m,t} A9: Household { 0<A4<16} ™ A14: Temp { 35<A4<42}

AS5: house_type {h,t,v,s,p,1} A10: income { 50k<A5<300k} A15: H_rate { 40<A5<160}

Figure 4.3: Final output of our approach consisting of similarity relationships between two pairs
of datasets.

Examples. Consider the relationships between the three datasets in Figure
4.3 which presents the final output of our approach. Each dataset has a set of
attributes. An arrow links attributes having similar data profiles. We label
this as a Rel(A;, Aj) = 1. For example, attributes ‘A6’ and ‘A11" from D,
and D3 are nominal attributes with two unique values which we included as
a meta-feature called ‘number of unique values’. The proximity metric is the
distance (difference) in the meta-feature of number of unique values, which in
this case P,;;‘ = 0, because they are identical (i.e., 2 — 2 = 0), thus making the
attribute pair similar (in this case, by their number of distinct values). If we
consider this proximity metric of ‘number of unique values’ alongside other
collected content-based meta-features using an ensemble supervised learning
model M5, we can compute a Sim(Ag, A11) score based on the positive-class
distribution (see Section 4.2). This can lead to Sim(Ag, A11) = 0.95 and if we
use a threshold of ¢, = 0.75 then the final output for Rel(Ag, A1) = 1. A
numeric attribute like ‘A7’ in D; holds similar data as attributes ‘A13” and
‘Al4’ from D3, as expressed by the intersecting numeric ranges. For such
numeric attributes we can consider a meta-feature like ‘mean value’. On the
other hand, attributes ‘A1’ and ‘A7’ have different data profiles (different
numeric ranges) and therefore are not labelled with an arrow and do not
satisfy the Rel(A1, A7) relationship, as they will have large differences in
their meta-features, leading to high proximity metric and a low similarity
scores. In those examples, we collect attribute level meta-features from the
datasets (in this case, the number of distinct values for nominal attributes and
means for numeric attributes) to assess the similarity between attributes of a
given pair of datasets. In our approach, we compute the similarity between
attributes Sim(A;, A;) using real number proximity metrics in the range of
[0,1] and we use it to predict Rel(Dy, D;) instead of using the binary output

78

4. Approach: Metadata-based Proximity Mining for Pre-filtering Schema Matching

of Rel(A;, A;). We should aggregate the individual attribute pairs” similarities
with an aggregation function agg to obtain a single value proximity metric for
the overall dataset level similarity. We discuss this in the description of our
approach in Section 4.

Furthermore, we extract higher-granularity dataset level meta-features
(e.g., mumber of attributes per attribute type’) from the datasets for the task
of directly computing the Sim(Dy, D) similarity relationships. For example,
Rel(Dy, D3) returns ‘1’ in the case we use ¢, = 0.67 because they have 2
nominal and 3 numeric attributes each, so overall they can have Sim(D;, D3) =
0.7 passing the minimum threshold. Based on Rel(D,, D3) =’1’, our approach
indicates that these two datasets are possibly related and should be considered
for further scrutinising by schema matching.

4 Approach: Metadata-based Proximity Mining for
Pre-filtering Schema Matching

Our goal is to effectively apply early-pruning for holistic schema matching
in a DL setting. Such pre-filtering is based on novel proximity mining tech-
niques. Those techniques evaluate similarity among pairs of datasets using
automatically extracted meta-features and utilising a data-mining ensemble
supervised model to select highly similar pairs. We apply this using the strat-
ified approach (Figure 4.1). An overview of the approach is summarised in
Figure 4.2, which shows the steps required to compute the schema matching
pre-filtering functions from Table 4.2. We explain how we build and apply
those models in this section.

In the remaining subsections, we describe the details of our approach
as follows: profile the datasets to extract the meta-features and pair-wise
proximity metrics in Subsection 4.1, use supervised proximity mining to build
the ensemble models for Rel(A;, A;) and Rel(Dy, D;) in Subsection 4.2, then
apply the models on new pairs of attributes and datasets in the DL to compute
their Sim(A;, A;) and Sim(Dy, D) scores in Subsection 15, and finally using
the Sim(Dy, D) to predict Rel(Dy, D;) for pairs of datasets and applying the
pre-filtering step for schema matching in Subsection 4.3.

4.1 Proximity Metrics: Meta-features Distances

Our approach gathers metadata at two levels of granularity: at the I. dataset
level and II attribute level. Further, at each of these levels, we gather A.
content-based meta-features with profiling statistics and B. name-based meta-
features with the naming of datasets and their attributes. The name-based
techniques are the most commonly used metadata in previous research [52,

79

4. Approach: Metadata-based Proximity Mining for Pre-filtering Schema Matching

111, 121]. We propose other content-based meta-features at the two levels of
granularity as follows:

* Dataset level (DS-Prox): We collect overall meta-features summarising
the dataset content: overall statistics concerning all the attributes col-
lectively, the attribute types found and the overall number of instances.
The meta-features used are described in our previous work [18] (see
Chapter 3 Section 4.1), which include a detailed list of meta-features that
proved to be effective in predicting related datasets for schema matching
pre-filtering, e.g., number of instances, number of attributes per attribute
type, dimensionality, number of missing values, etc.

o Attribute level (Attribute-Prox): The set of meta-features used for both
types of attributes, nominal and numeric, is described in Table 4.3.
For each attribute A; in dataset D, we profile it based on its type by
computing the appropriate features.

Table 4.3: Attribute level content meta-features

Attribute Type | Meta-feature Description

All distinct_values_cnt The number of distinct values

All distinct_values_pct | The percentage of the distinct values from number of instances

All missing_values_pct | The percentage of missing values from number of instances

Nominal val_size_avg The average number of strings in values from the attribute

Nominal val_size_min The minimum number of strings in values from the attribute

Nominal val_size_max The maximum number of strings in values from the attribute

Nominal val_size_std The standard deviation of number of strings in values from the attribute
Nominal val_pct_median The median percentage of instances per each value of the attribute
Nominal val_pct_min The minimum percentage of instances per each value of the attribute
Nominal val_pct_max The maximum percentage of instances per each value of the attribute
Nominal val_pct_std The standard deviation of the percentage of instances per each value of the attribute
Numeric mean The mean numeric value of the attribute

Numeric std The standard deviation of the numeric value of the attribute

Numeric min_val The minimum numeric value of the attribute

Numeric max_val The maximum numeric value of the attribute

Numeric range_val The numeric range of the values of the attribute

Numeric co_of_var The numeric coefficient of variance of the attribute

Equation 4.3 shows the proximity metric computed for a pair of attributes
(or datasets), denoted as O;, O;. Using the meta-features described, we
compute the z-score distance for each meta-feature m. The result is a real
number, Py;. The z-score is a normalisation where we use the mean “u” and
standard deviation ‘0’ of each meta-feature considering its value from all
datasets in the DL. A value of 0 is the most similar, while larger negative or
positive number means more different. The z-score is used to standardise the
comparisons of attributes in a holistic manner that considers all datasets and
attributes in the DL. Most pairs of attributes and dataset will have a value
falling in the range of [-3,3].

m(O) —p _ m(O)) —p

Py = zscore_distance(O;, O;) = - - - (4.3)

80

4. Approach: Metadata-based Proximity Mining for Pre-filtering Schema Matching

For the name-based metadata we compute the proximity metric P, with a
Levenshtein string comparison function [86], as in Equation 4.4.

Py = levenshtein_distance(name(O;), name(O;)) 4.4)

4.2 Supervised Proximity Mining

After the different proximity metrics of meta-features are generated by pro-
filing the datasets, a representative sample (an adequate sample size should
be similar to the sample in our experiments in Section 5) of dataset and at-
tribute pairs should be selected by a human annotator and should be labelled
whether they satisfy Rel(Dy, Az) and Rel(A;, A;) respectively. The dataset and
attribute pairs with their proximity metrics and labels are fed to a supervised
learning algorithm to create a proximity scoring model. We propose super-
vised ensemble models based on different dataset level and attribute level
proximity metrics for computing overall similarity between pairs of datasets.
The models decide on the number of attributes to consider in order to evaluate
a pair of datasets as ‘related’ by using different aggregation functions agg for
the attribute level metrics, giving different weights to a different number of
attribute linkages of different similarity ranks. This will be explained in detail
in this section.

Our approach builds supervised ensemble models M;s_4s for Rel(Dy, D),
and Mis—nom—attr & Meis—num—artr for Rel(A;, Aj) whether the attribute type is
nominal or numerical respectively. Model-based learning for pre-filtering has
been applied before in the collaborative filtering field [6]. In such scenarios,
item pairs are recommended or filtered out using model-based learning
algorithms where a learnt model is used to assign the similarities and rankings
of item pairs based on previously annotated examples. We give details of how
we learn the models and how we use them in our approach in the subsections
below.

Building the models from annotated samples

An overview process for building the supervised models in our approach
can be seen in Figure 4.4. In the build phase, we take the pairs of datasets
and profile them by computing their dataset level and attribute level meta-
features, followed by computing the proximity metrics for those extracted
features. We take different dataset pair samples for building the attribute
level models and the dataset level models as seen in the split into samples
OMLO1 and OMLO02 (how to build such samples is given in Section 5.1). The
pairs in sample OMLO1 should be already annotated to indicate whether
their attributes match (i.e., Rel(A;, A;) for attribute level models) or whether
the datasets are relevant for schema matching or not in sample OMLO2 (i.e.,
Rel(Dy, D) for dataset level models). Initially, we start with the attribute level

81

4. Approach: Metadata-based Proximity Mining for Pre-filtering Schema Matching

)| Dataset-evel | |

1| profiling Evaluate

Evaluate
Dat: |
cl

_____________ ; o
- Compute < i
— > Profile Attribute- |~ attribute-level !\ H ¢
- level Meta- meta-feature L g ' T & i_\
Freatrcs) proximity metrics 1%
Pm

h
— -
Sample Attribute Pairs e — e !
\
Pairs omLot Taning Build Attribute-level =

of DS P Classification Models Build Dataset-level

Meis_num_attr Classification Model
Meis_ds

Meis_nom_attr

Data — Compute l
Lake Profile Attribute- attribute-level Aggregate attribute-
level Meta- Sia 2 level proximity to
features proximity marics &)]
Sample " Apply Attribute-level Agg
OML02 Proximity Model

Sim(A;A) Compute Dataset-

Profile Datasetlevel ____~ ' | level meta-feature
Meta-features proximity metrics DS Pairs
Pm Training
Sample

Figure 4.4: An overview of the process to build the supervised ensemble models in our proposed
datasets proximity mining approach using previously manually annotated dataset pairs.

supervised learning procedure as it is only an auxiliary subcomponent used
for the dataset level, where an aggregation step is used to compute dataset
level proximities. First, we divide the pairs into training and test sets, we train
a supervised learning ensemble model for each attribute type (nominal and
numeric types) using the training sample, and we test the performance of the
model on the test set (evaluation distinguished by dotted lines and circles in
the figure). We conduct this test to guarantee that the models generated are
accurate in detecting Rel(A;, A;). Similarly, we do the same with the dataset
level supervised models which generate Rel(Dy, D;). We use the dataset
level proximity metrics and the attribute level aggregated proximity metrics
together to train a supervised model using a training sub-sample of dataset
pairs from OMLO2. Finally, we evaluate the generated dataset level supervised
models to guarantee their accuracy in detecting Rel(Dy, D).

Supervised learning. To build the models, we use classical supervised
learning to create the proximity models. The meta-features are used as input
to the models as seen in Figure 4.5, where an object could be an attribute
for attribute-level models or a dataset for dataset-level models. First, for
each object we extract its meta-features (i.e., ‘m1’, ‘m2’, ...). Then, for each
object, we generate all pairs with each of the other objects and compute the
proximity metrics between their meta-features using either Equation 4.3 for
content-based meta-features or Equation 4.4 for the name-based comparison.
We then take a sample of pairs of objects which are analysed by a data
analyst; a human-annotator who manually decides whether the pairs of
objects satisfy (assign ‘1’) or not (assign ‘0’) the Rel properties (see Section
3). This can be achieved by simply labelling the objects with their respective
subject-areas and those falling under the same one are annotated as positively
matching “1’, otherwise all others are labelled with ‘0" (see Section 5.1). We
then use supervised learning techniques and 10-fold cross-validation over
the proximity metrics to create two types of independent models which can
classify pairs of datasets or pairs of attributes according to Rel(Dy, D;) and
Rel(A;, A;j) respectively. This is the final output consisting of the two auxiliary

82

4. Approach: Metadata-based Proximity Mining for Pre-filtering Schema Matching

AN
Object Object Object
OB1 OB2 OBn >
Annotate Pairs Ami Am2 === Rel
l l i oB 1|08 2 OB1 OB2 055 073 == +
Rel(1,2) ="'
§ oy § = t Al & 1 \ -
1 93 1 90 1 93, OB 1]/ 0B n| Rel(t,n) =0 OB1 OBn 050 042 ..,
e L = 08208 n| peiam =1 OB2 OBn 009 054 ..

Extract

Meta-Features Meta-Features Meta-Features

Generate Training Set
Tuples
\

}

Extract

!

Extract

|

!

7 -
Profile 1 Profile 2 Profile n
0B 1 |0B2|3M =055
mi 10 mi 22 mi 20 Am2 =0.73
m2 320 m2 1200 m2 550 Am1=0.50
OB 1|0Bn|am2 =0.42
_ J, oB2|oBn|4mi =009 Run Ensemble Learning

l Am2 =0.54 Algorithm
. M
po. t.\ » cls
194
-
N Rel(ob1,0b2)

Compute distances
per pair

Classifier

Figure 4.5: Proximity Mining: supervised machine learning for predicting related data objects.
supervised models Mjs—om—attrs Mcls—num—artr for Rel(A;, Aj) and the main
dataset level model M;_4; for Rel(Dy, D;). The positive-class distribution
from the generated models is used to score new pairs of objects (unseen in
the training process) with a similarity score Sim(D,, D;) using Ms_4s, and
Sim(Air A]) uSing Mets—nom—attr OF Meis—num—attr-

We use a random forest ensemble algorithm [29, 127] to train the super-
vised models in predicting related attribute and dataset pairs as it is one of
the most successful supervised learning techniques. The algorithm generates
a similarity score based on the positive-class distribution (i.e., the predicted
probability of the positive-class based on weighted averages of votes for the
positive class from all the sub-models in the ensemble model) to generate a
score in [0, 1] for Sim. For example, if Random Forest generates 1000 decision
trees, and for a pair of datasets [Dy, D.] we get 900 trees vote positive for
Rel(Dy, D;) then we get % = 0.9 for Sim(Dy, D,) score.

We feed the supervised learning algorithm the normalised proximity
metrics of the meta-features for pairs of datasets [D,, D]. For attribute level
meta-features, we feed the M.j;_4; model with all the different aggregations
of the meta-features after computing their normalised proximity metrics (i.e.,
after applying Equation 4.7, which we describe later in this section).

Attribute-level proximity. To compute the overall proximity of datasets
using their attribute level meta-features we use Algorithm 2, which first
compares in Lines 5-10 the proximity metrics from the meta-features of each
attribute of a specific type against all other attributes of the same type in the
other dataset using Mjs_om—attr for nominal attributes and Mjs—ym—attr fOr
numeric attributes. The algorithm then finds top matching attribute pairs in

83

4. Approach: Metadata-based Proximity Mining for Pre-filtering Schema Matching

Algorithm 2: Attribute Level Top-Similarity Matching

Input: Sets of the attribute meta-features of each type Att,omina and Att,,meric containing the
proximity metrics of the meta-features of each attribute in the pair {A;, A;} for each dataset
in the pair {Dy, D, }, the model Mcjs_uom—atr for nominal attributes, the model Meis— yum—attr
for numeric attributes, an aggregation function Agg for aggregating attribute links to
compute dataset level proximity

Output: The partially ordered set SP of proximity metrics P (Dy, D) for each pair of {D,, D.}

1 SPagtaset < I
2 SPuwribute < s
3 sptop,mtribun: —
4 foreach {Dy,D.} ¢ DLandy # z do
5 foreach {A;, Aj} < Attyopina and A; € Dy and A; € D, do
6 Slm(AnA]) = Mcls—num—utlv(AirA]‘);
7 L SPastribute <= SPattrivute © {[Ai, Aj/ Sim(A;, Aj)] }
foreach {A;, A;} © Attyumeric and A; € Dy and A; € D, do
Sim(Aj, Aj) = Mes—num—anr (Ai, Aj);
10 L SPattrivute < SPastribute V {[Ai, Aj/ Sim(A;, A])] b
\\Iterate on the set of attribute pairs SPysipyte to find top matching pairs
1 while more attribute pairs {A;, A;} can be picked do
12 Pick pair {A;, A;} from SPgripuse that maximises Sim(A;, A;) where A; and A; were not
picked before;
13 L SPtoszftribu?v <~ SP[nyiattrihute v {[Ai Afr Sim(A;, A/)] |7
u P,EZ(Dy, D;) « Agg(spmp,umibum);
15 L SPdntaset — SPdutaset o {[D]/rDZrPrEZ(Dy’ DZ)]};

Lines 11-13 where we match each attribute to the most similar attribute in the
other dataset using a greedy approach [76]. For each pair of datasets, we match
each attribute only once (we do not allow many-to-many matching). We rank
attribute pairs by proximity top-to-least, then we assign matching pairs on
the top of the list where each attribute did not appear in a previous higher
ranking pair (i.e., both attributes need to be unmatched by any higher ranking
pair in the list, otherwise the algorithm skips to the next pair until all the list
of pairs is traversed). Finally, in order to summarise the attribute linkages
to predict the overall proximity of the dataset pairs, we compute in Line 14
an aggregation of the top-matching attribute linkages found between a pair of
datasets using an function Agg to convert the multiple Sim(A;, A;) scores to a
single proximity metric P}, for their dataset pair. We use different types of
attribute level aggregation functions. Those functions assign different weights
‘W’ (which is an indicator of relevance, a bigger weight means more relevant)
to the attribute links to consider. The different aggregations should have the
goal of giving less weight to attribute links which could be considered as noise;
i.e., those pairs which are too strongly correlated without any meaning (e.g.,
discrete ID numbers) or those attribute pairs with too low proximity to be
significant.

Thus, the top-matching pairs of attributes are sorted by proximity weights
and are fed to the aggregation function which allocates a weight between [0, 1]
for aggregation in the summation of weights. The total sum of weights should
add up to 1.0. The different aggregations we use are as follows:

84

4. Approach: Metadata-based Proximity Mining for Pre-filtering Schema Matching

* Minimum: we allocate all the weight (i.e., W = 1.0) to the single attribute
pair link with the minimum similarity, and we consider this as the overall
proximity between the dataset pair. Therefore, all top-matching attribute
pair links need to have a high similarity score to result into a high
proximity for a dataset pair.

* Maximum: we allocate all the weight (i.e., W = 1.0) to the single attribute
pair link with the maximum similarity, and we consider this as the overall
proximity between the dataset pair. Therefore, only one top-matching
attribute pair link needs to have a high similarity score to result into a
high proximity for a dataset pair.

* Euclidean: a Euclidean aggregation of the similarities Sim of all matching
pairs of attributes without any weighting as in Equation 4.5. Here we
consider all the attribute pair links in the aggregation and we assign
equal weights to all the links.

P =

m

(4.5)

* Average: a standard averaging aggregation of the pairs of attributes
without any weighting, where all attribute links are equally weighted in
the average.

* Weighted function: a normal distribution function to assign different
proximity weights W for all attribute linkages found, and then summing
up all the weighted similarities as the overall proximity as in Equation
4.6.

pD = Zn: [W; % Sim(A;, Aj)] (4.6)
i=1,j=2

This is visualised in Figure 4.6. Here the weight 0.0 < W < 1.0 for
each top-matching attribute linkage is assigned based on ordering the
linkages top-to-least in terms of their similarity scores, and the weight
allocated varies according to a normal distribution. We use different
p-parameters (probability of success) of {0.1,0.25,0.5,0.75,0.9}, where
a parameter of 0.5 leads to a standard normal distribution of weights
allocated for the sorted pairs of attributes. A lower parameter value
leads to skewness to the left, allocating more weight to highly related
pairs, and a higher parameter leads to skewness to the right, allocating
higher weights to pairs with lower ranked relationships. This means
that with lower p we expect similar datasets to have a few very similar
attributes and a higher p value means we expect most of the attributes
to be strongly similar.

85

4. Approach: Metadata-based Proximity Mining for Pre-filtering Schema Matching

Assigned Weight

%

A\ 4

Rank of Top Matching Attribute Pairs

Figure 4.6: Different normal distributions for assigning weights to ranked attribute linkages.

As can be seen from their descriptions, each aggregation leads to a different
meaning of similarity based on the number of attribute linkages to consider
and which attribute linkages are considered more important (having higher
weights assigned). All the dataset proximity metrics generated by the different
aggregations listed above are finally normalised using Equation 4.7. The
proximity metric PY for two datasets Dy, and D is computed by multiplying
the number of matching attributes found (N), and divided by the minimum
number of attributes of both datasets (Min(|Attry|,|Attr;[)). This is done to
prevent an inaccurate similarity score for two datasets having few very similar
attributes of a single type, and many other attributes of different types. For
example, if dataset D; has 1 nominal attribute and 10 numeric attributes
and D; just has 8 nominal attributes, then if the single nominal attribute in
D; is highly similar to a nominal attribute in D; (e.g., Sim(A1, Ay) = 0.9)
then the overall outcome without normalisation will be a high proximity
metric between both datasets although they have many disjoint attribute
types. The resulting proximity metric after normalisation for the datasets
would be calculated as follows: P/L = 0.9 § = 0.1, so overall they will
have a low proximity compensating for all the unmatched attributes without
corresponding types.

N

pP=pPy -
" "7 Min(|Attry|, | Attr.|)

(4.7)

Applying the models on the DL

In the second phase, after building the ensemble models, we apply them
to each new pair of previously unseen datasets to achieve a measure of
the similarity score. When applying the models, we compute for each pair
of datasets the similarity score of Sim(D,, D;) and for each attribute pair
Sim(A;, Aj) using the supervised models extracted in the previous phase. The
Sim score is the positive-class distribution value generated by each ensemble
model [127]. For the attribute level scoring, we complete the proximity mining

86

4. Approach: Metadata-based Proximity Mining for Pre-filtering Schema Matching

task by aggregating the sim scores between pairs of datasets (as seen in the
last steps of Algorithm 2). To compare dataset pairs, we use Algorithm 3, and
the M.j;_4; model generated by the previous build phase.

Algorithm 3: Dataset level Matching

Input: Dataset-level proximity metrics for each pair of datasets {D,, D}, the model M_js_4s
Output: The set SP of similarity score [D,, D,, Sim(D,, D)] for each pair of {D, D}
SP «— &;
foreach {Dy,D.} c DLand y # z do
L Sim(Dy, Dz) = Mcs—as(Dy, Dz);

oW N =

SP «— SP U {[D,, D, Sim(Dy, D.)]};

N ' A
. &
= 1 3.
__ N .
_ — 3
- Compute Attribute level Attribute-level ttribut
Pairs mela-fea(ure_ proximity Cl ification Model level proximity to
of DS metrics A\, Wcis_num_attr dataset-level
L™ | X Meis_nom_attr Agg
Sample Apply Attribute-level
OMLo2 Proximity Model Compute Dataset level
Data meta-feature proximity
Lake metrics .
P, DS Pairs
= Testing

Sample

Filter negative pairs NO
of datasets

Evaluate
Dataset-level

Pruning S v
Rel(D,D;) b4
Pass positive pairs ES

of datasets

Check pass
threshold
?

Assign Proximity

! e Dataset-level
using classifier's score cjassification Model
Sim(Dy,D;)

Meis_ds

Figure 4.7: An overview of the process to apply the learnt supervised models in our approach
for pre-filtering previously unseen dataset pairs independent of the build process.

In the apply phase visualised in Figure 4.7, we take the pairs of datasets
from sample OMLO02 which have not been used in the build phase and we
compute the proximity metrics for the dataset level and attribute level meta-
features. First, we profile the attribute level meta-features from this new
dataset pairs sample. Then, we apply the attribute level supervised models
resulting from the previous sub-process to score the attribute pairs similarities
from the different dataset pairs. Then, we aggregate the resulting attribute
pairs similarities to the dataset level using the aggregation functions. Once
we have the dataset level proximity metrics generated from dataset level and
attribute level meta-features, we feed them all to the dataset level supervised
models from the build phase to unseen testing set pairs, not used in the
training of the models, which assigns a proximity score to the pairs. If a pair
exceeds a certain proximity threshold, we consider that pair as a positive match
to propose for further schema matching, otherwise the pair is considered as a
negative match and is pruned out from further schema matching tasks (we
evaluate this by pruning effectiveness metrics in Section 5.2). This is described
in the next subsection.

87

5. Experimental Evaluation

4.3 Pre-filtering Dataset Pairs for Schema Matching

For the final step of pre-filtering pairs of datasets before applying detailed
instance-based schema matching, we check whether the pairs of datasets are
overall related or not, and therefore whether they should be filtered out or
proposed for expensive schema matching. We analyses the final Sim(Dy, D)
score generated by the model M,j;_ ;45 for each dataset pair in the DL to decide
whether they satisfy the Rel(D,, D;) or not. We consider the relationship of
each dataset with each of the other datasets existing in the DL. Each dataset
must pass the similarity threshold c; with each individual dataset to be
proposed for detailed schema matching (as in Equation 4.1).

If we choose a high cut-off threshold we restrict the supervised model
to return less pairs of high proximity, leading to lower recall but also less
comparisons, thus helping to reduce the computational time at the expense
of possibly missing some misclassified pairs. Alternatively, if we choose a
lower cut-off threshold, we relax our model to return pairs of lower proximity.
This leads to more pairs (i.e., more work for further schema matching tasks)
yielding positive matches and higher recall of positive cases, but, with more
pairs marked incorrectly as matching. We propose how to select an appropriate
threshold that optimises this trade-off empirically in Section 5.

The complexity of our approach is quadratic in the number of objects
(attributes or datasets) compared, and therefore runs in polynomial time,
however, it applies the cheapest computational steps for early-pruning (just
computing distances in Equations 4.3 and 4.4 and applying the model to
score each pair). This way, we save unnecessary expensive schema matching
processing per each value instance of the attributes in later steps, reducing the
computational workload at the detailed granularity schema matching level by
pre-filtering the matching tasks. We demonstrate this empirically in Section
5.5.

5 Experimental Evaluation

In this section, we present the experiments which evaluate our approach by
using a prototype implementation. We evaluate the following components of
our approach in predicting Rel(Dy, D;) for pre-filtering schema matching:

* Proximity metrics: we evaluate the different individual dataset level
and aggregated attribute level meta-features.

* Supervised models: we also evaluate the ensemble supervised models,
which consume the proximity metrics, in the pre-filtering task.

In addition, we evaluate the sub-components of our approach which in-
clude the attribute level models M s o —attr aNd Mg yym—artr in predicting

88

5. Experimental Evaluation

Rel(A;, Aj). We test the attribute level model in experiment 1, the dataset
level pruning effectiveness against the ground-truth in experiment 2, and the
computational performance in experiment 3.

In experiments 2 and 3, we compare the performance of our proposed
proximity mining models against traditional instance-based schema matching
techniques we proposed in Chapter 2. Those are the most expensive tech-
niques which compare values from instances in the datasets to for computing
schema similarity. We benchmark our results against a naive averaging of at-
tribute similarity from a prototype called Probabilistic Alignment of Relations,
Instances, and Schema (PARIS), which is one of the most cited schema match-
ing tools [126]. PARIS was found to be best performing with large datasets
when compared against other tools [76] and does not need collection of extra
metadata (see Table 4.1). PARIS does exact value-string matching based on
value-frequency inverse functionality [126]. We implement a prototype in [15]
(see Chapter 2) which compares pairs of attributes from different datasets
using PARIS and generates an overall score for Sim(Dy, D;) by averaging
Sim(A;, Aj) generated by PARIS from the top-matching attribute-pairs (similar
to Algorithm 2, where PARIS replaces the supervised models). It converts
tabular datasets to RDF triples, and executes a probabilistic matching algo-
rithm for identifying overlapping instances and attributes. We selected PARIS
because of its simplicity and ease of integration with Java-based APIs and its
high performance in previous research [76]. We parametrised the prototype
with the top performing settings from experiments in [15] (see Chapter 2)
sampling 700 instances per dataset, 10 iterations comparisons, with identity
and shingling value strings matching. This will be a baseline pre-filtering
heuristic approach we shall compare against in the experiments.

The rest of this section describes the datasets used in the experiments,
the evaluation metrics used and the different experiments implemented. We
present the results from our experiments and discuss their implications.

5.1 Datasets

We use the OpenML DL? in our experiments [131], which has more than 20,000
datasets intended for analytics from different subject areas. OpenML is a web-
based data repository that allows data scientists to upload different datasets,
which can be used in data mining experiments. OpenML stores datasets in
the ARFF tabular format which consist of diverse raw data loaded without
any specific integration schema. This allows us to evaluate our approach in a
real-life setting where datasets come from heterogeneous domains.

We use two subsets of manually annotated datasets from OpenML as
our ground-truth (gold standard) for our experiments. Those two subsets

Zhttps:/ /www.openml.org

89

https://www.openml.org

5. Experimental Evaluation

have been generated using two different independent processes, and therefore
provide independently generated ground truths that do not overlap. As the
research community is lacking appropriate benchmarking gold standards for
approximate (non-equijoins) dataset and attribute similarity search [89], we
published those datasets online to support in future benchmarking tasks®. The
experimental datasets are described as follows:

¢ OMLO1 - The attribute level annotated 15 DS: consists of 15 datasets
from different domains as described in Table 4.4. The total number of
attributes is 126 (61 nominal and 65 numeric), and the average number
of attributes per dataset is 8. There is a total of 3468 pairs of attributes to
be matched (1575 nominal pairs and 1892 numeric pairs). All the pairs
of attributes in this subset were manually scrutinised by 5 annotators
consisting of post-graduates with an average age of 28, where 4 are
pharmacists and 1 is a computer scientist. They checked the attributes
in the datasets and annotated all the pairs of attributes from different
datasets with related data, Rel(A;, A;). It took on average 3 hours by
each annotator to complete the task. Annotators assign a single value
from {0, 1}, where ‘1’ means a related attribute, and the majority vote is
taken for each pair, where the average Kappa coefficient for the inter-
rater agreement is 0.59, the maximum is 0.80 and the minimum 0.37.
Annotators were given the following to judge if the attribute pair is
related: attribute name, OpenML dataset description, top 10 values, and
the mean and standard deviation for numeric attributes. We didn’t give
instructions on how to use the provided information to judge, but we
described that “related attributes should store data related to similar
real-world properties, e.g., car prices, specific body size measurements
like height, etc., and should contain similar data”. Examples of the an-
notations can be seen in Table 4.5. There are only 56 positively matching
pairs (19 nominal and 37 numeric). This subset is used in training the
attribute level models for computing the similarity between attributes
from different datasets and predicting related attributes, Rel(A;, A;).

Table 4.4: Description of the OMLO01 datasets

Domain Datasets IDs Datasets

Vehicles 21,455,967,1092 car,cars,cars,Crash

Business 223,549,841 Stock,strikes,stock

Sports 214 baskball

Health 13,15,37 breast-cancer,breast-w,diabetes
Others 48,50,61,969 tae, tic-tac-toe, Iris, Iris

* OMLO2 - The dataset level annotated 203 DS: consists of 203 datasets
different from those in the OMLO1 subset. To collect this sample, we

Shttps:/ / github.com/ AymanUPC/all_prox_openml

90

https://github.com/AymanUPC/all_prox_openml

5. Experimental Evaluation

Table 4.5: Example Cross-dataset Attribute Relationships from OML01

No. | Dataset1 Dataset 2 Attribute 1 | Attribute 2 | Relationship
1 37 (diabetes) | 214 (baskball) | age age related

2 455 (cars) 549 (strikes) model.year | year related

3 455 (cars) 967 (cars) all all duplicate

4 455 (cars) 1092 (Crash) name model related

5 455 (cars) 1092 (Crash) weight Wt related

scraped the OpenML repository to extract all datasets not included in
the OML01 sample and having a description of more than 500 characters.
Out of the 514 datasets retrieved, we selected 203 with meaningful
descriptions (i.e., excluding datasets whose descriptions do not allow to
interpret the content and to assign a topic). The datasets have a total of
10,971 attributes (2,834 nominal, 8,137 numeric). There are 19,931 pairs
of datasets with about 35 million attribute pairs to match. According to
Algorithm 2, there are 3.7 million comparisons for nominal attributes
(leading to 59,570 top matching pairs) and 31.5 million numeric attribute
pairs (leading to 167,882 top matching pairs). We try to prevent the
value-based schema matching on all possible pairs of values between
datasets, where there are 216,330 values which would lead to 23.4 billion
comparisons at the value level. A domain expert with a background in
pharmaceutical studies and one of the authors collaborated to manually
label the datasets*. They used the textual descriptions of the datasets to
extract their topics, which is common experimental practice in dataset
matching assessment, similar to the experimental setup in [22]. The
annotators sat together in the same room and discussed each dataset
with its description and decided on its appropriate real-life subject-area
(e.g., car engines, computer hardware, etc.). To group similar datasets
in the same subject-area grouping, annotators had to discuss and agree
together on a single annotation to give to a dataset. This was done by
discussing the specific real-world concept which the dataset describes,
e.g., “animal profiles”, “motion sensing”, etc. The annotators were only
allowed to scrutinise the textual descriptions of the datasets and did
not receive the underlying data stored in their attributes to prevent any
bias towards our proposed algorithms. It took the annotators about 15
hours in total to annotate the datasets. Pairs of datasets falling under the
same subject-area were positively annotated for Rel(Dy, D,). The sample
consists of 543 positive pairs from the 20,503 total number of pairs. The
details of the sample is summarised in Table 4.6, which lists the number
of datasets, the number of topics, top topics by the number of datasets,
and the number of related pairs. Some of the pairs from the sample can
be seen in Table 4.7. We can see, for example, that dataset with ID 23

4Those dataset annotations were reviewed by 5 independent judges, and the results of this
validation are published online at:
https:/ /github.com/AymanUPC/all_prox_openml/blob/master/OML02/0oml02_revalidation_results.pdf

91

https://github.com/AymanUPC/all_prox_openml/blob/master/OML02/oml02_revalidation_results.pdf

5. Experimental Evaluation

should match all datasets falling under the topic of ‘census data’ like
dataset 179. Both datasets have data about citizens from a population
census. In row 4, we can see an example of duplicated datasets having
highly intersecting data in their attributes. Duplicate pairs like those in
row 4 have the same number of instances, but described with different
number of attributes, which are overlapping. We consider all duplicate
pairs of datasets as related pairs. We aim to detect and recommend such
kind of similar dataset pairs as those in Table 4.7 for schema matching
using our proximity mining approach.

Table 4.6: Description of the OML02 datasets

Datasets Topics Top Topics Rel(Dy, D)
203 74 computer software defects (16), health | 543
measurements (13), digit handwriting
recognition (12), robot motion sensing
(11), plant and fungi measurements (9),
citizens census data (8), diseases (8)

Table 4.7: An example of pairs of datasets from the OML02 sample from OpenML

No. DID1 | Dataset1 | DID 2 | Dataset2 | Topic Relationship
1 23 cme 179 adult Census Data related
2 14 mfeat- 1038 gina_agnosticDigit ~ Handwriting | related
fourier Recognition
3 55 hepatitis 171 primary- Disease related
tumor
4 189 kin8nm 308 puma32H | Robot Motion Sensing | duplicate

5.2 Evaluation Metrics

We use different evaluation metrics to assess the effectiveness of our approach.
We use the traditional recommendation and information retrieval evaluation
metrics similar to other research [62, 86], including precision, recall and ROC
measurements. For the supervised models, we use traditional data mining
classification effectiveness metrics [127]. We evaluate the computational costs
of our approach vs. traditional schema matching for baseline comparison.
Those metrics are categorised per the experiment types and granularities:

¢ (Classification effectiveness

- Granularity: Attribute level Rel(A;, A;) and Dataset level Rel(Dy, D)
— Models evaluated: M js—nom—attrs Mcts—num—attrr Meis—ds

— Classification measures: Classification accuracy, Recall, Precision,
ROC, Kappa

92

5. Experimental Evaluation

¢ Pre-filtering (pruning) effectiveness

- Granularity: Dataset level Rel(Dy, D)
— Model evaluated: M ;_45, PARIS

— Retrieval measures: Recall, Precision, Efficiency Gain, Lift Score
* Computational performance

- Granularity: Attribute level Rel(A;, A;) and Dataset level Rel(Dy, D)
— Model evaluated: Meis—nom—attrr Meis—num—attrr Meis—gs» PARIS

- Computational measures: computational processing time (millisec-
onds), metadata size (megabytes)

For the classification effectiveness measures, the classification accuracy is
given in our results as a percentage. The recall and precision rate are also
percentages. For the ROC (area under the curve) and Kappa statistic, they are
a real value between 0 and 1, where the value significance is evaluated in our
results according to Tables 4.8-4.9.

Table 4.8: The significance of the Kappa

e Table 4.9: The significance of the ROC
statistic

statistic

Kappa Significance
<0 Disagreement
0.0-0.10 No significance
0.0-020 | Slight
0.21-0.40 | Fair

0.41-0.60 | Moderate
0.61-0.80 | High

0.81-1.0 Excellent

ROC Significance
<0.5 Disagreement
0.5-0.6 | No significance
0.6-0.7 | Slight

0.7-0.8 | Moderate
0.8-0.9 | High

0.9-1.0 | Excellent

For the pruning effectiveness measures, we evaluate our approach using
the measurements described in Equations (4.8),(4.9), (4.10) and (4.11). Here, TP
means true-positives which are the pairs of datasets correctly classified by the
models. FN are false negatives, FP are false-positives, TN are true-negatives,
and N indicates the total number of possible pairs of datasets (which is a sum
of all pairs TP + FP + TN + EN). The efficiency gain measures the amount of
reduction in work required, in terms of number of pairs of datasets eliminated
by our models. The lift score measures the capability of the model in filtering
out more pairs than randomly removing pairs for the recall rate achieved. A
higher amount is better, where a value of 3.0 would mean that the model is
capable of retrieving 3 times more positive pairs than the expected amount of
positive pairs from a random sample without using the model.

recall =

TP TN+ FN
N

TP+ EN 4.8) TP ef ficiency-gain =

@9) (4.10)

precision = TP+ FP

93

5. Experimental Evaluation

recall

lift- = re\m
ift-score (1.0 — ef ficiency-gain)

(4.11)

5.3 Experiment 1: Attribute-level Models

Our goal in this experiment is to evaluate the supervised models we build
for detecting the relationship between related attributes Rel(A;, A;j) using
attribute level content meta-features as follows:

* Dataset: OMLO1

* Evaluation metrics: Classification effectiveness

* Relationship evaluated: Rel(A;, A;)

e Input: the attribute level meta-features matching for pairs of attributes.
¢ Output: a supervised model to predict related attributes per type.

* Goal: select the most appropriate models for predicting related attributes
by evaluating their effectiveness for each type (nominal or numerical).

* Description: we take two subsets of attribute pairs and their meta-
features, depending on the attribute type: nominal attributes and nu-
meric attributes. The subsets are annotated by a human to decide
whether Rel(A;, A;) is 1 or 0. We build a proximity model using a
supervised learning algorithm.

Experimental Setup

we evaluate the model using the leave-one-out approach (where we exclude
one pair from training in each run, and use it to test the output model,
therefore having a cross-validation where the number of folds is equal to
the number of pairs). As the number of positive pairs to negative pairs
are imbalanced, we create a balanced training set for each type, nominal or
numeric, which consists of all the positive pairs of attribute matches and
an equal number of negative unmatching pairs. To make the training set
representative of all the different negative cases, we cluster the negative cases
using the Expectation Maximisation (EM) algorithm [127] and we select a
representative sample of negative cases from each cluster.

Results

The attribute level models were evaluated for both nominal attribute pairs
and numeric attribute pairs. We evaluate the M ;s om—attr aNAd M5 pum—attr

94

5. Experimental Evaluation

models which assign the Sim(A;, A;) for attribute pairs. As could be seen in
Table 4.10, we created two supervised models; one for each type of attribute
pairs. Both models achieved excellent ROC performance and highly significant
results on the Kappa statistic (see Tables 4.8-4.9 results significance). The
models had good accuracy, recall, and precision rates. This is important
because the dataset pairs pre-filtering step depends on this attribute proximity
step, so we have to achieve a good performance at this level to minimise
accumulation of errors for the following tasks.

Table 4.10: Performance evaluation of attribute pairs proximity models

Model ROC | Kappa | Accuracy | Positive Recall | Positive Precision
Nominal | 0.957 | 0.65 82.5% 89.5% 77.3%
Numeric | 0915 | 0.7 84.8% 89.2% 80.5%

5.4 Experiment 2: Dataset-level Models

In this experiment, we evaluate the effectiveness of the dataset level models
in pre-filtering dataset pairs for further schema matching. Our goal is to
evaluate how good is our approach in retrieving related datasets Rel(D,, D)
and filtering out unrelated datasets from the schema matching process. We
evaluate the effectiveness of correctly proposing related datasets for schema
matching using the different types of models we describe later in this section.
The evaluation is as follows:

e Dataset: OML02

* Evaluation metrics: Classification effectiveness, Pre-filtering effective-
ness

* Relationship evaluated: Rel(Dy, D;)

¢ Input: Pairs of datasets with different types of meta-features matching
[dataset level names, dataset level content meta-features, attribute level
names, attribute level meta-features, all meta-features].

* Output: a supervised model M_j;_4s to predict related datasets based
on proximity mining and PARIS baseline.

* Goal: select the best proximity model to predict related datasets and the
proximity threshold c; to use with that model.

* Description: we take annotated pairs of datasets and their meta-features’
normalised metrics. The pairs are annotated by a human annotator to
decide whether Rel(Dy, D;) is 1 or 0. We build a proximity model using
a supervised learning algorithm.

95

5. Experimental Evaluation

We create different types of dataset pairs ensemble models to score
Sim(Dy, D) by using different combination of meta-feature types. We create
different models depending on the meta-feature type(s) used as input (namely
those are dataset content meta-features, dataset name similarity, attribute
content meta-features, and attribute name similarity). We can combine the
meta-feature types used to build the model or use each type separately to lead
to the following model types depending on which meta-features are used:

e DS-Prox-Content: uses the dataset level content meta-features, without
considering the dataset name distance.

* DS-Prox-Name: uses the dataset name Levenshtein distance as the only
predictor of dataset pairs similarity.

¢ Attribute-Prox-Content: uses the attribute level content meta-features,
not considering the attribute name meta-features.

o Attribute-Prox-Name: uses the attribute level name meta-features only,
not considering the attribute content meta-features.

¢ Name-Prox: uses dataset level and attribute level name-based meta-
features only.

¢ Content-Prox: uses dataset level and attribute level content-based meta-
features only.

e All-Prox: uses all the dataset level and attribute level meta-features,
including both name-based and content-based meta-features.

We differentiate between the meta-feature types in our experiments so we
can test if a specific subset of meta-features is better in predicting Rel(Dy, D)
or whether it is necessary to use all of them together to build an effective prox-
imity mining model for the pre-filtering task. We also investigate if there is a
difference in performance with regards to the types of meta-features extracted:
classical name-based meta-features vs. the newly proposed content-based
meta-features, and whether using both types together in combination leads
to better results. We also separate the types so we can distinguish if purely
content-based meta-features can be used as an alternative to name-based
meta-features, especially in the case when the datasets and their attributes are
not properly named. The most comprehensive of all models is the All-Prox
model which uses all the possible meta-features we collect from the data
profiling step. The DS-Prox-Name is the most generic of all models as it just
considers a single meta-feature at the most abstract-level, therefore it will be
used as our baseline for our performance comparisons in the experiments.

96

5. Experimental Evaluation

| Training Set]

Trainingfolds Test fold

eration 2 [Fy [Fo [Fo [Fa [Fs | Fo [F7 [Fo [lll Fro|—— E2
e - PEavg =
heration3 | Fy [Fo | Fa [Fa [Fs | Fo [Fr [l Fo [Fio| == & 1

tteration 10 ([ffl] F2 | Fs | Fa | Fs [Fe | F7 | Fs | Fo | Fio|=—=> EqoJ

Figure 4.8: A 10-fold cross-validation experimental setup consisting of alternating folds in
training and test roles. Image adapted from the book: Raschka S (2015) Python Machine
Learning. 1st Edition. Packt Publishing, Birmingham, UK.

Experimental Setup

[=
i)

=)
I

To evaluate our approach and models, we consider in our experiments a
10-fold cross-validation experimental setup using different subsets of datasets
from a real-world DL, as visualised in Figure 4.8. The purpose of a cross-
validation setup is to select the best supervised model for the pre-filtering task
by evaluating the different models on test-sets separate from the training-sets,
which is commonly used in recommendation assessment experiments [6, 62]
and schema matching tasks [35]. Such an experimental setup increases the
validity and generalisability of our experiments and approach. This is only
achieved if the training set is representative of the cases found in the real-life
population.

We make sure that the folds do not include intersecting dataset pairs. We
create a balanced training set with all the positive cases and an equal number
of negative cases similar to experiment 1. As the number of negative cases
is much higher in the OMLO02 subset too, we also follow the clustering of
negative cases approach to select a representative sample from each cluster
(see Section 5.3). As seen in Figure 4.8, we iterate 10 times using an alternating
fold as the test set, and the remaining folds as the training set. We evaluate the
models in accurately predicting Rel(D,, D;) with 9 different cut-off thresholds
in [0.1-0.9] for ‘c;” from Equation (4.1) in order to cover a wide range of
values. Finally, we evaluate the performance of each model by averaging
the evaluation metrics ('E’) from all 10 iterations. We also compute standard
deviations in performance between different folds to evaluate the stability and
consistency of the models evaluated. For the PARIS baseline implementation,
it does not need to train any models, so we simply run it on all pairs of
datasets and compare its results to our approach.

97

5. Experimental Evaluation

Results

Classification effectiveness. First, we created the models for the dataset pairs
which assign Sim(D,, D) and check if they satisfy Rel(D,, D) by passing the
minimum threshold. We evaluated the classification effectiveness measures
for each proximity model after the 10-fold cross-validation. The results are
summarised in Figures 4.9-4.11. The figures show a plot of results (from 10
folds) and interquartile ranges of accuracy, kappa statistic and ROC statistic
for each model type. The distribution between folds can also be seen to assess
the stability of the models. For our comparison, we use the name-based
models, which are common in previous research, as our baseline comparison.
As could be seen, all models were stable with very close values for the differ-
ent evaluation metrics, indicating the versatility of our approach. However,
still the All-Prox and Attribute-Prox models consistently had slightly better
stability (lower deviations) than Name-Prox and other models. It can be seen
from the results that the All-Prox and Attribute-Prox models are consistently
performing better than the name-based model in terms of accuracy, ROC and
Kappa statistic. This indicates that our proposed content-based and name-
based combined meta-features models perform best with schema matching
pre-filtering.

Model Type Model Type
All-Prox ¢—alDIIe»-$78.18 All-Prox ¢—ellDTe»-40.56
Attribute-Prox $-llllNied 75.51 Attribute-Prox GelllNe 0.51
Name-Prox == 74.29 Name-Prox —=————= 0.49
Content-Prox - ——=473.72 Content-Prox . —=$0.47
DS-Prox ¢-o—@mmn—$73.29 DS-Prox ¢-o—@mn—+0.47
7172 73 74 75 76 77 78 79 80 8182 0.44 0.46 0.48 0.50 0.52 0.54 0.56 0.58 0.60 0.62

Classification Accuracy Kappa Statistic

Figure 4.9: Classification accuracy from 10-fold ~ Figure 4.10: Kappa statistic from 10-fold
cross-validation of dataset pairs pre-filtering cross-validation of dataset pairs pre-filtering

models. models.
Model Type
All-Prox belsd—o$0.86
Attribute-Prox ® ¢@we+0.83

Name-Prox ——EEEESNH 0.81
Content-Prox ¢-eamsnbe—0.81
DS-Prox oo »40.81
0.80 0.81 0.82 0.83 0.84 0.85 0.86 0.87 0.88
Roc Score

Figure 4.11: ROC statistic from 10-fold
cross-validation of dataset pairs pre-filtering
models.

The different models used for the schema matching pre-filtering task
achieve different results because the meta-features used in the different models
are not correlated, therefore contain different information about the datasets
leading to the different performance of each model. We evaluated the Spear-
man rank correlation [62] between the different types of meta-features, which
is presented in Table 4.11. The Spearman rank correlation ranks the dataset

98

5. Experimental Evaluation

Table 4.11: Spearman rank correlation for the different meta-features. We aggregate minimum
(Min.), average (Avg.), maximum (Max.), & standard deviation (Std. Dev.) for different
meta-feature types.

Type 1

Type 2

Min. Correlation

Avg. Correlation

Max. Correlation

Std. Dev. Correlation

Attribute Name

Attribute Content

-0.12

-0.01

0.19

0.04

Attribute Name

Dataset Content

0.02

0.04

0.10

0.02

Attribute Name

Dataset Name

0.06

0.07

0.13

0.02

Dataset Content

Attribute Content

-0.01

0.09

0.15

0.04

Dataset Content

Dataset Name

-0.02

0.00

0.02

0.02

Dataset Name

Attribute Content

0.00

0.01

0.04

0.01

pairs according to the proximity metrics of the meta-features. If the dataset
pairs have the same identical rankings between two different meta-features
then we get a perfect correlation. If the rankings produced in descending
order by the two proximity metrics are different (e.g., a dataset pair can be
ranked in the 100th position by one meta-feature and in the 9th position by
the other, which have a difference of 81 ranks) then we get a lower correla-
tion, with completely uncorrelated meta-features. We evaluated the average,
standard deviation, minimum, and maximum of the correlation between the
meta-features falling under the different types of meta-features. Recall that
each type will have multiple meta-features (see Section 4.1), like attribute
content will include all the meta-features in Table 4.3 with all their different
proximity metrics according to the aggregations described in Section 4.2. We
calculate the correlation between each individual meta-feature pair and we
calculate aggregates per type. As can be seen in Table 4.11, all the correlation
values are low.

Pre-filtering effectiveness. We compare the effectiveness of our approach
against the baseline implementation of PARIS. We change the cut-off thresh-
olds for Equation 4.1, and we aim to maximize the efficiency-gain while main-
taining the highest recall for all candidate dataset pairs satisfying Rel(Dy, D).
The effectiveness is also evaluated by lift scores. The results from our approach
and from the ‘baseline’ PARIS prototype are presented in Figures 4.12-4.15.
Figures 4.12-4.13 show the results for the different supervised models and
PARIS, and Figures 4.14-4.15 show the results of the same evaluation met-
rics but for the individual meta-features in our approach, where we use the
individual proximity metrics of the meta-features directly as an indicator of
Rel(Dy, D;) without using any supervised learning models. We evaluate the
dataset level meta-features from Section 4.1. The graphs show the average
performance for all the individual metrics per specific type. We use a different
minimum threshold with each proximity model or meta-feature in Figures
4.12-4.15 leading to the different plotted results per model or meta-feature.
The aim of comparing both models and individual metrics is to be able to
detect if the proposed supervised proximity models perform any better than
simply using single independent metrics for the pre-filtering task.

For each evaluation of the models or the individual metrics, we evaluate
the efficiency gain against recall first. We set a minimum target recall of 80%

99

5. Experimental Evaluation

100 5545 33 ST 100 -
4.9 2.4 958 S 90 -FroX
90 7.6 =0 738
Baseline 45 | 80 Attribute-Prox
£ 80 1.7 31
& 70 DS-Prox 13 2.9 \\(e 70 Content-Prox
g .) B 60 < 228\
S 60 ~ Name-Prox A 23\ 'g T Name-Prox
. 1.9 ~ 50
é 50 Content-Prox 1 6 o 143 DS-Prox
40 . 2 40 14.8 10.8
o Attribute-Prox < \ I
z 30 30)
< 13 Baseline \
All-Prox 128 20 7.6 56
20 5.5
45 45 3.1
10 10 /49 17 13 EP I N
0 0 33 24 21
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
Avg. Recall Avg. Recall
Figure 4.12: Recall against efficiency gain for Figure 4.13: Recall against precision for the
the different supervised models. different supervised models.
38.28 29.14 38.28
100 Kff e .38 100
G @E%b 4.02 3057 sns
%0 337 Y 00373 %0 32,51 y
- O AttributeNameProx
7.06 03.19 3237
80 . 0277 80 O Attribute-Content
cA ;0 2.4 + DS-Content
1.
e T 70 X DS-Name
8 5 2393
2 60 23610188 $ 60 L
5 195 S
£ so O s S 50 140
bt 127 1.69 S +
E‘ 20 . 20 22‘11+ 17.06
1.26 b 14.26 15.54
30 121 30 12.69
O Attribute-Name-Prox 126 1496 10.41
20 O Attribte-Content 111 20 11 ng 8810 870
+ DS-Content e 5.5%%0 402 63'7119
10 X DS-Name S ad 10 oo 250 2792361 o5 | 6o
. +. o + 337 + + P 4 oy 321 111 1,01
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
Avg. Recall Avg. Recall

Figure 4.14: Recall against efficiency gain for ~ Figure 4.15: Recall against precision for the
the different metric types. different metric types.

and a minimum target efficiency gain of 60% (i.e., filtering out at least 60%
of the pairs of datasets while still proposing 80% of the true positive pairs),
which are the grey shaded areas in the graphs. The minimum thresholds can
be selected differently according to the requirements of the data analyst. Good
performing models or proximity metrics are those that fall in this shaded area.
The numbers annotated to some of the points in the graphs indicate the lift
score (higher values are better). Similarly, we compare the precision against
the recall in the second graphs for each evaluation (models or metrics). We
also annotate some selected lift scores for some points in the graph.

When comparing our new proposed proximity models with the proximity
model (DS-Prox) from our previous work [18] (described in Chapter 3), it

100

5. Experimental Evaluation

can be seen that our Attribute-Prox model and the All-Prox model perform
consistently better. This is expected because we are collecting finer granularity
metadata to describe the datasets which makes it easier in the supervised
learning task to differentiate between positive pairs and negative pairs. Al-
though our new proposed techniques outperform our previous work in the
DS-Prox model in terms of recall rates and lift scores, it comes at the price of a
more computationally expensive algorithm (Algorithm 2). The complexity of
the dataset level Algorithm 3 is O([n = (n — 1)]/2) while the complexity of the
attribute level Algorithm 2 is O([n * (n — 1) » a%]/2) where ‘n’ is the number of
datasets and ‘a’ is the number of attributes in each dataset (we can use the
average number of attributes per dataset as an approximation for ‘a” when
estimating the number of computations required).

If we would compare the content meta-features only model (Content-Prox)
with the name meta-features only model (Name-Prox), we would see that both
models perform equally the same in the pre-filtering task, although combining
them in the All-prox model leads to the best results capturing the similarity
of difficult pairs that can not be retrieved by any single type individually.
Therefore, it is possible to solely depend on content-based proximity models
as a replacement of name-based proximity models to achieve similar results.
This will be important in the cases of DLs which are not well maintained and
do not have properly named datasets and attributes. We investigate in detail
the performance of the All-Prox proximity model based on its true positives,
false positives and false negative pairs in the Appendix®, where we present the
exact cases, we discuss the reasons of discrepancies and we give a comparative
analysis of the underlying proximity metrics which led to those cases.

For each of the pruning effectiveness evaluation metrics listed above, we
compute the average and standard deviation of the measure between the
different folds of evaluation for our approach. The average is plotted in the
graphs in Figures 4.12-4.15, and the standard deviations of each model for
the threshold 0.5 (we chose the mean threshold) are given in Table 4.12. The
standard deviation indicates the stability of our proposed metrics and models
with different subsets of datasets. We aim for a low standard deviation to
prove the high adaptability of our approach.

Table 4.12: The standard deviation of each evaluation measure for 10-fold cross-validation of
each dataset pairs pre-filtering model, where ¢; = 0.5

Proximity SD Recall | SD Efficiency Gain | SD Precision | SD Lift Score
All-Prox 5.4 0.61 0.58 0.32
Attribute-Prox | 6.5 1.0 0.7 0.24
Content-Prox 6.8 1.0 0.38 0.35
DS-Prox 7.86 0.85 0.29 0.28
Name-Prox 6.3 1.1 0.47 0.24

5The appendix could be found online at https://aymanupc.github.io/all_prox_openml

101

https://aymanupc.github.io/all_prox_openml/

5. Experimental Evaluation

Dataset Pairs Pre-filtering Meta-features

First, we assess if the supervised learning models perform better than a sim-
pler approach based on the sub-components they are dependant on, which are
the individual meta-features used in the models. The supervised models use
multiple features in combination to score the similarity of pairs of datasets.
Here, we assess the individual features as a baseline to compare against,
and whether simply using a proximity metric of an individual meta-feature
without any models can lead to any good result. We aggregated an average
for the pruning evaluation metrics per each type of meta-feature. The results
comparing recall against efficiency gain is given in Figure 4.14. In our experi-
ments, no single meta-feature was able to individually predict related pairs
of datasets to achieve optimum recall and efficiency gain, as can be seen by
the lack of any plotted result in the top-right box. As seen in Figure 4.15, the
pre-filtering task using the meta-features can not have a precision better than
10% for the higher recall rates.

We note here that the different types of meta-features are able to model
different information about the datasets and their attributes as seen by the low
correlations in Table 4.11. That is the main reason we used the combination
of different types of meta-features in our proximity models which are able to
combine the meta-features to give better results.

Dataset Pairs Pre-filtering Efficiency Gain Vs. Recall

We also evaluated the different supervised proximity models by testing their
pre-filtering performance with different proximity thresholds. As can be
seen in Figure 4.12, all of the proximity models were able to optimise recall
and efficiency gain to achieve results in the top-right shaded area, compared
to the baseline PARIS implementation that was not successful. This shows
the value of approximate proximity matching and the supervised models
in our approach compared to exact instance-based string matching in the
baseline. The best performing models were the All-Prox and Attribute-Prox
models which achieved better results than DS-Prox from our previous work
[18] (described in Chapter 3) and better results than Name-Prox which are
more common in other previous research. This means that combining both
name-based meta-features and content-based meta-feature in a supervised
model achieves best results in the schema matching pre-filtering task. For
example, a good result can be achieved using the All-Prox model (combining
all meta-feature types) with a threshold of 0.4 which achieves a recall rate
of 85%, an efficiency gain of 73% and a lift score of 3.14. This means that
the model is able to effectively propose most of the pairs of datasets for
schema matching with the least effort possible (only proposing 27% of pairs
for comparison), while achieving this with a performance that is three times
better than naive random selection of dataset pairs for schema matching (as

102

5. Experimental Evaluation

expressed by the lift score of 3.14 achieved by the All-Prox model).

Dataset Pairs Pre-filtering Precision Vs. Recall

As seen in Figure 4.13, the precision of the proximity models improved
the performance of the schema matching pre-filtering as seen by the higher
precision rates compared to the individual meta-features in Figure 4.15. By
combining the meta-features in a supervised model we were able to achieve
higher precision rates with the same recall rates, for example, a precision
of 17% with a recall rate of 75% using the All-Prox model. This is better
than the best achievable precision with the individual meta-features, which
can achieve a precision of 4% with the same recall rate for the attribute level
meta-feature type. However, we acknowledge that the precision rates are low
for all types of models and meta-features. We can therefore conclude that our
proposed proximity mining approach can only be used as an initial schema
matching pre-filter which is able to prune unnecessary schema matching
comparisons from further steps. Our approach can not be used for the final
schema matching task because it will produce false positives. Therefore,
dataset pairs should be further scrutinised with more comparisons to assess
their schema similarity (as seen in Figure 4.1 bottom instance-based matching
layer). Such comparisons use instance-based matching similar to our previous
work [15] (described in Chapter 2).

5.5 Experiment 3: Computational Performance Evaluation

In this experiment, we evaluate the computational performance in terms of
time and storage space consumption as follows:

¢ Dataset: OML02
¢ Evaluation metrics: Computational performance
* Relationship evaluated: all

e Input: All the pairs of datasets from OML02, a model (M;_4s) and the
PARIS schema matching prototype.

* Output: attribute-level and dataset-level metadata.

* Goal: test the comparable computational costs of running the different
components of our proximity mining approach vs. traditional instance-
based schema matching techniques. We show the value of pre-filtering
by means of computational costs saving.

* Description: we take all the annotated pairs from OML02 and we do a
complete run which collects the required meta-features and metrics, and

103

5. Experimental Evaluation

Table 4.13: The computational performance of our approach vs. the PARIS implementation in
terms of time and storage space

Task Timing Average Time Storage
Space
Dataset Profiling 263,019ms (4:23 minutes) 1,295ms per dataset 31.25MB
Numeric Attribute Matching 1,184,000ms (19:44 min- | 0.04ms per attribute pair In mem-
utes) ory
Nominal Attribute Matching 160,000ms (2:40 minutes) 0.04ms per attribute pair In mem-
ory
Numeric Attribute Top Match- | 3,250,000ms (54:10 min- | 0.1ms per attribute pair 7MB
ing utes)
208ms per dataset pair
(15,576 dataset pairs)
Nominal Attribute Top Match- | 313,000ms (5:13 minutes) 0.08ms per attribute pair 2.33MB
ing
19ms per dataset pair
(16,290 dataset pairs)
Dataset-level All Aggregations | 500,000ms (8:20 minutes) 25ms per dataset pair | 35MB
of Attribute Similarities (19,931 dataset pairs)
Dataset-level Name Matching 202ms (0 minutes) 0.0lms per dataset pair | Part
(20,503 pairs) of Top
Matching
metadata
Dataset-level Content Matching | 5,100ms (5.1 seconds) 0.25ms per dataset pair | 3.25MB
(20,503 pairs)
Attribute-level Name Matching, | 1,018,663ms (16:58 min- | 0.03ms per attribute pair 12.5MB
top pairs computation, and ag- | utes) (35,283,824 attribute pair)
gregation
5lms per dataset pair
(19,931 dataset pair)
Apply the proximity models on | 1,665ms (1.66 seconds) 0.08ms per dataset pair | 8.5MB
the dataset pairs to score their (20,503 dataset pair)
similarities
PARIS Alignment Implementa- | 743,077,431ms (12,384:37 36,241ms per dataset pair 15,450MB
tion minutes) (0:36 minutes per dataset | (15.1GB)
pair)

we run the algorithms to compute Sim(Dy, D,). We measure the amount
of time and storage space it takes to process the pairs.

We ran the experiments for our approach using a computer running on
Linux Debian, 8GB main memory, a dual-core Intel i7 processor running at
2.4GHz and 4MB cache, Java v8 for the implementation of our algorithms,
and Postgres database v9.5.12 for the metadata storage and management. For
the PARIS baseline implementation, we used a server with more resources as
recommended by the developers. The server runs on Linux Debian, Java v8§,
24GB of memory and a quad-core processor at 2.4 GhZ and 4MB cache. We
present the results below.

Results

We compare the computational performance by evaluating the amount of time
and storage space for running our approach and the PARIS-based implemen-
tation with the DL sample OMLO02. The results can be seen in Table 4.13. We
list the tasks from our approach and compare to the baseline in the last row.

104

6. Conclusion

We compute the time for each task, the average time it takes, and the storage
space used. For the attribute matching, we keep the output in memory and
do not materialise it. We only materialise top-matching attribute pairs.
Based on the results in Table 4.13, our approach needs a total of 112
minutes and 100MB storage space for the OML02 DL sample datasets of a
total size of 2.1GB (i.e., 5% metadata space overhead). This is at least 2 orders
of magnitude less than the time and space consumption of the baseline PARIS
implementation. The most expensive steps in our approach were those for the
numeric matching tasks as they were much greater in amount than nominal
attributes. Still, our approach is more efficient in terms of computational
performance and pre-filtering effectiveness as shown by our results.

5.6 Generalisability

In our experiments, we have used the OpenML DL to create a 10-fold cross-
validation experimental setup. OpenML stores datasets representing hetero-
geneous subject-areas. Thus, we expect our proposed techniques to achieve
similar results with different heterogeneous DLs. We tested our approach with
different heterogeneous DL subsets covering randomly selected subject-areas
in each cross-validation fold. This further improves the generalisability of
our results as the results achieved proved to be stable between the different
cross-validation folds. Therefore, our approach is recommended in the early-
pruning and schema matching pre-filtering task in a DL environment with
heterogeneous subject-areas. Under different settings, the data scientist should
first test the performance of our approach on a test sample and then select
the best performing cut-off thresholds accordingly. It is also crucial that the
training samples selected for creating the supervised models are representa-
tive of the specific DL setting they are used for. We also note, that although
our experiments were done over binary approximation for the Rel(D,, D)
function in the ground truth due to the difficulty to find a ground truth with a
similarity continuum, still our approach can be useful in dataset pairs ranking
problems using the Sim(D,, D) continuous function.

6 Conclusion

We have presented in this chapter a novel approach for pre-filtering schema
matching using metadata-based proximity mining algorithms. The approach
is able to detect related dataset pairs containing similar data by analysing their
metadata and using a supervised learning model to compute their proximity
score. Those pairs exceeding a minimum threshold are proposed for more de-
tailed, more expensive schema matching at the value-based granularity-level.
Our approach was found to be highly effective in this early-pruning task,

105

6. Conclusion

whereby dissimilar datasets were effectively filtered out and datasets with
similar data were effectively detected in a real-life DL setting. Our approach
achieves high lift scores and efficiency gain in the pre-filtering task, while
maintaining a high recall rate. For future research, we will investigate the
different techniques to improve the scalability of our approach by improving
attribute level matching selectivity. We also want to investigate the possibility
of detailed semantic schema matching at the attribute level. We will also in-
vestigate our proximity mining approach in effectively clustering the datasets
into meaningful groupings of similarity.

Acknowledgements. This research has been partially funded by the Euro-
pean Commission through the Erasmus Mundus Joint Doctorate (IT4BI-DC).

106

Chapter 5

Automatic categorization of
datasets using proximity
mining

Birds that are alike attract each other, flock together, and group
up.

— Old proverb

This chapter is an extended version of the work published as a paper
in the proceedings of the 9th International Conference on Model and Data
Engineering (MEDI) (2019) [16].

The layout of the paper has been revised and the content has been extended
DOI: https://doi.org/10.1007/978-3-030-32065-2_3

Springer copyright / credit notice:

© 2019 Springer, Cham. Reprinted with permission from Ayman Alserafi,
Alberto Abell6, Oscar Romero, Toon Calders. Keeping the Data Lake in Form:
DS-kNN Datasets Categorization Using Proximity Mining, MEDI, 2019.

107

Abstract

Given the recent growth in the number of datasets stored in data repositories, there has
been a trend of using Data Lakes (DLs) to store such data. DLs store datasets in their
raw formats without any transformation or preprocessing, with accessibility available
using schema-on-read. This makes it difficult for analysts to find datasets that can
be crossed and that belong to the same topic. To support them in this DL governance
challenge, we propose in this chapter an automatic algorithm for categorizing datasets
in the DL into pre-defined topic-wise categories of interest. We utilise a k-NN approach
for this task which uses a proximity score for computing similarities of datasets based
on metadata we collect. We test our algorithm on a real-life DL with a known ground-
truth categorization. Our approach is successful in detecting the correct categories for
datasets and outliers with a precision of more than 90% and recall rates exceeding
90% in specific settings.

108

1. Introduction

1 Introduction

Today, a lot of data is generated covering different heterogeneous topics and
domains. Those data are frequently stored as tabular datasets which describe
different entities (in the rows) with information about them stored as attributes
(in the columns). A collection of such raw datasets which are stored in their
original schema without preprocessing or transformations is called a Data
Lake (DL) [128]. Over its lifetime, a DL becomes very diverse and can cover
different topics, making it difficult to find and retrieve relevant datasets for
analysis. Therefore, it is a challenge for the users to govern the DL by detecting
the groupings and underlying structures of similar datasets covering relevant
topics for analytics [15, 18, 85].

Automatic dataset categorization is concerned with the classification of
datasets ingested in the data lake into topic-wise groupings based on their
most-similar counterparts already existing in the DL. We use a lazy super-
vised machine learning approach.

To tackle this challenge, we propose an automated algorithm called DS-
kNN to detect such groupings using k-nearest-neighbour (k-NN). The algo-
rithm relies on collecting relevant metadata about the datasets when they are
ingested, then we compute proximity models of dataset similarities based on
supervised machine learning, and apply those models on new datasets to com-
pute their similarity scores with datasets stored in the DL. Once we computed
the similarities, we apply a k-NN algorithm to categorize the ingested datasets
into the groupings already present in the DL or to classify them as outliers. An
example of the expected results can be seen in Figure 5.1. Here, we visualise
the DL as a proximity graph having datasets as nodes and edges connecting the
nodes showing the similarity scores (R € [0,1]) computed using the proximity
model. Datasets in the same category (cluster) are shown in the same colour.
We only show edges between datasets in the same category. In Figure 5.1 (a)
we show an example of a complete DL proximity graph and in (b) we zoom-in
on the specific part highlighted with a box for showing more details.

This chapter is an extended version based on our work in [16]. The main
contributions of this chapter are:

1. We propose a kNN-based proximity mining algorithm for finding the
correct categories for datasets based on existing categories in the DL.
The improvement includes a new technique for finding top-k closest
neighbours to propose a category for a dataset, where we search for the
category having the highest aggregate total of similarity scores from the

109

1. Introduction

e g @ s e o o e

s nanyorcnmeds

(a)
vertotgadptumn =

colleaup ‘
S

deltaators
s:-mme-l-control
Amazon_eee_access

ions

Facu@Saries eadre
(b)

Figure 5.1: A visualisation of the output from DS-kNN data lake (DL) categorization. A

proximity graph shows the datasets as nodes and the proximity scores as edges between nodes.
Fig.(a) complete DL and Fig. (b) a zoomed-in view highlighted by the red box in (a)

110

2. Preliminaries

top-k nearest neighbours instead of the category with the majority of
datasets in top-k.

2. We use different proximity mining models from Chapters 3 and 4 for
assigning the similarity scores between dataset pairs including models
which consider dataset-names together with dataset content, models
which consider an ensemble of multiple dataset content meta-features,
and models which use different aggregate proximity metrics from at-
tribute comparisons. In addition, we also test models which combine all
of these together.

3. We evaluate the algorithm in an expanded and improved experiment
in a real-world setting to prove its effectiveness in assigning correct
categories to new datasets ingested in the DL. This includes testing
different k-values in full experimentation, treating all outliers (a dataset
forming a category all by itself) as a single ‘Outlier” category to prevent
the macro-averaging evaluation metrics from being skewed towards
outliers, and testing different category sizes against outliers as well
(in addition to non-outlier datasets). This helps in evaluating if the
algorithm is capable of equally finding the correct categories as well as
detecting outliers without any matching categories in the DL.

4. We experimentally test the effect of different DL settings on the per-
formance of our approach using different size categories and different
annotated ground-truths. This includes a new validation experiment
of the top performing DS-kNN parameters using a new ground-truth
sample of datasets we collect.

In the rest of this chapter, we define the DL and the scenario we consider
in Section 2, we present the DS-kNN algorithm in Section 3, then we test the
algorithm on a real-life DL and we experiment with our algorithm in Section
4, we present related work in Section 5, and we conclude in Section 6.

2 Preliminaries

We consider a DL consisting of tabular datasets. Those are large heterogeneous
repositories of flat structured data (i.e., CSV, web tables, spreadsheets, etc.).
Such datasets are structured as groups of instances describing real-world
entities, where each instance is expressed as a set of attributes describing the
properties of the entity. We formally define a dataset D as a set of instances
D = {L1, I, ...I;}. The dataset has a set of attributes S = {A1, Ay, ...Ay,;}, where
each attribute A; has a fixed type, and every instance has a value of the
right type for each attribute. We focus on two types of attributes: continuous

111

2. Preliminaries

numeric attributes with real numbers and categorical nominal attributes with
discrete values.

For each dataset, we collect different statistics about their content which
we call content meta-features:

* Nominal attributes: their data profile mainly involves frequency distri-
butions of their distinct values.

* Numeric attributes: their data profile mainly involves aggregated statis-
tics like mean, min, max, and standard deviations.

We compute similarity scores between pairs of datasets [D,, Dy], as follows:

e Sim(D,, Dy): an estimation (R € [0,1]) of the similarity based on the
comparison of the content meta-features we collect about the datasets and
their attributes. Typically, the information contained in highly similar
datasets would overlap. An example would be a pair of datasets having
similar numeric values and distribution of values, or nominal attributes
having the same number of values. Alternatively, it could be based on
name string-similarity between datasets and their respective attributes.

Scenario. We aim at governing the DL by incrementally maintaining the
clusters of datasets defined for them. We consider the scenario where we
initially have an existing DL for which we know all clusters of datasets based
on their categories. However, given the dynamic nature of DLs, new datasets
are frequently ingested. Thus, we need to compare these new datasets against
the datasets already in the DL to find their similarity with them, and then to
find their most appropriate category based on the similar datasets found in
the DL, or to assign them to a separate category as an outlier.

This shapes the main problem for this chapter: given a collection of datasets
in a DL and a newly ingested dataset, find all pairs of highly similar datasets,
and based on their categories, assign a new category for the new dataset, or if
no highly similar datasets are found then indicate that the dataset is an outlier.
To compute the similarity between the datasets, we use a proximity model,
which we call Mpg_p,,,. We discuss how we create this model in Subsection
2.1.

The scenario discussed is visualized in Figure 5.2. Consider that there is
a DL having a group of datasets (white circles) which have annotations of
all their Sim(D,, D;) relationships between pairs (as seen by the lines linking
the datasets). Groups of datasets with linkages are segmented into categories
(seen by the encompassing black circles). Those categories are the groupings
of the subject-areas or domains-of-knowledge we have in the DL. We need
to automatically use this DL and its known annotations to create a model
Mps_prox Which can automatically annotate relationships of a new dataset D;
with Sim(D;, Dy) similarity scores. Therefore, we want to learn a model from

112

2. Preliminaries

Data Lake

M DS-Prox
9 new
H D;

Figure 5.2: The data lake categorization scenario using k-NN proximity mining

the DL and apply it to estimate the similarity between a new dataset and all
other datasets already in the DL, in order to find the top-k nearest neighbours.

Based on the similarity scores from the nearest neighbours we assign a
category to D;. The highlighted edges between the new dataset D; and some
nodes in the DL are those having the highest similarity scores computed
by the model (in this case, we give an arbitrary example where we use
top-3 nearest-neighbours). The numbers labelled on those edges are the
computed Sim(D;, Dy,) scores. In our proposed approach, each of those top
nearest neighbours passing a similarity threshold (i.e., minimum similarity
score) suggests its category as the correct one for D;, and the category with
the highest total Sim(D;, Dy) similarity scores should be proposed to the user,
or if no such similar datasets are found (i.e., no dataset has a similarity score
above the threshold) then D; is marked as an outlier without any relevant
category found. In the case of tied categories among the proposed ones from
the top-k similar datasets, then all of them are proposed to D;. In the example
in Figure 5.2, category ‘C1” would be proposed as the final category as it has
an aggregated sum of similarity scores of (0.9 + 0.7 = 1.6), as compared to
only 0.5 for category ‘C3".

To learn the Mpg_p, model, we use supervised machine learning as
described in Subsection 2.1.

2.1 Proximity Mining: Meta-features Metrics and Models

For all the datasets in the DL, we collect two metadata types: A.Content-
based and B. Name-based meta-features. The name-based techniques are the
most commonly used metadata in previous research [52, 85, 111, 121]. In our
DS-kNN approach, we also use our proposed content-based meta-features
complementing the name-based metadata when computing similarity scores

113

2. Preliminaries

(see Chapters 3 and 4). Such content meta-features include data profiling
statistics about the content of the datasets. Thus, we use two types of metadata
for similarity computations:

* Name-based metadata: the naming of datasets and their attributes.

» Content-based metadata: profiling statistics about the data stored in the
datasets. The collected meta-features (described in Table 4.3) include
statistics concerning all attributes collectively, the attribute types found
and the overall number of instances, in addition to attribue-level ag-
gregated meta-features in Table 3.1. Those form a concise list of meta-
features that have been proved in our work [18] (see Chapter 3 Section
4.1) to be effective in predicting related datasets with similar schemata
and stored information. Our purpose for those meta-features is to
describe the general structure and content of the datasets for an approxi-
mate comparison using our proximity mining classification models.

For content meta-features, we construct the Mps_py,, model using the
proximity mining approach from Chapters 3 and 4. First, we compute all
proximity metrics for each meta-feature m; between each pair of datasets
[Dy, Dy]. We compute this for all dataset pairs [Dg, Dy] in the training sample.

For the attribute-names, we compute the proximity metrics between the
attribute pairs from the different datasets and then compute an aggregation
that generates a single value for dataset pairs [D,, Dy] using: minimum
distance, maximum distance, and average. Note that to compute distances
from name-based metadata (instead of content-based meta-features), we use
the Levenshtein distance as a standard string comparison metric [86].

Once we have the metadata collected and their distances computed, we feed
them to a supervised machine learning algorithm to produce a classification
model which identifies those dataset pairs in the same assigned category. This
creates the proximity mining model to compute similarity scores. For this
initial training sample of datasets we have in the DL, a data analyst should
have incrementally assigned a category cluster to each dataset based on their
topics. The target variable for those classifiers is a binary value whether the
datasets in the pair belong to the same category or not.

We use the two top performing ensemble learning algorithms from chapter
3 to learn the model, which are the boosting machine learning algorithms
AdaBoost by [49] and LogitBoost by [50]. We also use the top performing
Random Forest [29] ‘All-Prox” model from chapter 4 which we call here ‘All-
Ensemble” model. Those algorithms were compared in our previous work to
other algorithms and were found to be the best in finding related schemata.
The positive-class distribution produced by the ensemble model is used as the
similarity score Sim(D,, Dy) [127].

114

3. DS-kNN: a Proximity Mining Based k-Nearest-Neighbour Algorithm for
Categorizing Datasets

Finally, we apply the learnt Mpg_p,,x model on pairs of one new ingested
dataset and each existing datasets in the DL to generate the similarity scores.
We compare the score against a minimum threshold like in Equation 5.1.
Only pairs passing the threshold are considered as candidate top-k nearest
neighbours to a dataset in our DS-kNN algorithm (we discuss this in detail in
Section 3).

1, Sim(D,,, Dh) > Crel

. (5.1)
0, otherwise

TOP(Da, Db) = {

3 DS-kNN: a Proximity Mining Based k-Nearest-
Neighbour Algorithm for Categorizing Datasets

Algorithm 4: DS-kNN Categorization of a dataset ingested in a Data
Lake

Input: A new ingested dataset D,, each existing dataset Dj, in the data lake DL, Dataset-level
meta-features distance metrics MF for each pair of datasets {D,, Dy}, the category CatDb for
each existing dataset in the DL, the classification model M;_ ., algorithmic parameters:
the number k of nearest neighbours, and the similarity score threshold c,,;

Output: The set SP of the ingested dataset and its similarity scores Sim(D,, Dy) and category Catp,
for each pair {D,, D)} passing c,, the set SP-Top of top matching k datasets and their
categories, the assigned category for the new dataset Catp,

SP «— &;

SP-TOp — ;

foreach {D,,Dy} c DL and a # b do

[Da, Dy, Sim(Da, Dy)] = Mas—prox(MF(p,,p,});
if Sim(D,, Dy) > ¢, then
L SP < SP U {[D4, Dy, Sim(D,, Dy), Catp, 1};

o G R @ N R

7 SP-Top = Top-k_Nearest_Neighbours(SP, k); \ \Retrieve the subset of the highest ranking k-pairs
by similarity score

Catp, = Top-category(SP-Top); \\Get category with highest sum of similarity scores from Top-k
9 if (Catp, = NULL) then

10 L Catp, =' Outlier’;

®

We propose an algorithm for computing the categories of an ingested
dataset as described in the scenario in Section 2. After learning the classi-
fication model Mpg_pox, We apply the classifier to each new pair [D,, Dy]
where D, is any new ingested dataset and Dj, is each of the existing datasets
in the DL, in order to obtain the similarity score Sim(D,, D}) with all datasets
in the DL. Then, we apply k-NN in our proposed DS-kNN Algorithm 4 to
compute the category for the new dataset. k-NN was already successful in
similar categorization problems, like free-text document categorization [55],
image categorization [78], etc. We also select k-NN as our supervised classi-
fication technique rather than other classification methods like Naive Bayes

115

3. DS-kNN: a Proximity Mining Based k-Nearest-Neighbour Algorithm for
Categorizing Datasets

and decision trees previously used with other applications like text document
classification [19], as we preferred a generic lazy learning approach that does
not need to be trained a priori for a specific list of pre-defined categories.
Rather, k-NN facilitates categorization of datasets without retraining when the
DL is dynamically growing with continuous addition of datasets belonging
to new categories. Other techniques will require retraining whenever a new
category is added to the DL.

First, our algorithm applies in Lines 3-6 the Mpgs_p,,x model on all the
dataset pairs for the new dataset D, to compute their similarity scores, and
those passing the minimum threshold are stored in the set SP. To improve
efficiency, a heap data structure could be used to store the datasets with their
similarity scores for quick search and retrieval of top-k nearest-neighbours.
The next step in Line 7 involves finding those top-k nearest-neighbours which
are existing datasets in the DL with the highest similarity scores to D,. Finally,
we assign a category to the new dataset in Line 8 based on the category
with the highest aggregated sum of similarity scores from the top-k nearest
neighbours. If no top-k nearest neighbours that satisfy the given minimal
similarity are found in Lines 9-10 then the dataset is marked as an “outlier”
with no proposed category.

The algorithm has the following parameters as input:

* The number of neighbours (k): the top-k number of nearest neighbours
which our algorithm uses to predict the new category for an ingested
dataset.

* The proximity model (M s p0,): this is the proximity mining model
created using our approach described in Section 2. We use different
models depending on the metadata, i.e., content-based, dataset-name
based or attribute-name based.

* The similarity threshold (c,): the minimum allowed similarity score
to consider a dataset pair as candidate nearest neighbour. This threshold
helps in detecting outliers as it eliminates noise by preventing any
dataset with a low similarity score from being proposed in the top-k
nearest neighbours and proposing its category incorrectly.

Different similarity thresholds lead to a different performance of the al-
gorithm. A higher threshold prevents suggesting irrelevant categories by
eliminating dataset pairs with a similarity score below the threshold, therefore
helping in improving the capability of the algorithm in detecting outliers
(without any suggested categories in the DL). On the other hand, a lower
threshold allows more dataset pairs with a lower similarity score to suggest
their categories therefore preventing the algorithm from missing any relevant
category for a new dataset. As a consequence of this trade-off, we test multiple
threshold values in our experiments to discover the best one to use. We also

116

4. Experimental Evaluation

note that generally a lower value for the parameter k makes the algorithm
more susceptible to outliers and overfitting, while a higher value leads to
underfitting. An optimum value that also tackles this trade-off needs to be
empirically discovered too.

Different proximity models Mps_pyy, are expected to lead to a different
performance of the algorithm as different meta-feature comparisons between
datasets will always lead to different similarity scores between them, depend-
ing on what is being compared. For example, if we only consider attribute
names in the model, then datasets with common values stored in their at-
tributes yet having different naming will lead to a low similarity score, and
vice versa. Combining both proximity metrics together might lead to a better
estimation of similarity. Therefore, we need to discover which proximity
models are more effective with the DS-kNN algorithm and are more accurate
in dataset categorization.

The complexity of our algorithm is quadratic in the number of objects
compared (attributes or datasets), and therefore runs in polynomial time. For
each dataset, we first run some data profiling to analyse the schema and to
collect the meta-features in Table 3.1, which run in linear time in the number
of datasets. The comparison of the dataset pairs using M s, is the step
leading to the overall quadratic complexity of the algorithm, however, we
note that this step is very cheap to compute as it involves computing the
proximity metrics and feeding them to the scoring model M5, which on
average takes less than 0.01 millisecond to apply on a single dataset pair in
the experiments (on a single quad-core server running on Linux and 8GB of
RAM).

4 Experimental Evaluation

We test our proposed categorization algorithm on a real-life DL. We describe
the datasets used, the experimental setup and our results with a detailed
discussion of the performance of DS-kNN.

4.1 Dataset: OpenML DL Ground-truth

We created a ground-truth based on manual annotations of two samples of
datasets from a real-life DL called OpenML!. It consists of different datasets
covering heterogeneous topics, each having a name and a description. An
example of the categories found in the ground-truth are summarised in Figure
5.1.

Firstly, we collect a set of 118 datasets from OpenML by topic using 11
keywords-search over the dataset descriptions, e.g., “Disease”, “Cars”,”Flights”,

thttp:/ /www.openml.org

117

4. Experimental Evaluation

“Sports”, etc. A domain expert and one of the authors collaborated to manually
label the datasets with their topic. They assigned a topic to each dataset as its
category based on the specific entity described by the instances inside it (i.e.,
the item or object being described in the rows of the tabular data). For example,
if each instance describes some health measurements related to patients, they
assigned the dataset to a “patient health measurements” category, etc. The
annotators examined the textual descriptions of the datasets which include
information about how the data was collected and an English description of
the content stored in the datasets. We use this sample of annotated datasets in
Section 4.4 as the validation set used to evaluate the top performing DS-kNN
parameters on them.

We also collected another independent sample of datasets from OpenML to
use them in the training of the proximity models and parametric trials of DS-
kNN in Section 4.3. We scraped OpenML to extract another set of datasets not
included in the above sample and that have a textual description of more than
500 characters. The descriptions helped the manual annotators in deciding
on the assigned topic for each dataset. Out of the 514 datasets retrieved,
we selected 203 with meaningful descriptions (i.e., excluding datasets whose
descriptions do not allow to interpret its content and to assign a topic). Both of
the annotators collaborated to manually label the datasets with their topic. The
datasets were labelled by both their broad subject (e.g., ‘social demographics’)
and the more specific entity described by the instances stored in them (e.g.,
‘citizens census data’)?.

Table 5.1 shows the number of datasets per category assigned based on
topic grouping type and each sample. We only show the top 10 categories
found by size for each grouping. The total number of categories is also given
and the number of categories bigger than a specific size (i.e., with at least
this number of members, for example 8+ means a category with at least 8
member datasets), and the number of outliers (datasets with their own specific
category without any other members). As can be seen in the table, the datasets
in the DL we use in the experiments cover heterogeneous topics and different
category sizes.

4.2 Experimental Setup

Our goal is to test the performance of the DS-kNN algorithm in correctly
proposing the category to datasets. We compare the performance of the DS-
Prox content-based models when applied in DS-kNN against the baseline
models of dataset-names and attribute-names, which are the commonly used
metadata in previous work [52, 85, 111, 121] (see Section 5). We implement
DS-kNN based on those different models in Java using a PostgreSQL database

2The interested reader can download the two annotated datasets from GitHub at
https://github.com/AymanUPC/ds-knn

118

4. Experimental Evaluation

Table 5.1: A description of the OpenML categorized datasets collected. Datasets are categorized
by subject and by entity for the 203 ds sample, or by entity for the 118 ds sample.

No. of

Sample | Category Categories

Type

Categories by Type Categories by Size | Outliers

203 ds Subject | 53 Computer Software (17), So- | 8+ members (8), 21
cial Demographics (17), Image | 5+ members (14),
Recognition (16), Health (14), | 3+ members (25)
Robot (11), Disease (11), Natu-
ral Water (8), Ecology (8), Com-
puter Hardware (6), Motion
Sensing (5)

203 ds Entity 77 Computer Software defects (16), | 8+ members (8), 47
Citizens Census Data (12), Digit | 5+ members (12),
Handwriting Recognition (12), | 3+ members (21)
Diseases (11), Robot Motion
Measurements (11), Health Mea-
surements (10), Chemical Con-
tamination (8), Plantation Mea-
surements (8), CPU Perfor-
mance Data (6), Animal Profile

©®)

118 ds Entity 35 Diseases (46), Plants (13), Cars 8+ members (3), 18
(10), Citizen Census Data (4), | 5+ members (3),
University Faculty Evaluations | 3+ members (6)
(4), Stock Prices (3), Employee
HR Records (2), Pollution Mea-
sures (2), Food Nutritional Facts
(2), Baseball Player (2)

as its backend for storing the metadata, and we feed it with the datasets
from the OpenML DL. We test the algorithm using different values for k €
{1,3,5,7}. To test the generalizability and adaptability of DS-kNN under
different DL settings, we also conduct trials with the algorithm under the
following different settings which affect the ground-truth used in the training
and testing of Mys_pyox:

* Different category sizes: we test DS-kNN with all the datasets (includ-
ing outliers where category size is just 1 dataset) and with categories
that at least contain the following number of members (3,5,8). We test
different sizes of categories to check if the algorithm is affected by them.
We test all the datasets in the sample from different category sizes (in-
cluding those in smaller categories), but we only consider top-k nearest
neighbours from the categories of the sizes specified by this parame-
ter. This way, we also consider outliers if they are not assigned to any
category in the required sizes.

* Different ground-truth types: We test the algorithm with (1) the broad
subject-based categories from the 203 ds sample (Section 4.3), (2) the
more detailed entity-based categories from the 203 ds sample (Section

119

4. Experimental Evaluation

4.3), and (3) we validate the top performing models on the 118 ds
entity-based sample (Section 4.4).

For each DL setting, we compare the performance of the DS-kNN algorithm
using the following input parameters:

* k: the number of top ranking nearest neighbours considered for com-
puting the assigned category for a dataset. We use the following values:
1,3,5,7.

* Different models (Mys_pox): We test the different models generated by
different metadata, which are (1) Dataset Name, (2) Attribute Name
(minimum, maximum and average aggregations) and (3) DS-Prox Con-
tent. We also test ensemble models which combine all those different
types of meta-features in ‘All-Prox’.

e Different similarity thresholds: we use different thresholds for Sim(D,, D;)
including (0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9).

For the ensemble models, we train a Random Forest based supervised
learning model [29, 127] using the same setup in our previous work [18, 17]
(see Chapters 3 and 4). The difference is the input which consist of all the
distance metrics generated for all the types of meta-features. We also train the
models on a subset based on the type of meta-features used, which leads to
the following set of models:

* Combined all-ensemble ("All-Prox’): uses all the meta-features together
including dataset name distance, attribute name distances (minimum,
maximum and average), the dataset content meta-features from Table
3.1, and the attribute content meta-features from Table 4.3. This is the
most comprehensive model.

* Name-based: uses only the name based meta-features from the dataset
name and the attribute names.

e DS-Prox-and-Dataset-Name: uses both the dataset-name metadata and
the DS-Prox content-based meta-features (see Table 3.1) to train a single
ensemble model.

We test the different combinations of the above parameters and settings
which resulted in the execution of a total of 2880 independent trials for the
different settings (category sizes and ground-truth types) and algorithmic
parameters (k, Mys_ oy, similarity threshold). We utilise a leave-one-out
experimental setup to test our categorization algorithm in each trial, as seen
by the example in Figure 5.2, so for each experimental trial we train the model
under the same settings and with the same parameters 203 times, where for

120

4. Experimental Evaluation

each run we keep a single dataset out from the training of the model and
treat it as the new test dataset. We apply the proximity model on the test
dataset with all dataset pairs found in the DL, and we run our algorithm to
compute its allocated category or to mark it as an outlier. Similarly, for the 118
datasets validation sample, we test the top performing models 118 times. We
apply Algorithm 4 on the test dataset and we find the top categories it should
be allocated to. The goal is to maximise the number of correctly assigned
categories based on top-k nearest neighbours.

To evaluate the effectiveness, we consider our algorithm as an example of
a multi-class classification problem. We evaluate whether each dataset gets
assigned the correct category based on top-k nearest neighbours. We compute
the number of correctly annotated categories and outliers by measuring recall,
precision and F1-scores which are commonly used for evaluation in similar
settings [9, 11, 85]. We compute the F1 score as the harmonic mean of the
recall and the precision [86]. The evaluation metrics are described in Equations
(5.2),(5.3) and (5.4) respectively. Here, TP means true-positives which are the
datasets correctly classified to their category. FN are false negatives, and
FP are false positives. We compute the evaluation metrics per category and
average the final scores from all categories to achieve macro-averaging scores
[86]. For example, consider we have in the ground-truth two categories C1
and C2 consisting of 10 datasets each. C1 had 9 TPs and 1 FP (i.e. a dataset
from a different category incorrectly assigned to it by DS-kNN) while C2 had
8 TPs and 2 FPs, therefore they will have a precision of 0.9 and 0.8 respectively.
Therefore, the macro-precision will be W = (.85.

TP
recall = TP + EN (5.2)
L TP
precision = TP+ FP (5.3)

(Recall x Precision)

F1- =2x ————2
score x Recall + Precision

(5.4)

4.3 Results

We present the precision-recall curves from our experiments for k = 1 in
Figure 5.3, k = 3 in Figure 5.4, k = 5 in Figure 5.5 and k = 7 in Figure 5.6. Each
graph plots the macro-averaging performance resulting from leave-one-out
cross-validation of a specific model for a specific ground-truth type from
the 203 ds sample and different category sizes (which are labelled above the
chart). For all our results we use percentages for the performance metrics.
Here, we plot recall against precision for each of the different model types
used in DS-kNN and the different minimum category sizes we use in the
experiment. The numbers annotated on the points indicate the similarity

121

4. Experimental Evaluation

Attribute-Name based, Entity, Size = 1+ Nomebased, Entity, Size = 1+ DS-prox, Entity, Size = 1+ Allensemble, Entity, Sze = 1+
(- X
100% \ 100% \
0% o &9 90309 Los .
80% d40. sga = 80%
s
0% oYostl B 70%
§ som 5 3 s0% § so%
i o\] g g I
0% 0% o
0% 30%
20% 20%
|
10% 105 | 10%
o 20% s0% 100% 100% o 2% a0% 0% so% 100 20% 80% 1009
Recall
Nome based, Subject,Size = 1+ DS-Prox, Subject, Size = 1+ Allensemble, Subject, Size = 1+
100% Q.9 “
0% 5!
0 | 03
0%
70% o8 |
H § oo | H 3
s g k] B
H § so% 07 iGQ g e
H L 08 ‘ 08 £
30% 0s |
20% “
10% | 10
\ |
0% 100% s 2% ao% 0% aow 1004 o 20% 0% 6o% 40w 100% 0% a0 0% 80% 100
Recall Recall Recall

® ® (h)

Attribute-Name-based, Entity, Size = 8+ Name-based, Entity, Size = 8+ DS-Prox, Entity, Size = 8+ All-ensemble, Entity, Size = 8+
100% \ 100% N 100% >0.9. \ 100% 4
. \ i 0s o8 % X
so% 0% 0% & so% \
0% so% N 0% \ ao%
70% 70% R 70% 70% o
< . 07 N c < te
§ oo HES \ § s \ g
$ s g s g s 09 H \<o7
a0% 0% a0 08 \
a0% 3% 30
20% 20% 20% .
10% 10% \ 10% 10%

s 20% a0% 60 % 100% % 20% 40% 60% 80% 1009 s 20% 40% 60% 80% 100% 6 20 40% 60% 80% 100%
Recall Recall Recall Recall

) G) (k))

Attibute-Name-based, Entity, Sze = 8+ Name-based, Subject, Size = 8+ DS pros, Subject, Size =8+ Allensemble, Subjec, Size =8+
100% A 100% 100% 0.9 100 4
90% 90% 90% o9 90% 04
0% so% 0%
70% 70% 70% Y \ <

§ oo § oo § oon hos H &

¥ son § son §son Sos i \wo7
s E o w8 R osd
30% 3% 3 \ 30% \
20% 20% 20% \
10% 10% \ 10%

20 100 b 2% o 6o . b 2% o e sow 100% 20% 0% 100
Racal Recal
(n) (0)
<] All -Ensemble O Attribute-name-average [| Attribute-name-max —+ Attribute-name-min Dataset-name

DS-Prox-Adaboost /\ DS-Prox-and-Dataset-Name DS-Prox-LogitBoost >k Name-based-all

Figure 5.3: Performance of DS-kNN using k=1, different models, different ground-truths, and
different category sizes

122

4. Experimental Evaluation

Attribute Name-based, Entity, Size =1+ Name-based, Entity, Size = 1+ 05 Prox, Entity, Size = 1+ Allensemble, Entity, Size = 1+
100% 100% 100% 100%

. " 0508 X Y
90% 90% o s0% 50% by
a0% a0% 07 a0% \

05,
70% 70% 04

§ co% § oo 03 \

: g ™ 08\

g son § son o 02 4905
a0% a0% \
30% \ 30% 0%

\
20% 20% 20%
. N\
10% \ 10% 10%
\
o 20% ao% e sow 009 6 2% 4% 60% a0% 1009 a0% 1009 20% 1009
Recal Recall

Attribute-Name-based, Subject, Size= 1+ Namebased, Sublect,Size = 1+ 05 Prox,Sublect, Size =1+ Allensemble, Subject, Size = 1+
100% 100% 2y 100% 09 | 100
0% 0% 2203 90%

. S 09
so% s | 80%
0% 70% 08 70%

s 5 s 01 s

§ oo H § oo § eon

% so % § s 08 s

= a0 s & ao & ao%

30% 30% \‘
20% \ 200
10% \ o \
AN o
\ \
0% 100

Joso 20% a0% eo0% so% 100% s 20% a0% eo% so% 100%
Recall Recall

Attribute Nome-based, Entity, Size =8+ Nome based Entity, Sze =8+ o5 o, ntity, ize -8+ Allansemble, Entity, Sza =8+
100% NN\ 100% 100% 09 \ 100%
90% 90% L2t kDH 90% 09 90%
ao% ao% o ao% o8 a0
o o 25N I o
5 o 5 oon \ 5 oo § eox
g son § s g son 3 o
& a0% = 40% 0% = 40%
0% 0% 0% 309
20% 20% 20 20%
100 10% 10% 109

0% 80% 100% 20% 40% 60% 80% 100%

20% am;nm”suu 0% 100%) _\m 20% autcmauaowa 80% 100%)
@) G) (k) 1)

Attribute-Name-based, Subject, Size = 8+ Name-based, Subject, Size = 8+ DS-Prox, Subject, Size =8+ All-ensemble, Subject, Size =8+
100% 100% 100% 0.9 100
09 08
0% \ 90%
908 90 0o 0
80% 80% 2% 80% . 80
o B . T 08 L
§ 0% § § 6o § oo
g so% H g son 3 so
& & £ 07 £
40% a0% 4
30% 309 30% o8 07
20% 20% 20% 205
10% \ 10% 10% 10%
N\
s 20% ao% 6o so% 1009 s 20% ao% eo% 80% 100% s 20% ao% eo% 80% 100% 6 20% 401 60 80% 100¢
Recall Recall Recall Recall

(m) (n) (0) (p)

<] All -Ensemble O Attribute-name-average [] Attribute-name-max —+ Attribute-name-min > Dataset-name

DS-Prox-Adaboost /\ DS-Prox-and-Dataset-Name DS-Prox-LogitBoost >k Name-based-all

Figure 5.4: Performance of DS-kNN using k=3, different models, different ground-truths, and
different category sizes

123

4. Experimental Evaluation

Attribute-Name-based, Entity, Siz

Name-based, Entity, Size = 1+

Ds-Prox, Entity, Size = 1+

Allensemble, Entity, Size = 1+

100%

Precision

100%
0%
80%

70% —_
—

0908

07

60%
50%

Precision

0%
0%
20%
10%

Joso 20

0% 80%

Recall

60%

100%)

100% \
90 09
s0%
70%
0% 08
s0%

0%
0% \
20%

Precision

10%

—

20% 40% 60%

Pracision

80% 100%

Attribute-Name-based, Subject, Size = 1+

(b)

Name-based, Subject, Size = 1+

(c)

DS-Prox, Subject, Size =1+

100%
90%

Precision

80% 10

100%
90%
0%

0508,

70%
60%
50%

Precision

0%
30%
20%

10%

s 20% a0% 60% s0% 100%
Recall

0%

100%
90%
0%

09

70%
60%
50%

Precision

0%
30%
20%

10%

s 20% a0% eo% so% 100%
Recall

Precision

N\
A
g
08 o1
AN
07\

1009

(f)

Name-based, Entity, Size = 8+

(g)

DS-Prox, Entity, Size =8+

Allensemble, Entity, Size =8+

Attribute-Name-based, Entity, Size =8+
\

100% \ 100% \\\
s0% A 0% os.02
o5 0%
§ wox § con
oo § s
40% = a0
0% s
20% \ 20%
10% \\\ 10%
e 20w am s oo% 1004 —‘ o am aow ew e 0w
el Recl

100% 03 \
0%
0%
0%

Precision

a0% 6%
Recall

80% 100

Precision

a0% 60% 8%
Recall

100%

G)

Name-based, Subject, Size = 8+

(k)

DS-Prox, Subject, Size =8+

Allensemble, Subject, Size =8+

a

Precision

100%
90% 09 08
4
20%
. 10%
a0% 60% 80% 100% 20% 40% 60% 80% 100%
Recall Recall

100% 09 N
0%

Precision

a0% 60%
Recall

80%

Precision

a0% 60% 80%
Recall

1009

(m)

(n)

(o)

p)

<] All -Ensemble

DS-Prox-Adaboost /\ DS-Prox-and-Dataset-Name

O Attribute-name-average [] Attribute-name-max —+ Attribute-name-min

DS-Prox-LogitBoost

>k Name-based-all

X Dataset-name

Figure 5.5: Performance of DS-kNN using k=5, different models, different ground-truths, and
different category sizes

124

4. Experimental Evaluation

Attribute Name based,Enity, iz Name based,Eniy, Size - 1+ o5 o, Eniy Size = 1+ Alrensambe, Entity, ize =1+
o0 100 o0 05
03
o e a0 a0 o
= O ao a0 .
o0 s 0% 0
5 o § oo 5 con 08 05 §
g son % son g sow H
= ao% = a0% = ao% =
2o a0 a0
% 2 2o
1% 1% 1%
o 2% aom e s 1000 o am am eow e 1009 o 2% aom s s 00 o am eo% sow 00
Recal Reca Recl Recal

(@ (b) () (d)

Attribute Name-based, Subjec, Size =1+ Name based,Subjct, Size =1+ 05 pros, Sublec, Size =10 Alensemble Subject, Size = 1+
100% 0908 100 -
o s o ou B <
ao% ao% g os
m:b\\\’ko-m 50 70% LA \«m 70 2 3
5 o § oo Ea o o adn § aox o,
e e ~ e .] o7
° a0 ~ = 0% ~ &
s0% 0%
20% 20%
10 10%
wn s s sow 100 e 20w 4% % sow 100w o 20w s o % s s sow 100
Recall Recall Recal Recal

(e) ® (g) (h)

Attribute Name-based,Entiy, Size = 8+ Name-based, Entity,Size =8+ DS pros, Entity, Size =8+ Allensembl, Entity, Size =+
100% N\ 100% 100% 09 \ g
0% N o 0% o8
70% ®. 70% 70%
5 con T P N\«
§ so% 3 so% g so% 3 o\ﬂa
= a0 ® s N 04\
0%
20
10%
_\o‘a 20% 40% 60% 80% 100%) 20% 40% 60% 80% 100%) 20% 40% 60% 80% 100%) 0% a0% 60 80% 1009
Recal Recal Recal Recal

) G)) a

trbute Name-based,Subect, Sze =8+ Name based,Subjct, Size =8+ o5 o, Subject, Size =8+ Alrensembl,Subjct, Sze =8+
100 1o 100%708
05 08
a0 %
a0 &

a0 -

o i o 3 _

5 con 5 5 con H

% son g e i

o am % sow 100 wn am sow sow 100 R wow a% e% s 0
Recal Recl Recl Rocal

(m) (n) (o) (p)

<] All-
DS-Prox-Adaboost /\ DS-Prox-and-Dataset-Name DS-Prox-LogitBoost >k Name-based-all

Ensemble OAmibutern(une—a\'el'uge [] Attribute-name-max -+ Attribute-name-min > Dataset-name

Figure 5.6: Performance of DS-kNN using k=7, different models, different ground-truths, and
different category sizes

125

4. Experimental Evaluation

threshold (also indicated by the size of the points, where bigger size indicates
a higher similarity threshold). We show the results for the non-restricted
(category size = 1+) which includes outliers, and only the biggest category
sizes (category size = 8+). Each model type has a different symbol and colour.
For attribute-name based models in the first column, we show the results using
the average, minimum and maximum aggregations. In the second column, we
show the results of the dataset-name based model and also the combination
of all the attribute-name based aggregations with the dataset name in a single
ensemble model we call name-based-all. In the third column, we present the
content-based DS-Prox models, where we include the AdaBoost-based model
and the LogitBoost-based model in addition to the model that combines the
meta-features from Table 3.1 and the dataset-name within a single Random
Forest model (we call it DS-Prox-and-Dataset-Name). Finally, we present in the
fourth column the model showing the combination of all meta-features into a
single ensemble model we call All-Ensemble. We also present in Tables 5.2 -
5.5 the evaluation metrics for the top performing parameters for DS-kNN (in
terms of Fl-scores) for each category size for the different ground-truth types
and for each model type. We highlight the top 3 performing model types for
each category size and ground truth type.

As could be seen from the results, DS-kNN performs comparatively well
with the attribute-name and the DS-Prox content-based models for category
size 1+, while combining all the meta-features in a single ensemble model
performs the best. There is a trade-off between the similarity threshold used
and recall, the higher the threshold the lower the recall and the higher the
precision, and vice versa. However, there is an optimum similarity threshold
that can perform better than all others, e.g., the All-Ensemble model with a
threshold of 0.9 in Figure 5.6d.

For larger category sizes the DS-Prox content models and the All-Ensemble
are better in assigning the correct categories. For example, in Figure 5.31, All-
Ensemble leads to a precision of about 70% and recall of about 80% for
category sizes of at least 8 members and the entity-based ground-truth, while
attribute-name model can only achieve in Figure 5.3i a maximum recall of only
about 70% with a precision of about 60%. Dataset-name based model performs
a similar recall and slightly better precision. The results also indicate that the
choice of the similarity threshold can affect the performance of DS-kNN.

In general, DS-kNN performs better with bigger category sizes than smaller
category sizes as it becomes easier for the algorithm to find relevant top-k
nearest neighbours. However, it is still good in detecting outliers and other
categories as seen in Table 5.2 for the performance for ‘min. category size’ = 1,
for example a recall of 75% and precision of 95% for dataset-name based
model. The dataset-name model performs better in detecting outliers as seen
from this result. The DS-kNN algorithm performed equally good with both
ground-truth types under the same settings and with the same parameters,

126

4. Experimental Evaluation

Table 5.2: The evaluation of DS-kNN for the minimum category size of 1+ with the different
model types and ground-truth types. For each setting, we only show here the best performing
parameters based on Fl-scores.

Model Type Ground Min. Cate- | k Similarity | Recall Precision| FI1-
Truth gory Size Thresh- score
Type old

Dataset Name entity 1 7 0.6 74.7% 95.2% 83.7%

All-Ensemble entity 1 7 0.9 71.0% 94.7% 81.2%

DS-Prox Logit- | entity 1 7 0.9 66.8% 92.3% 77.5%

Boost

DS-Prox AdaBoost entity 1 7 0.9 61.0% 100.0% 75.8%

Attribute Name | entity 1 7 0.7 55.9% 98.5% 71.3%

Min.

Attribute Name | entity 1 7 0.9 56.6% 94.6% 70.8%

Avg.

Attribute Name | entity 1 5 0.1 48.0% 75.5% 58.7%

Max.

DS-Prox-and- entity 1 5 0.9 53.2% 61.4% 57.0%

Dataset-Name

Name-based-all entity 1 3 0.3 44.9% 56.0% 49.8%

Dataset Name subject 1 7 0.6 58.0% 93.1% 71.4%

All-Ensemble subject 1 7 0.9 52.4% 92.3% 66.8%

Attribute Name | subject 1 7 0.8 51.7% 92.8% 66.4%

Avg.

DS-Prox Logit- | subject 1 7 0.9 52.8% 88.8% 66.3%

Boost

Attribute Name | subject 1 7 0.4 47.9% 95.8% 63.9%

Min.

DS-Prox AdaBoost subject 1 7 0.8 44.6% 83.1% 58.1%

DS-Prox-and- subject 1 5 0.9 49.7% 59.1% 54.0%

Dataset-Name

Attribute Name | subject 1 5 0.4 38.3% 77.4% 51.3%

Max.

Name-based-all subject 1 5 0.7 40.2% 48.0% 43.7%

127

4. Experimental Evaluation

Table 5.3: The evaluation of DS-kNN for the minimum category size of 3+ with the different
model types and ground-truth types. For each setting, we only show here the best performing
parameters based on Fl-scores.

Model Type Ground Min. Cate- | k Similarity | Recall Precision| FI1-
Truth gory Size Thresh- score
Type old

Attribute Name | entity 8 7 0.3 59.3% 75.3% 66.3%

Avg.

Attribute Name | entity 8 5 0 54.0% 76.0% 63.2%

Max.

All-Ensemble entity B 7 0.8 53.6% 66.5% 59.4%

DS-Prox-and- entity 3 7 0.7 62.9% 55.1% 58.7%

Dataset-Name

Dataset Name entity 3 3 0.4 49.9% 70.1% 58.3%

Attribute Name | entity 3 7 0 51.0% 63.6% 56.6%

Min.

DS-Prox Logit- | entity 3 5 0 49.3% 55.7% 52.3%

Boost

Name-based-all entity 3 7 0.6 56.6% 45.6% 50.5%

DS-Prox AdaBoost entity 3 3 0.1 49.0% 50.7% 49.8%

Attribute Name | subject 3 7 0.1 53.1% 78.8% 63.4%

Avg.

Attribute Name | subject 3 7 0 45.7% 82.3% 58.8%

Max.

All-Ensemble subject B 7 0.5 56.6% 61.0% 58.7%

DS-Prox-and- subject 3 7 0.7 57.6% 57.8% 57.7%

Dataset-Name

Dataset Name subject 3 5 0.2 58.8% 53.3% 55.9%

Name-based-all subject 3 7 0.7 49.4% 54.4% 51.8%

Attribute Name | subject 3 5 0.2 38.4% 78.6% 51.6%

Min.

DS-Prox AdaBoost subject 3 5 0.4 40.7% 69.2% 51.2%

DS-Prox Logit- | subject 3 5 0.3 41.5% 61.7% 49.6%

Boost

128

4. Experimental Evaluation

Table 5.4: The evaluation of DS-kNN for the minimum category size of 5+ with the different
model types and ground-truth types. For each setting, we only show here the best performing
parameters based on Fl-scores.

Model Type Ground Min. Cate- | k Similarity | Recall Precision| FI1-
Truth gory Size Thresh- score
Type old

Attribute Name | entity 5 7 0.8 57.4% 93.2% 71.0%

Avg.

Attribute Name | entity 5 5 0.9 69.2% 69.9% 69.6%

Max.

All-Ensemble entity 5 3 0.9 51.5% 99.5% 67.9%

Dataset Name entity 5 5 0.4 59.6% 77.8% 67.5%

Attribute Name | entity 5 1 0.5 51.8% 90.8% 65.9%

Min.

DS-Prox-and- entity 5 5 0.9 69.6% 61.1% 65.1%

Dataset-Name

Name-based-all entity 5 5 0.8 68.4% 48.1% 56.5%

DS-Prox AdaBoost entity 5 5 0.5 63.7% 46.6% 53.8%

DS-Prox Logit- | entity 5 3 0.9 35.5% 95.1% 51.7%

Boost

Attribute Name | subject 5 7 0.1 66.2% 66.4% 66.3%

Avg.

Attribute Name | subject 5 5 0.4 59.8% 72.9% 65.7%

Max.

All-Ensemble subject 5 7 0.6 72.0% 59.1% 65.0%

DS-Prox-and- subject 5 7 0 72.5% 57.7% 64.2%

Dataset-Name

Dataset Name subject 5 5 0.4 55.7% 72.1% 62.9%

Attribute Name | subject 5 1 0.5 47.6% 92.2% 62.8%

Min.

Name-based-all subject 5 7 0 66.7% 46.8% 55.0%

DS-Prox AdaBoost subject 5 5 0.4 50.3% 53.6% 51.9%

DS-Prox Logit- | subject 5 5 0.7 54.9% 45.7% 49.9%

Boost

129

4. Experimental Evaluation

Table 5.5: The evaluation of DS-kNN for the minimum category size of 8+ with the different
model types and ground-truth types. For each setting, we only show here the best performing
parameters based on Fl-scores.

Model Type Ground Min. Cate- | k Similarity | Recall Precision| F1-
Truth gory Size Thresh- score
Type old

All-Ensemble entity 8 5 0.9 59.7% 99.2% 74.6%

Attribute Name | entity 8 7 0.7 64.6% 87.9% 74.5%

Avg.

Dataset Name entity 8 7 0.4 64.0% 80.2% 71.2%

Attribute Name | entity 8 5 0.9 73.0% 64.0% 68.2%

Max.

Attribute Name | entity 8 7 0.5 55.1% 85.0% 66.9%

Min.

DS-Prox entity 8 5 0.9 76.9% 55.9% 64.7%

Name-based-all entity 8 7 0.8 79.8% 50.2% 61.6%

DS-Prox AdaBoost entity 8 7 0.7 73.4% 43.8% 54.8%

DS-Prox Logit- | entity 8 7 0.7 71.4% 36.6% 48.4%

Boost

All-Ensemble subject 8 7 0.9 54.8% 99.2% 70.6%

Attribute Name | subject 8 7 0.7 58.8% 88.0% 70.5%

Avg.

Dataset Name subject 8 7 0.4 62.1% 81.0% 70.3%

DS-Prox-and- subject 8 5 0.9 76.9% 61.2% 68.1%

Dataset-Name

Attribute Name | subject 8 5 0.4 78.4% 60.0% 68.0%

Max.

Name-based-all subject 8 7 0.7 81.2% 52.4% 63.7%

Attribute Name | subject 8 1 0.5 50.8% 85.1% 63.6%

Min.

DS-Prox AdaBoost | subject 8 7 0.4 79.3% 44.6% 57.1%

DS-Prox Logit- | subject 8 7 0.6 78.8% 42.0% 54.8%

Boost

130

4. Experimental Evaluation

yet slightly better with the more specific entity-based ground-truth with small
category sizes and outliers. This indicates the adaptability of DS-kNN to
different DL settings and properties.

In general, DS-kNN and All-Ensemble models perform better with bigger
category sizes. For example, they can achieve 90% recall and more than 50%
precision for k = 5 and a similarity threshold of 0.6 in Fig 5.5p and the subject-
based ground-truth. This is comparatively similar with the entity-based
ground-truth for k = 3 and a similarity threshold of also 0.6 in Figure 5.41
which achieves a recall of 97% with a precision of more than 50%. However,
the All-Ensemble model is still average in detecting outliers when combined
with other categories as seen for the performance for ‘min. category size’ = 1,
for example a recall and precision of about 60% in Figure 5.5d, while the
name-based model performs nearly the same in Figure 5.5b. The dataset-name
model also performs similarly in detecting outliers as seen from the result in
Figure 5.5c. The DS-kNN and All-Ensemble models perform equally good
with both ground-truth types under the same settings and with the same
parameters, yet slightly better with the more specific entity-based ground-
truth with small category sizes and outliers.

Similarly, combining the DS-Prox-and-Dataset-Name leads to a compara-
tively good result like the All-Ensemble model as could be seen in Figure 5.5k
and Figure 5.50 where a recall of about 90% is achieved with a precision above
40%. Therefore, the combination of content-based meta-features with name-
based meta-features lead to optimum results that can equally detect outliers
and accurately assign a relevant category for bigger category sizes. To achieve
higher recall rates, the DS-kNN algorithm generally works better when the
DL contains bigger categories and by using bigger values for ‘k’. With smaller
category sizes and more outliers we need to use a higher similarity threshold
and vice versa.

4.4 Validation Experiment

In order to re-validate our results and to check the generalisability of the
results, we test the highlighted top performing DS-kNN settings from Tables
52, 53, and 5.5 on the 118 ds sample in Table 5.1. As the sample only
has entity-based granularity of annotations, we only test the top performant
models for the entity-based ground truth. We also only consider the models
for category size 8+ as the 118 ds sample only includes categories with size
3+ or 8+ (i.e.,, 5+ and 8+ category sizes have the same categories as seen in
Table 5.1). We execute the same leave-one-out experimental setup as described
previously, and we evaluate the recall, precision and Fl-scores which are
summarised in Table 5.6. We also test on the 118 ds sample some specific
DS-kNN settings which met specific criteria in our experiments on the 203 ds
sample, for example, at least 90% recall. Those are presented in Table 5.7.

131

4. Experimental Evaluation

Table 5.6: The evaluation of top performant DS-kNN settings for the minimum category sizes of
1+, 3+ and 8+ with the 118 ds validation sample.

Model Type Ground Min. Cate- | k Similarity | Recall Precision| FI1-
Truth gory Size Thresh- score
Type old

Dataset Name entity 1 7 0.6 63.1% 90.6% 74.4%

All-Ensemble entity 1 7 0.9 67.2% 98.4% 79.8%

DS-Prox Logit- | entity 1 7 0.9 42.2% 100% 59.4%

Boost

Attribute Name | entity 3 7 0.3 79.6% 70.3% 74.7%

Avg.

Attribute Name | entity 3 5 0 73.7% 68.1% 70.8%

Max.

All-Ensemble entity 3 7 0.8 75.6% 73.4% 74.5%

All-Ensemble entity 8 5 0.9 63.2% 95.2% 75.9%

Attribute Name | entity 8 7 0.7 70.0% 97.8% 81.6%

Avg.

Dataset Name entity 8 7 0.4 68.2% 76.9% 72.3%

Table 5.7: The evaluation of specific DS-kNN settings which met specific criteria with the 203 ds
sample. We re-validate them with the 118 ds sample.

Criteria Model Ground | Min. k Similarity Recall | Precision| F1-
Type Truth Category Threshold score
Type Size
90% recall All- entity 8 3 0.6 87.2% 49.6% 63.2%
Ensemble
85% recall All- entity 8 5 0.7 85.7% | 51.0% 63.9%
Ensemble
85% recall DS-Prox- entity 8 5 0.7 92.7% 56.1% 69.9%
and-
Dataset-
Name
85% recall Name- entity 8 7 0 94.9% 60.2% 73.7%
based-all
70%recall I oset entity 1 7 06 63.1% | 90.6% 74.4%
90% precision N
ame
7% recall "~y entity 1 7 09 67.2% | 98.4% 79.8%
90% precision E bl
nsemble

132

5. Related Work

As could be seen in the results in Tables 5.6 and 5.7, we were able to achieve
similar or better results with the 118 ds validation sample by applying the
same top performing DS-kNN settings from Tables 5.2, 5.3 and 5.5 and some
DS-kNN settings meeting specific criteria. This indicates the generalisability
of our results and the capability of our algorithm in replicating similar results
with other DL samples.

5 Related Work

Categorization of datasets from heterogeneous domains is an emerging re-
search topic, and relevant previous research include the work by [85], where
they utilise the attribute names to cluster the datasets into categories using
a probabilistic model. Datasets are assigned to different categories using
different probabilities. They tackle the multi-label classification of datasets
and retrieval of datasets from relevant domains by querying systems. Our
approach improves this by using a machine-learning based approximate prox-
imity mining technique instead of the Jaccard similarity of exact values. We
also use content-based metadata for categorizing and not only name-based
metadata. This is important for DLs where datasets are not well maintained
with meaningful attribute names.

Clustering could also be applied to other types of semi-structured datasets
like ontologies [9] and XML documents [11, 77], etc. In [9], they propose
an algorithm to cluster instances from different ontologies based on their
structural properties in the ontology graphs. Their goal is to facilitate ontology
matching rather than domains discovery. Similarly, in [11, 77] they cluster the
semi-structured documents based on their structure similarity and linguistic
matchers.

Clustering free-text without any structure is also possible. For example,
[21] aim to cluster short text messages by computing TF-IDF word similarity
between free-text documents. Classical text document classification can also
use multi-class supervised learning based on the extracted keywords in the
document [19]. Similarly, [55] categorizes free-text documents using a k-NN
based algorithm by first extracting TF-IDF weighted labels and feeding them
to the algorithm. Another specific application would be clustering streaming
data where a sliding window algorithm could be used [61], where they also
use k-NN when finding relevant clusters for a given data instance ingested in
a stream of data points. k-NN was also used with image categorization based
on extracted features describing the images [78].

133

6. Conclusion

6 Conclusion

We proposed DS-kNN, a categorization algorithm for classifying datasets
into pre-defined topic-wise groups. Our algorithm can be applied in a DL
environment to support users in automatically finding relevant datasets for
analysis. Our algorithm uses extracted metadata from datasets to compute
their similarities to other datasets in the DL using a proximity mining model
and name strings comparisons. Those similarity scores are fed to DS-kNN
to decide on the most relevant category for a dataset based on its top-k near-
est neighbours. Our algorithm was effective in categorizing the datasets in
a real-world DL and detecting outliers. In the future, we will seek to im-
prove our algorithm with semantic analysis of values found in the attributes to
complement the syntactical comparisons we compute in the proximity models.

Acknowledgements. This research has been partially funded by the Euro-
pean Commission through the Erasmus Mundus Joint Doctorate (IT4BI-DC).

134

Chapter 6
Prox-mine tool for browsing

DLs using proximity mining

A picture is worth a thousand words and is better
marketing for an idea than just plain words.

Abstract

We present Prox-mine, a tool for browsing DLs using proximity mining. Prox-mine
integrates all the different components of this thesis and presents it in a coherent
prototype. It supports the collection of descriptive statistics about tabular datasets and
their attributes, calculation of overall dataset similarity scores between dataset pairs
using the collected statistics and the proximity models in Chapter 4, categorization of
datasets into pre-existing categories defined in the DL using the computed similarities
between datasets and a k-Nearest-Neighbour algorithm described in Chapter 5, in
addition to construction of proximity graph visualisations which summarise the overall
structure of the DL by showing datasets and their categories as nodes and relationships
(similarities) modelled as edges.

The tool can be used to support the DL users in extracting useful metadata
involving descriptive statistics about the content of the datasets stored, can help data
wranglers and curators in finding relevant datasets by querying similar datasets in
the data lake given an input query dataset, and can also provide schema matching
support by showing the overlap of similar attributes and their data / names between
dataset pairs (using name-based and content-based analysis techniques as described in
Chapter 4).

135

1. Introduction

1 Introduction

We present a prototype integrating the different components of this thesis.
We call the tool Prox-Mine, where the goal is to support data wranglers and
curators in finding relevant datasets by querying similar datasets in the DL
given an input query dataset, and can also provide schema matching support
by showing the overlap of similar attributes and their data / names between
dataset pairs (using name-based and content-based analysis techniques as
described in Chapter 4).

Prox-mine supports the collection of descriptive statistics about tabular
datasets and their attributes, calculation of overall dataset similarity scores
between dataset pairs using the collected statistics and the proximity models
in Chapter 4, categorization of datasets into pre-existing categories defined
in the DL using the computed similarities between datasets and a k-Nearest-
Neighbour algorithm described in Chapter 5, in addition to construction
of proximity graph visualisations which summarise the overall structure of
the DL by showing datasets and their categories as nodes and relationships
(similarities) modelled as edges.

Prox-mine is organised into the following components:

¢ Data Lake Index: an index of the datasets stored in the DL and their
ground-truth categories.

* Similarity Search: supports searching for similar datasets to a query
dataset based on the different proximity models and a minimum simi-
larity threshold.

* Dataset Categorization: applies the DS-kNN algorithm from Chapter 5
to facilitate the automatic recommendation of categories for a dataset
based on the most proposed category by the most similar datasets in the
DL.

¢ Dataset Matching: applies the proximity models over a pair of datasets
in order to compute their overall similarity and the most similar attribute
pairs between them.

¢ Proximity Graph: constructs a graph visualisation to show the relation-
ships between datasets based on their computed similarities using the
different proximity models and different minimum thresholds.

We describe each of the components above in the rest of this chapter. The
tool is hosted on a web server' and is implemented as a Java-based web

1A live version of Prox-mine can be accessed at the following link: http://dtim.essi.upc.
edu:8080/proxmine using the credentials of username:"proxmine" and password "12345". The
source code for the tool is provided at: https://github.com/AymanUPC/proxmine, and more
details can be found at the tool’s main page: https://www.essi.upc.edu/dtim/tools/proxmine

136

http://dtim.essi.upc.edu:8080/proxmine
http://dtim.essi.upc.edu:8080/proxmine
https://github.com/AymanUPC/proxmine
https://www.essi.upc.edu/dtim/tools/proxmine

2. Data Lake Index

application. The tool implements a demonstration of the above components
over the OpenML OML02 sample used in our experiments in Chapter 4. All
proximity models used in the demonstration are based on the same cross-
validation experimental setup described in Chapter 4, where we make sure
that the datasets we apply the models on were not used in the training steps.
In addition to this overview, the tool provides tooltip help and support too by
hovering over the input and output fields and titles when using it.

2 Data Lake Index

In this component, an overview of all the datasets stored in the DL is presented.
This includes the following for each dataset:

¢ Dataset: the filename of the dataset
e Dataset Name: the name of the dataset

* Dataset Description: a link to the webpage with the textual description
and statistical metadata describing the dataset and its attributes.

e No. of Attributes: the number of attributes in the dataset
¢ No. of Instances: the number of instances in the dataset

* Ground-truth Category: the annotated ground-truth category assigned
to the dataset based on manual inspection of it and its description (see
Chapter 5.1 for more details about this annotation).

We also provide a list of all the ground-truth categories and the number of
datasets which belong to those categories.

3 Similarity Search

This component allows searching for similar datasets to a query dataset (as
shown in Figure 6.1) based on the different proximity models and a minimum
similarity threshold. The proximity models are those described in Chapter 4
and the minimum threshold should be a real-number in the range [0, 1], for
example 0.75.

The output can be seen in Figure 6.2. This includes a description of the
input dataset used in the query. Then a table with the output similar datasets
is given, ordered by the similarity score computed by the proximity model, in
descending order of similarity.

137

4. Dataset Categorization

Similarity Search

Dataset: 32pendigits.arff -I
Proximity Model: All-Prox ‘|
Min. Sim. thresheld: threshald [from 0 1o 1]

Figure 6.1: The input screen for the similarity search component of Prox-mine

&

Similarity Search

Query Dataset

Dataset Dataset Name Dataset Description No. of Attributes No. of Instances Ground-truth Category

OQutput Similar Datasets
Proximity model TR Similarity threshold

Skmilasity Score Dataset Dataset Name Dataset Description Mo. of Attributes No. of Instances Ground-truth Categary.

Figure 6.2: The output screen for the similarity search component of Prox-mine

4 Dataset Categorization
This component allows recommending a category for a query dataset based

on the most similar datasets found in the DL. This implements the DS-kNN
algorithm described in Chapter 5. The input required, as seen in Figure 6.3,

138

4. Dataset Categorization

Dataset Categorization

Dataset:
Proximity Model: Al v
k Number: -
Minimum category size: -

Minimum Sim. threshold:

Figure 6.3: The input screen for the dataset categorization component of Prox-mine
includes the query dataset, the proximity model, the number of k-nearest-
neighbours to use for the recommendation (i.e., how many datasets from
the top similar ones should recommend their category for the dataset), the
minimum category size as described in Chapter 4 (i.e., only categories having
this number of datasets or above can be recommended), and the minimum
similarity threshold as a real-number in the range [0, 1].

The output can be seen in Figure 6.4. This includes first a description of
the input dataset used in the query. This table also includes an extra column
called ‘Is Outlier?” which indicates if the dataset belongs to a category in
the ground-truth of size 1, i.e., a category which only includes the query
dataset and no other dataset stored in the DL. Then a table with the output
recommended categories found using the DS-kNN algorithm is given ordered
by the number of recommendations in descending order. Each of the most
similar k nearest-neighbours recommends its category for the dataset, and
the aggregate count is given for each category here. An indication whether
the recommended category is the correct one is also given in the column
‘Is Correct Category?’. Finally, a table is given showing a drill-down of the
k-nearest-neighbours found which led to the recommended categories. Here

139

5. Dataset Matching

Query Dataset

Dataset Dataset Name Dataset Description No. of Attributes No. of instances Ground-truth Category

Output Recommended Categories Found

Category Name No. of Recommendations Is Correct Category?

(a)

Output k-Nearest-Neighbours Datasets

Similarity Score Datasat DatasetName Dataset Description No.of Attributes No.of Instances Ground-truth Category

(b)

I Outlier?

Figure 6.4: The output screens for the dataset categorization component of Prox-mine.

each of the top-k datasets is described in descending order of similarity scores.

5 Dataset Matching

This component allows the application of the proximity models over a pair
of datasets in order to compute their overall similarity and the most simi-
lar attribute pairs between them using the models trained for numeric and
nominal attributes over the OML01 sample described in Chapter 5.1. This is
done using the input screen in Figure 6.5 where 2 datasets can be selected
along with a minimum similarity threshold in the range [0.5,1]. We restrict

140

5. Dataset Matching

Dataset Matching

Dataset 1:
Dataset 2:

Min. Sim. threshold:

Figure 6.5: The input screen for the dataset matching component of Prox-mine
the input to this threshold range as attribute matches with a similarity score
below this threshold could be considered as irrelevant and not strong enough
to be significant, distracting the user when analysing the output by presenting
too many attribute pair matches.

The output can be seen in Figure 6.6. This includes first a description
of both input datasets and their ground-truth categories. This is followed
by a table giving all the overall dataset similarity scores based on all types
of proximity models described in Chapter 4. Then the matching attributes
are presented in two separate tables, where the first table is based on a
similarity score computed using the content-based similarity models and
where the second table is based on similarity computed using Levenshtein
distances of the attribute names. Each table shows attribute pair matches
sorted by descending order of the similarity scores computed. We indicate
the attribute types compared, and a description of each attribute matched in
the pair, one attribute from each dataset. For the "Values” column, we give the
unique distinct values found for nominal attributes separated by pipes, and
for numeric attributes we give the range of values (minimum - maximum)
and the mean value.

5.1 New Dataset Matching

Another component for matching datasets include the new dataset matching
component, where the input screen can be seen in Figure 6.7. The user is able
to select a new CSV dataset file from the filesystem (stored on their computer)
as the input of the matching process. The dataset is matched against another

141

5. Dataset Matching

Query Datasets

Dataset Dataset Name Dataset Description Wo. of Attributes No. of Instances

Overall Dataset Similarity Scores

Proximity Model Name Overall Dataset Similarity Score

(a)

Cutput Similar Attributes By Content Similarity

(b)

Figure 6.6: The output screens for the dataset matching component of Prox-mine.
dataset available in the DL sample. A minimum similarity threshold in the

range [0, 1] should also be selected.

The output can be seen in Figure 6.8. It also includes a description of the
input datasets, the output content-based similarity scores of attribute matching
and name-based similarity scores as well using the Levenshtein distances of
the attribute names. The overall similarity score for the dataset pair is given
above the matching output tables for content-based and name-based matching.
Here, the content-based and name-based proximity is aggregated using the
attribute-level models and algorithms in Chapter 4 to give a single approximate

similarity score for the dataset pair.

142

Ground-truth Category

6. Proximity Graph

Select New Dataset:" Browse...

Dataset 2

Min. Sim. threshald:®

Figure 6.7: The input screen for the new dataset matching component of Prox-mine

6 Proximity Graph

In this component, we construct a graph visualisation to visualise the rela-
tionships between datasets based on their computed similarities using the
different proximity models and different minimum thresholds. We call this
a proximity graph, which was introduced in Chapter 5. The graph shows
individual datasets as nodes and edges showing relationships between dataset
pairs (where an edge is drawn between dataset pairs having a similarity scores
above the minimum threshold). The purpose of this is to be able to see all the
datasets in the DL and an overview of the relationships between them in a
visually intuitive and interactive manner.

For the input screen seen in Figure 6.9, the user should select which
proximity model to use when constructing the relationships (similarities)
between datasets and the minimum similarity threshold in {0.5,0.75}. This
way we allow to build proximity graphs with at least average similarity strength
or other graphs only showing strong relationships (in the case of selecting 0.75).
The shape of the graph will differ based on the filtered relationships satisfying
the minimum similarity threshold, as we use a force-directed graph structuring
algorithm [66] which depends on the relationship strengths between the
nodes (the datasets) to group them and to position them accordingly. More
interesting proximity graphs can be achieved with higher minimum similarity
thresholds, as this way only very similar datasets (usually having similar
categories in the ground-truth and the same colour for the nodes) are grouped
together in a more coherent manner.

The overview of the output proximity graph can be seen in Figure 6.10.

143

6. Proximity Graph

Query Datasets

Dataset Dataset Name Dataset Deseription No. of Attributes No, of Instances

Output Similar Attributes By Content Similarity

Matching Details Attributel from

Similarity Attribute | Attribute Name Attribute

Type Name

Qutput Similar Attributes By Name Similarity

Matching

Similarity Missing Missing Value Attribute

Score Values Name

Figure 6.8: The output screen for the new dataset matching component of Prox-mine
This is an interactive graph visualisation, where the graph is shown in the
middle. On the left-side, there is a graph search and category-filtration selector,
and at the bottom there are three buttons to zoom-in, zoom-out or to return to
default view. When the graph is zoomed-in, the nodes show the names of the
datasets as their labels. The colours of the nodes represent the ground-truth
category they belong to, therefore datasets in the same category have the same
colour.

The user can interact with the graph by zooming in and out and toggling
the view with the cursor to move the view to a different part of the graph. In
addition, the user can search for a specific dataset node using the search bar
in the left panel, as seen in Figure 6.11. The datasets can also be filtered to
only highlight those belonging to a specific ground-truth category by selecting
the category from the drop-down group selector menu. The result of filtration

144

6. Proximity Graph

Proximity Graph

isualise the datasets in the data lake and their similarities as a proximity graph based on a proximity model and a3 minimum similarity threshold

Figure 6.10: An overview of the output proximity graph component of Prox-mine, where (a)
gives a zoomed-out view and (b) gives a zoomed-in view

by category is given in Figure 6.11b, where a only the datasets belonging to

145

6. Proximity Graph

Praximity Graph - Model: All-
Prox - Sim. Threshold: 0.5

Data Lake Proximity Graph L] »
§ Mors about this visualization ™
Legend: o 3
& Datasels
. Similarity
% Category I 4 i

[natet Metion il .l

Heasimements (11 datasets) A) o8
search: i L]

i@
Search by name . »
L
Group Selector: -
:
e
L]
(a)
® D rotum to the full graph
Information Pane
- rotd IS5, 121,2%5)
CIEEETIEEE Sebap Hamberal
weall-rof ban

Proximity Graph - Modal: All-
Prow - Sim, Thrashald: 0.5

Bisas Laks Prasimty Graph
i Mors about this visuslisstion

Legend: malt-robot-navigaton
® Datavets wall-tobet-navigation
X Sty ey
3 Category DAl
Search!

.
Group Selector:
T

Q a Q
(b)

Figure 6.11: The search and filtration panel of the output proximity graph component of
Prox-mine, where (a) gives a view of the category selector in the left-panel and (b) gives the
result of applying the filtration step

the specific category are shown and a list showing those datasets is given in
the information pane on the right.

When a specific node is clicked and selected, only the datasets having a
relationship with a similarity score above the minimum similarity threshold
are shown, as could be seen in Figure 6.12. The description of the selected
dataset and the connections (edges) list is given in the information pane on
the right side. This includes a list of all connected (related) datasets and the
similarity scores for each related dataset. Hovering over a specific dataset in
the connections information pane highlights the dataset in the main proximity
graph view and shows its name label. To exit back to the full proximity graph,
the user should click the X’ symbol at the top of the information pane on the
right side.

146

6. Proximity Graph

1D meturn to the tull graph

Information Pane

.
. @ machine_cpu
w Filaname: 2 30mschine ¢ pu aell
Proximity Graph - Model: All- ! ber_of_attributes: T
Prox - Sim. Threshold: 9.5 L umbser_ot st
e ® categeny: CPU Pericrmance Data
ot Lk Prescimity Geagh Pe- 4
i More about this visualisation ™ ° mumber_of_instances: 209
Legend: connections:
L Acgrms,
» Oatasts feams. .
. simiarity . TR
O cegory iy s 03
” mfeal:lactos.
Search: sy scme 05
» o oy
i
Group Selector: .

autoklpg
fsimilaety score: 055)
Salect Category = s
i lispdsie. 432
taiemilaciy score: 0351

bk:oum:
s

Q Q Q {similarity score: 0.55)
keldsed.

Taimlarity score 0.5 1

Figure 6.12: The selection of a specific dataset node in the proximity graph and the relationships
information panel shown on the right side

147

Chapter 7

Conclusions and Future
Directions

Positivity leads to positive energy and success, negativity on
the other hand leads to negative energy and dismay.

Abstract

In this chapter, we summarise the outcome and results of this thesis, presented in
Chapters 2 — 6. Additionally, we present several interesting future directions arising
from this thesis work.

148

1. Conclusions

1 Conclusions

Everything must eventually come to an end. [...] Ctrl+S [...]
Alt+F4 [...] Ctrl+Alt+Delete.

We have presented a novel metadata-based framework for computing
dataset proximity using data profiling and supervised machine learning
techniques. The output from this framework is a metadata repository which
can support in DL governance efforts, whereby datasets are automatically
profiled, matched against other datasets in the DL and categorised into topical
domains in order to support information discovery and analytical tasks over
the DL.

We proposed novel approaches for computing approximate dataset similarity
where dataset pairs contain overlapping attribute pairs based on content
statistics summarising the information stored in the attributes (instead of exact
values matching where attribute names should be identical and their values
should be coded using the same string patterns). This makes it possible to
provide estimation of overall dataset similarity to support early-pruning tasks
of holistic schema matching and automatic dataset categorization based on
most similar datasets already categorized. The developed approach and its
techniques are novel solutions for those research challenges.

To implement this approach, we presented in Chapter 2 an overview of
exact value-based matching techniques for the dataset similarity computation
challenge. We were able to demonstrate the feasibility of this approach using
a real-world DL sample and we summarised the shortcomings of such value-
based techniques; mainly: 1. high computational costs for the comparisons
and 2. inability to detect all related attributes due to the differences in the
way values are coded or stored.

To tackle the shortcoming from the value-based approaches in Chapter
2, we developed a novel technique called proximity mining in Chapter 3 for
computing approximate dataset similarity based on schema and content meta-
data we extract from the datasets. We utilise supervised machine learning
techniques to learn models which can detect similar and duplicate schemata
stored in the DL. The effectiveness and efficiency of the approach was evalu-
ated on an expanded real-world DL sample, where we were able to achieve
high recall and efficiency gain.

We improve the proximity mining techniques using finer-grained attribute-
level metadata in Chapter 4. Here, we collect finer grained metadata summaris-
ing the content of each attribute in the datasets, we propose a greedy algorithm
for finding top-matching attribute pairs between different datasets, and we

149

2. Future Directions

utilise supervised machine learning models to compute overall dataset simi-
larity between dataset pairs in the DL. The approach uses different metadata,
mainly schema metadata consisting of attribute names and types in addition
to content metadata consisting of data profiles for the different attributes.
We test our proposed approach against both techniques from Chapter 2 and
Chapter 3 and we discover that the improved technique can achieve better
performance in terms of effectiveness and efficiency gains. This was proven to
be useful for the holistic schema matching early-pruning task, whereby dataset
pairs having an overall similarity score exceeding a minimum threshold are
proposed for further, more detailed schema matching, and those which are
below the similarity threshold are pre-filtered from any further scrutinization.

In Chapter 5, we use the output dataset similarity cross-dataset relation-
ships to automatically categorise newly ingested datasets in the DL to topics
of interest already existing or to detect that the ingested dataset is an outlier
which has no similar datasets stored in the DL. This is done using a k-nearest-
neighbour algorithm which uses the computed proximity between datasets in
finding the top-k most similar datasets in the DL and to propose their topics
as candidates for the newly ingested dataset.

Finally, in Chapter 6, we demonstrate a prototype which uses the output
from Chapters 3 and 4 in finding related dataset pairs, their overlapping at-
tributes and to automatically categorize datasets based on those most similar
datasets. We develop a simple web application which is able to store annota-
tions of datasets stored in the DL using a metadata repository (a DB) and to
visualise the output from our approach using a querying interface to support
data wranglers and DL uses in information discovery and DL exploration.

This thesis is a first step towards fully automated DL governance for
supporting information discovery and DL segmentation. We were able to
demonstrate techniques which are able to effectively and efficiently compute
overall dataset similarity in an approximate manner. The proposed techniques
were found to be more effective than state-of-the-art value-based schema
matching techniques and human-based manual analysis.

2 Future Directions

What is partially left should never be completely abandoned.

This thesis opens multiple research directions for future work. Firstly, the
same techniques can be adopted for other dataset types like semi-structured
and unstructured datasets. This can support the different variety of datasets
stored in the DL. In addition, the techniques proposed can be augmented

150

2. Future Directions

with semantic matching where datasets, their attributes and their values
can be mapped to a knowledge base to support the computation of their
similarity. This can be useful for datasets storing different content but which
are modelling the same topics of interest.

The framework can also incorporate human-in-the-loop techniques in
a pay-as-you-go approach whereby the data wrangler can interfere in the
matching process to improve the supervised learning models and to help the
models when they are not accurately detecting similar attribute and dataset
pairs. This can be done by manually correcting false positives and false
negatives, and incorporating this in the training process of the models. This
can be seen as an incremental learning process.

Finally, the output of this thesis can be used for other applications like
dataset search ranking engines, data integration tasks where joinable datasets
are detected, and de-duplication tasks where highly similar schemata are
integrated into a single dataset.

151

Bibliography

Standing on the shoulders of giants, a person’s legacy
continues via the knowledge and work passed on to their
students and to others.

References

[1] Z. Abedjan, L. Golab, and F. Naumann. Profiling relational data: a
survey. The VLDB Journal, 24(4):557-581, 2015.

[2] Z. Abedjan, T. Gruetze, A. Jentzsch, and F. Naumann. Profiling and min-
ing RDF data with ProLOD++. In Proceedings - International Conference
on Data Engineering, pages 1198-1201, 2014.

[3] Z. Abedjan and F. Naumann. Improving RDF Data Through Association
Rule Mining. Datenbank-Spektrum, 13(2):111, 2013.

[4] A. Abell6. Big Data Design. In Proceedings of ACM DOLAP, pages 35-38,
2015.

[5] A. Abell, J. Darmont, L. Etcheverry, M. Golfarelli,]. N. Mazén, F. Nau-
mann, T. B. Pedersen, S. Rizzi,]. Trujillo, P. Vassiliadis, and G. Vossen.
Fusion cubes: Towards self-service business intelligence. International
Journal of Data Warehousing and Mining, 9(2):66-88, 2013.

[6] G. Adomavicius, R. Sankaranarayanan, S. Sen, and A. Tuzhilin. In-
corporating contextual information in recommender systems using a
multidimensional approach. ACM Transactions on Information Systems
(TOIS), 23(1):103-145, 2005.

[7] J. Akoka, L. Berti—Equﬂle, O. Boucelma, M. Bouzeghoub, I. Comyn-
Wattiau, M. Cosquer, V. Goasdoué-Thion, Z. Kedad, S. Nugier, V. Peralta,
and S. S. Cherfi. A framework for quality evaluation in data integration

systems. In 9th International Conference on Entreprise Information Systems
(ICEIS), pages 170-175, 2007.

[8] A. Alexandrov, R. Bergmann, S. Ewen, J.-C. Freytag, F. Hueske, A. Heise,
O. Kao, M. Leich, U. Leser, V. Markl, F. Naumann, M. Peters, A. Rhein-
lander, M. J. Sax, S. Schelter, M. Hoger, K. Tzoumas, and D. Warneke.
The Stratosphere platform for big data analytics. The VLDB Journal,
23(6):939-964, 2014.

152

References

[9] A. Algergawy, S. Massmann, and E. Rahm. A Clustering-Based Ap-
proach for Large-Scale Ontology Matching. In East European Conference
on Advances in Databases and Information Systems (ADBIS), pages 415-428.
Springer, 2011.

[10] A. Algergawy, M. Mesiti, R. Nayak, and G. Saake. XML data clustering:
An overview. ACM Computing Surveys (CSUR), 43(4):25, 2011.

[11] A. Algergawy, E. Schallehn, and G. Saake. A schema matching-based
approach to XML schema clustering. In Proceedings of the International
Conference on Information Integration and Web-based Applications & Services,
pages 131-136. ACM, 2008.

[12] I. Alhassan, D. Sammon, and M. Daly. Data governance activities: an
analysis of the literature. Journal of Decision Systems, 25:64-75, 2016.

[13] H. Alrehamy and C. Walker. Personal Data Lake With Data Gravity Pull.
In IEEE Fifth International Conference on Big Data and Cloud Computing
(BDCloud), pages 160-167, 2015.

[14] H. Alrehamy and C. Walker. SemLinker: automating big data integration
for casual users. Journal of Big Data, 5(1), 2018.

[15] A. Alserafi, A. Abell6, O. Romero, and T. Calders. Towards Information
Profiling: Data Lake Content Metadata Management. In DINA Workshop,
ICDM, pages 178-185. IEEE, 2016.

[16] A. Alserafi, A. Abell6, O. Romero, and T. Calders. Keeping the data
lake in form: Ds-knn datasets categorization using proximity mining.
In International Conference on Model and Data Engineering, volume 11815
of Lecture Notes in Computer Science, pages 35—49. Springer, 2019.

[17] A. Alserafi, A. Abell6, O. Romero, and T. Calders. Keeping the data
lake in form: Proximity mining for pre-filtering schema matching. ACM
Transactions on Information Systems (TOIS), 38(3: 26):1-30, 2020.

[18] A. Alserafi, T. Calders, A. Abell6, and O. Romero. DS-prox: Dataset
proximity mining for governing the data lake. In International Conference
on Similarity Search and Applications, volume 10609 LNCS, pages 284-299.
Springer, 2017.

[19] M.-L. Antonie and O. R. Zaiane. Text document categorization by term
association. In 2002 IEEE International Conference on Data Mining, 2002.
Proceedings., pages 19-26. IEEE, 2002.

[20] L. G. Ares, N. R. Brisaboa, A. Ordofnez, and O. Pedreira. Efficient
Similarity Search in Metric Spaces with Cluster Reduction. In SISAP,
pages 70-84. Springer, 2012.

153

References

[21] E. Baralis, T. Cerquitelli, S. Chiusano, L. Grimaudo, and X. Xiao. Analysis
of twitter data using a multiple-level clustering strategy. In International
Conference on Model and Data Engineering, pages 13-24. Springer, 2013.

[22] M. Ben Ellefi, Z. Bellahsene, S. Dietze, and K. Todorov. Dataset Recom-
mendation for Data Linking: An Intensional Approach. In Proceedings
of the International Semantic Web Conference: The Semantic Web. Latest
Advances and New Domains, volume 9678, pages 36-51. Springer, 2016.

[23] R. Berlanga and V. Nebot. XML Mining for Semantic Web. In XML Data
Mining: Models, Methods, and Applications, pages 317 — 342. IGI Global,
2011.

[24] P. A. Bernstein, J. Madhavan, and E. Rahm. Generic Schema Matching ,
Ten Years Later. Proceedings of the VLDB Endowment, 4(11):695-701, 2011.

[25] B. Bilalli, A. Abell6, T. Aluja-Banet, and R. Wrembel. Towards intelligent
data analysis: The metadata challenge. In IoTBD, pages 331-338, 2016.

[26] M. Bilenko and R. J. Mooney. Adaptive Duplicate Detection Using
Learnable String Similarity Measures. In ACM SIGKDD, pages 3948,
2003.

[27] A. Bilke and F. Naumann. Schema Matching using Duplicates. In
Proceedings of the 21st International Conference on Data Engineering, pages
69-80. IEEE, 2005.

[28] A. Bogatu, A. A. A. Fernandes, N. W. Paton, and N. Konstantinou.
Dataset Discovery in Data Lakes. In 2020 IEEE 36th International Confer-
ence on Data Engineering (ICDE), pages 709-720. IEEE, apr 2020.

[29] L. Breiman. Random Forests. Machine Learning, 45(1):5-32, 2001.

[30] S. Bykau, N. Kiyavitskaya, C. Tsinaraki, and Y. Velegrakis. Bridging
the gap between heterogeneous and semantically diverse content of
different disciplines. In IEEE 2010 Workshops on Database and Expert
Systems Applications (DEXA), pages 305-309, 2010.

[31] T. Calders. Three big data tools for a data scientist’s toolbox. In European
Business Intelligence and Big Data Summer School, pages 112-133. Springer,
2017.

[32] T. Calders and B. Custers. What Is Data Mining and How Does It
Work? In Discrimination and Privacy in the Information Society, Studies
in Applied Philosophy, Epistemology and Rational Ethics, volume 3, pages
27-42. Springer Berlin Heidelberg, 2013.

154

References

(33]

(34]

(35]

(36]

(37]

(38]

(39]

[40]

[41]

[42]

(43]

R. Castro Fernandez, Z. Abedjan, F. Koko, G. Yuan, S. Madden, and
M. Stonebraker. Aurum: A Data Discovery System. In 2018 IEEE 34th
International Conference on Data Engineering (ICDE), pages 1001-1012.
IEEE, apr 2018.

A. Chapman, E. Simperl, E. Kacprzak, P. Groth, L. Koesten, G. Konstan-
tinidis, and L.-d. Ibafiez. Dataset search : a survey. The VLDB Journal,
29(1):251-272, 2020.

C. Chen, A. Halevy, and W.-c. Tan. BigGorilla : An Open-Source
Ecosystem for Data Preparation and Integration. IEEE Data Engineering
Bulletin, 41(2):10-22, 2018.

Z. Chen, H. Jia,]. Heflin, and B. D. Davison. Generating Schema Labels
through Dataset Content Analysis. In Companion of the The Web Conference
2018 on The Web Conference 2018 - WWW 18, pages 1515-1522, 2018.

J. Cheney, S. Chong, N. Foster, M. Seltzer, and S. Vansummeren. Prove-
nance: a future history. In Proceedings of the 24th ACM SIGPLAN con-

ference companion on Object oriented programming systems languages and

applications, pages 957-964, 2009.

X. Chu, L F. Ilyas, and P. Papotti. Discovering denial constraints. Pro-
ceedings of the VLDB Endowment, 6(13):1498-1509, 2013.

J. A. C. Cruz, S. E. Garza, and S. E. Schaeffer. Entity Recognition for
Duplicate Filtering. In SISAP, pages 253-264. Springer, 2014.

M. D’Aquin and N. Jay. Interpreting data mining results with linked data
for learning analytics: motivation, case study and directions. In LAK "13
Proceedings of the Third International Conference on Learning Analytics and
Knowledge, pages 155 — 164. ACM, 2013.

H. R. de Oliveira, A. T. Tavares, and B. F. Loscio. Feedback-based data
set recommendation for building linked data applications. In Proceedings
of the 8th International Conference on Semantic Systems - -SEMANTICS 12,
page 49. ACM, 2012.

D. Deng, R. Castro, F. Ziawasch, A. Sibo, A. Elmagarmid, I. F. Ilyas,
S. Madden, M. Ouzzani, and N. Tang. The Data Civilizer System. In 8th
Biennial Conference on Innovative Data Systems Research (CIDR “17), 2017.

D. Deng, A. Kim, S. Madden, and M. Stonebraker. SilkMoth: An Efficient
Method for Finding Related Sets with Maximum Matching Constraints.
Proceedings of the VLDB Endowment, 10(10):1082-1093, 2017.

155

References

[44] S. Duan, A. Fokoue, O. Hassanzadeh, A. Kementsietsidis, K. Srinivas,
and M. J. Ward. Instance-based matching of large ontologies using
locality-sensitive hashing. In International Semantic Web Conference, pages
49-64. Springer, 2012.

[45] S. DZeroski and B. Zenko. Is Combining Classifiers with Stacking Better
than Selecting the Best One ? Machine learning, 54(3):255-273, 2004.

[46]]. Ellis and M. J. Ward. Exploring Big Data with Helix : Finding Needles
in a Big Haystack. ACM SIGMOD Record, 43(4):43-54, 2015.

[47] R. C. Fernandez, Z. Abedjan, S. Madden, and M. Stonebraker. Towards
Large-Scale Data Discovery. In Proceedings of the International Workshop
on Exploratory Search in Databases and the Web - ExploreDB, pages 3-5.
ACM, 2016.

[48] K. Figueroa and R. Paredes. List of Clustered Permutations for Proximity
Searching. In SISAP, pages 50-58. Springer, 2013.

[49] Y. Freund and R. E. Schapire. A decision-theoretic generalization of
on-line learning and an application to boosting. J. Comput. Syst. Sci.,
55(1):119-139, 1997.

[50] J. Friedman, T. Hastie, R. Tibshirani, et al. Additive logistic regression:
a statistical view of boosting (with discussion and a rejoinder by the
authors). The annals of statistics, 28(2):337-407, 2000.

[51] T. Furche, G. Gottlob, L. Libkin, G. Orsi, and N. W. Paton. Data wran-
gling for big data: Challenges and opportunities. In EDBT, volume 16,
pages 473-478, 2016.

[52] E. Gallinucci, M. Golfarelli, and S. Rizzi. Schema profiling of document-
oriented databases. Information Systems, 75:13-25, 2018.

[53] C. Giebler, C. Groger, E. Hoos, H. Schwarz, and B. Mitschang. Leverag-
ing the Data Lake: Current State and Challenges. In C. Ordonez, L.-Y.
Song, G. Anderst-Kotsis, A. M. Tjoa, and I. Khalil, editors, Big Data Ana-
lytics and Knowledge Discovery (DaWaK), volume 11708 of Lecture Notes
in Computer Science, pages 250-265, Cham, 2019. Springer International
Publishing.

[54] A. Halevy, F. Korn, N. F. Noy, C. Olston, N. Polyzotis, S. Roy, and S. E.
Whang. Goods : Organizing Google’s Datasets. In Proceedings of the
ICMD, ACM, pages 795-806, 2016.

[55] E.-H. S. Han, G. Karypis, and V. Kumar. Text categorization using weight
adjusted k-nearest neighbor classification. In Pacific-asia conference on
knowledge discovery and data mining, pages 53-65. Springer, 2001.

156

References

[56] O. Hassanzadeh, F. Chiang, H. C. Lee, and R. J. Miller. Framework for
evaluating clustering algorithms in duplicate detection. Proceedings of
the VLDB Endowment, 2(1):1282-1293, 2009.

[57] O. Hassanzadeh, S. Duan, A. Fokoue, A. Kementsietsidis, K. Srinivas,
and M. J. Ward. Helix : Online Enterprise Data Analytics. In WWW
"11 Proceedings of the 20th international conference companion on World wide
web, pages 225-228, 2011.

[58] R. Hauch, A. Miller, and R. Cardwell. Information Intelligence : Meta-
data for Information Discovery , Access , and Integration. In Proceedings
of the 2005 ACM SIGMOD international conference on Management of data,
pages 793-798, 2005.

[59] Y. He, K. Chakrabarti, T. Cheng, and T. Tylenda. Automatic Discovery of
Attribute Synonyms Using Query Logs and Table Corpora. In Proceedings
of the 25th International Conference on World Wide Web - WWW “16, pages
1429-1439, New York, New York, USA, 2016. ACM.

[60] Y. He, K. Ganjam, and X. Chu. SEMA-JOIN: joining semantically-related
tables using big table corpora. Proceedings of the VLDB Endowment,
8(12):1358-1369, aug 2015.

[61] H. Hentech, M. S. Gouider, and A. Farhat. Clustering heterogeneous
data streams with uncertainty over sliding window. In International
Conference on Model and Data Engineering, pages 162-175. Springer, 2013.

[62]]J. Herlocker, J. A. Konstan, L. G. Terveen, and J. T. Riedel. Evaluating
Collaborative Filtering Recommender Systems. ACM Transactions on
Information Systems (TOIS), 22(1):5-53, 2004.

[63] M. Hewasinghage,]. Varga, A. Abell6, and E. Zimédnyi. Managing
polyglot systems metadata with hypergraphs. In International Conference
on Conceptual Modeling, pages 463-478. Springer, 2018.

[64] W. H. Inmon, C. Imhoff, and R. Sousa. Corporate information factory. John
Wiley & Sons, 2002.

[65] M. Interlandi, K. Shah, S. D. Tetali, M. A. Gulzar, S. Yoo, M. Kim,
T. Millstein, and T. Condie. Titian: Data Provenance Support in Spark.
Proc. VLDB Endow., 9(3):216-227, 2015.

[66] M. Jacomy, T. Venturini, S. Heymann, and M. Bastian. ForceAtlas2, a
continuous graph layout algorithm for handy network visualization
designed for the Gephi software. PLoS ONE, 9(6):1-12, 2014.

157

References

[67] S. R. Jeffery, M. J. Franklin, and A. Y. Halevy. Pay-as-you-go user
feedback for dataspace systems. In Proceedings of the ACM SIGMOD
international conference on Management of data - SIGMOD '08, page 847,
2008.

[68] P. Jovanovic, O. Romero, A. Simitsis, and A. Abell6. Integrating etl
processes from information requirements. In International Conference on
Data Warehousing and Knowledge Discovery, pages 65-80. Springer, 2012.

[69] S. Kandel, J. Heer, C. Plaisant, J. Kennedy, F. Van Ham, N. H. Riche,
C. Weaver, B. Lee, D. Brodbeck, and P. Buono. Research directions
in data wrangling: Visualizations and transformations for usable and
credible data. Information Visualization, 10(4):271-288, 2011.

[70] S. Kandel, R. Parikh, and A. Paepcke. Profiler: Integrated statistical
analysis and visualization for data quality assessment. In AVI '12
Proceedings of the International Working Conference on Advanced Visual
Interfaces, pages 547-554, 2012.

[71] J. Kim, Y. Peng, N. Ivezic, and J. Shin. An Optimization Approach for
Semantic-based XML Schema Matching. International Journal of Trade,
Economics and Finance, 2(1):78 — 86, 2011.

[72] R. Kohavi. The Power of Decision Tables. In ECML, pages 174-189, 1995.

[73] H. Kopcke and E. Rahm. Frameworks for entity matching: A comparison.
Data & Knowledge Engineering, 69(2):197-210, 2010.

[74] S.Krishna and S. Bhavani. An efficient approach for text clustering based
on frequent itemsets. European Journal of Scientific Research, 42(3):385-396,
2010.

[75] S. Kruse, T. Papenbrock, H. Harmouch, and F. Naumann. Data Anam-
nesis : Admitting Raw Data into an Organization. Bulletin of the IEEE
Computer Society Technical Committee on Data Engineering, pages 8-20,
2016.

[76] S. Lacoste-Julien, K. Palla, A. Davies, G. Kasneci, T. Graepel, and
Z. Ghahramani. SiGMa: Simple Greedy Matching for Aligning Large
Knowledge Bases. In Proceedings of the 19th ACM SIGKDD international
conference, pages 572-580, 2013.

[77] M. L. Lee, L. H. Yang, W. Hsu, and X. Yang. Xclust: clustering XML
schemas for effective integration. In Proceedings of the international con-
ference on Information and knowledge management, pages 292-299. ACM,
2002.

158

References

[78] T. M. Lehmann, M. O. Giild, T. Deselaers, D. Keysers, H. Schubert,
K. Spitzer, H. Ney, and B. B. Wein. Automatic categorization of medical
images for content-based retrieval and data mining. Computerized Medical
Imaging and Graphics, 29(2-3):143-155, 2005.

[79] O. Lehmberg and C. Bizer. Stitching web tables for improving matching
quality. Proceedings of the VLDB Endowment, 10(11):1502-1513, aug 2017.

[80] M. R. Llave. Data lakes in business intelligence : reporting from the
trenches. Procedia Computer Science, 138:516-524, 2018.

[81] J. Lokoc, P. Cech, J. Novak, and T. Skopal. Cut-Region : A Compact
Building Block for Hierarchical Metric Indexing. In SISAP, pages 85-100.
Springer, 2012.

[82] A. Maccioni and R. Torlone. KAYAK: A Framework for Just-in-Time
Data Preparation in a Data Lake. In International Conference on Advanced
Information Systems Engineering, pages 474-489. Springer International
Publishing, 2018.

[83] J. Madhavan, P. a. Bernstein, and E. Rahm. Generic Schema Matching
with Cupid. VLDB, 1:49-58, 2001.

[84] H. Mahgoub, N. Ismail, and F. Torkey. A Text Mining Technique Us-
ing Association Rules Extraction. International Journal of Computational
Intelligence, 4(1):21-28, 2008.

[85] H. A. Mahmoud and A. Aboulnaga. Schema clustering and retrieval for
multi-domain pay-as-you-go data integration systems. In Proceedings of
the ACM SIGMOD International Conference on Management of data, pages
411-422. ACM, 2010.

[86] C. D. Manning, P. Raghavan, and H. Schiitze. An Introduction to Informa-
tion Retrieval. Cambridge University Press, USA, 2009.

[87] M. Mazuran, E. Quintarelli, and L. Tanca. Data Mining for XML Query-
Answering Support. IEEE Transactions on Knowledge and Data Engineering,
24(8):1393-1407, 2012.

[88] V. M. Megler, D. Maier, and S. Member. Are Data Sets Like Documents
?: Evaluating Similarity-Based Ranked Search over Scientific Data. IEEE
Transactions on Knowledge and Data Engineering, 27(1):32-45, 2015.

[89] J. Miller. Open Data Integration. PVLDB, 11(12):2130-2139, 2018.

[90] S. Moawed, A. Algergawy, A. Sarhan, A. Eldosouky, and G. Saake.
A Latent Semantic Indexing-Based Approach to Determine Similar
Clusters in Large-scale. New Trends in Databases and Information Systems,
pages 267-276, 2014.

159

References

[91]

[92]

(93]

[94]

[95]

[96]

(971

(98]

[99]

[100]

[101]

[102]

K. Morton, M. Balazinska, D. Grossman, and J. Mackinlay. Support
the Data Enthusiast : Challenges for Next-Generation Data-Analysis
Systems. Proceedings of the VLDB Endowment, 7(6):453-456, 2014.

K. Murthy, P. M. Deshpande, A. Dey, M. Mohania, and D. P. Jennifer.
Exploiting Evidence from Unstructured Data to Enhance Master Data
Management. Proceedings of the VLDB Endowment, 5(12):1862-1873, 2012.

S. Nadal, A. Abelld, O. Romero, S. Vansummeren, and P. Vassiliadis.
MDM: Governing evolution in big data ecosystems. Advances in Database
Technology - EDBT, 2018-March:682-685, 2018.

S. Nadal, K. Rabbani, O. Romero, and S. Tadesse. ODIN: A dataspace
management system. In Proceedings of the ISWC 2019 Satellite Tracks
(Posters & Demonstrations, Industry, and Outrageous Ideas) co-located with
18th International Semantic Web Conference, volume 2456 of CEUR Work-
shop Proceedings, pages 185-188. CEUR-WS.org, 2019.

F. Nargesian, E. Zhu, R. J. Miller, K. Q. Pu, and P. C. Arocena. Data lake
management: challenges and opportunities. Proceedings of the VLDB
Endowment, 12(12):1986-1989, aug 2019.

F. Nargesian, E. Zhu, K. Q. Pu, and R. J. Miller. Table union search on
open data. Proceedings of the VLDB Endowment, 11(7):813-825, 2018.

R. P. D. Nath, K. Hose, T. B. Pedersen, and O. Romero. Setl: A pro-
grammable semantic extract-transform-load framework for semantic
data warehouses. Information Systems, 68:17-43, 2017.

F. Naumann. Data profiling revisited. ACM SIGMOD Record, 42(4):40-49,
2014.

V. Nebot and R. Berlanga. Finding association rules in semantic web
data. Knowledge-Based Systems, 25(1):51-62, 2012.

A. Oliveira, G. Tessarolli, G. Ghiotto, B. Pinto, F. Campello, M. Marques,
C. Oliveira, I. Rodrigues, M. Kalinowski, U. Souza, L. Murta, and
V. Braganholo. An efficient similarity-based approach for comparing
XML documents. Information Systems, 78:40-57, 2018.

M. Ota, H. Miiller, J. Freire, and D. Srivastava. Data-driven domain
discovery for structured datasets. Proceedings of the VLDB Endowment,
13(7):953-967, mar 2020.

T. Papenbrock and F. Naumann. Data Profiling with Metanome. Pro-
ceedings of the VLDB Endowment - Proceedings of the 41st International
Conference on Very Large Data Bases, 8(12):1860-1863, 2015.

160

References

[103] M. Patella and P. Ciaccia. Approximate similarity search : A multi-
faceted problem. Journal of Discrete Algorithms, 7(1):36—48, 2009.

[104] J. Pei, J. Hong, and D. Bell. A novel clustering-based approach to schema
matching. In Proceedings of the international conference on Advances in
Information Systems, pages 60-69. Springer, 2006.

[105] M. Piernik, D. Brzezinski, and T. Morzy. Clustering XML documents by
patterns. Knowledge and Information Systems, 46(1):185-212, 2016.

[106] B. Quinto. Big Data Governance and Management. In Next-Generation
Big Data, pages 495-506. Apress, Berkeley, CA, 2018.

[107] C. Quix and R. Hai. Data Lake. Encyclopedia of Big Data Technologies,
pages 552-559, 2019.

[108] C. Quix, R. Hai, and I. Vatov. GEMMS: A Generic and Extensible
Metadata Management System for Data Lakes. In Proceedings of the
CAiSE’16 Forum at the International Conference on Advanced Information
Systems Engineering, pages 129-136, 2016.

[109] E. Rahm. Towards large-scale schema and ontology matching. In Schema
matching and mapping, pages 3—-27. Springer Berlin Heidelberg, 2011.

[110] E. Rahm. The Case for Holistic Data Integration. In ADBIS, pages 11-27,
2016.

[111] E. Rahm and P. A. Bernstein. A survey of approaches to automatic
schema matching. VLDB Journal, 10(4):334-350, 2001.

[112] B. Ranjbar-sahraei, J. Efremova, H. Rahmani, T. Calders, K. Tuyls, and
G. Weiss. HiDER: Query-Driven Entity Resolution for Historical Data.
Machine Learning and Knowledge Discovery in Databases, 9286:281-284,
2015.

[113] F. Ravat and Y. Zhao. Data lakes: Trends and perspectives. In S. Hart-
mann, J. Kiing, S. Chakravarthy, G. Anderst-Kotsis, A. M. Tjoa, and
I. Khalil, editors, International Conference on Database and Expert Systems
Applications (DEXA), volume 11706 of Lecture Notes in Computer Science,
pages 304-313, Cham, 2019. Springer International Publishing.

[114] S. Sakr and A. Y. Zomaya, editors. Encyclopedia of Big Data Technologies.
Springer, 2019.

[115] A. B. Salem, E. Boufares, and S. Correia. Semantic Recognition of a
Data Structure in Big-Data. Journal of Computer and Communications,
02(09):93-102, 2014.

161

References

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

V. Santos, F. A. Baido, and A. Tanaka. An architecture to support infor-
mation sources discovery through semantic search. In IEEE International
Conference on Information Reuse and Integration (IR), pages 276-282, 2011.

A. Sarma, L. Fang, N. Gupta, A. Halevy, H. Lee, FE. Wu, R. Xin, and
C. Yu. Finding related tables. In Proceedings of the 2012 international
conference on Management of Data - SIGMOD ’12, pages 817-828, New
York, New York, USA, 2012. ACM Press.

P. Sawadogo and J. Darmont. On data lake architectures and metadata
management. Journal of Intelligent Information Systems, jun 2020.

P. Sawadogo, E. Scholly, C. Favre, E. Ferey, S. Loudcher, and J. Dar-
mont. Metadata Systems for Data Lakes: Models and Features. In
T. Welzer,]. Eder, V. Podgorelec, R. Wrembel, M. Ivanovi¢, J. Gamper,
M. Morzy, T. Tzouramanis, J]. Darmont, and A. Kamisali¢ Latifi¢, editors,
New Trends in Databases and Information Systems ADBIS, volume 1064
of Communications in Computer and Information Science, pages 405-416,
Cham, 2019. Springer International Publishing.

S. Scherzinger, M. Klettke, and U. Storl. Managing Schema Evolution in
NoSQL Data Stores. In Proceedings of the 14th International Symposium on
Database Programming Languages, 2013.

P. Shvaiko. A Survey of Schema-based Matching Approaches. Journal
on Data Semantics, 3730:146-171, 2005.

K. Smith, L. Seligman, A. Rosenthal, C. Kurcz, M. Greer, C. Macheret,
M. Sexton, and A. Eckstein. "Big Metadata": The Need for Principled
Metadata Management in Big Data Ecosystems. In DanaC’14 Proceedings
of Workshop on Data Analytics in the Cloud, pages 13:1—-13:4, 2014.

B. Spahiu, C. Xie, A. Rula, A. Maurino, and H. Cai. Profiling Similarity
Links in Linked Open Data. In Proceedings of the 7th International Work-
shop on Data Engineering meets the Semantic Web (DESWeb), ICDE, pages
103-108, 2016.

R. Steorts, S. Ventura, M. Sadinle, and S. Fienberg. A Comparison of
Blocking Methods for Record Linkage. In International Conference on
Privacy in Statistical Databases, pages 253-268, 2014.

M. Stonebraker, D. Bruckner, I. F. Ilyas, G. Beskales, M. Cherniack, S. B.
Zdonik, A. Pagan, and S. Xu. Data Curation at Scale: The Data Tamer
System. In 6th Biennial Conference on Innovative Data Systems Research
(CIDR), 2013.

162

[126] E. M. Suchanek, S. Abiteboul, and P. Senellart. PARIS : Probabilistic
Alignment of Relations , Instances , and Schema. Proceedings of the VLDB
Endowment, 5(3):157-168, 2011.

[127] P.-N. Tan, M. Steinbach, and V. Kumar. Introduction to data mining.
Pearson Education, 2006.

[128] I. Terrizzano, P. Schwarz, M. Roth, and J. E. Colino. Data Wrangling:
The Challenging Journey from the Wild to the Lake. In 7th Biennial
Conference on Innovative Data Systems Research CIDR’15, 2015.

[129] V. Theodorou, A. Abell, M. Thiele, and W. Lehner. A framework
for user-centered declarative etl. In Proceedings of the 17th international
workshop on data warehousing and OLAP, pages 67-70, 2014.

[130] R. Touma, O. Romero, and P. Jovanovic. Supporting Data Integration
Tasks with Semi-Automatic Ontology Construction. In Proceedings of the
ACM Eighteenth International Workshop on Data Warehousing and OLAP ,
DOLAP "15, pages 89-98, 2015.

[131] J. Vanschoren,]J. N. van Rijn, B. Bischl, and L. Torgo. OpenML: net-
worked science in machine learning. ACM SIGKDD Explorations Newslet-
ter, 15(2):49-60, 2014.

[132] J. Varga, O. Romero, and T. B. Pedersen. Towards Next Generation
BI Systems : The Analytical Metadata Challenge. Data Warehousing
and Knowledge Discovery - Lecture Notes in Computer Science, 8646:89-101,
2014.

[133] M. Yakout, K. Ganjam, K. Chakrabarti, and S. Chaudhuri. InfoGather:
entity augmentation and attribute discovery by holistic matching with
web tables. In Proceedings of the 2012 international conference on Manage-
ment of Data - SIGMOD 12, pages 97-108, New York, New York, USA,
2012. ACM Press.

[134] M. Zhang and K. Chakrabarti. InfoGather+: semantic matching and
annotation of numeric and time-varying attributes in web tables. In
Proceedings of the 2013 international conference on Management of data -
SIGMOD 13, pages 145-156, New York, New York, USA, 2013. ACM.

163

Dataset Proximity Mining for
Supporting Schema Matching and
Data Lake Governance

The goal of this thesis is to extract metadata and information about datasets
stored in the Data Lake (DL) to support the data scientist in finding relevant
sources. We explore different techniques of data profiling, holistic schema
matching and analysis recommendation to support the data scientist. We pro-
pose a novel framework based on supervised machine learning to automatically
extract metadata describing datasets, including computation of their similari-
ties and data overlaps using holistic schema matching techniques. We use the
extracted relationships between datasets in automatically categorizing them to
support the data scientist in finding relevant datasets with intersection between
their data. This is done via a novel metadata-driven technique called proximity
mining which consumes the extracted metadata via automated data mining al-
gorithms in order to detect related datasets and to propose relevant categories
for them. We focus on flat (tabular) datasets organised as rows of data instances
and columns of attributes describing the instances. We implement our pro-
posed algorithms via a prototype that shows the feasibility of this framework.
We apply the prototype in an experiment on a real-world DL scenario to prove
the effectiveness and efficiency of our approach. We were able to achieve high
recall rates and efficiency gains while improving the computational space and
time consumption by two orders of magnitude via our proposed early-pruning
and pre-filtering techniques in comparison to classical instance-based schema
matching techniques. This proves the effectiveness of our proposed automatic
methods, while also demonstrating improvements over human-based data anal-
ysis for the same tasks.

Keywords: Data Lake Governance, Dataset Similarity Mining, Holistic Schema Matching,
Metadata Management, Supervised Machine Learning

A PhD thesis by
Ayman AlSerafi

	Front cover
	Front page
	Abstract
	Resum
	Résumé
	Acknowledgements
	Contents
	List of Figures
	List of Tables

	Abbreviations
	Thesis Details
	1 Introduction
	1 Motivation
	2 Background and State-of-the-art
	2.1 Data Lakes and Tabular Datasets
	2.2 Data Lake Governance

	3 Techniques and Challenges
	3.1 Schema Matching
	3.2 Dataset Similarity Computation
	3.3 Similarity Models Learning

	4 Thesis Objectives and Research Questions
	5 Thesis Overview
	5.1 Proximity Mining Framework
	5.2 DL Categorization
	5.3 Metadata Query Interface

	6 Thesis Contributions
	7 Structure of the Thesis
	7.1 Chapter 2: Instance-level value-based schema matching for mining proximity between datasets
	7.2 Chapter 3: Dataset-level content metadata based proximity mining
	7.3 Chapter 4: Attribute-level content metadata based proximity mining for pre-filtering schema matching
	7.4 Chapter 5: Automatic categorization of datasets using proximity mining
	7.5 Chapter 6: Prox-mine tool for browsing DLs using proximity mining

	2 Instance-level value-based schema matching for computing dataset similarity
	1 Introduction
	2 Related Work
	3 Motivational Case-Study
	4 A Framework for Content Metadata Management
	5 The CM4DL Prototype
	5.1 Prototype Architecture
	5.2 Ontology Alignment Component
	5.3 Dataset Comparison Algorithm

	6 Experiments and Results
	7 Discussion
	8 Conclusion and Future Work

	3 Dataset-level content metadata based proximity mining for computing dataset similarity
	1 Introduction
	2 Problem Statement
	3 Related Work
	4 The DS-Prox Approach
	4.1 The Meta-Features Distance Measures
	4.2 The Approach

	5 Experimental Evaluation
	5.1 Datasets
	5.2 Experimental Setup
	5.3 Results
	5.4 Discussion

	6 Conclusion and Future Work

	4 Attribute-level content metadata based proximity mining for pre-filtering schema matching
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Approach: Metadata-based Proximity Mining for Pre-filtering Schema Matching
	4.1 Proximity Metrics: Meta-features Distances
	4.2 Supervised Proximity Mining
	4.3 Pre-filtering Dataset Pairs for Schema Matching

	5 Experimental Evaluation
	5.1 Datasets
	5.2 Evaluation Metrics
	5.3 Experiment 1: Attribute-level Models
	5.4 Experiment 2: Dataset-level Models
	5.5 Experiment 3: Computational Performance Evaluation
	5.6 Generalisability

	6 Conclusion

	5 Automatic categorization of datasets using proximity mining
	1 Introduction
	2 Preliminaries
	2.1 Proximity Mining: Meta-features Metrics and Models

	3 DS-kNN: a Proximity Mining Based k-Nearest-Neighbour Algorithm for Categorizing Datasets
	4 Experimental Evaluation
	4.1 Dataset: OpenML DL Ground-truth
	4.2 Experimental Setup
	4.3 Results
	4.4 Validation Experiment

	5 Related Work
	6 Conclusion

	6 Prox-mine tool for browsing DLs using proximity mining
	1 Introduction
	2 Data Lake Index
	3 Similarity Search
	4 Dataset Categorization
	5 Dataset Matching
	5.1 New Dataset Matching

	6 Proximity Graph

	7 Conclusions and Future Directions
	1 Conclusions
	2 Future Directions
	Bibliography
	References

